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Chapter 1

Introduction

1.1 Background

Recent studies in histopathology have made promising developments for analysis
that would enable precision medicine and patient specific diagnosis [1, 2, 3, 4, 5,
6]. In typical clinical practice, medical doctors or pathologists manually analyze
histopathological' images leading to a diagnosis. However, depending only on man-
ual analysis has several problems. First, the number of images for a patient of tissue
samples is typically large that becomes a burden when the pathologists manually
analyze them. In certain cases, they have time constraints since the diagnosis is tak-
ing place during surgery. The combination of large number of images to be analyzed
and time pressure for quick diagnosis places a heavy burden on clinical pathologists.
Second, the criteria for diagnosis are not standard. Evaluation criteria heavily de-
pends on the experiences and subjectiveness of each medical doctor or pathologist.
Therefore, the results of the analysis are usually not quantitative. For these reasons,
new and efficient methods that could automate and standardize the overall process
would enable quick, efficient, and quantitative diagnosis is highly desired.

Many recent developments in biomedical informatics use computer vision tech-
niques for computational pathology. These research reports show progress towards
the goals for quick, efficient and quantitative analysis [1, 2, 3, 4, 5, 6]. In one such
study [1], computer-assisted diagnosis (CAD) systems have been used to detect tu-
mors from histopathological tissue images. This method was required strong feature
extraction and further classification analysis to determine the prognosis of a patient.
Feature descriptors were employed for effective cytopathology and histopathology.
However, many of the previous research works mainly applied these methods to
some specific diseases, like breast cancer, or esophagitis, and or not widely applied

to other areas such as the brain yet. In addition, the breast cancer and esophagitis

Lthe branch of medical science that studies the causes and nature and effects of diseases.



reports were focused on research in the field of histopathology and not yet widely
applied in clinical practice as well.

Based on these observations, the focus of this study was on Glioma histopatholog-
ical images. Glioma is one of the most malignant tumors occurring in the brain. The
prognosis of Glioma is usually quite poor in clinical practice. A system that would
utilize automation towards aiding disease stage classification of Glioma would ben-
efit greatly in predicting a timely diagnosis, which could aid appropriate treatment
and in turn enhance patient outcome greatly.

The approach of this study was to apply methods of biomedical informatics to
Glioma histopathological images. There are many feature descriptors that can be
used to analysis histopathological images. However, most of these feature descriptors
have been, so far, applied only to other diseases such as breast cancer. Therefore,
the effectiveness of the standard features such as the spatial, textural, regional fea-
ture descriptors for Glioma is not yet known. Part of this work was to check the
effectiveness of these feature descriptors for Glioma histopathological images. The
checked descriptors have been reported as useful in previous research works for other
tissue types. Therefore, I have decided to check the effectiveness of certain feature

descriptors for Glioma histopathological images. The results were reported in [7, 8].

1.2 Objective

The objective of this study is automatic disease stage classification of Glioma histopatho-
logical images. The secondary objective is to determine the effectiveness of this
method using multiple image sets. The prior study used only 1 pair image set, High

grade and Low grade [9]. This work discusses
o Method of nuclei segmentation using custom-designed image processing
o Performance of this segmentation method

» Various feature descriptors which are then used to evaluate and disease stages

classification of Glioma

The images used for analysis in this study were obtained from The Cancer
Genome Atlas (TCGA) [11]. Significant feature descriptors for Glioma images were
determined and used for classification using Support Vector Machine (SVM) and
Random Forests (RF) [10]. This thesis shows that the proposed image analysis
pipeline can be used effectively in feature extraction and disease stage classification
for Glioma histopathological images. Further, the pipeline is general in the sense

that it is extensible to other tissue type images.



Rest of the thesis is organized as follows. Chapter 2 and Chapter 3 compare the
performance of the proposed method with other segmentation schemes. Chapter 4
shows the experimental results and has a discussion. Finally, Chapter 5 concludes
the study.



Chapter 2

Materials

2.1 Histopathological Images of Glioma

In this study, I used human brain histopathological images of Glioma. Generally,
Glioma can be categorized into four grades based on their disease stage. For example,
Glioma of Grade 1 has a slight illness, and Grade 4 is so serious and has a poor
prognosis. In particular, the average life expectancy of Grade 4 is one and half year
in general. Figure 2.1 shows an example of histopathological images. As shown
the figure, the histopathological images are dominated by regions with many cell
nuclei and cytoplasm. Some images contain other structures or tissue types, such
as vessels, and blood cells. In the figure, the objects stained deep purple are cell
nuclei, the objects stained bright red are blood cells, and the light colored regions
are primarily cytoplasm.

As seen in Figure 2.1, the grade of the disease progression seems to correlate with
some image features, such as nuclei properties of size, shapes, density and typology
about other nuclei. Therefore, these features in the images were used for analysis in

the study of biomedical informatics.

2.2 Obtained Images

The images used in this study were obtained from the publicly available The Cancer
Genome Atlas [11] (TCGA) database. This database has many histopathological
images, such as Glioma, Breast Cancer, and Esophagitis. TCGA contains two types
of images, i.e. Lower-Grade Glioma (LGG) and Glioblastoma multiforme (GBM).
LGG includes images of Grade 1 and 2, GBM includes images of Grade 3 and 4.
Certain attributes of the database of TCGA-LGG and TCGA-GBM are shown in
Figure 2.2. In this study, these two distinct type images were used as the experi-

mental imagery for automatic analysis. Figure 2.3 shows example images. In these



Figure 2.1: Example of a histopathological image.

images, the nuclei were stained deep purple, and other tissues were stained pale pur-
ple and red by Haematoxylin and Eosin (H&E) staining. Image features with respect
to the nuclei appear different based on the grade, and features of the organization
are different from each other. Generally, these differences are believed to result from
the disease progression, including changes in gene and protein expression.

In the previous research [9], an image in each category, LGG and GBM was used.
Then, the authors could only say that there were possibilities of being affected by
not only disease stage but also differences of the staining states. Therefore, this

thesis used 10 LGG images and 10 GBM images respectively to avoid this problem.
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Figure 2.2: The Cancer Genome Atlas [11] (TCGA) database where the experimen-
tal histopathological imagery were acquired. (a) Lower-Grade Glioma (LGG), and
(b) Glioblastoma multiforme (GBM) cases.
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(a) Lower-Grade Glioma (LGG)

(b) High-Grade Glioma (GBM)

Figure 2.3: Samples of Glioma histopathological images. (a) Lower-Grade Glioma
(LGG) and (b) High-Grade Glioma (GBM).
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Chapter 3

Methods

The methods used in this study consist of four main steps (Figure 3.1): Data-set
Construction, Nuclei Segmentation, Feature Extraction, and Classification. In the
Classification step, Support Vector Machine (SVM) and Random Forest (RF) were

used for efficient classification.

3.1 Data-set Construction

The first step of the methods is to construct the experimental data-set. The
histopathological images of Glioma obtained from TCGA database were in the .svs
format. These images are too large (approximately 30000 x 30000 pixels) to be used
on the target computational platform, such as a standard personal computer /laptop.
Sample images of original large scale LGG and GBM image files are shown in Fig-
ure 3.2. The original sized images were divided into patched images whose sizes
were 2000 x 2000 pixels. These patched images were used as experimental mate-

rials. Figure 3.3 shows how the original images were divided into patched images

Data-set Construction

Nucleisegmentation

Feature extraction
I _

Classification .

= Support Vector Machine

» Random Forest

Figure 3.1: General procedure of experimental method.

12



(b) GBM (39077 x 30186 pixels

Figure 3.2: Samples of original large scale images from TCGA database. (a) Lower-
Grade Glioma (LGG), and (b) High-Grade Glioma (GBM).
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Figure 3.3: Criterion to divide the original histopathological image to small patches.

and the criteria. In the figure, a patched image, which was uniformly covered by
the sufficient number of nuclei, were added to the data-set. For this study, 10 .svs
format images in each category were used. From each original image, 100 patched
images were made. Therefore, 1000 patched images in each category were used in
this study.

3.2 Nuclei Segmentation

The second step of the method is Nuclei Segmentation. Nuclei properties were
primary focused for the analysis because these properties change with the disease
stage progression.

CellProfiler [12] was utilized in this study for image segmentation. CellProfiler is
an open source library and it is designed for histopathology image processing. This
software also supports basic methods and algorithms. Figure 3.4 shows the pipeline,
the flow of processing steps, of this particular segmentation method. This pipeline

consists of three main steps:
o Pre-processing (yellow)
» Rough segmentation (green)

o Nuclei separation (blue)

3.2.1 Pre-processing

The design for pre-processing is based on the characteristics of the H&E stained

image. The goal is to isolate the nuclei and reduce the pixel memory during Pre-

14



Input Image

‘ Color To Gray ‘

‘ Smooth ‘

|
l Enhance Or Suppress Features
I ‘ Image Math
‘ Apply Threshold |

‘ Mask Image ‘

‘ Identify Primary Objects ‘

[ Converts Object To Image ‘

Output Image

Figure 3.4: Segmentation pipeline used in the proposed method.

processing. If the colors of the H&E images is converted to gray-scale, the both dark
purple nuclei and deep red blood vessels appear as dark spots. The separation is
done as follows. The input image is converted to a gray-scale image by using Color
To Gray module. The parameters of the module were set to illuminate red colored
objects, e.g. blood cells.

And then, Smooth module smooths the converted image to remove artifacts of a
particular size, like a bubble on the cell nuclei in the image. In this module, Smooth
Keeping Edges is applied as a smoothing method. This method uses a bilateral
filter which limits Gaussian smoothing across an edge while applying smoothing
perpendicular to an edge. The effect is to respect edges in the image while smoothing
other features. Figures 3.5 (a), (b) and (c) show input, gray-scale, and smoothed
images, respectively. Fuzzy smoothing and adaptive thresholding techniques [13, 14]

can be used to improve these preliminary pre-processing steps.

3.2.2 Region Extraction

Next, nuclei in the image is roughly segmented by using the following procedure.
Enhance Or Suppress Features module was used to emphasize dark regions, i.e.
nuclei. The module enhances or suppresses certain image features (such as speckles,
ring shapes, and neurites), which improve subsequent identification of objects. This
module enhances or suppresses the intensity of certain pixels about the rest of the
image, by applying image processing filters. It produces a gray-scale image in which

objects can be identified with Identify module. In this study, enhancing the objects
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Figure 3.5: Pre-processing steps consist of gray-scale conversion and smoothing using
bilateral filter.

(nuclei) is selected. Therefore, this module uses morphological reconstruction (the
rolling-ball algorithm) to identify dark holes within brighter areas or brighter ring
shapes. The image is inverted so that the dark holes turn into bright peaks. As a
result, the inverted image shown in Figure 3.6 (a) is obtained.

After this, Apply Threshold module is used to obtain the binary image as shown
in Figure 3.6 (b). Apply Threshold module produces either a gray-scale or binary
image based on a threshold that is pre-selected or calculated automatically. In this
study, output image type is a binary image. And threshold strategy is Adaptive
and the image threshold is determined based on the pixel intensities. Adaptive
partitions the input image into tiles and calculate thresholds for each tile. For
each tile, the calculated threshold is applied only to the pixels within that tile.
Thresholding method for binarizing is Otsu, this approach calculates the threshold to
separate pixels (foreground and background) with discriminant analysis. As shown
in Figure 3.6, the method can roughly extract nuclei regions from the obtained
image, but adjacent nuclei are grouped as one nucleus.

To separate the adjacent nuclei regions, the inverted image is prepared without

enhancement (Figure 3.6 (c)) by using Image Math module and the smoothed image

16



(¢) Only Inverted Image (d) Region Extracted Image

Figure 3.6: Example of rough segmentation step.

(Figure 3.5 (c)). In Image Math module, Invert is selected as an operation to
perform. Invert subtracts the image intensities from 1. This makes the darkest color
the brightest and vice-versa. Then, the rough segmented image was obtained by
superimposing the binary image (Figure 3.6 (b)) and the inverted image (Figure 3.6
(c)). In this step, Mask Image module was employed to superimpose. Figure 3.6 (d)

shows the result of rough segmentation by the above procedure.

3.2.3 Nuclei Separation

As the last step, adjacent nuclei regions are separated into each nucleus based on
the distribution of pixel values. As seen in Figure 3.7, an adjacent nucleus region
has plural peaks like a multimodal distribution. The typical distribution of pixel
values of a single nucleus is unimodal. Thus, local minimum points of pixel values
in the region were detected and Identify Primary Objects module is used to trace
the points. Identify Primary Objects module identifies biological components of
interest in gray-scale images that contain bright objects on a dark background. For
using this module, the input image should have the following qualities. The image

should be gray-scale, and the foreground (i.e. regions of interest) are lighter than

17



Figure 3.8: Segmentation result.

the background. And in this module, objects that touch the border of the image
were removed. Removing objects that touch the image border is important for
accurate analysis because morphological measurements obtained from a portion of
an object will not be accurate. In this module, the method to distinguish clumped
objects is Intensity. When this method is used and if the objects have some peaks
of brightness, this option counts each peak point as a separate object and the object
centers are defined as local intensity maximum in the smoothed image. Figure 3.7
shows the basic overview of this concept.

After that, each separated nucleus was colored for recognizing individual nucleus
using Converts Object To Image module. Figure 3.8 shows the resulting segmented

image.

3.3 Feature Extraction

Feature descriptors used to analyze histopathological images can be categorized into

two types [1]:

18



e Object-Level features
e Spatial-Arrangement features

Both types were utilized in this study.

3.3.1 Object-Level Features

Object-Level features are directly related to the size and shape of each object, such
as a nucleus. The outline around the region of each nucleus is expressed with one

of these six types:

o Original nucleus

Elliptical nucleus

Convex Hull nucleus

Bounding Box nucleus

Boundary of nucleus

The examples of outline figures are shown in Figure 3.9. For the Original nu-
cleus, Number of nuclei, Area of nucleus and other features are used as the feature
descriptors (Figure 3.9 (a)). For the Elliptical nucleus, at first, an approximate el-
lipse around the original nucleus is generated (Figure 3.9 (b)). After that, the Major
and Minor Axis Length, Eccentricity, Orientation, Elliptical Deviation, Extent and
Aspect Ratio are calculated. In the same way, for the Convex Hull and Bounding
Box of nucleus, the smallest convex hull object and smallest bounding box like Fig-
ure 3.9 (c¢) and (d) are made and then, some feature descriptors shown in Table 3.1
are extracted. Boundary of nucleus is related to the outline of original nucleus, and
these feature descriptors are related to the perimeter of the nucleus (Figure 3.9 (e).
All of the extracted Object-Level features are shown in Table 3.1.

3.3.2 Spatial-Arrangement Features

Spatial-Arrangement features are features with respect to the topographical posi-
tion of nuclei. To get these features, a nucleus is called a node and graphs that
connect the nodes are constructed [17, 18, 19]. For instance, B. Weyn used frac-
tal and syntactic structure analysis (SSA), and he took into account the spatial-
arrangement features [17]. Furthermore, he applied SSA to malignant mesothelioma
images in [18]. Another report [19] shows a method to make perceptual boundaries
of relatively homogeneous dot patterns. Generally, Spatial-Arrangement features

do not depend on the shapes of segmented nuclei, but their positions and distances
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¢

4

(a) Original nucleus (b) Elliptical nucleus

4

. 4

(¢) Convex Hull nucleus (d) Bounding Box nucleus

(e) Boundary of nucleus

Figure 3.9: Outline figures of Object-Level features.

among nodes. Such topological features can be also valiant descriptors to express
the Spatial-Arrangement of nodes.

In this study, the thesis uses three types graph as follows:
 Voronoi Tessellation (VT)

e Delaunay Triangulation (DT)

o Minimum Spanning Tree (MST)

These graphs are constructed from input images (segmented images). Samples
of an input image and the constructed graphs are shown in Figure 3.10. Table 3.2
shows all of the extracted Spatial-Arrangement features [20].

These graphs are constructed as follows. First, Voronoi Tessellation is obtained

from the input image. In the tessellation, the circle marks indicate the nodes lo-

20



Table 3.1: List of Object-Level features.

] \ Type \ Features \

Object-Level Features — # of nuclei, Area
Major Axis Length
Minor Axis Length
Eccentricity
Elliptical Orientation
Elliptical Deviation
Extent
Aspect Ratio
Convex Area

Convex Hull Convex Deficiency
Solidity
] Extent
Bounding Box Aspect Ratio
Perimeter
Boundary Radii

Perimeter Curvature
Equivalent Diameter
Sphericity
Compactness
Inertia Shape

Other Shape

cated at gravity centers of each of the nuclei. Then, the perpendicular bisectors of
nodes are connected each other. The sample graph is shown in Figure 3.10 (b). As
shown, the obtained graph has many regions that are surrounded by perpendicular
bisectors. Therefore, the thesis extracts feature descriptors related to these regions
from Voronoi Tessellation.

Next, the graphs of Delaunay Triangulation is constructed. The graphs of Delau-
nay Triangulation is constructed from the graphs of Voronoi Tessellation by connect-
ing the nodes of the neighboring boundary region in Voronoi Tessellation. There-
fore, it is expected that Delaunay Triangulation shows the adjacency relationship
pf the Voronoi regions. The sample graph of Delaunay Triangulation is shown in
Figure 3.10 (c).

This study also constructs the graphs of Minimum Spanning Tree (MST). MST
is obtained by connecting all of the nodes in the graphs with the minimum edge
length of Delaunay Triangulation. An example of Minimum Spanning Tree is shown
at Figure 3.10 (d).

3.3.3 Kolmogorov-Smirnov (K-S) Test

The effectiveness of the above feature descriptors has already been confirmed in

literature [9]. In the [9], the feature descriptors defined in the literature [1] were

21



(a) Input Image (Segmented Im- (b) Voronoi Tessellation
age)

(c¢) Delaunay Triangulation (d) Minimum Spanning Tree

Figure 3.10: Samples of input image and output graphs.

applied to the Glioma histopathological images in TCGA database, and their sta-
tistical significances were evaluated by using Kolmogorov-Smirnov (K-S) test. The
significance level was set to 0.01.

Tables 3.3 and 3.4 show the summarized results on Object-Level and Spatial-
Arrangement features, respectively. From the results, p-values of all feature descrip-
tors were less than 0.01, and they all were regards as effective for evaluation of

disease progression of Glioma.

3.4 Classification

The significant feature descriptors are employed to generate a feature vector for
disease stage classification. In this study, all of the feature values obtained by
significant descriptors were used as coefficients of the feature vectors. The patched
images were classified by using Support Vector Machine (SVM) and Random Forests
(RF). In this study, these classifiers were implemented by “R”, which was a software

for statistical analysis.
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Table 3.2: List of Spatial-Arrangement features.

’ \ Type \ Features \

Spatial- # of Nodes
Arrangement # of Edges
Features Edge Length
Cyclomatic #
# of k-Walks
Degree
Spectral Radius
Randic Index
Area
Area Disorder
Perimeter
Roundness Factor
Roundness Factor
Homogeneity
# of Nodes
# of Edges
Edge Length
Cyclomatic #
Delaunay Triangulation # of Triangles
# of k-Walks
Degree
Spectral Radius
Randic Index
# of Nodes
# of Edges
Edge Length
Degree
Spectral Radius
Randic Index

Voronoi Tessellation

Minimum Spanning Tree

3.4.1 Support Vector Machine

The data-set was divided into two subsets, testing data (10%) and parameter tuning
and training data(90%). Then, the parameters of SVM was tuned with the tuning
data. The classification result is affected by random sampling process in the data-set
division. Therefore, classification test was done ten times and then, the average of

the classification results was used for evaluation.

3.4.2 Random Forest

In the RF using R, the parameter my,, should be tuned. The parameter means the
number of feature descriptors to be used to construct a decision tree for RF. The

default parameter of miry is v/n, and n is the number of feature descriptors for anal-
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Table 3.3: Kolmogorov-Smirnov (K-S) test result of Object-Level features.

] Type

|

Features

\ p-value \

# of Nuclei
Area

< 0.01

Elliptical

Major Axis Length
Minor Axis Length
Eccentricity
Orientation
Elliptical Deviation
Extent
Aspect Ratio

< 0.01

Convex Hull

Convex Area
Convex Deficiency
Solidity

< 0.01

Bounding Box

Extent
Aspect Ratio

< 0.01

Boundary

Perimeter
Radii
Perimeter Curvature

< 0.01

Other Shape

Equivalent Diameter
Sphericity
Compactness
Inertia Shape

< 0.01

ysis. In this thesis, my,, was obtained by using tune RF' function. Figure 3.11 shows

the relationship between my,, and OOB error. RF was trained using bootstrap

aggregation, where each new tree was fit from a bootstrap sample of the training

observations z;. OOB error is the average error for each z; that is calculated using

predictions from the tree that do not contain z; in their respective bootstrap sample.

In the case of Figure 3.11, my,, = 2 is the best parameter and the value was used

for experiments.
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Table 3.4: Kolmogorov-Smirnov (K-S) test result of Spatial-Arrangement features.

|

Type

|

Features

\ p-value \

Voronoi Tessellation

# of Nodes
# of Edges
Edge Length
Cyclomatic #

# of k-Walks
Degree
Spectral Radius
Randic Index
Voronoi Area
Voronoi Area Disorder
Perimeter
Roundness Factor
Roundness Factor Homogeneity

< 0.01

Delaunay Triangulation

# of Nodes
# of Edges
Edge Length
Cyclomatic #
# of Triangles
# of k-Walks
Degree
Spectral Radius
Randic Index

< 0.01

Minimum Spanning Tree

# of Nodes
# of Edges
Edge Length
Degree
Spectral Radius
Randic Index

< 0.01
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Figure 3.11: Sample result of tuneRF function.
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Chapter 4

Results and Discussions

4.1 Results

4.1.1 Accuracy of Nuclei Segmentation Method

To verify the accuracy of the nuclei segmentation method, the segmented images
were compared with manual-traced images. Since these manually traced images were
generated under the guidance of experienced pathology professionals, the resulted
images were regarded as grand-truth (GT) for the verification process and nuclei

segmentation method.

Manual-traced Images

For proper evaluation of the segmentation method, manual-traced images that accu-
rately isolate each nucleus are required. Under the guidance of pathologists, 4 types
of small patched images were utilized to make the manual-traced images. This
study employed five people to make them. The boundaries of nuclei in the image
were traced with a stylus for a pen tablet device (LCD TABLET DTZ-1200W /GO,
WACOM Co., Ltd.). After this, the manual-traced images were generated by using
trajectories (stroke-data) of the stylus and coloring processing mentioned the above.
Figure 4.1 (a) shows an example of small patched image, and (b) is a result example
of the automatic nuclei segmentation. Figure 4.1 (¢) is a generated manual-traced

image.
Evaluation of Accuracy of Nuclei Segmentation
The accuracy of nuclei segmentation is evaluated with the following criteria.

o Accuracy of Area of each Nucleus is defined by

fo = L {100 = (55552 s 100)).

m
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Figure 4.1: Sample images for evaluating the automatic nuclei segmentation accu-
racy.

N, is the number of nodes, i.e. extracted nuclei by the automatic nuclei
segmentation method. S, is the area of an extracted nucleus by the automatic
nuclei segmentation method, and 5, is the area of the corresponding manual-

traced nucleus.
In addition, the following formula is also used.

e Accuracy of Number of Nuclei is defined by

fn =100 — (el 5 100).

m

N, is the number of nuclei by the automatic nuclei segmentation method, and

N,, is the number of the corresponding manual-traced nuclei.

The f, and f,, percentages formulas reflect values determined by how the auto-
matic segmentation results match to the manual segmentation results. If the result

of automatic nuclei segmentation is completely matched to that of manual-traced
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Table 4.1: Nuclei segmentation accuracy (fs). For the area of corresponding nuclei.

] \ Image-1 \ Image-2 \ Image-3 \ Image-4 \
LIA]] 847 ] 899 [ 814 [ 797
Area Segmentation Accuracy Average 83.9[%)|

Table 4.2: Nuclei segmentation accuracy (f,). For the number of identified nuclei.

’ ‘ Image-1 ‘ Image-2 ‘ Image-3 ‘ Image-4 ‘
fo%]] 866 | 848 | 814 [ 994
Number Segmentation Accuracy Average 88.1[%)]

segmentation, f, and f, would be 100%. f, and f,, were calculated for each manual-
traced image.

Tables 4.1 and 4.2 show summarized results of segmentation accuracies on fs and
fn- The averages of f, and f, were 83.9% and 88.1%, respectively. These accuracy
values were sufficient for verification of the automatic segmentation procedure used
in this study [15].

4.1.2 Support Vector Machine

Table 4.3 shows the results of disease stage classification using SVM. The obtained
classification accuracy was 98.8% when all Object-Level features were used. This
result indicates that most of Glioma histopathological images can be classified cor-
rectly with SVM and Object-Level features.

On the other hand, the results using VT and DT were 84.2% and 86.5%, re-
spectively. In the case of MST, the obtained accuracy was 87.6%. And 87.8% of
given images were classified correctly when all Spatial-Arrangement features were
used. In addition, the result of all features, 7.e. the both of Object-Level and

Spatial-Arrangement features, was 96.5%.

4.1.3 Random Forest

Tablel 4.3 and Figures 4.2 show the result of disease stage classification using RF
and graphs of Mean Decrease Gini. Mean Decrease Gini means importance for
classification, and these graphs indicate how the feature descriptor is important for
classification. Therefore, the feature descriptors with high Mean Decrease Gini value
are significant feature descriptors for disease stage classification in this study. As a
result of experiments, classification accuracy was 99.8%, when Object-Level features
and my,, = 4 were used.

On the other hand, in the case of VT, classification accuracy was 84.4% (my,, =

4). In the cases of DT and MST, classification accuracies were 87.1% (my., = 3)
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Table 4.3: Classification results using SVM and RF.

Features Type # of Features | Accuracy (%) | Accuracy (%)
(SVM) (RF)
Object-Level 21 99.8 99.8
Features
Spatial- Voronoi 13 84.2 84.4
Arrangement | Tessellation
Features Delaunay 9 86.5 87.a
Triangulation
Minimum 6 87.6 86.8
Spanning Tree
All 28 87.8 87.8
Object-Level
Features
+ 49 96.5 99.8
Spatial-
Arrangement
Features

and 86.8% (my, = 2), respectively. In the case all Spatial-Arrangement features
were used, the classification accuracy was 87.82%, and my,, was 6. In addition, the
classification accuracy was 99.8%, and my,, was 4 when all features were used for

classification.

4.2 Discussion

As a result of the evaluation experiment, the Glioma histopathological images were
classified accurately with SVM and RF (Table 4.3).

In the case of SVM, the classification accuracy of Object-Level features was
higher than that of Spatial-Arrangement features. In addition, the use of the both
features decreased classification accuracy by several percents.

In the case of RF, the classification accuracy of Object-Level features was also
higher than of Spatial-Arrangement features. In addition, the classification accuracy
using the both features was identical with using only Object-Level features. How-
ever, Figure 4.2 (3) shows that some Object- Level features had high Mean Decrease
Gini value. And in this case, my,, was 4. This result indicates that Object-Level
features worked well compared to Spatial-Arrangement features for disease stage
classification using RF. From these results, when SVM and RF were used as classi-
fiers, using only Object-Level features was reasonable for disease stage classification
of Glioma.

As the first reason, it is considered that Spatial-Arrangement features had some
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features to reflect the difference of not only disease stage but also each image and
these features caused the miss-classification. In the previous research [9], only 1 .svs
tissue image was used in each category, and the classification accuracy using SVM
and Object-Level features was 98.9%. This value was not different from the accuracy
of the proposed method. However, the accuracies of SVM with VT, DT and MST
features were 96.2%, 99.4% and 99.0%, respectively. These were quite different from
those values in this case. Similarly, the result of classification accuracy using RF and
Object-Level features was 100.0%. This accuracy was not different from the accuracy
by the current result. On the other hand, the result of classification accuracies
using RF with Spatial-Arrangement features (VT, DT, MST) were 99.6%. This
value was quite different from the accuracies by the proposed method. From these
results, these differences were caused by the number of input images. When Spatial-
Arrangement Features were used for a tissue image, the classification accuracies were
high. However, the classification accuracies were decreased when 10 tissue images
were used. Therefore, Spatial-Arrangement features distinguished not only disease
stage but also each image.

As the second reason, these differences might depend how to construct the data-
set. In this study, the obtained images from TCGA database were divided small
patched images whose sizes were 2000 x 2000 pixels for quick analysis. However, this
step caused the breaking off topological relationships among nodes. Or the patch
size was not enough for classification. Therefore, the proposed method could not
extract effective Spatial-Arrangement features from the obtained histopathological
images completely. And it is thinkable that this point also caused the deterioration
of classification accuracies.

Though the data-set construction step has this problem, efficient analysis is
required. If the obtained histopathological images were not divided to small patched
images, the classification accuracy would be good. However, the analysis will not
be done efficiently because of an enormous amount of analysis. From these results,
Object-Level features would be better than Spatial-Arrangement features to classify

the disease stage of Glioma histopathological images in the TCGA.
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Chapter 53

Conclusion and Future Works

5.1 Conclusions

The objective of this study was automatic disease stage classification of Glioma
histopathological images. This work discussed nuclei segmentation using custom-
designed image processing, a performance of this segmentation method and disease
stages classification of Glioma. The images used for analysis in this study were ob-
tained from The Cancer Genome Atlas (TCGA) [11]. Significant feature descriptors
for Glioma images were determined and used for classification using Support Vector
Machine (SVM) and Random Forests (RF) [10].

After the evaluation experiments, 99.8% of images were classified correctly using
SVM and Object-Level features. On the other hand, the results using VT, DT and
MST were 84.2%, 86.5% and 87.6%, respectively. And 87.8% of given images were
classified correctly when all Spatial-Arrangement features were used. In addition,
calcification accuracy was 96.5% in the case all features were used. In the case of
RF, classification accuracy was 99.8%, when Object-Level features were employed.
On the other hand, when VT, DT and MST were used, classification accuracies were
84.38%, 87.06% and 86.75%, respectively. When all Spatial-Arrangement features
were used, the classification accuracy was 87.82%. In addition, the classification
accuracy was 99.8% when all features were used for classification.

From there results, in the both of SVM and RF, using only Object-Level features
was better than only Spatial-Arrangement features and the both of Object-Level and
Spatial-Arrangement features to classify the disease stage of Glioma histological
images in the TCGA.
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5.2 Future Works

Though dividing to small patched images was important for efficient processing on
the target computational platform analysis, the analysis for Spatial-Arrangement
features may have been degraded by the division into patch images. Possibly the
node graphs of spatial relations could be reattached from one patch to adjacent
image patches. This may improve the Glioma classification.

In addition, increasing the number of tissue samples is important for optimiza-
tion of this method. In this thesis, 10 tissue images were used in each grade. How-
ever, more the number of tissue images was required for improvement the proposed
method. More experiments with the sufficient number of tissue samples should be
conducted.

Another important might be using fuzzy entropy thresholding to improve the
overall image analysis pipeline [14], and active contour for improving the accuracy
of nuclei segmentation [21]. In this study, the accuracy of the nuclei segmentation
method was 86.0%. However, in this literature [22], 96.4% of segmentation accuracy
was accomplished by combining the proposed segmentation method with the active
contour method [21]. This thesis could not apply this new segmentation method
to this disease stage classification, because of much computational time. If the new
segmentation method is applied to this classification method, this analysis would be
inefficient. The new segmentation method should be optimized and then applied to
this problem.

Also another investigation could be to discover disease subtypes using feature
matrices and confirm the relationship between the disease stage and results gene
expression analysis. I hope the proposed method will be of help in medical decision

analysis in general, and brain tumors in particular.
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