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Abstract 

 
    Cardiovascular diseases have become one of the leading causes of mortality globally, 

and they are forecasted to remain so in the future. One of the common class of 

cardiovascular diseases is abnormal heart rhythms or arrhythmia. Some types of 

arrhythmias can be life-threatening, resulting in sudden cardiac death. The heartbeat 

classification is an approach to detect the arrhythmias in electrocardiogram (ECG) signal. 

One of the most important processes in heartbeat classification is the heartbeat detection 

or also known as QRS complex. However, detecting heartbeat is more challenging in an 

ambulatory ECG signal because the level of noise and artifacts produced during the daily 

life activities is higher compared to in a hospital setting. It is difficult to identify the QRS 

complex in the signal during high-intensity physical activities and low 

signal-to-noise-ratio, affecting the performance of heartbeat detection in the heart 

monitoring system. Therefore, it is necessary to develop a robust heartbeat detection 

method against the noise and artifact produced during daily-life activities. The aim of this 

study was to develop a noise-tolerant heartbeat detection method for heartbeat 

classification in order to detect the arrhythmias in ambulatory signals. To achieve that aim, 

three objectives were developed. 

    The first objective was to study and analyze the effects of noisy signal on the 

heartbeat detection performance. The relationship between the characteristics of the ECG 

noises produced in the ambulatory ECG signals recorded during daily life activities and 

the heartbeat detection performance was investigated. For this purpose, three well-known 

algorithms to detect the heartbeat were employed. The detection algorithms were 

evaluated using two types of ambulatory datasets: the ECG signal from MIT-BIH 

Arrhythmia database and the ECG-noise simulated signals with different intensity of 

baseline wander, muscle artifact and electrode motion artifact. The findings showed that 

the signals contaminated with noise decreased the potential of heartbeat detection in 

ambulatory signal, with the poorest performance coming from the electrode motion 

artifact. In conclusion, none of the algorithms was able to detect all QRS complex without 

any false detection at the highest level of noise. The electrode motion artifact influenced 

the heartbeat detection performance the most compared to the muscle artifact and 
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baseline wander, showing the highest number of misdetections and false detections. 

    The second objective was to propose and develop a robust and noise-tolerant 

heartbeat detection method. For this purpose, the threshold-based heartbeat detection was 

developed. To improve the performance of the detection method, the Savitzky-Golay 

moving average and autocorrelation technique were used to reduce false detections in this 

study. The proposed method consisted of processing and QRS detection stages using six 

techniques, including band-pass filter, derivative, squared, Savitzky-Golay moving 

average, autocorrelation and adaptive threshold. The Savitzky-Golay moving average 

was used to smoothen the signal data and autocorrelation was used to generate the period 

of the heartbeat and to refine the candidate QRS complex. The proposed method was 

evaluated using three different datasets, including the real data during walking and 

running on the treadmill. Based on the results, the proposed method performed well 

despite its use in different noisy conditions. Based on the results, it could be concluded 

that the proposed method had a good performance, especially in electrode motion artifact. 

    Finally, the arrhythmia detection system was developed by using the heartbeat 

classification approach to achieve the third objective. The heartbeat classification 

approach consisted of four stages: ECG signal processing, heartbeat segmentation, 

feature extraction and classification. The proposed noise-tolerant heartbeat detection 

method was adopted and the set of features that represented each heartbeat was extracted 

for the classification. Fourteen features were extracted separately to represent each 

heartbeat, with seven features of heartbeat interval and seven features of ECG 

morphology. After evaluating the classification algorithms, the k-NN algorithm was used 

to construct the classification model and as tests in the experiments. Based on the results, 

the proposed heartbeat classification performed better when classifying normal and 

ventricular beats, except the supraventricular beats. In the noisy ECG signal, the 

classification method also performed better than using pan Tompkins algorithm as the 

heartbeat detection. 
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Chapter 1 

Introduction 

 

1.1. Research Motivation 

 

    Cardiovascular diseases (CVD) have become one of the leading causes of the current 

mortality globally and it is forecasted to occupy the same ranking up to 2030 [1]. As 

reported by the World Health Organization, CVD accounted for an estimated of 17.9 

million deaths every year because of the CVD, representing 31% of all global deaths [1]. 

The majority of deaths from CVD are caused by sudden cardiac death (SCD), referring to 

an unexpected death or arrest caused by loss of heart function [2]. It has been reported 

that one of the causes of SCD is arrhythmia, a condition in which a patient heart beats 

irregularly in the electrocardiogram (ECG) signal [2]. About 80% of the sudden cardiac 

death is the result of ventricular arrhythmias [2]. According to prior studies [2-3], many 

cases of SCD occur outside of the hospital environment, during daily life activities and 

approximately 70% of all cardiac and breathing emergencies happen at home. The 

prediction of SCD has been studied, and improving the methodologies to detect 

arrhythmias in ECG signal in order to prevent SCD during daily life activities has become 

important challenges for the modern cardiology [3-4]. 

    The classification of heartbeats approach has been used in order to identify and detect 

the arrhythmias in ECG signal [4-7]. One of the first important steps for classifying the 

heartbeats is the identification of the QRS wave also known as the QRS complex, 

heartbeat detection or beat detection [5]. The QRS complex is the prominent feature in 

the structure of ECG signals and it can be used to identify abnormalities in the heartbeat. 

Moreover, the performance of QRS detection affects the accuracy of heartbeat 

classification [4, 8]. Hence, numerous studies have been conducted to improve the 

detection of QRS complex, and different algorithms have been proposed and developed 

for this process [8-13]. Existing methods were tested on noise-free, carefully chosen, and 

often clean ECG signals to evaluate and produce high accuracy results assumed to reflect 

the overall performance of detectors. However, the existing methods may not produce the 
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same performance and accuracy in the ambulatory ECG signal, especially with the 

presence of a noisy signal, since the level of artifacts produced is greater than the 

monitoring process in the hospital setting. 

    Unlike standard ECG, ambulatory ECG records the signal continuously over a long 

period in an out-of-hospital setting using a conventional Holter monitor [5, 14] or other 

wearable devices [15-16] when performing daily life activities, such as resting, 

housework, exercise, and other physical works. Various types of noise from stationary 

and non-stationary sources may occur simultaneously in an unpredictable manner. 

Furthermore, the noise can also distort the features of the signal [16-19]. This is important 

in heartbeat detection as it may lead to the false detection of arrhythmias. As a result, the 

process of acquiring an accurate and reliable measurement of heartbeats in the arrhythmia 

detection system can also be affected. 

    Therefore, it is vital to determine the best method of heartbeat detection in noisy 

signals to develop an accurate arrhythmia detection system that is robust against the noise 

and suitable for ambulatory monitoring. This thesis investigated the effects of noise with 

various intensity levels on ambulatory ECG signal and the performance of QRS detection. 

The thesis focused on improving existing methodologies to propose a robust heartbeat 

detection in the noisy signal before developing an arrhythmia detection system using the 

classification approach for ambulatory ECG signal. 

    This study was significant because it addresses one of the main problems in the field 

of ECG signal analysis and ambulatory monitoring. This study also provides an important 

understanding of the effects of intensity levels of noise from the ambulatory environment 

on the performance of heartbeat detection in the ECG signal. Considering that the robust 

heartbeat detection method plays an important role in the development of arrhythmia 

detection, the findings will make a critical contribution to the development of the 

ambulatory heart monitoring system. 

 

1.2. Research Background 

 

    As this thesis is entirely focused on the analysis of the ambulatory ECG signal, a brief 

description and basic concepts of this study are included. The following sections cover 

the description of the basic structure of the ECG signal as a result of the connected 

electrical conduction system that leads to heart activity. Then, a general overview of the 
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abnormalities in ECG signal that cause the arrhythmias is provided. More specifically, the 

introduction of ambulatory ECG and the comparison with standard ECG are described, 

leading to the explanation of noises and artifacts in ambulatory ECG. 

 

1.2.1. Basic Structure of Electrocardiogram 

 

    The electrical conduction system of the heart, shown in Figure 1.1 allows for the 

generation and propagation of impulses via a specialized conduction pathway, which 

stimulates the heart to contract and pumps blood [20-21]. When the heart muscle 

contracts and pumps the blood for all parts of the body, action potentials will be released 

through the mechanical process within the heart muscle, leading to electrical activity. 

This electrical activity signal can be acquired by means of electrodes positioned on the 

subject’s thorax and then amplified, and recorded by the electrocardiograph. 

 

 

Figure 1.1. The heart conduction system with its main components and their typical 

potential waveforms on surface ECG [21]. 
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    Electrocardiography is a commonly used, noninvasive procedure for recording heart 

electrical activity. The recorded signal, named Electrocardiogram (ECG), graphically 

shows the series of waves associated with electrical phenomena of depolarization and 

repolarization of the heart during the cardiac cycle. As can be seen in Figure 1.1 [21], the 

structure of the ECG signal represents the electrical conduction of the heart activity. As it 

is a non-invasive, rapid and cost-effective test, ECG is a valuable and highly versatile tool 

in clinical practice for detecting several heart dysfunctions by inspecting the alterations in 

the ECG pattern shape or duration of wave intervals [21]. 

    Each phase of the depolarization and repolarization process is reflected on ECG [20]. 

The ECG signal begins with the atrial depolarization that creates the P wave, which is 

followed by the QRS complex and the T wave as shown in Figure 1.2. Each wave is 

generated by a physiological event of the heart where the P wave reflects the 

depolarization of the atria muscle; it has a duration of 0.08–0.11 second in a healthy heart. 

The Q, R, and S points represent the QRS complex derived from the depolarization of the 

ventricular muscle with a normal duration of 0.06–0.10 second. The T wave indicates the 

repolarization of the ventricular muscle that normally has a duration of 0.20 second [20]. 

The most recognizable point in the ECG signal is the R-peak, which has the highest 

amplitude. The other waves in the QRS complex, namely Q and S, might not always be 

separated in the ECG. The QRS complex and R-peak play an essential role in many 

algorithms used to automate ECG analyses [8, 13]. Based on the identified QRS complex 

and R-wave, the rest of the waves and ECG features can be detected. The main features of 

an ECG signal and their origin are visualized in Figure 1.3 [22] and summarized in Table 

1.1. 

 

Figure 1.2. The depolarization and repolarization process reflected on ECG. 

[https://www.carolinaheartandleg.com/arrhythmia/arrhythmia-2/] 
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Figure 1.3. Main features in ECG signal [22]. 

 

Table 1.1. The main structure of an ECG signal and its origin. 

Type Name Electrical Activity 

Wave P Atria depolarization 

Q Depolarization of the interventricular septum area 

between the ventricles 

R Depolarization of the main mass of the ventricles 

S Final depolarization of the ventricles, up the outer 

walls 

T Ventricular repolarization 

U Late ventricular repolarization 

Section QRS Complex Ventricular depolarization 

PR Interval Time between the onset of atrial and onset of 

ventricular contraction 

QT Interval Ventricular depolarization and repolarization 

RR Interval Time between consecutive R wave provided to heart 

rate measure 

PR Segment Time delay between atrial and ventricular activation 

ST Segment Plateau phase of ventricular depolarization 

 

1.2.2. Arrhythmias in ECG Signal 

 

    Arrhythmias, also known as cardiac arrhythmias are defined as abnormal changes in 

the heart rate due to improper heart beating, causing failure in the blood pumping. Some 
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arrhythmias have no symptoms while others are dramatically debilitating, such as 

palpitations or skipped beats, dizziness, fatigue, light-headedness, fainting and possibly 

even leading to life-threatening conditions. Cardiologists use ECG to detect arrhythmias 

in the heart when the electrical activity of any group conditions is irregular [5]. The ECG 

is essentially a non-stationary signal where the arrhythmia may occur at random in the 

time-scale. 

    In ECG signal, normal heartbeat or normal sinus rhythm is characterized by a regular 

cardiac rate with normal QRS complexes (Figure 1.4). The P-wave is normal in shape and 

synchronized with the QRS complexes. The heart beats regularly at a rate of 60 to 100 

beats per minute (bpm). The abnormal heartbeats are characterized by irregular cardiac 

rate with dynamic QRS complex that can either be too slow or too fast, called bradycardia 

and tachycardia, respectively. Tachycardia refers to a fast resting heart rate, usually over 

100 beats per minute while bradycardia refers to slow resting heart rate, less than 60 beats 

per minute. Under certain circumstances, the presence of these heart rates is considered 

normal. During an exercise or stress, it is normal to develop a fast heartbeat and during 

sleep or deep relaxation, it is not unusual for the heartbeat to be slower. 

 

 

Figure 1.4. Normal and abnormal heartbeat. 

[https://www.carolinaheartandleg.com/arrhythmia/arrhythmia-2/] 

 

    There are several types of arrhythmias and each type has a pattern in ECG. Generally, 

arrhythmias are divided into two categories: ventricular and supraventricular [23]. 

Ventricular arrhythmias occur in the lower chambers of the heart, namely, the ventricles. 

Supraventricular arrhythmias (SVA) are heart rhythm disorders affecting the upper part of 

the heart, that is the atria or the atrial conduction pathways [20]. The most common 

Normal Heartbeat Fast Heartbeat

Slow HeartbeatIrregular Heartbeat
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arrhythmia correlated with sudden cardiac death is the ventricular tachyarrhythmia such 

as ventricular tachycardia (VT) or fibrillation (VF). Ventricular tachycardia might be 

followed by a ventricular flutter that can turn into ventricular fibrillation, which is a very 

dangerous condition [23]. 

    An example of an ECG signal that begins with VT and then progresses into 

ventricular flutter is given in Figure 1.5 in which the flutter wave is substantially different 

from the sinus rhythm. Both of the signals include premature beats that arise from 

ventricles called premature ventricular contraction (PVC), which is marked by V, normal 

beats marked by N, right bundle branch block beat marked by R, and left bundle branch 

block beat marked by L. 

 

 

(a) 

 

(b) 

Figure 1.5. Ventricular tachycardia changing to ventricular flutter in the ECG recording 

207 from MIT-DB (a) is compared to sinus rhythm that contains two PVCs in MIT-DB 

record 105 (b). 

 

1.2.3. Ambulatory ECG Monitoring 

 

    The ECG is typically recorded using a conventional standard 12-lead ECG device, 

with ten electrodes being worn on the chest surface and the limbs while the patient is in a 

resting position in a clinical environment [5, 14, 17]. The 12-lead ECG is mostly intended 

for short-term monitoring and it has been used as a standard signal to diagnose arrhythmia 
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[5, 14]. For long-term ECG monitoring, the ambulatory ECG is most frequently utilized. 

Ambulatory ECG can be recorded using a conventional Holter monitor introduced by 

Norman J. Holter [24]. Holter monitor is a small portable ECG machine that is used 

typically for 24 to 48 hours. It is worn around the patient waist and 3 to 5 electrodes need 

to be taped on the patient chest skin as shown in Figure 1.6. In contrast to the standard 

ECG, the ambulatory ECG records the signal continuously for a long period of time 

during daily life activities, such as resting, doing housework, performing exercises and 

other physical activities. Since Holter monitor has produced a good quality ambulatory 

ECG, it has been a standard signal for monitoring patients outside of hospitals. 

 

 

Figure 1.6. Example of Holter monitor. 

https://www.mountnittany.org/articles/healthsheets/7176 

  

    The ambulatory ECG monitoring can reveal heart conditions that would not be found 

during an ECG measurement in the hospital since some heart problems occur only rarely 

or during certain activities. Consequently, the utilization of heart monitoring devices for 

daily application has become important. Recent technology advancement is capable of 

increasing the use of wearable devices for heart monitoring, such as a smartwatch, smart 

clothing, fitness tracker, mobile cardiac application, body sensor patches and others 

[15-16, 25]. The wearable devices can record ambulatory ECG signals and allow greater 

monitoring of patient mobility than the Holter monitor [15-16, 25]. Even though the 

devices have high mobility, they also have limitations, producing low signal quality for 

medical use. Furthermore, they have a limited duration of recordings depending on their 

technologies. 

Electrodes
Heart

Holter monitor
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    Although ambulatory ECG is very useful for heart monitoring, the body movement 

activities like walking, climbing stairs, jogging, running, exercising and other 

high-intensity level activities have posed a challenge for collecting a good quality 

ambulatory ECG. These conditions may produce the noises and artifact that will overlap 

the ECG signal and distort its quality. Consequently, the clinical and morphological 

pattern of the ECG signal such as QRS complex is interfered, affecting the heart 

monitoring process. Figure 1.7 shows the comparison between a clean ambulatory signal 

and a noisy signal. As can be seen, it is difficult to determine the morphology of ECG in 

the noisy signal due to the low-quality compared to the clean signal. 

 

Figure 1.7. Comparison clean and noisy ambulatory ECG signal. 

 

1.2.4. ECG Artifacts and Noise 

 

    In ambulatory ECG, various types of noises and artifacts may occur simultaneously 

and unpredictably originating from stationary and non-stationary sources [14, 17, 19]. 

These noises could emerge due to physiological and non-physiological factors, such as 

muscle activity, skin movements, electrical devices or improper use of the equipment [13, 

19]. Noises from different sources have different typical characteristics, such as 

frequency spectrum and amplitude. Among them, baseline wander (BW), muscle artifact 

(MA) and electrode motion artifact (EM) have frequency range within the frequency limit 

of ECG signal, possibly manifesting similar morphology as the ECG signal and distorting 

the clinical features of the signal, which is important in recognizing arrhythmias [19, 26]. 

    The amplitude and frequency of ECG signals as affected by these noises in 
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comparison to clean ECG are presented in Figure 1.8. The BW and abrupt drift as shown 

in Figure 1.8 (a) could be due to the subject’s respiration movements and the loose or dry 

electrode-skin contact [19, 27]. The BW amplitudes depend on several factors, such as 

the subject movements, properties of electrode, and skin impedance [19, 27]. In general, 

the frequency of the BW is below 1 Hz but through exercise activity, the frequency of the 

BW in ECG recording may increase with the increasing rate of breathing. The MA or 

electromyogram as shown in Figure 1.8 (b) is produced during a sudden body movement 

by the electrical activity of muscles [19]. Usually, the frequency of MA noise ranges from 

20 and 1000 Hz which can cause challenges in eliminating MA without interfering with 

the clinical features of the ECG signal. The EM artifacts and the induced impedance 

change as shown in Figure 1.8 (c) are caused by the electrode motion, and they have 

similar frequency components as the ECG signal, ranging from 1 Hz to 15 Hz [28]. Major 

EM artifact can distort the signal, leading to incorrect QRS complex and the wrong 

diagnosis of arrhythmias. 

 

 
             (a)                                  (b)                                  (c) 

Figure 1.8. Eight-second clean and noisy ECG signals at a sampling rate of 360 Hz: (a) 

ECG with BW; (b) ECG with MA; (c) ECG with EM artifact. 

 

    The noises may appear as morphologically similar to the ECG signals, distorting the 

QRS complex and clinical features of the signal, especially when contaminated with MA 
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and EM. It is worse when the patient performs high-intensity physical activities, such as 

jogging and running. A poor ECG signal quality may result; thus, it will be difficult to 

identify the QRS complex within the ECG signal. The high noise or artifacts can make 

the signal virtually unreadable, hide small amplitude variations in the ECG or lead to 

wrong diagnoses. This difficulty will increase misdetections and false detections of the 

QRS complex as visualized in Figure 1.9. Hence, it is necessary to investigate the effects 

of ECG artifact and noise generated in ambulatory ECG signal and to reduce the 

disturbances from the signals in order to use the signal for detection of arrhythmias. 

 

Figure 1.9. False detection and misdetection problem of QRS detection. 

 

1.3. Research Problems 

 

    Many studies have been carried out to develop ECG heartbeat classification system 

and improve the performance of detecting arrhythmias. Most of the studies in the 

heartbeat classification system have focused on feature extraction [6-7, 29-30, 31, 32] 

and classification method [33-39] in order to improve the detection performance. While 

some researchers have studied the pre-processing and detection of QRS method [8-9], too 

little attention has been put to relate these methods with the arrhythmias heartbeat 

classification system. 

    According to a study [5], one of the important issues of ambulatory ECG is the 

inconsistent signal quality due to noise and artifact induced in daily life activities. It has 

also been reported that this issue would impact the QRS detection and classification 

results [40]. However, this issue was not yet considered in some previous studies of 

heartbeat classification system although they used the ambulatory ECG signal data in 

their works [6-7, 30-31, 33-34]. Several attempts have been made in the recent works in 

which the false alarm reduction and signal quality classification have been proposed in 

false detection

misdetection
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the heartbeat classification system to address this issue [41]. Nevertheless, these studies 

have not taken pre-processing and QRS detection into consideration. In addition to that, 

the studies [5, 40] have reported that the techniques employed during the pre-processing 

steps and detection of QRS directly influenced the final classification results. Thus, in 

this study, we intended to focus on the pre-processing and QRS detection process in 

arrhythmia heartbeat classification system in order to address the issues in ambulatory 

ECG signal and improve the classification results. 

    In the literature, most of studies in the heartbeat classification system preferred to use 

conventional heartbeat detection method in their work [5-7, 30, 32, 38-39, 41]. The 

threshold-based heartbeat detection method has been used to detect the QRS in most of 

the works [6, 32, 38-39]. This method has drawn significant attention because of its 

simplicity, computational efficiency, and suitability for ambulatory devices [29]. 

However, the threshold-based detection method is quite sensitive to the noise, and their 

performance is affected in the low quality signal [9-11, 29]. Therefore, in this study, we 

focused on the threshold-based detection method and examined the technique that can be 

used to improve the detection performance in noisy ECG signal. 

    Some of the studies have taken into account the influence of noise from the 

ambulatory environment [13, 42-43]. Nevertheless, the details on the specific noise types 

and the level of noise intensity that affect the QRS detection performance are still unclear. 

It is unknown what kind of noise from the ambulatory environment that most affects the 

detection of QRS performance [43]. Therefore, we investigated the effects of noise on the 

QRS detection, and the characteristics of noises that could distort the ECG signal 

morphology. In this study, we compared the performance of previous threshold-based 

method under different noise conditions to analyse the effects of noise on QRS detection. 

    On the other hand, researchers have suggested many noise reduction methods to 

address noisy signal and detect QRS complexes [44-47]. Many works have filtered the 

signal first to increase the robustness [9-10, 47]. Nonetheless, filtering does not work for 

EM and MA noises. According to a study [48], periodical property of ECG is able to 

improve the QRS detection in ECG signal with motion artifacts. Thus, autocorrelation 

has been investigated in this study. In the previous work [44], the short autocorrelation 

with template matching has been proposed for noisy ECG signals. However, the template 

matching was computationally expensive because of the sample-by-sample moving 

comparison with the template along the ECG signals. 
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    Therefore, in this study, the noise-tolerant heartbeat detection method was proposed. 

The proposed method modified the Pan Tompkins algorithm by using the autocorrelation 

technique to improve the detection in noisy signal. In contrast to a previous study [44] 

that used template matching in their work, the threshold-based detection method was 

employed as the last stage in this study. However, the autocorrelation could produce an 

error estimation of the periodic peak when dealing with high noise due to higher noise 

spikes in the signal. To deal with this issue, the Savitzky-Golay moving average (SGMA) 

technique [49] was used to smooth the signal, thus improving the performance of 

autocorrelation. 

 

1.4. Objective 

 

    This thesis aims to study the methodologies to improve the detection of arrhythmias 

during daily life activities, especially during the performance of high-intensity physical 

movement activities. In order to achieve that, this study focused on the most important 

step in the detection performance of arrhythmia: the detection of the QRS complex, also 

known as heartbeat detection. Hence, three objectives were developed as follows: 

 

1) To study and analyze the effects of noisy signals on heartbeat detection performance 

for ambulatory arrhythmia monitoring. Under this objective, the relationship between 

the characteristics of ECG noises produced in the ambulatory ECG signal recorded 

during daily life activities and heartbeat detection performance is investigated. 

 

2) To propose a noise-tolerant QRS detection method that can improve the detection 

performance for a noisy signal. For this purpose, the Savitzky-Golay Moving Average 

(SGMA) technique and autocorrelation technique are used to develop the QRS 

detection method. The performance of the proposed method in a noisy ECG signal is 

then evaluated. 

 

3) To develop the arrhythmia detection system for ambulatory ECG signal using the 

heartbeat classification approach. For this purpose, the proposed QRS detection 

together with feature extraction and classification algorithm are implemented to 
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develop the heartbeat classification model. Finally, the final performance of the 

heartbeat classifier is evaluated. 

 

1.5. Outline of Thesis 

 

    This chapter provided the motivation of this study and outlined the brief background 

including the basic structure of ECG, arrhythmias on ECG signal, ambulatory ECG 

monitoring, and ECG artifacts and noise in ambulatory ECG. The chapter also presented 

the objectives, problems, and challenges of the research work in this thesis. 

 

The rest of the thesis is organized as follows: 

 

Chapter 2 includes the literature review of the QRS detection method and the approach 

of arrhythmia detection, including the heartbeat classification method. 

 

Chapter 3 contains the description of the experiment data and the methodology carried 

out in this study. It also elaborates the experiment conducted in this thesis. Besides that, 

the evaluation metrics used in the validation of QRS and arrhythmia detection are also 

provided in this chapter. 

 

Chapter 4 presents the experiment on the effects of noise and artifacts in ambulatory 

ECG signals on heartbeat detection performance. For this purpose, the relationship 

between heartbeat detection and characteristics of noises under different noise conditions 

is investigated. Besides that, the comparison of the performance of heartbeat detection on 

various noise intensity levels is analyzed and presented in this chapter. 

 

Chapter 5 includes the development of the proposed noise-tolerant QRS detection 

algorithm. For this purpose, the band-pass filter, derivative, squared, Savitzky-Golay 

moving average smoothing, autocorrelation, and adaptive threshold have been 

implemented to identify the QRS complex. In this chapter, the performance of the 

proposed QRS detection method is also evaluated and presented. 

 

Chapter 6 outlines the implementation of the heartbeat classification approach with the 
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proposed heartbeat detection algorithm to detect arrhythmias. For this purpose, the QRS 

detection is identified using the proposed heartbeat detection method before the selection 

features are extracted. Then, the classification model is developed to classify heartbeat in 

the ambulatory ECG signal. Based on the classification model, the arrhythmias are 

identified. The performance of arrhythmia detection is validated and presented in this 

paper. 

 

Finally, Chapter 7 provides the concluding remarks on the work carried out in this thesis, 

limitations of this study, and future directions for this research.



 30 

Chapter 2 

Literature Review 

 

2.1. Review on Heartbeat Detection Method 

 

    Many previous studies have been conducted, and different algorithms have been 

proposed to develop heartbeat detection method in order to improve the detection of QRS. 

The difficulties to improve the detection of QRS arise mainly because of the diversity of 

the QRS waveform, abnormalities, low SNR as well as artifacts accompanying the ECG 

signals [29]. Elgendi et al. [29] investigated the existing QRS detection methodologies 

that can be used for portable, wearable, battery-operated, and wireless ECG systems. This 

previous study compared the different QRS enhancement and detection techniques based 

on three assessment criteria: (1) robustness to noise, (2) parameter choice, and (3) 

numerical efficiency. Based on the review, most of the heartbeat detection method used in 

previous studies can be categorized into threshold-based, neural networks, hidden 

markov model, and matched filter. 

 

Threshold-based  

The threshold-based method has been used in the literature as the last stage for most QRS 

detection algorithms. Pan and Tompkins [9] developed a QRS method based on slope, 

amplitude and two sets of thresholds. This method becomes a standard and it has been 

studied in the R-peak detection field. The work in a study [50] optimized the decision 

rules in [9] by performing test of three estimators for the adaptive threshold placing. The 

alteration for the threshold-based method was carried out in the pre-processing stage in a 

study [10], by proposing rectifying process instead of squaring the signal as done 

previously [9]. Zong et al. [51] used the curve length transformation via a nonlinear 

scaling factor to enhance the signal before applying an adaptive threshold in the decision 

rules to determine the QRS. Another technique by Elgendi [52] used the block of interests 

from the moving average signal to create the threshold. The author claimed that by using 

the block of interests to locate the R-peak, the detection accuracy was increased in a low 
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SNR. Another threshold-based method in previous studies used different approaches of 

pre-processing or threshold calculation, such as RS slope algorithm [53], finite state 

machine algorithm [54], sixth power algorithm [55], and Hilbert transform [42]. 

According to a study [29], the threshold-based method was considered computationally 

efficient compared to other methods, and was suitable for ambulatory devices. However, 

the performance of threshold-based method was affected by low SNR and sensitivity to 

noise. 

 

Neural Network  

With the popularization of machine learning and large data, the neural network (NN) 

algorithm was used to detect the QRS complex in a previous work. Yu et al. [56] 

developed the QRS detection by using wavelet transform and NN. Xue et al. [57] 

suggested the neural network-based adaptive matching filter method and achieved high 

accuracy. However, due to the large amount of computation and large occupation of space, 

it was not widely considered [52]. According to Clifford et al. [58], NN was highly 

sensitive to noise. 

 

Hidden Markov Model 

Hidden markov model (HMM) is another method used in previous studies to detect the 

QRS complex. In a study [59], HMM was used only with a band-pass filter to detect the 

QRS. Krimi et al. [60] developed the combination of wavelet transform and HMM for 

segmenting the heartbeat. However, according to a study [51], HMM was sensitive to 

noise, baseline wander and heart rate variations. The number of parameters that needs to 

be set in an HMM is large, with usually 15 to 50 parameters that need to be evaluated 

[59-60]. 

 

Matched Filter  

Kaplan [61] has suggested the matched filter method for QRS detection. Ruha et al. [62] 

used practical matching filter with 15–40 Hz band-pass filter to detect QRS wave for a 

better SNR. Nakai et al. [44] developed the template matching technique based on the 

matched filter for low SNR applications. In a more advanced method, Nguyen et al. [45] 

suggested triangle template matching to reduce the complexity in the detection of QRS. 

However, according to a study [46], matched filters are computationally expensive 
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because of the sample-by-sample moving comparison with the template along with the 

ECG signals. 

 

    Based on the review, various techniques have been developed to detect the QRS 

complex. However, most of the studies used standard clean data for the evaluation and 

assumed to reflect the overall performance of detectors. Friesen et al. [13] have 

investigated the noise sensitivities in nine different QRS detection algorithms that 

evaluated a normal, single-channel lead, synthesized ECG database corrupted with five 

different types of synthesized noise. Usually, the de-noising of ECG signal requires a 

band-pass filter while reasonably preserving the clinical features of ECG signals (P, QRS, 

and T waves) at the same time. Perhaps, a more sophisticated algorithm may filter the 

ECG more effectively. 

    Sameni et al. [47] proposed a Bayesian framework that filtered the ECG better than 

the conventional band-pass filtering, adaptive filtering [63], and wavelet de-noising 

[43,60] over different types of noise using highly realistic synthetic ECG. Sharma et al. 

[64] proposed a wavelet-based de-noising method tested on real ECG data and synthetic 

ECG signals. However, both algorithms are numerically inefficient. 

    In previous studies, autocorrelation has been used for improving noise-tolerance [44, 

65-66] in ECG signal. Nakai et al. [44] developed short-time autocorrelation with 

template matching approach to noisy ECG signals. The autocorrelation techniques have 

been used in non-invasive monitoring [65] to detect the heart sounds in low SNR [66]. 

According to a study [66], it was effectively used to detect the primary heart sounds in 

noisy phonocardiogram signals. It is also useful to find the period of continuous signals 

and to identify the present components by cross-correlating a signal with itself. By using 

the similarity of the waveforms, it can automatically suppress the periodic noise in the 

signals. 

 

2.2. Review on Heartbeat Classification for Arrhythmia 

Detection 

 

    Many studies have been carried out to develop the ECG heartbeat classification 

system and to improve the performance of detecting arrhythmias. Most of the studies in 

the heartbeat classification system have focused on feature extraction and classification 
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method; other researchers have studied the pre-processing and detection of heartbeat in 

order to improve the detection performance. 

 

Pre-processing Methods 

Most of the studies in heartbeat classification system have used digital filter technique to 

process the ECG signal [9-11]. These methods work well to attenuate known frequency 

bands, such as the power line interference with 50Hz to 60Hz since they allow quick and 

easy application of the reject band filter. In a study [6], De Ghazal et al. used two median 

filters to remove the baseline wander in the ECG signal. The same pre-processing also 

has been used in another study [34]. However, researchers also used different techniques 

for pre-processing. In a study [63], adaptive filters were proposed for the noise removal in 

ECG signal. Xue et al. [57] surmounted some of these difficulties by using adaptive filters 

based on neural networks such that the noise reduction was significantly improved. 

According to Thankor and Zhu [67], this technique has a constraint and it does not offer 

great advantages over the digital filters. Ye et al. [68] used a wavelet-based approach to 

remove baseline wander and then applied a band-pass filter at 0.5-12 Hz to maximize 

QRS complex energy. Bazi et al. [69] proposed the use of high-pass filter for noise 

artifacts and a notch filter for power network noise. 

 

Heartbeat detection Methods 

The heartbeat detection methods have been reviewed in the previous section. However, in 

view of heartbeat classification system, the method most widely used in the previous 

work is the threshold-based method [6, 32, 38-39]. Based on the review, the Pan 

Tompkins algorithm [9] has been used in most previous works of heartbeat classification 

systems. More sophisticated methods have also been used, such as methods based on 

neural networks [43,57-58], wavelet transform [43, 60], and others. 

 

Feature Extraction Methods 

Many researchers have used time domain and frequency domain in their work to improve 

the classification results [6-7, 30-31, 70]. Based on the review, the most common feature 

found in the literature was from the heartbeat interval also known as RR interval. 

According to a study [6], the RR interval has a great capacity to discriminate the types of 

heartbeats. Lin and Yang [31] showed that the use of a normalized RR interval 
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significantly improved the classification results. Only normalized RR intervals were used 

in that work, and the results were comparable to the state-of-the-art methods. Doquire et 

al. [71] confirmed the efficiency of normalized RR intervals by means of feature selection 

techniques. Other features extracted from the heartbeat intervals are the QRS interval or 

the duration of the QRS complex. Some types of arrhythmias provoke variations in the 

QRS interval, making it a good discriminating feature [6-7]. Other researchers used 

wavelet transform method to extract the features [12, 71-72]. The discrete wavelet 

transform (DWT) [12] and continuous wavelet transform (CWT) [71] have become the 

most used wavelet techniques in the previous studies. However, according to a study [72], 

the choice of the mother wavelet function used for feature extraction is crucial to 

construct the classification model. 

 

Classification Methods 

Previous studies have reported the performance of classification algorithms in order to 

improve the classification results. The classification algorithms that have been used in 

previous studies include support vector machine (SVM), linear discriminant, k-Nearest 

Neighbor, artificial neural networks and logistic regression [6, 30, 36-37, 41, 67]. Park et 

al. [36] used SVM and validated the method according to AAMI standards and the 

scheme proposed by de Chazal et al. [6]. De Lannoy et al. [37] managed to overcome the 

imbalance of the database with SVM by alternating the objective function for each class 

by using weighted SVM. De Ghazal et al. [6] proposed the linear discriminants a statistic 

method based on the discriminant functions and it has been used as the classifiers in their 

work. The authors claimed that the classifier was chosen for its simplicity, and for the fact 

that they did not want to emphasize the classifier, and instead, they used the proposed 

features to improve the classification results [6]. Another classification technique used in 

the previous work is k-NN. Mishra and Raghav [73] used a classifier based on k-NN and 

reported promising results. However, the computational cost was not mentioned in their 

work. Tanatorg et al. [41] also used k-NN and compared with other learning 

classifications. The study showed that k-NN emphasized the performance of learning 

model, especially in noisy data. However, they only evaluated two class of beats in the 

ECG signal, deviating from the recommendations of AAMI. 

    Researchers have raised several problems related to the evaluation of the 

classification of cardiac arrhythmias [5-7]. Results presented in the literature usually used 
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the extremely unbalanced MIT-BIH database. However, this aspect has been ignored by 

many authors in their work. As such, numerous proposed methods do not follow a fair 

evaluation protocol. Several authors used the same data for training and testing the 

evaluation, and intended to achieve higher accurate method. Luz and Menotti [74] 

investigated some models [32, 38-39] that presented an overall accuracy of nearly 100% 

and that were not concerned about the heartbeat selection scheme. Afterwards, they 

re-evaluated the results produced by the methods with the objective of reporting the 

experiments in accordance to the protocol recommended by AAMI using the division 

scheme proposed in a study [6]. Although some works in the literature strongly drew 

attention to this bias problem, few authors have taken the precautions of following a 

protocol as proposed by AAMI to report the results and evaluate the methods, making it 

difficult to make a fair comparison of the works published in the literature. 

 

2.3. Summary 

 

    This chapter has reviewed the previous methods and techniques for heartbeat 

detection and arrhythmia heartbeat classification. This has provided the lead for the 

research methodology in this study. Based on the review, the technique and method for 

heartbeat detection, and approach for arrhythmia heartbeat classification have been 

identified and presented in the next chapter.
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Chapter 3 

Materials and Methods 

 
    In this chapter, the materials, methods and evaluation metrics used in this study are 

presented. Three types of ambulatory ECG signal data with different characteristics are 

identified and selected as materials for heartbeat detection and arrhythmia classification. 

To achieve the objectives, three approaches have been designed and methods for each 

approach are briefly described in this chapter. Lastly, the evaluation metrics used for both 

heartbeat detection and classification are presented. 

 

3.1. Ambulatory ECG Signal Data 

 

    Three types of ambulatory ECG signal are used in this study: MIT-BIH Arrhythmia 

(MIT-BIH) database, ECG-Noise Simulated signal and Glasgow University database 

(GUDB) as presented in Table 3.1. The MIT-BIH database [75] is a standard database 

that has been used as a standard reference for most of the published research in heartbeat 

and arrhythmia detection areas. It was selected as the clean ECG signal in this study since 

it was recorded in a supervised clinical environment using a Holter monitor, showing 

high quality of the ambulatory signal. The ECG-Noise Simulated signal was represented 

as the ECG signal contaminated with different intensity level of noises from low to high 

noise of the ambulatory environment. The signal was generated using clean signal and 

noise sources specifically recorded from physically active movements. The GUDB 

database is an online public database of ECG recordings with annotated R peaks recorded 

during realistic movement conditions. They were realistic data to assess the performance 

of heartbeat detection algorithms [76]. 
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Table 3.1. Summary of Datasets 

Characteristics 
Data 

MIT-BIH Simulated Signal GUDB 

Device Type Holter Monitor Holter Monitor Wireless Devices 

(Attys Wireless 

Bluetooth Devices) 

Frequency Sampling  360 Hz 360 Hz 250 Hz 

Duration 30 minutes 30 minutes 2 minutes 

(for each activity) 

Signal Type MLII MLII V1-V2 (Chest strap) 

Lead II– Lead III 

(Standard Cable) 

Records 48 records 

 

48 simulated signals 

(with BW, MA and EM 

noise sources with -12 dB 

to 12 dB intensity level) 

25 records 

(25 candidates) 

Activity  N/A N/A 5 Activity 

Age 23 to 89 23 to 89 Over the age 18 

Health Information Yes Yes No 

 

3.1.1. MIT-BIH Arrhythmia Database 

 

    The MIT-BIH is a public database freely available on Physionet website at 

www.physionet.org [77]. The database was the first set of standard test material generally 

available to evaluate arrhythmia detection, and it has been used to evaluate heartbeat 

detection and ECG analyses. This database has also been used for the basic research for 

cardiac arrhythmias at about 500 sites worldwide [77]. The Physionet website offers not 

only the web access to large collections of recorded physiological signals (PhysioBank), 

but also the related open source software (PhysioToolkit) and several other important 

utilities and information related to ECG signal analysis. The varieties of ECG data signals 

available on this website have been extremely useful to the researchers to implement 

various algorithms in offline ECG analysis. For all databases in Physionet, the AAMI 
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[78] recommendations for class labeling were adopted, including MIT-BIH as explained 

below. 

 

3.1.1.1. Data Description 

 

    The MIT-BIH database consisted of two-channel ECG signals that include both 

normal and arrhythmic beats. In most records, the upper signal is a modified limb lead II 

(MLII), obtained by placing the electrodes on the chest. The lower signal is usually a 

modified lead V1 (occasionally V2 or V5, and in one instance V4); as for the upper signal, 

the electrodes are also placed on the chest. Normal QRS complexes are usually prominent 

in the upper signal [77]. The database contained 48 recordings, each was 30-minutes long 

with a sampling rate of 360 Hz from 47 male and female subjects aged between 23 to 89 

years old studied by the BIH Arrhythmia Laboratory. Note that record 201 and 202 came 

from the same subject. 

    These 48 records were selected from a set of 4000 24-hour ambulatory ECG 

recordings during daily life activities of each subject, collected from a mixed population 

of inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel Hospital. It 

included 23 randomly chosen records (the “100 series” recording number) and 25 

selected records (the “200 series” recording number) to include examples of uncommon 

but clinically important arrhythmias that would not be well represented in a small random 

sample. The first group was intended to serve as a representative sample of the variety of 

waveforms and artifact that an arrhythmia detector might encounter in a routine clinical 

use. The records in the second group included the complex ventricular, junctional, and 

supraventricular arrhythmias and conduction abnormalities. Several of these records 

were selected because of the features of the rhythm, QRS morphology variation, signal 

quality that might present significant difficulties to arrhythmia detectors which gained 

considerable notoriety among database users [77]. The database included the annotation 

files that contained marked locations of each QRS complex, and types of arrhythmias by 

two or more cardiologists. The details of the 48 records are presented in Table 3.2. 
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 Table 3.2. The MIT-BIH Arrhythmia Database  

Record 
Beats 

Record 
Beats 

Total N1 S2 V3 F4 Q5 Total N1 S2 V3 F4 Q5 

100 2273 2239 33 1 0 0 201 1963 1635 128 198 2  0 

101 1865 1860 3 0 0 2 202 2136 2061 55 19 1 0 

102 2187 99 0 4 56 2028 203 2980 2529 2 444 1 4 

103 2084 2082 2 0 0 0 205 2656 2571 3 71 11 0 

104 2229 163 0 2 666 1398 207 1860 1543 107 210 0  0 

105 2572 2526 0 41 0 5 208 2955 1586 2 992 373 2 

106 2027 1507 0 520 0 0 209 3005 2621 383 1 0 0 

107 2137 0 0 59 0 2078 210 2650 2423 22 195 10 0 

108 1774 1740 4 17 2 0 212 2748 923 1825 0 0 0 

109 2532 2492 0 38 2 0 213 3251 2641 28 220 362 0 

111 2124 2123 0 1 0 0 214 2262 2003 0 256 1 2 

112 2539 2537 2 0 0 0 215 3363 3195 3 164 1 0 

113 1795 1789 6 0 0 0 217 2208 244 0 162 260 1542 

114 1879 1820 12 43 4 0 219 2154 2082 7 64 1  0 

115 1953 1953 0 0 0 0 220 2048 1954 94 0 0 0 

116 2412 2302 1 109 0 0 221 2427 2031 0 396 0 0 

117 1535 1534 1 0 0 0 222 2483 2274 209 0 0 0 

118 2278 2166 96 16 0 0 223 2605 2045 73 473 14 0 

119 1987 1543 0 444 0 0 228 2053 1688 3 362 0 0 

121 1863 1861 1 1 0 0 230 2256 2255 1 0 0 0 

122 2476 2476 0 0 0 0 231 1571 1568 1 2 0 0  

123 1518 1515 0 3 0 0 232 1780 398 1382 0 0 0 

124 1619 1536 31 47 5 0 233 3079 2230 7 831 11 0 

200 2601 1743 30 826 2 0 234 2753 2700 50 3 0 0 

1 Normal (N), 2 Supraventricular Ectopic (S), 3 Ventricular Ectopic (V), 4 Fusion (F), 5 Unknown (Q) 

 

3.1.1.2. AAMI Class Labeling Recommendation 

 

    The ANSI/AAMI EC57:1998/(R) 2008 standard was developed by AAMI [78], 

defining the protocol to perform the evaluation for ECG analysis. It also specifies how 

annotations should be done in the databases. An example can be seen in Figure 3.1, in 



 40 

which the lead II is at the upperpart of the figure, lead V1 at the lower, and some 

annotations in the center. According to the AAMI standard, the beat labels in the 

annotation files are individually labelled as one of 15 possible arrhythmias. These 

arrhythmias are grouped into five classes defined as follows: (1) N is a normal beat and 

any beat not in the S, V, F, or Q classes; (2) S is a supraventricular ectopic beat or known 

as SVEB; (3) V is a ventricular ectopic beat or called VEB; (4) F is a fusion of a 

ventricular and a normal beat; (5) Q includes the paced beat, a fusion of a paced and a 

normal beat, or a beat that cannot be classified. The details of the heartbeat types in each 

AAMI classes and formats used in the databases are presented in Table 3.3. 

 

 

Figure 3.1. Example of annotations in a MIT-BIH database [77]. 

 

Table 3.3. AAMI Recommendations Annotation. 

AAMI 

Classes 
Description 

MIT-BIH 

Annotation 
MIT-BIH Heartbeat Type 

N Normal or any 

heartbeat not in the S, 

V, F or Q classes 

N Normal beat 

L Left bundle branch block beat 

R Right bundle branch block beat 

e Atrial escape beat 

j Nodal (junction) escape beat 

S Supraventricular 

ectopic beats 

A Atrial premature contraction  

a Aberrated atrial premature beat 

J Nodal (junctional) premature 

beat 

S Premature or ectopic 

supraventricular beat 

V Ventricular ectopic V Premature ventricular contraction 



 41 

beats E Ventricular flutter/fibrillation  

F Fusion beats F Fusion of ventricular and normal 

beat 

Q Unknown beats P Paced beat 

f Fusion of paced and normal beat 

Q Unclassifiable beat 

 

3.1.2. ECG-Noise Simulated Signal Data 

 

    The ECG-Noise simulated signal was created using recordings from MIT-BIH as 

clean signal and noise sources from the MIT-BIH Noise Stress Test Database (MIT-NST) 

[79]. The MIT-NST Database includes three half-hour records of noise typical in 

ambulatory ECG recordings. The noise recordings were made using physically active 

volunteers and standard ECG recorders, leads, and electrodes of which the electrodes 

were placed on the limbs of the subjects. The noise records were assembled from the 

recordings by selecting the intervals that contained predominantly BW, MA and EM, and 

then were collected as a noise source individually. The three noise sources of BW, MA 

and EM from MIT-NST database were used in this study. 

    The signal was produced using a scheme shown in Figure 3.2 in which the simulated 

signal was produced by separately adding three sources of noise to a clean ECG signal. 

The noises were directly added to the aforementioned original ECGs with different 

intensity level of noises from low to high noise, measured using SNR. To simulate 

different levels of noise, the SNR from -12 to 12dB in steps of 3dB was used. The SNR 

was calculated using the following Equation (3.1): 

  

1010 log
Psignal

SNR
a Pnoise




 (3.1) 

 

where 𝑃 denotes the signal power and 𝑎 refers to a scale factor. 
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Figure 3.2. Scheme to generate the ECG-Noise simulated signal. 

  

    All 48 records from the MIT-BIH Database as presented in Table 3.1 [77] were used 

to generate the ECG-Noise simulated signals. The records numbered 100, 200 and 213 

were selected for further analysis to determine the effects of beat detectors performance 

on noise signals and abnormal beats in ECG, and then were evaluated based on the 

proposed heartbeat detection and heartbeat classification system. The record 100 was 

selected as the clean signal as it was of good quality compared to the other signals and it 

contained a few arrhythmia beats while the record 200 and 213 were selected as an 

arrhythmia signal due to their dynamic signal that consisted of a fusion of arrhythmias 

beats. Since the original ECG recordings were clean, the correct beat annotations and 

arrhythmia detection were known even when the noise makes the recordings visually 

unreadable. The reference annotations for these records were simply copies of those for 

the original clean ECGs. Examples of simulated ECG signals with different levels of 

SNR are shown in Figure 3.3. 

 

 

baseline wander

muscular 

activity 

electrode 

motion

clean ECG signal 

muscle artefacts

ECG containing BW 

noise

noise sources Simulated signal

ECG containing MA 

noise

ECG containing EM 

noise

SNR

a

a

a
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                    (a)                               (b)                               (c) 

Figure 3.3. Example of simulated ECG signals that contain noise with SNR 12, 6, -6, -12 

dB: (a) ECG signal with BW; (b) ECG signal with MA; (c) ECG signal with EM artifact. 

 

3.1.3. Glasgow University Database 

 

    The Glasgow University Database (GUDB) is an online public database of ECG 

recordings with annotated R peaks recorded and filmed under realistic movement 

conditions by College of Science and Engineering, University of Glasgow [76]. This 

database provides the ECG recording during the movement condition, such as walking 

and running, serving as a realistic data to assess the performance of heartbeat detection 

algorithms [76]. The database is available online upon request on the University of 

Glasgow website at http://researchdata.gla.ac.uk/716/. 

    In the database, the ECG signals were recorded using an Attys Bluetooth data 

acquisition board by Glasgow Neuro LTD, Glasgow. This board had a sampling rate of 
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250 Hz and a resolution of 24-bit over a range of ±2.42 V. As this device was wireless, it 

increased electrical isolation and allowed a moving subject to be recorded easily without 

the need of a cumbersome tether. Two Attys devices were used at the same time to record 

three following channels that ran synchronously: (1) Exercise chest strap ECG which 

approximately resembled V2 and V1 with the ECG amplifier directly mounted on the 

strap; (2) Einthoven II and III with standard cables and the amplifier worn around the 

waist; and (3) Acceleration in X/Y/Z with the sensor mounted directly on the chest strap. 

The circuit diagram for the configuration is depicted in Figure 3.4 A and an example of 

chest strap and wiring of the amplifier is shown in 3.4 B. Figure 3.4 C and 3.4 D are 

examples of the signal in this database while the subject is jogging. The chest strap 

recording remained largely noise free while the Einthoven signal had a significant noise 

contamination. 

 

 

Figure 3.4. The configuration and example ECG signal of GUDB [76]. 

 

    The database consists of two-minutes ECG recordings from 25 male and female 

subjects over the age of 18 without any known cardiovascular conditions. Each subject 

was recorded performing five different tasks which were sitting, using a tablet to perform 

a mathematic test, walking on a treadmill, using a hand-bike and jogging for two minutes 

each in a laboratory environment. Figure 3.5 shows the example of ECG signal and 

tri-axis acceleration signal recording during the movement activity. The procedure of the 

recording is as follows [76]: 

 

1. The subject will put on the chest strap and electrodes. The paper electrodes will be 
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attached as follows: one on the right shoulder, one on the left shoulder and two on the 

left hip. Then, the Attys devices will be connected. 

2. 120 second ECG recording when the subject is sitting down; 

3. 120 second ECG recording during performing a mathematic test; 

4. 120 second break; 

5. 120 second ECG recording during walking on a treadmill at 4 KPH; 

6. 120 second break; 

7. 120 second ECG recording while using the hand bike; 

8. 120 second break; 

9. 120 second ECG recording during jogging on a treadmill at 8 KPH; 

10. Electrodes and chest strap will be removed from the subject. 

 

Figure 3.5. Example of ECG signal and tri-axis acceleration signal of GUDB databases. 

 

    In order to be able to link the ECG artifacts to the behavior of the subject, the subject 

gave permission to be filmed and the videos were also part of the database. For the 

annotation of the heartbeats, the sample locations of heartbeats have been annotated for 

both of the chest strap and Einthoven cables recordings. The annotations were generated 

first by an automatic detection algorithm and then visually checked and corrected so that 

every heartbeat was correct. However, not all ECG recordings were provided with the 

annotation files because there was too much noise in the recording to be reliable for the 
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annotation. Therefore, only nine ECG recordings from nine subjects that had annotations 

files were used in this study. The Einthoven signal from nine recordings was chosen 

because they represented the ECG morphological sample similar to MT-BIH. 

 

3.2. Methods 

 

    Three approaches were designed to achieve the objectives, and several methods and 

experiments have been implemented. The first approach included the methods to 

investigate the effects of ECG noise on heartbeat detection algorithm performance; the 

second approach contained the method to develop the detection of heartbeat in the noisy 

signal; while the third approach contained the methods to classify the heartbeat to detect 

the arrhythmias. All the experiments presented in this study were programmed in 

MATLAB R2018b and performed in 64-bits Windows 10 PC with i7-7Y75 CPU and 

16GB memory. The overview of the method employed is presented in this section. 

 

Objective 1: To study and analyze the effects of noisy signal on the heartbeat detection 

performance for ambulatory arrhythmia monitoring. 

The relationship between the ECG noise and heartbeat detection performance has the 

potential to evaluate the effects of noisy ECG signals. Therefore, a methodology to 

compare a set of QRS detector performance using the ECG signal with different noise 

conditions was developed to study their effects. For this purpose, three well-known QRS 

detection algorithms were employed: the Pan Tompkins [9], the WQRS [11] and the 

Hamilton [10] algorithms. The main criteria for the algorithm selection were that the 

algorithm could be applied in a real-time system and it showed robust performance 

against the noisy and ambulatory ECG signals. Experiments were performed to determine 

the effects of beat detector performance on clean ECG signal, heartbeat morphology, 

noisy signal and abnormal signal. The standard database and simulated data using the BW, 

MA and EM with different levels of SNR were utilized, and the three algorithms were 

used to perform the heartbeat detection process. The effects of noise artifacts in the ECG 

signals that degraded the heartbeat detection performance were analyzed. The details of 

the experiments and results for this approach will be specifically described in Chapter 4. 
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Objective 2: To propose a noise-tolerant QRS detection method and improve the detection 

performance for a noisy signal. 

The noise-tolerant QRS detection method was proposed and developed in this study. The 

proposed method consisted of two phases: the pre-processing and QRS detection phase. 

Five steps have been employed in the pre-processing phase, starting with the band-pass 

filter, derivative, squared, SGMA smoothing and autocorrelation. The band-pass filter 

with 8-20 Hz was used to increase the signal quality while the SGMA and autocorrelation 

technique was adopted to smooth the signal data and prevent incorrect detection. The 

proposed pre-processing phase was combined with the adaptive threshold in the QRS 

detection phase to identify the right peak. Three experiments were done using different 

conditions of ambulatory ECG signal to evaluate the capability of the proposed method 

on the noisy ECG signal. The performance of the proposed method was evaluated and 

compared with other QRS detection method and presented in this study. The details of the 

experiments and results of the proposed QRS detection method are described in Chapter 

5. 

 

Objective 3: To develop the arrhythmia detection system for ambulatory ECG signal 

using heartbeat classification approach. 

The heartbeat classification approach was designed and implemented for the detection of 

arrhythmias. Four main steps were employed in this approach: 1) pre-processing, 2) QRS 

detection, 3) feature extraction, and 4) classification. In the pre-processing and QRS 

detection phases, the propose noise-tolerant QRS detection method was implemented as 

described in Chapter 5. Two groups of the feature that can represent heartbeat were 

constructed in the feature extraction phases. Five heartbeat interval features and eight 

ECG morphology features were extracted. Lastly, the classification model was developed 

using classification algorithms. Four different classification algorithms which were 

k-nearest neighbor algorithm, support vector machine, decision tree, and linear 

discriminant were used to obtain the best classification model. Then, the best learning 

model was validated using the ambulatory ECG signal data, and the results were 

presented. The details of methods and experiments for this approach will be specifically 

described in Chapter 6. 
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3.3. Evaluation Metrics 

 

    Four evaluation metrics were used in this study: sensitivity (SE), positive predictivity 

(PP), error detection rate (DER) and accuracy (ACC). SE, PP and ACC have been 

recommended by AAMI [78] for evaluating heartbeat detection and arrhythmia 

classification while DER was used to evaluate noise improvement for ECG analyses. 

Generally, SE denotes the percentage of true positive beats that are correctly identified, 

PP denotes the percentage of detected true beats, DER denotes the percentage of the error 

detection beats and ACC is a total percentage of correctly identified beats. The SE, PP, 

DER and ACC were calculated using Equations (3.2), (3.3), (3.4) and (3.5), respectively 

[40, 80]: 

 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (3.2) 

 
 

𝑃𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (3.3) 

 

𝐷𝐸𝑅 =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 × 100%  (3.4) 

   

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100%  (3.5) 

 

where TP denotes the true positive, TN is the true negative, FP is the false positive and FN 

is the false negative. The total of TP, TN, FP and FN was calculated using confusion 

matrix as shown in Figure 3.6. The confusion matrix [6] is a tool for predictive analysis 

and it can be used to describe the performance of a statistical classification model on a set 

of test data for which the true values are known or called actual condition. In the 

confusion matrix, each predicted condition case is identified to four categories: TP is a 

correctly predicted positive case, TN is a correctly predicted negative case, FP is an 

incorrectly predicted positive case and FN is an incorrectly predicted negative case. 
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  Predicted Condition 

 Total No Yes 

Actual 

Condition 

No 
True Negative 

(TN) 

False Positive 

(FP) 

Yes 
False Negative 

(FN) 

True Positive 

(TP) 

Figure 3.6. The confusion matrix terminology. 

 

3.4. Summary 

 

    This chapter detailed the materials and methodology used in this study. The 

description included the selection of the ambulatory ECG signal data and the evaluation 

metrics. The data prepared in this chapter were suitable to be used for the experiments 

since all the data were recorded in the ambulatory environment and supplemented with 

annotation files. While designing and constructing the heartbeat detection and arrhythmia 

detection method, the overview of the approaches was described. Since this study used 

the statistical classification algorithms for constructing the model, the confusion matrix 

was employed. The confusion matrix was introduced and four evaluation metrics were 

presented in this chapter.  
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Chapter 4 

Effects of Noisy Signal on Heartbeat 

Detection Performance 

 

4.1. Introduction 

 

    The analysis of the effects of ECG noise on heartbeat detection performance has been 

conducted by previous researchers [13, 42-43]. However, the previous study [43] used 

different categories to evaluate the performance of heartbeat detection. The noise types 

and level of intensity of noises from the ambulatory environment that affects the QRS 

detection performance are not clearly described in this study. Another study [13] has 

highlighted a few noises and artifacts from the ambulatory environment. Nevertheless, 

the study [13] did not use the real ECG noise from ambulatory recordings to evaluate the 

detection performance. In addition to that, they also used a conventional scheme to 

quantify the noise in the ECG signal. Matteo et al. [42] have evaluated the heartbeat 

detection performance using the ECG signal and noise from ambulatory recording. The 

SNR measurement has also been used to present the detection results. However, the 

performance of the heartbeat detection only evaluated the electrode motion artifact. The 

comparison between other noises was not investigated. Moreover, they did not consider 

high noise in their studies. 

    Therefore, in this chapter, we investigated the effects of noise from ambulatory 

recording on heartbeat detection performance. The methodology to compare a set of QRS 

detectors under different noise conditions was presented. Three main experiments were 

performed to determine the effects of beat detector performance on clean ECG signal, 

heartbeat morphology and noisy signal. The standard database and noise source from real 

ECG recordings were used in this study. This differed from a previous study [13] in which 

they did not use the real ECG noise from ambulatory recordings. Different from another 

study [42], in this chapter, the experiment was conducted on different levels of SNR 

including the highly noisy signal of -12dB. Three noise sources, BW, MA and EM, were 
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utilized and three threshold-based algorithms were used to perform the beat detection 

process. 

 

4.2. Heartbeat Detection Algorithms 

 

    Three algorithms were employed in this study to represent the threshold-based 

heartbeat detectors: the Pan Tompkins [9], the WQRS [11] and the Hamilton [10] 

algorithms. The main criteria for the algorithm selection were that the algorithm could be 

applied in a real‐time system and they showed a robust performance with the noisy ECG 

signals. The Pan Tompkins and Hamilton algorithm were implemented using the 

MATLAB software. Meanwhile, the WQRS algorithm downloaded from the PhysioNet 

website [81] was called using MATLAB scripts as the MATLAB external function. The 

correctness of the algorithm implementation was verified by analyzing the results with 

the same data, in this case, a record from the MIT‐BIH Database. It was observed that the 

results obtained were almost similar to the ones reported in previous studies [9-11]. 

    The Pan Tompkins algorithm [9] is one of the most well‐known heartbeat detection 

algorithms. This algorithm used band‐pass filtering, signal differentiation, squaring, 

moving window integration and two sets of adaptive thresholds to filter and integrate 

signals for heartbeat detection. The first step was a band‐pass filtering with a passband of 

5−15 Hz, which removed the BW, and a 50 Hz power line interference that reduced the 

amplitude of T‐waves. After the band‐pass filtering step, the signal was differentiated to 

highlight the sharp slopes of the QRS complex. To further emphasize the QRS complex, 

the signal was squared to obtain positive values. The final processing step involved a 

moving window integration with an average window of 150 ms. This window was chosen 

to match the width of the widest possible QRS complex. The QRS peaks of at least 300ms 

apart were identified in the pre‐processed signals and classified as a noise or a QRS 

complex depending on the adaptive threshold. 

    The WQRS [11] algorithm is based on the slope and length transform of the ECG 

signal to identify the QRS complex. The algorithm used low pass filters, non‐linearly 

scaled curve length transformation and decision rules to determine the location of 

corresponding QRS. Instead of the band‐pass filter, the low pass filter was used to 

eliminate the BW artifacts. The low pass filter of 16 Hz was employed to suppress the 

high‐frequency components. Then, the ECG signal was transformed into a curve length 
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signal using a non‐linear scaling factor to enhance the QRS complex and suppress the 

unwanted noise. The QRS complex was determined using an adaptive threshold in the 

decision rules process. 

    The Hamilton [10] algorithm is based on the work by Pan and Tompkins [9] with 

alterations carried out for the pre‐processing stage. The Hamilton algorithm used band‐

pass filtering, differentiation, rectifying, moving window average and three rules 

threshold to identify the QRS complex. It differed from Pan Tompkins and WQRS 

algorithms because the band‐pass filter of 8–16Hz was used to remove the high and low‐

frequency noises. After the band‐pass filtering step, the differentiated signal was rectified 

instead of squaring to highlight the QRS complex. To match the possible QRS complex in 

the signal, the 80ms moving average window was used. The QRS peak of at least 300ms 

away from the last detected R‐peak and the peak amplitude above the detection of the 

adaptive threshold was classified as a QRS complex. 

 

4.3. Analysis of ECG Signal on Heartbeat Detection 

Performance 

 

    In this section, the analysis performance of heartbeat detector on clean ECG signal, 

effects of noisy signal on heartbeat morphology and performance of detector on noisy 

signal and abnormal signal are presented. The relationship between the ECG noise and 

heartbeat detection for ambulatory cardiac monitoring using heartbeat detection 

algorithms for both clean and noise-simulated ECG was investigated. The effects of noise 

and artifacts in the ECG signals that degraded the heartbeat detection performance were 

also discussed. To validate the heartbeat detection performance, each detected QRS peak 

was categorized as TP, FP or FN. Specifically, TP denotes the total number of QRS peaks 

detected as the QRS complex, FP denotes the total number of non-QRS peaks or noises 

detected as the QRS complex and FN represents the total number of QRS complexes that 

was not detected. Two evaluation metrics which were SE and PP were calculated using 

Equations (3.2) and (3.3) as described in Chapter 3. The SE denotes the percentage of true 

beats correctly detected by the algorithm whereas the PP denotes the percentage of 

detected true beats. 
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4.3.1. Effects of Beat Detector Performance on a Clean ECG Signal 

 

    The heartbeat detector performance on a clean ambulatory ECG signal was evaluated 

using 48 records from the MIT‐BIH Database (Table 3.2. in Chapter 3) [77]. The clean 

ECG signal was used to investigate the reliability of the algorithms’ performance with 

high quality ambulatory ECG signal that contained a diverse arrhythmia beat. Figure 4.1 

presents the average performance of the three algorithms of beat detectors on all 48 ECG 

records. There was no significant difference found in the performances of these 

algorithms when using a clean ECG. All the algorithms produced SE and PP with an 

average above 98%, indicating a good performance of the algorithms for both clean and 

diverse clinical ECG signals from 47 subjects. 

 

Figure 4.1. Beat detector algorithm performance on a clean data. 

 

    The Hamilton algorithm had a good PP; however, the SE decreased which indicated 

that the algorithm was sensitive towards the abnormalities of heart rhythm. Although the 

WQRS algorithm was capable of detecting the correct QRS peak with the highest total SE 

of 99.64%, the algorithm was also sensitive to noise. The WQRS algorithm often detected 

false peak as the QRS complex, thus producing a low PP. The Pan Tompkins algorithm 

also had the stability to perform heartbeat detection compared to the other two methods 

with 99.59% of SE and 99.51% of PP, respectively. 
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    All beat detector algorithms performed well for most of the records in the MIT‐BIH 

Database [77]. Nevertheless, in this database, there was a few records, such as record 

numbers 105, 108, 121, 200, 202, 207, and 217, that had dynamic signals due to the 

abnormal beats and noise effects. Previous research also used these records to assess the 

noise robustness [82-83]. According to the PhysioNet web‐based resource [77], the signal 

from record 207 is the extremely difficult record in the MIT‐BIH Database due to the 

predominant rhythm of abnormal beats in the signal. In this study, a comparison of the 

algorithm performance for the few difficult records such as record numbers 105, 108, 121, 

200, 202, 207, and 217 was also carried out as shown in Table 4.1. 

 

Table 4.1. Comparison of the beat detector performances for ECG record 105, 108, 121, 

200, 202, 207 and 217. 

Record 
Pan Tompkins [9] WQRS [11] Hamilton [10] 

SE (%) PP (%) SE (%) PP (%) SE (%) PP (%) 

105 99.46 98.27 98.83 92.10 99.57 98.88 

108 99.77 83.27 1 99.38 84.19 1 99.32 99.38 

121 99.89 100 99.79 99.73 99.95 100 

200 99.85 99.85 99.85 99.31 99.85 99.73 

202 99.53 100 99.81 99.95 99.67 100 

207 98.98 99.68 99.41 98.40 99.25 99.84 

217 99.82 99.91 99.55 98.30 99.18 99.64 
1 Low positive predictivity. 

 

    The findings showed that the beat detector could handle both normal and abnormal 

beat signals such as record numbers 200, 202, 207, and 217. The signal from the record 

200 indicated a normal and combination of ventricular beats while the signal from the 

record 202 showed a normal, atrial premature and premature ventricular contraction beat. 

The ECG signal of the record 217 was composed of normal beats with a fusion of paced 

and premature ventricular contraction beats. The results showed that the beat detectors 

performance with this signal resulted in the percentage of SE and PP above 98.98% and 

98.2%, respectively. Furthermore, while the signal from the record 121 was distorted by 

the BW, it did not affect the detection performance. However, the performance of the beat 

detector degraded especially with the signal from the record 108 that was influenced by 

MA and low amplitude, and the signal from the record 105 that was contaminated with 

high‐grade noise. 
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4.3.2. Effects of Noisy Signal on Heartbeat Morphology 

 

    In this section, the effects of noise in ECG signal towards the heartbeat morphology 

were studied. Simulated signals using the record number 100 from MIT‐BIH Database 

that were contaminated with BW, MA, and EM with SNR of 0 dB were evaluated 

separately to investigate the heartbeat morphologies affected by noisy signals. The Pan 

Tompkins [9] algorithm was chosen due to the comprehensive approach to reduce the 

interferences and to avoid false detections of QRS complexes in ECG signals. The 

algorithm also had higher accuracy for various beat morphologies than the other 

traditional real‐time methods [84]. The QRS characteristics of heartbeat morphologies 

were evaluated after the band‐pass filtering process with 5 to 15 Hz and adaptive 

thresholds of Pan Tompkins algorithm to reduce the destruction caused by the noises and 

identify the true beats in ECG signals. Figure 4.2 shows the ECG morphologies as 

affected by noisy and de‐noised signals. 

 

 
  

Figure 4.2. Visuals of the ECG morphologies as affected by clean and noisy signals with a 

SNR of 0 dB (a) ECG Signal and De-Noised ECG Signal; (b) the QRS morphologies of 

heartbeat. 

a) b)
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    As can be seen in Figure 4.2, the blue and orange signal represents the signal before 

and after the filtering process, respectively. The TP denotes true positive while FP denotes 

the false detection. The blue areas in Figure 4.2 (a) represent the QRS morphology in 

Figure 4.2 (b). The findings showed that the ECG morphologies were distorted by the 

different noises. The BW noise resulting from the subject’s respiration movements 

presented an abrupt drift that introduced some interference to the signal. The MA noise 

with the high‐frequency range interfered with the morphological features in the signal. 

Besides that, the ECG information changed when motion artifacts were introduced to the 

signal, causing irregularities in the ECG morphology. The difference in frequency ranges 

of BW, MA and EM artifact led to the distorted ECG signal morphologies. 

    In this study, the filtering process smoothened the ECG morphology and enhanced 

the QRS complex. Although the signal contaminated with BW and MA degraded the 

morphology, the algorithm managed to discover the QRS complex after the filtering 

process. However, the irregularities caused by the EM artifact could not be solved using 

the band‐pass filter, thus resulting in a false detection as shown in Figure 4.2. It could be 

observed that the ECG signals contaminated with EM noise had the poorest signal 

compared to the other noises. The presence of undesired interferences from high‐

frequency noises caused a serious problem in the ECG diagnosis. 

 

4.3.3. Effects of Beat Detector Performance on Noisy Signal 

 

    The effects of a heartbeat detector on the different intensity of noise was investigated. 

The simulated signals contaminated with BW, MA and EM were used to investigate the 

relationship between the heartbeat detection performance and the intensity of noise. 

Three experiments were done to evaluate the effects of noisy signal: (1) with the 

noise-simulated signal record 100 of MIT-BIH Database as it was of good quality 

compared to other signals and it contained a few arrhythmia beats; (2) with the 

noise-simulated signal record 200 of MIT-BIH Database that contained dynamic signal 

consisted of a fusion of arrhythmias beats; and (3) with the noise-simulated signal of all 

48 records of noisy ECG signals and analyses of the average performance of heartbeat 

detection. 
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4.3.3.1. Noisy Signal on Record 100 of MIT-BIH Database 

 

    The effects of a heartbeat detector on different levels of noise in the clean ECG signal 

and signal that consisted of a few arrhythmia beats were determined. Figures 4.3 to 4.5 

demonstrate the relationship between the performance of heartbeat detection and the 

level of noise. To evaluate the effects of noise contamination on arrhythmia signal, the 

record 100 from MIT-BIH Arrhythmia Database was used. The relationship between the 

different intensity of BW noise and the performance of heartbeat detection on the signal is 

shown in Figure 4.3. In response to the sensitivity of the three algorithms, at SNR levels 

above −6 dB, all the algorithms scored very well. At levels below SNR of −6 dB, the beat 

detector performance decreased, especially for the WQRS algorithm because the SE was 

lower, 97.23% at the SNR of −12 dB, indicating that the algorithm was sensitive to BW 

noise. In contrast, the Pan Tompkins and Hamilton algorithms possessed low SE at an 

SNR lower than −9 dB, where the SE of both the Pan Tompkins and Hamilton algorithms 

decreased to 99.92% and 99.91%, respectively. In terms of PP, the Hamilton and Pan 

Tompkins algorithms had a significantly better performance with 99.52% and 99.21%, 

respectively at −12 dB SNR of BW noise compared to the WQRS algorithm that had low 

performance with 76.9%. 

    Figure 4.3 shows the relationship between the different intensity of MA noise and the 

performance of heartbeat detection on the signal. Below the SNR of 3 dB, the 

performance of beat detector continued to decrease with the decreasing SNR value, with 

SE of 90.94% and 86.89% as produced by the Pan Tompkins and Hamilton algorithms, 

respectively at the SNR of −12 dB. The WQRS algorithm showed that the detector was 

very sensitive and unstable with MA, resulting in lower SE and PP performance. As for 

the PP, MA affected the performance of the Pan Tomkins and Hamilton algorithms at the 

SNR value below 3 dB. However, the Hamilton algorithm had a better PP (65.16%) at the 

SNR of −12 dB compared to the other two algorithms. 
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     (a)        (b) 

Figure 4.3. Relationship between the performance of heartbeat detection and BW for the 

record 100: (a) SE and SNR; (b) PP and SNR. 

 
     (a)        (b) 

Figure 4.4. Relationship between the performance of heartbeat detection and MA for the 

record 100: (a) SE and SNR; (b) PP and SNR. 

 
     (a)        (b) 

Figure 4.5. Relationship between the performance of heartbeat detection and EM artifact 

for the record 100: (a) SE and SNR; (b) PP and SNR. 
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    The relationship between the intensity level of EM noise and the performance of 

heartbeat detection is shown in Figure 4.5. The signal contaminated with the EM artifact 

below the SNR of 0 dB degraded the detection performance of the Pan Tompkins and 

Hamilton algorithms. At the SNR of −12 dB, the Pan Tompkins and Hamilton algorithms 

decreased the SE to 70.96% and 67.88%, respectively, lower than the SE of WQRS 

algorithm which was 88.17%. This could be attributed to the high false-positive detection 

in the signal with high-frequency noises from EM artifact (Figure 4.5b), decreasing the 

PP of the detector performance. All three algorithms, the Hamilton, the Pan Tompkins 

and the WQRS, produced low PP with 44.05%, 42.54% and 33.09%, respectively at the 

SNR of −12 dB. 

 

4.3.3.2. Noisy Signal on Record 200 of MIT-BIH Database 

 

    The effects of a heartbeat detector on different levels of noise in the ECG signal that 

consisted of both abnormal or arrhythmia beats were determined. Figures 4.6 to 4.8 

demonstrate the relationship between the performance of heartbeat detection and the 

level of noise. To evaluate the effects of noise contamination on arrhythmia signal, the 

record 200 from MIT-BIH Arrhythmia Database was used. This record has a dynamic 

signal, consisting of a fusion of arrhythmias and normal beats [82]. 

    The noise in the abnormal signal disrupted the heartbeat rhythm of arrhythmias 

morphology, thus degrading the ECG signal quality and affecting the heartbeat detection 

performance as shown in Figure 4.6. The BW noise affected the heartbeat detection 

process of the Pan Tompkins and Hamilton algorithms less compared to the WQRS 

algorithm. The SE as influenced by the Pan Tompkins, the Hamilton and the WQRS 

algorithms were 99.85%, 99.81% and 96.12%, respectively, with PP of 99.39%, 98.90% 

and 70.11%, respectively, at the SNR of −12 dB. 

 

 



 60 

   
     (a)        (b) 

Figure 4.6. Relationship between the performance of heartbeat detection and BW with 

abnormal signal for the record 200: (a) SE and SNR; (b) PP and SNR. 

 
     (a)        (b) 

Figure 4.7. Relationship between the performance of heartbeat detection and MA with 

abnormal signal for the record 200: (a) SE and SNR; (b) PP and SNR. 

 
     (a)        (b) 

Figure 4.8. Relationship between the performance of heartbeat detection and EM artifact 

with abnormal signal for the record 200: (a) SE and SNR; (b) PP and SNR. 
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    Below the SNR of 3 dB, the detection of signal contaminated with MA noises in the 

abnormal signal reduced the SE (Figure 4.7. (a)). At the SNR of −12 dB, the Pan 

Tompkins, the WQRS and the Hamilton algorithms resulted in a SE of 92.62%, 87.66% 

and 86.85%, respectively, while at the SNR of −12 dB, the PP decreased to 69.66%, 

42.07% and 72.45%, respectively (Figure 4.7. (b)). However, the signal contaminated 

with EM noises affected heartbeat detection. As shown in Figure 4.8, the EM artifact 

produced a lower performance of heartbeat detection with a lower SE of 69.36% at the 

SNR of 12 dB using the Hamilton algorithm. In contrast, the lower PP at the SNR of −12 

dB for the signal contaminated with EM artifact was 35.9% using the WQRS algorithm, 

indicating the inability of this algorithm to manage the false positives in the detection 

process and performance maintenance. 

 

4.3.3.3. Noisy Signal on 48 Records of MIT-BIH Database 

 

    The effects of the different intensity of noise on the heartbeat detector method in 48 

records from the MIT-BIH Arrhythmia Database were identified. The relationships 

between the heartbeat detection performance and the intensity of noise are exhibited in 

Figures 4.9–4.11. The SE and PP in Figures 4.9 to 4.11. (a) and (b) represented the 

average performance of heartbeat detection on all 48 records of noisy ECG signals. 

    Figure 4.9 shows the relationship between the different intensity of BW noise and the 

average performance of heartbeat detection. In response to the average sensitivity of the 

three algorithms, at the highest level of noise, all the algorithms were not able to detect all 

QRS complexes. The WQRS algorithm resulted in low SE (94.58%) at the SNR of −12 

dB while the Pan Tompkins and Hamilton algorithms yielded a better performance with 

99.42% and 98.13%, respectively. In terms of average PP, the Pan Tompkins and 

Hamilton algorithms had a significantly better performance with 97.21% and 95.74%, 

respectively, at −12 dB SNR of BW noise compared to the WQRS algorithm (62.45%). 

    The relationship between the intensity level of MA noise and the average 

performance of heartbeat detection is shown in Figure 4.10. The MA noise affected the 

SE and PP of the heartbeat detection process of all algorithms. At the SNR of −12 dB, the 

average SE of the Pan Tompkins, Hamilton and WQRS algorithms were 85.94%, 81.74% 

and 84.71%, respectively and that of the PP was 59.68%, 61.74% and 36.95%, 

respectively. The WQRS algorithm showed that the detectors produced high 
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false-negative detections, resulting in lower average PP performance at all levels of SNR 

compared to the Pan Tompkins and Hamilton algorithms (Figure 4.10. (b)). 

    Figure 4.11 shows that the signals contaminated with EM artifacts have degraded the 

detection performance of all algorithms. At the SNR of −12 dB, the Pan Tompkins and 

Hamilton algorithms decreased the SE to 68.85% and 65.44%, respectively, which were 

lower than the corresponding value of the WQRS algorithm (84.10%). As for the PP, the 

EM affected the average performance of algorithms at all SNR values. All algorithms, 

Hamilton, Pan Tompkins and WQRS, produced low PP with 44.05%, 42.54% and 

33.09%, respectively, at the SNR of −12 dB. 

 
     (a)        (b) 

Figure 4.9. Relationship between the performance of heartbeat detection and BW for all 

the 48 records: (a) SE and SNR; (b) PP and SNR. 

 
     (a)        (b) 

Figure 4.10. Relationship between the performance of heartbeat detection and MA for all 

the 48 records: (a) SE and SNR; (b) PP and SNR. 
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     (a)        (b) 

Figure 4.11. Relationship between the performance of heartbeat detection and EM artifact 

for all the 48 records: (a) SE and SNR; (b) PP and SNR. 

 

    As shown by Figures 4.9 to 4.11, the signals contaminated with BW, MA and EM 

artifacts degraded the detection performance of the Pan Tompkins, Hamilton and WQRS 

algorithms. The analysis on the 48 records from the MIT-BIH Databases showed that the 

noisy signal decreased the heartbeat detection performance, with low average SE and PP 

at the lowest SNR compared to the average detection in clean ECG signals (Figure 4.1.). 

The average detection performance showed the highest influence by MA and EM artifacts, 

with the sensitive WQRS algorithm being most affected by the noisy signal. 

 

4.4. Discussion 

 

    In this study, the relationship between the ECG noise and heartbeat detection for 

ambulatory cardiac monitoring was investigated using heartbeat detection algorithms for 

both clean and noise‐simulated ECG signals contaminated with BW, MA and EM 

artifacts. There was no significant difference found in the performance of the heartbeat 

detection algorithms when the clean signal was used. The beat detector was able to handle 

the high‐quality signals from the MIT‐BIH database that had dynamic signal due to the 

abnormal beats, noise and artifacts effects. 

    The experimental results on noisy signal showed valid heartbeat detection 

performance. The findings implied that signals contaminated with noise and artifacts 

degraded the ECG morphology and decreased the potential of heartbeat detection in the 

ambulatory signal. This was represented by the relationship between the noise types and 
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the level of SNR intensity, and confirmed by the performance of the average SE and PP of 

the algorithms used in the experiments. Based on the results, none of the algorithms was 

able to detect all the QRS complexes without any false positive and false negative at the 

highest level of noise, indicating the weakness of the Pan Tompkins, the WQRS and the 

Hamilton algorithms. The Pan Tompkins algorithm showed the best performance of 

detection when dealing with noisy signals, followed by the Hamilton algorithm while the 

WQRS algorithm showed the poorest performance. 

    The relationship between the characteristics of ECG noises and the heartbeat 

detection indicated that the BW had a lesser influence on the heartbeat detection 

performance except with the more sensitive WQRS algorithm. Meanwhile, the EM 

artifacts had the highest influence on the detection algorithm, followed by MA and BW. 

Higher interferences that degraded the detection performance were mainly due to MA and 

EM artifacts. The higher intensity of MA and EM artifacts contributed to the false 

positive and false negative values that affected the percentage of QRS complexes 

detected. However, the EM artifacts contributed to the poorest detection performance 

which was proven by the lower performance of SE and PP in the high noise signal and the 

distorted ECG morphology, leading to the highest number of misdetections and false 

detections. Further improvements should consider the effects of MA and EM artifacts in 

ECG signals to deal with the false detection of the QRS complex in order to improve the 

detection performance. 

 

4.5. Summary 

 

    This chapter presented the methodology to analyse the effects of noise from 

ambulatory recording on heartbeat detection performance. Dissimilar to the previous 

studies [18, 42-43], the methodology used in this chapter clearly examined the noise 

types and intensity level of noise that affected the heartbeat detection performance. The 

research data in this chapter were drawn from ambulatory ECG signal and noise sources 

from ambulatory recording. This chapter also showed the effects of high noise in the 

detection performance. The performance of threshold-based detection method was 

evaluated using three different noise sources from ambulatory environment, and the 

results indicated that they needed improvement to perform. Based on the results, the 

effects of noisy ECG signal might lead to the highest number of misdetections and false 
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detections during the heartbeat detection process. Thus, further improvement and method 

to deal with this problem will be discussed in the next chapter. 
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Chapter 5 

Noise-Tolerant Heartbeat Detection 

Method 

 

5.1. Introduction 

 

    In Chapter 4, the effects of noisy signal on the threshold-based heartbeat detection 

performance were evaluated. As a result, it was found that false detection from MA and 

EM artifact was affecting the QRS detection performance. In addition, the Pan Tompkins 

algorithm [9] performed better compared with other algorithms. In the literature, the Pan 

Tompkins algorithm has also been used in most arrhythmia heartbeat classification 

system [6, 7, 30]. It has been proven to achieve good detection accuracy in clean ECG 

signals. However, the performance of Pan Tompkins algorithm was affected by the noisy 

ECG signal especially with EM and MA noise. 

    Researchers have suggested many methods of noise reduction to deal with noisy 

signal and detect QRS complexes [44-47]. Many works have filtered the signal first to 

increase the robustness [9-10, 47]. Nonetheless, filtering does not work for EM and MA 

noises. According to a study [48], periodical property of ECG is able to improve the QRS 

detection in ECG signal with motion artifacts. Thus, autocorrelation technique has been 

investigated in this study. In a previous study [44], the short auto-autocorrelation with 

template matching has been proposed for noisy ECG signals. However, the template 

matching was computationally expensive because of the sample-by-sample moving with 

the template along the ECG signals. 

    Therefore, in this chapter the noise-tolerant heartbeat detection method was proposed. 

The proposed method modified the Pan Tompkins algorithm by using the autocorrelation 

technique in this work. In contrast to a study [44] that used template matching in their 

work, the threshold-based detection method was employed at the last stage in this study 

since the autocorrelation could also produce error assumption when dealing with high 

noise. To solve this issue, the Savitzky-Golay moving average (SGMA) technique [49] 
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was used. The SGMA is a smoothing technique that modifies the data points of the signal 

and reduces the noises and spikes in the signal. Three main experiments were performed 

to evaluate the proposed method: using the standard database, ECG-Noise simulated 

signal and the actual GUDB data. The results of the proposed method are presented in this 

chapter. 

 

5.2. Proposed Heartbeat Detection Method 

 

    Figure 5.1 shows the block diagram of the proposed heartbeat detection method and 

Figure 5.2 shows the output of each steps in the proposed method. The proposed work 

consisted of two main stages: processing and QRS detection with six steps, including a 

band-pass filter, derivative, squared, Savitzky-Golay moving average, autocorrelation 

and adaptive threshold.  

 

 

Figure 5.1. Block diagram of the proposed heartbeat detection method. 

 

    Firstly, in order to attenuate the noise, the signal passed through a digital band-pass 

filter composed of cascaded high-pass and low-pass filters. The next process after 

filtering was differentiation, followed by squaring, SGMA integration and 

autocorrelation. The information above the slope of QRS was obtained in the derivative 
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steps. The acquiring process intensified the slope of the frequency response curve of the 

derivative and helped restrict false positives caused by T waves with higher than usual 

energies. The SGMA produced a smoothing signal that included information about both 

the slope and width of the QRS complex. From the smoothing signal, the fiducial point 

was identified and refined using autocorrelation. Then, the location of the QRS complex 

was determined after using the adaptive threshold. All the steps in the proposed heartbeat 

detection are described below. 

 

 

Figure 5.2. The output of each steps in the proposed heartbeat detection method with 

ECG signal during jogging. 

Time (s)

m
V



 69 

5.2.1. ECG Processing 

 

    The purpose of this stage was to filter the noise and construct the fiducial points of 

QRS peak. Five steps were employed in the processing stages as described below. In 

general, the overall processing stages could be divided into five steps: (1) Filtering, (2) 

Derivative, (3) Squaring, (4) Savitzky-Golay moving average, (5) Autocorrelation. 

 

5.2.1.1. Band-Pass Filter 

 

    Morphologies of normal and abnormal QRS complexes differ widely. The ECG 

signal is often corrupted by noise from many sources as discussed. Therefore, band-pass 

filtering is an essential first step for nearly all QRS detection algorithms. The purpose of 

band-pass filtering is to remove the baseline wander and high frequencies, and to 

suppress the P and T waves that do not contribute to detect the QRS complexes. It offers 

good transition-band characteristics at low coefficient orders, making it efficient to 

implement [29]. In this study, the band-pass filter used a third-order Butterworth filter 

with the passband of approximately 8-20 Hz to maximize the QRS energy. The band-pass 

filter was designed using the cascaded low-pass and high-pass filters. The output of the 

band-pass filter is shown in Figure 5.2(a). 

 

5.2.1.2. Derivative 

 

    After the filtering process, the signal is differentiated to provide the QRS complex 

slope information. The QRS complex slope is produced using a derivative process to gain 

high-frequency slopes in the signal and suppress the low frequency of P and T waves. The 

output of the derivative is shown in Figure 5.2(b). 

 

5.2.1.3. Squared 

 

    From the derivative process, the signal was squared point by point to enhance large 

values and boost high-frequency components. This techniques performing nonlinear 

amplification of the output of derivative and emphasizing the higher frequencies of QRS 

peak or predominantly the ECG frequencies. The output of the derivative is shown in 
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Figure 5.2(c). 

 

5.2.1.4. Savitzky-Golay Moving Average (SGMA)  

 

    A Savitzky-Golay Moving Average [49, 85] is generally used to smoothen the signal 

to increase the precision of the data without distorting the signal tendency. It uses the 

convolution process by fitting the data point with low degree polynomial by the method 

of linear least square. SGMA performs better in some applications than the standard 

averaging FIR filters [86], which tend to filter high-frequency content along with the 

noise as shown in Figure 5.3. The SGMA is generally designed with frame size and fitting 

order as they are the basic conditions of this technique. The frame size and the order of 

the SGMA determine the cutoff characteristics of the signal spectra. It is a challenging 

task to evaluate the optimal conditions of the frame size and order for SGMA in the signal 

filtering because there is no direct relation of order and frame size of this technique, with 

cutoff frequency, empirical or checks and trial method possible to be applied. 

 

 
  (a)  (b) 

Figure 5.3. Comparison of signal output window moving integration in (a) Pan Tompkins 

and (b) SGMA. 

 

    After investigating the best parameters for SGMA that reflect the basis of heartbeat, 

0.3s was used as the frame length, considering the widest possible QRS complex with 6 

as the polynomial order. For the frequency sampling, 360 Hz was used, with about 109 

samples in an odd number needed for frame length. From the squared signal, the SGMA 
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was employed by using sgolayfilt MATLAB function. Then, the signal was integrated to 

obtain the slope of the R wave. The output of the SGMA is shown in Figure 5.2(d). 

 

5.2.1.5. Autocorrelation 

 

    Autocorrelation is the cross-correlation of a signal with a delayed copy of itself [44, 

48, 86]. It is defined mathematically as the convolution between the same signals, which 

are the signal and its shifted version with fixed step size [66]. The autocorrelation is 

useful for finding repeating patterns, such as the presence of a periodic signal within a 

continued signal. By using the periodic of the waveforms, it can be automatically 

suppressing the periodic noise in the signals and providing the estimation of heartbeat 

period. In the autocorrelation output, a narrow peak is the identification of a peak that can 

be thrown off by the presence of low amplitude and periodic noise. Therefore, the 

autocorrelation output can be used to identify present components and determine the peak 

position. The autocorrelation function (ACF) is defined as follows: 

 

𝑅𝑦(𝑘) =  ∑ 𝑦(𝑛) × 𝑦(𝑛 − 𝑘)

𝑛=∞

𝑛=−∞

 (5.1) 

 

where 𝑅𝑦 is the autocorrelation function, 𝑦(𝑛) is the ECG signal, 𝑘 is the number of 

lags of the autocorrelation and 𝑛 is the total number of sample points in the data frame 

[66]. 

    Figure 5.4 (a) shows the block diagram of these steps. The first process in this step 

was to identify the candidate QRS fiducial points from the SGMA signal as shown in 

Figure 5.2(e). Each fiducial point was considered as a potential QRS. To reduce the 

possibility of incorrectly selecting a noise peak as a QRS, each peak was refined using the 

period of heartbeat by autocorrelation. One complete data frame of 700 samples of the 

signals from SGMA was taken at a time as the input of AFC. The AFC was applied on the 

data frame and the duration of periodic of signal was calculated as the output.  

    The distance between the first narrow peak of the ACF output and the origin center 

was defined as the period of ACF as shown in Figure 5.4 (b).The distance (number of 

sample points) between the peak location and the origin center was calculated to produce 

the period of ACF. Then, the period of heartbeat was used to filter the candidate QRS 
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fiducial points. The output of these steps was the refined QRS fiducial points as shown in 

Figure 5.2 (f). 

 

 

                               (a)           (b) 

Figure 5.4. Block diagram of the steps in autocorrelation stage. 

 

5.2.2. QRS Detection 

 

    When the processing was completed, the following step in this stage was to determine 

the candidate peaks as the QRS complex by using the adaptive threshold. The calculation 

of adaptive threshold was adopted from the Pan Tompkins algorithm [9]. In this stage, 

two sets of thresholds were used to detect the QRS complexes. One set limited the filtered 

ECG, and the other limited the signal produced by SGMA. By using thresholds on both 

signals, the reliability of detection was improved compared to using waveform alone. 

Low threshold was possible because of the improvement of the SNR by the band-pass 

filter. The higher of the two thresholds in each of the two sets was used for the first 

analysis of the signal. The lower threshold was used if no QRS was detected in a certain 

time interval so that the search-back technique was necessary to look back in time for the 

QRS complex.  

 

5.2.3. Steps of the Proposed Method 

 

Input raw ECG signal, 𝑓(𝑡) is filtering using the third order Butterworth filter with the 

passband of approximately 8-20 Hz. After the filtering, the signal, 𝑥(𝑛) is differentiated 

to provide slope information using the difference Equation 5.2, 

Refining QRS peak

Period of heartbeat

Data frame of 2s signal
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𝑞[𝑛] =
1

8
(−𝑥[𝑛 − 2] − 2𝑥[𝑛 − 1] + 2𝑥[𝑛 + 1] + 𝑥[𝑛 + 2]) (5.2) 

 

After differentiation, the signal is squared point by point using the Equation 5.3, 

 

𝑦[𝑛] = (𝑞[𝑛])2 (5.3) 

 

This make all data points positive and derivative emphasizing the higher frequencies or 

predominantly the ECG frequencies.  

 

Then the derivative signal was smoothing using the SGMA technique by the Equation 

5.4, 

  

𝑦𝑡 =
1

2𝑘 + 1
(𝑦𝑡−𝑘 + 𝑦𝑡−𝑘+1 + ⋯ + 𝑦𝑡+𝑘−1 + 𝑦𝑡+𝑘) (5.4) 

 

where 𝑦𝑡  is SGMA or smoothing signal 𝑡 = 𝑘 + 1, 𝑘 + 2, … , 𝑛 − 𝑘.  From the 

smoothing signal, the candidate of QRS fiducial point was identified. On the other hand, 

after the smoothing, the signal was divide into 700 samples or 0.2 second each frame and 

the autocorrelation function was applied on the data frame by using Equation 5.5, 

 

𝑅𝑦(𝐿) =  ∑ 𝑦(𝑛) × 𝑦(𝑛 − 𝐿)

𝑁

𝑛=0

 (5.5) 

 

where 𝑅𝑦 is the autocorrelation function, 𝑦(𝑛) is the SGMA signal, 𝐿 is the number of 

positive lags of the autocorrelation, and 𝑁 is the total number of sample points in the 

data frame.  

 

Then the peak in the 𝑅𝑦 was searched within the 𝑚𝑎𝑥 heart rate of 120 bpm based on 

the calculation of heartbeat rate per minute (bpm) as Equation 5.6 as follows: 

 

ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 =  
60 × 𝑓𝑠

120
 (5.6) 

 



 74 

where 𝑓𝑠 is the sampling frequency. The 𝑚𝑎𝑥 heart rate is taken because the normal 

human heart rate always lies between range of 50 bpm and 120 bpm [24]. The distance 

between the peak and the origin center was calculated to find the period of ACF. Then the 

candidate of QRS fiducial points was refined using the period of heartbeat to produce a 

set of refining QRS peak.  

 

Then, the refining of QRS peak was filtered using the adaptive threshold. Two sets of 

adaptive threshold was applied using the filtering and smoothing signal. The set of 

thresholds initially applied to the SGMA signal was computed from Equation 5.7. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 =  𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙1 + 0.25 (𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1 − 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙1) (5.7) 

 

where all the variables refer to the SGMA waveform with 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙1  being the 

running estimate of the noise peak, 𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1 being the running estimate of the 

signal peak, and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 being the first threshold applied. 

 

The threshold was automatically updated after detecting a new peak based on its 

classification as a signal or noise peak from Equation 5.8 and 5.9. 

 

𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1 =  0.125𝑃𝐸𝐴𝐾1 + 0.875𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1,
𝑖𝑓 𝑃𝐸𝐴𝐾1 𝑖𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘 

(5.8) 

 

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙1 =  0.125𝑃𝐸𝐴𝐾1 + 0.875𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1,
𝑖𝑓 𝑃𝐸𝐴𝐾1 𝑖𝑠 𝑛𝑜𝑖𝑠𝑒 𝑝𝑒𝑎𝑘 

 

(5.9) 

where 𝑃𝐸𝐴𝐾1 is the new peak found in the SGMA signal. At the beginning of the QRS 

detection, a 2-second learning phase was needed to initialize 𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙1  and 

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙1 as a percentage of the maximum and average amplitude of the SGMA 

signal, respectively. 

 

If a new 𝑃𝐸𝐴𝐾1 was under the 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1, the noise level was updated. If 𝑃𝐸𝐴𝐾1 

was above the 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 , the algorithm implemented a further check before 

confirming the peak as a true QRS, taking into consideration the information provided by 



 75 

the band-pass filtered signal. In the filtered signal, the peak corresponding to the one 

evaluated on the SGMA signal was searched and compared with a threshold, calculated in 

a similar way to the previous step as Equation 5.10. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 =  𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙2 + 0.25 (𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑣𝑒𝑙2 − 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙2) (5.10) 

 

where all the variables refer to the filtered signal with 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 being the second 

threshold applied. 

 

5.3. Performance Evaluation 

 

    The proposed method was aimed to improve the detection of QRS complex in highly 

noisy ECG signal. In this section, the performance results of the proposed method are 

presented. Firstly, the performance of the proposed method is evaluated with the standard 

ambulatory ECG signal to observe the performance in clean signal and arrhythmia beats. 

Then, the performance results of the proposed method are compared with other heartbeat 

detection algorithms results. To investigate the performance with noisy signal, two types 

of data have been tested in this study. The ECG-noise simulated signal and real ECG 

signal from the GUDB database are used as an evaluation. The performance results and 

analysis are described in the next section. 

 

5.3.1. Evaluation with the Standard Ambulatory ECG Signal 

 

    Table 5.1 presents the performance of the proposed method on 48 records from 

MIT-BIH with the lower and higher accuracy of 93.75% and 100%. As explained in 

Section 3.1.1.1, the records in MIT-BIH could be categorized into two groups: the first 

group included 23 records (record number 100 to 124) that were randomly chosen 

containing few arrhythmias types and noise from ambulatory environment; the second 

group included 25 records (record number 200-234) with examples of uncommon but 

clinically important arrhythmias that would not be well represented in a small random 

sample.  
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Table 5.1. Performance evaluation of the proposed method with MIT-BIH. 

Records 
SE  PP ACC 

Records 
SE  PP ACC 

(%) (%) (%) (%) (%) (%) 

100 100.00 100.00 100.00 201 99.42 99.96 99.69 

101 99.95 99.79 99.87 202 92.21 100.00 96.11 

102 99.77 99.95 99.86 203 93.82 100.00 96.91 

103 99.95 100.00 99.98 205 87.99 99.51 93.75 

104 99.37 99.51 99.44 207 99.13 100.00 99.57 

105 99.07 99.30 99.19 208 95.00 99.83 97.42 

106 95.31 100.00 97.66 209 92.35 99.74 96.05 

107 99.77 99.86 99.82 210 96.97 100.00 98.49 

108 98.53 98.86 98.70 212 96.49 99.96 98.23 

109 99.80 100.00 99.90 213 99.96 100.00 99.98 

111 99.95 100.00 99.98 214 99.51 99.97 99.74 

112 100.00 100.00 100.00 215 97.83 99.91 98.87 

113 99.89 100.00 99.95 217 99.64 100.00 99.82 

114 99.31 100.00 99.66 219 99.46 99.91 99.69 

115 100.00 100.00 100.00 220 98.00 100.00 99.00 

116 99.05 99.83 99.44 221 99.32 100.00 99.66 

117 100.00 100.00 100.00 222 98.60 100.00 99.30 

118 99.96 100.00 99.98 223 94.08 100.00 97.04 

119 98.84 99.39 99.12 228 99.73 100.00 99.87 

121 99.95 100.00 99.98 230 99.27 99.46 99.37 

122 100.00 100.00 100.00 231 99.96 100.00 99.98 

123 99.47 100.00 99.74 232 100.00 100.00 100.00 

124 98.95 100.00 99.48 233 98.93 99.94 99.44 

200 100.00 100.00 100.00 234 95.58 100.00 97.79 

   Worst  87.99 98.86 93.75 

   Best  100.00 100.00 100.00 

   Average  98.33 99.89 99.11 
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    The proposed method performed well in the first group, detecting the QRS complex 

in noisy signal that contained arrhythmia beats except record 108 with 98.70% accuracy. 

Record 108 was one of the most difficult records in MIT-BIH and it was despoiled by low 

amplitude that degraded the detection performance. In the second group, the results 

showed that almost all records performed higher percentage of PP. However, the number 

of misdetections in some records in the second group were higher, contributing to 

decreased SE percentage, such as record 202, 203, 205 and 209 with 92.21%, 93.82%, 

87.99% and 92.35% of SE, respectively. The signal from record 202, 203 and 205 

indicated a combination of normal beat with almost all arrhythmias beats and fusion of 

beats while the signal from the record 209 was a combination of normal and 

supraventricular and ventricular beats. It was observed that this signal was dynamic due 

to the abnormal beats, contributing to the effects of the periodic morphological signal, 

and degrading the performance of the proposed method. Figure 5.5 visualizes the output 

of clean and noisy signal and Figure 5.6 shows the output of arrhythmias beat in the signal 

produced by the proposed method. 

    Table 5.2 shows the accuracy comparison of the proposed method with other 

heartbeat detection algorithms. Four algorithms were selected for comparison: the Pan 

Tompkins [9], Hamilton [10], WQRS [11] and Nakai [44] algorithms. The first three 

algorithms have been investigated and described in the previous chapter while the Nakai 

algorithm was selected because their work has also been tested in highly noisy signal. 

Considering the effects of noise tolerance in the detection, the proposed method 

performed better with 99.11% than Nakai algorithm (92.48%). It was observed that the 

signals contained dynamic arrhythmias beats such as the signal in the second group that 

affected the performance of the heartbeat detection method with the noise-tolerant 

approach. Comparing the results from Pan Tompkins, Hamilton and WQRS algorithms 

that were sensitive to noisy signal, the overall accuracy of the proposed method was still 

acceptable. 
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Table 5.2. Comparison of the proposed beat detection performance with other detection 

algorithms. 

Methods 

Average (%) 

1st Group  

(Record 1-124) 

2nd Group  

(Record 200-234) 
All Records 

Pan Tompkins [9] 99.43 99.66 99.55 

Hamilton [10] 99.08 99.19 98.65 

WQRS [11] 98.08 99.18 99.13 

Nakai [47] 95.60 89.18 92.48 

Proposed 99.64 98.62 99.11 

 

 

(a) Output from Record number 100 

Time (s)

m
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(b) Output from Record number 105 

 

Figure 5.5. Output of proposed method in (a) clean signal and (b) noisy signal of 

MIT-BIH. 
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(a) Output from Record number 200 

 

 

Time (s)

m
V



 81 

 

(b) Output from Record number 207 

 

Figure 5.6. Output of proposed method in (a) signal with combination of ventricular beats 

and (b) signal with predominant rhythm of abnormal beats. 
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5.3.2. Evaluation with Noisy ECG Signal  

 

    Figures 5.7 to 5.9 show the relationship between the noise intensity and the 

performance of SE, PP and DER percentage. The MIT-BIH record 100 was used to 

evaluate the effects of noise contamination MA and EM source. Figure 5.7(a), 5.8(a) and 

5.9(b) present the performance comparison with MA noises. As shown in Figure 5.7(a), 

the results of the proposed method with MA decreased the SE at lower SNR compared 

with the other algorithms with 84.29 % at -9 dB. Although the proposed method had 

decreased the SE, it resulted in a higher PP as the number of false detections decreased 

with noise intensity level (Figure 5.8(a)). The performance of the proposed method on 

MA noise is shown in Figure 5.9(a). From the figure, the DER showed that the proposed 

method was better than the other algorithms by producing lower error detection under all 

conditions of SNR. At the lower SNR, MA of -9 dB, the proposed method achieved 

31.96% of DER compared with 33.41%, 33.41% and 61.81% for the Pan Tompkins, 

Hamilton and WQRS algorithms, respectively. 

    Figure 5.7(b), 5.8(b) and 5.9(b) show a performance comparison with the EM noise. 

As shown in Figure 5.7(b), the proposed method performed better in the EM noise with 

83.46% of SE compared to the other algorithms with 81.17%, 79.76% for the Pan 

Tompkins and Hamilton algorithm, excluding the WQRS algorithm which obtained 

89.35% at SNR of -9 dB. There was a similar trend for PP in Figure 5.8(b), in which in all 

conditions of noise, the proposed method showed a good result, with rapidly decreasing 

false detections that increased the PP percentage. The results demonstrated that the 

proposed method was able to reduce the number of false detections in lower EM noise, 

SNR of -9 dB, with 74.48% of PP compared to 48.27%, 52.29% and 34.84% for the Pan 

Tompkins, Hamilton and WQRS algorithms, respectively. This led to the improvement of 

the results of DER as shown in Figure 5.9(b) in which the proposed method managed to 

reduce the noise with 33.98% at low intensity level of EM at -9 dB. Based on the results 

with EM and MA noise, in general, the proposed method improved the noise tolerance 

compared to the other algorithms when ECG was contaminated by both MA and EM 

noise as resulted of DER. These results also showed that the proposed method performed 

better in EM noise compared to MA noise to detect the QRS complexes. Figure 5.10 

visualizes the output of clean and noisy signal. 
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(a) (b) 

Figure 5.7. Comparison of the SE with ECG-Noise simulated Signal for record 100: (a) 

MA; (b) EM. 

 
(a) (b) 

Figure 5.8. Comparison of the PP with ECG-Noise simulated Signal for record 100: (a) 

MA; (b) EM. 

 
(a) (b) 

Figure 5.9. Comparison of the DER with ECG-Noise simulated Signal for record 100: (a) 

MA; (b) EM. 
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(a) Output from Record number 100 
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(b) Output from Record number 105 

 

Figure 5.10. Output of proposed method in ECG-Noise simulate signal with SNR -6 dB 

of (a) MA and (b) EM noise. 
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5.3.3. Evaluation with Real Data 

 

    Next, the proposed method was evaluated using an ECG signal obtained using a 

wearable ECG monitoring device and stored in GUDB database as described in section 

3.1.3. Figure 5.11 and Table 5.3 presents the performance results of the proposed method 

and comparison with the other algorithms on the signal from GUDB database. The aim of 

this experiment is to evaluate the performance of proposed method during different 

activities with actual data collecting from exercise activities. The proposed method was 

tested with two-minutes ECG signals collected from nine subjects during three different 

activities: siting, walking and running on a treadmill. As a result, the performance of the 

proposed method was lower with the increase level of activity, especially during running 

with the increasing DER percentage as shown in Figure 5.11. However, the proposed 

method able to detect the heartbeat in actual data and show good results with an average 

DER of 0.00%, 0.07% and 2.39% for sitting, walking and running compared with the 

other methods. 

 

 

Figure 5.11. Comparison of the average of error detection performance during different 

activity with actual data. 

.
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Table 5.3. Comparison of the beat detection methods performance with GUDB data. 

Subject 

A
ct

iv
it

y
 Pan Tompkins [9] WQRS [11] Hamilton [10] This Study 

SE  PP DER SE  PP DER SE  PP DER SE  PP DER 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Subject 1 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 99.40 0.60 100.00 100.00 0.00 100.00 98.80 1.20 100.00 100.00 0.00 

Run 98.02 96.88 4.98 93.28 97.93 8.53 94.86 97.56 7.34 98.42 98.42 3.11 

Subject 2 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 99.40 100.00 0.60 

Run 99.20 99.60 1.20 99.60 99.20 1.20 99.20 100.00 0.80 99.60 100.00 0.40 

Subject 3 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 88.64 83.27 24.76 97.73 76.11 25.22 95.83 95.11 8.66 93.54 93.89 11.83 

Subject 4 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 98.03 100.00 1.97 99.01 98.37 2.59 100.00 100.00 0.00 100.00 100.00 0.00 

Subject 5 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 94.79 97.65 7.32 100.00 83.20 16.80 96.74 99.00 4.19 98.05 98.69 3.22 

Subject 6 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Subject 7 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 97.35 99.10 3.51 99.56 99.56 0.88 100.00 100.00 0.00 100.00 100.00 0.00 

Subject 8 

Sit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 97.89 2.11 100.00 100.00 0.00 100.00 100.00 0.00 

Run 100.00 100.00 0.00 100.00 99.00 1.00 100.00 100.00 0.00 100.00 100.00 0.00 

Subject 9 

Sit 100.00 100.00 0.00 100.00 96.45 3.55 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 

Run 89.51 94.47 14.95 99.63 88.08 12.21 95.88 98.46 5.54 98.88 98.14 2.94 

Average 

Sit 100.00 100.00 0.00 100.00 99.61 0.39 100.00 100.00 0.00 100.00 100.00 0.00 

Walk 100.00 99.93 0.07 100.00 99.77 0.23 100.00 99.87 0.13 99.93 100.00 0.07 

Run 96.17 96.77 6.52 98.76 93.49 7.60 98.06 98.90 2.95 98.72 98.79 2.39 
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5.4. Summary 

 

    This chapter presented the development of the proposed noise-tolerant heartbeat 

detection method. Two main stages with six steps, including band-pass filter, derivative, 

squared, Savitzky-Golay moving average, autocorrelation and adaptive threshold have 

been described. The proposed method has been evaluated using three different data sets 

and each result of the experiment was discussed in this chapter. The comparison of the 

proposed method performance with the other algorithms has also been presented. Based 

on the results, the proposed method performed well despite its use in different noisy 

conditions. After observing the results, it can be concluded that the proposed method has 

had a good performance, especially in EM noise. Therefore, the proposed method will be 

used in the heartbeat classification systems in order to investigate the detection of 

arrhythmias in a noisy signal as discussed in the next chapter.
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Chapter 6 

Arrhythmia Detection using Heartbeat 

Classification Method 

 

6.1. Introduction 

 

    The development of heartbeat classification system has been conducted in the 

previous studies, aiming to improve the performances of detecting arrhythmias [5-7, 30, 

41, 70, 73]. However, most of the studies have focused on feature extraction [6-7, 30, 61, 

70] and classification method [33-37, 39]. There has been too little attention paid on 

relating the pre-processing and QRS detection with the heartbeat classification system 

[8-9]. In addition to that, some previous studies did not consider the noises and artifact 

from ambulatory environment although they used the ambulatory ECG signal data in 

their works [6-7, 30, 33-34, 70]. Therefore, in this chapter, the proposed QRS detection 

was employed to develop heartbeat classification system in order to improve the 

detection of arrhythmia. 

    In chapter 5, we have developed the noise-tolerant heartbeat detection method to 

improve the detection of QRS complex in noisy signal. Thus, in this chapter, the 

development of a heartbeat classification system for arrhythmia detection using the 

proposed noise-tolerant heartbeat detection method is presented. The objective pursued 

in this chapter is to develop and evaluate a heartbeat classification algorithm on 

ambulatory ECG signal. Four stages consisting of ECG pre-processing, proposed 

heartbeat detection, feature extraction and classification are described. Since, the 

ECG-preprocessing and heartbeat segmentation stages has been presented in Chapter 5, 

this chapter focusing on the feature extraction and classification stages Four classification 

algorithms will be employed in this study and their performance will be compared to get 

the best classification model. The performance of the classification model will be 

validated and presented in the following sections. This study makes a major contribution 

to the research on arrhythmia heartbeat classification by considering the issues from 
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ambulatory environment and demonstrating the proposed noise-tolerant heartbeat to 

improve the classification results. 

 

6.2. Heartbeat Classification Method 

 

    A methodology for arrhythmia detection using heartbeat classification method in this 

study referred to a previous work [5]. It was divided into four steps as shown in Figure 

6.1: (1) ECG signal preprocessing; (2) heartbeat segmentation; (3) feature extraction; and 

(4) learning/classification. Since the techniques employed during the preprocessing and 

heartbeat segmentation directly influenced the final classification results, these first two 

steps have been focused on and presented previously. However, the combination of the 

informative features from the feature extraction steps and classification algorithms also 

played important roles in the heartbeat classification method. Thus, the full heartbeat 

classification was developed. The components of the method are presented in Figure 6.1. 

Figure 6.2 shows the block diagram of the heartbeat classification system developed in 

this study. 

 

 

Figure 6.1. A diagram of the heartbeat classification system [5]. 
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Figure 6.2. The Heartbeat Classification System. 

 

    The pre-processing of raw ECG signal was necessary to reduce the noise present in 

ECG signals in order to improve as much as possible the SNR of the signal. This process 

can be beneficial to the subsequent fiducial point detection and heartbeat classification 

because it contributes to the accuracies of the QRS peaks, directly impacting the 

classification performance. In the heartbeat segmentation step, the fiducial points of ECG 

signal, which was the QRS complexes were detected. The complete segmentation of ECG 

usually requires the accurate detection of QRS-peak locations, which can be useful for 

heartbeat classification, since more information about the heartbeats can be obtained. In 

this study, pre-processing and proposed heartbeat detection has presented in the Chapter 5. 

The output from proposed heartbeat detection will be used as the input in the feature 

extraction stages.    

 

6.2.1. Feature Extraction 

 

    The feature extraction step plays an important role to provide reliable results in the 

classification of heartbeat. Any information extracted from the heartbeat used to 

discriminate its type may be considered as a feature. The features can be extracted in 

various forms directly from the ECG signal morphology in the time domain, in the 

frequency domain or from the cardiac rhythm. The feature extraction phase is concerned 

with forming feature vectors processed by the classification stage. A feature vector is 

calculated from each heartbeat for each ECG signal. 

    As reported in previous studies [5-6,41], the heartbeat interval features also known as 

the RR interval and the ECG morphology features can be used effectively for arrhythmia 

classification. The RR interval is the time between the R-peak of a heartbeat with respect 

to another heartbeat, which could be its predecessor or successor. The RR interval 

Band-Pass Filter Processing

QRS Detection

Heartbeat Interval

ECG Morphology

Classification 
Algorithms

ECG Signal N, S, V, F, Q

Proposed Method

Input Pre-processing Heartbeat Detection Feature Extraction Classification Output



 92 

features are computed to characterize the dynamic information of the heartbeat. The 

variations of this feature are used to reduce the noise interference and are very common; 

for example, the average of the RR interval in a patient for a certain time interval [5]. 

With the exception of patients who utilize a pacemaker, the variations perceived in the 

width of the RR interval are correlated with the variations in the morphology of the curve, 

frequently provoked by arrhythmias [1]. Thus, the features in the RR interval and ECG 

morphology have a great capacity to discriminate the types of heartbeats. Figure 6.3 

shows the illustration of the RR interval and ECG morphology in an ECG signal. 

 

Figure 6.3. The illustration of the RR interval and ECG morphology. 

 

    In this study, two groups of features were used based on the heartbeat interval and 

ECG morphology. The basic idea was to use the dynamic features that were less prone to 

the noise interference since the focused on this study was for ambulatory signal. Fourteen 

features were extracted separately to represent each heartbeat, with seven features of 

heartbeat interval and seven features of ECG morphology described in the next section. 

Let 𝑅(𝑖) be the R-peak position of the 𝑖𝑡ℎ  heartbeat and 𝑅𝑅(𝑖) be the current RR 

interval between 𝑅(𝑖) and 𝑅(𝑖 − 1). Table 6.1 lists the features used in this study. 

 

6.2.1.1. Heartbeat Interval Features 

 

    The heartbeat interval features were extracted using the information from the R-peak 

and RR interval. The interval was defined as the interval between two successive R waves. 

Referring to the previous studies [1-6], seven RR interval features were extracted in this 

study, including the previous RR interval, the post-RR interval and the variance of three 

intervals. The previous RR interval (or pre-RR interval) was the RR interval between 

𝑅(𝑖) and 𝑅(𝑖 − 1). Note that the previous RR interval is the current RR interval. The 

Morphological
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post-RR interval was the RR interval between the current heartbeat and the following 

heartbeat, 𝑅(𝑖) and 𝑅(𝑖 + 1) (Figure 6.4). The variance of the three intervals was the 

variance of the RR interval between 𝑅𝑅(𝑖 − 1), 𝑅𝑅(𝑖), 𝑅𝑅(𝑖 + 1). 

    To acquire the rhythm information of the signal, the local average RR interval, the 

local standard deviation RR interval, the local root mean square RR interval and the 

averaged RR interval features were calculated using the Equations 6.1 to 6.4. Local here 

was identified as the ten intervals surrounding with current heartbeat 𝑅(𝑖). The local 

average RR interval (𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝐴𝑉𝐺) was determined by averaging the valid RR intervals of 

the ten RR intervals surrounding a current heartbeat. The local standard deviation 

(𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝑆𝑇𝐷) was the standard deviation of the valid RR intervals of the ten RR intervals 

surrounding a current heartbeat. The local root mean square (𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝑅𝑀𝑆) was the root 

mean square of the ten RR intervals surrounding a current heartbeat, and the average RR 

interval (𝑅𝑅𝐴𝑉𝐺) was the mean of the valid RR interval for a recording. 

 

𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝐴𝑉𝐺 =
1

10
 ∑ 𝑅𝑅(𝑖)

5

𝑖=−5

 (6.1) 

 

𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝑆𝑇𝐷 =  √
1

9
 ∑ |𝑅𝑅(𝑖) − 𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝐴𝑉𝐺|2

5
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 (6.2) 

 

𝑅𝑅𝑙𝑜𝑐𝑎𝑙𝑅𝑀𝑆 = √
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𝑅𝑅𝐴𝑉𝐺 =
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𝑁
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 (6.4) 
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Figure 6.4. Normal and arrhythmia heartbeat interval and morphology features. 

 

6.2.1.2. ECG Morphology Features 

 

    One of the most difficult problems in the feature extraction stage is the large variation 

in the morphologies of ECG waveforms not only from different patients but also within 

the same patient. To handle this issue, the features from ECG heartbeat were extracted in 

the time interval of the signal to obtain as much variation of morphology information or 

normal and arrhythmia beats. The different morphology of normal and arrhythmia beat is 

shown in Figure 6.4. In this study, the ECG morphology group contained the amplitude 

values of the ECG signal determined by a window between the R peak and signal time 

interval. Referring to a previous work [41], seven features were derived in this study: the 

mean of signal amplitudes between 𝑅(𝑖 − 1)and 𝑅(𝑖) , absolute difference between 

signal amplitudes at 𝑅(𝑖 − 1)and 𝑅(𝑖), absolute difference between signal amplitudes at 

𝑅(𝑖) and 𝑅(𝑖 + 1), mean of signal amplitudes within 0.12-second interval, mean of 

signal amplitudes within a 0.16-second interval, mean of gradients of signal amplitudes 

within a 0.12-second interval and mean of gradients of signal amplitudes within a 

0.16-second interval. 

 

Table 6.1. List of features used for heartbeat classification. 

Group Label Features 

Heartbeat Intervals Pre RR interval, 𝑅𝑅(𝑖) 

Post RR interval, 𝑅𝑅(𝑖), 𝑅𝑅(𝑖 + 1) 

Variance of 𝑅𝑅(𝑖 − 1), 𝑅𝑅(𝑖), 𝑅𝑅(𝑖 + 1) 

Average RR interval in the ten intervals surrounding a heartbeat 

Standard deviation the ten intervals surrounding a heartbeat 

Current 
beat

𝑅𝑅(𝑖 − 1)  𝑅𝑅 𝑖   𝑅𝑅(𝑖 + 1)

Arrhythmia ECG Normal ECG

Morphology difference
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Root mean square of the ten intervals surrounding a heartbeat 

Average of RR interval in the signal 

ECG Morphology Mean of signal amplitudes between 𝑅(𝑖 − 1) and 𝑅(𝑖) 

Absolute difference between signal amplitudes at 𝑅(𝑖 − 1) and 

𝑅(𝑖) 

Absolute difference between signal amplitudes at 𝑅(𝑖)  

and 𝑅(𝑖 + 1) 

Mean of signal amplitudes within a 0.12-second interval 

Mean of signal amplitudes within a 0.16-second interval 

Mean of gradients of signal amplitudes within a 0.12-second 

interval 

Mean of gradients of signal amplitudes within a 0.16-second 

interval 

 

6.2.2. Classification  

 

    In the classification stage, the classification algorithms were used for classifying 

heartbeats into normal and arrhythmias beats. After the feature extraction stage, set of 

fourteen features were created and using the data, the classification model was 

constructed. In this study, four types of classification algorithms were adopted with the 

objective of finding the best model to detect arrhythmia from ECG signals: k-Nearest 

Neighbor (k-NN), Support Vector Machine (SVM), Linear Discriminant (LDA), and 

Decision Tree (DT). All of the classification algorithms were employed using the 

Classification Learner toolbox in MATLAB R2018b. Among the classifiers, the k-NN 

showed better performance in the experiment and it was selected to construct the best 

learning method with the features from feature extraction phase. 

    The k-NN algorithm is a supervised classification technique that classifies data points 

based on the points most similar to it. The k-NN classification algorithm predicts the test 

sample’s category according to the 𝑘 training samples, which are the nearest neighbors 

to the test sample, and classifies it to the category that has the largest category probability. 

Suppose that there are 𝑗 training categories, as 𝑐1, 𝑐2, … 𝑐𝑗, and the sum of training 

samples is 𝑁. Also, class 𝑋 is the same feature vectors as all of the training samples. 
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When 𝑑𝑖  is one of the neighbors in the training set, 𝑦(𝑑𝑖,𝑐𝑗)∈{0,1} indicates whether 𝑑𝑖 

belongs to class 𝑐𝑗, and Sim(𝑋,𝑑𝑖) is the similarity function for 𝑋 and 𝑑𝑖. Then, the 

probability density function P(𝑋,𝑐𝑖), for the feature data 𝑋, given class 𝑐𝑗, can be written 

as Equation 6.5 [11]. 

 

𝑃(𝑋, 𝑐𝑗) = ∑ 𝑆𝑖𝑚(𝑋, 𝑑𝑖) ∙ 𝑦(𝑑𝑖 , 𝑐𝑗)

𝑑𝑖∈𝑘𝑁𝑁

 (6.5) 

 

Sim(𝑋,𝑑𝑖 ) could be calculated using the Euclidean distance, cosine, and correlation 

methods. In this study, the Euclidean distance method was selected because it was often 

used as the distance metric. The 𝑘-value was a user-defined constant number of neighbor 

group elements, and an unlabeled vector was classified by assigning the label that 

occurred most frequently among the 𝑘 training samples nearest that query point. In this 

study, the 𝑘-value was initially fixed at 3 [41]. According to the label of the k neighbors 

and the distributions of the similarity value, the class of the input vector 𝑋  was 

discriminated. 

 

6.3. Experimental Setting 

 

    In this section, the experimental settings to evaluate the heartbeat classification 

method is described. The MIT-BIH and AAMI standard was used to evaluate the 

heartbeat classification. In the MIT-BIH database, there were over 99,092 heartbeats 

individually labeled as one of 15 possible heartbeat classes and further divided into five 

main arrhythmia classes, which were N, S, V, F and Q as described in the Table 3.2. In 

accordance with the standard recommended by the AAMI [78], four records from 

MIT-BIH which contained paced beats taken from patients fitted with a pacemaker were 

excluded from this study: record 102, 104, 107 and 217. 

    The scheme evaluation with the data distribution proposed in a study [6] was adopted 

as shown in Table 6.2. Using the MIT-BIH dataset, two groups of data were distributed as 

training (DS1) and testing (DS2) data, each of which contained ECG signals from 22 

recordings as shown in Table 6.3. In DS1, the ten-fold cross validation was used for 

training the classifier to obtain the best learning model. By using this ten-fold cross 

validation, the entire training DS1 dataset (50,091 beats) was sub-sampled into ten sets, 
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having almost the same distribution of samples from each class. The best learning model 

with the highest accuracy detection was chosen. Then, the classification model was tested 

using DS2 with 49,001 beats. 

 

Table 6.2. Data Distribution for Training (DS1) and Testing (DS2) data. 

Dataset MIT-BIH Records 1 

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 

208, 209, 215, 220, 223, 230 

DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 

222, 228, 231, 232, 233, 234 

1 Each recording is originally discontinuous.  

 

Table 6.3. Summary of heartbeats in Training (DS1) and Testing (DS2) of MIT-BIH. 

Dataset Total beats N S V F Q 

DS1 50,091 45,432 726 3430 411 92 

DS2 49,002 43,745 1777 3055 382 43 

 

    To investigate the performance of heartbeat classification on noisy ECG signals, the 

ECG-noise simulated signal with record 213 was also used as a test dataset. Record 213 

was selected because it consisted of a high number of arrhythmia beats and contributed 

the highest arrhythmia detection in the classification algorithms. Then, the performance 

of heartbeat classification with the proposed heartbeat detection was compared with the 

performance of heartbeat classification using the Pan Tompkins algorithm. The confusion 

matrix [6] was used for the distribution of the multi-class classification problem to 

evaluate the result attained by a classifier. In this study, the performance was evaluated 

based on the SE, PP and ACC for both training and testing dataset. The equations of the 

evaluation metrics are described in Chapter 3. 

 

6.4. Results and Discussion 

 

    In this section, the performance results of the heartbeat classification method are 

presented. Firstly, the performance comparison between the classification algorithms is 



 98 

presented. Based on the comparison of classification algorithm, the best learning model is 

selected and used for testing. Then, the overall performance of classification method is 

compared with other previous works to validate the results. The performance of the 

method in noisy signal is investigated using ECG-noise simulated signal using record 213 

at different intensity of MA and EM noise. The performance results and analysis are 

described in the next section. 

 

6.4.1. Performance of Classification Model 

 

    The main focus of the heartbeat classification here was to obtain classification results 

from machine learning-based classification algorithms in combination with the proposed 

heartbeat detection to select the best learning classification model. Figure 6.5 provides a 

performance comparison among different classification algorithms which were k-NN, 

SVM, LDA and DT using 10-fold cross validation on DS1 for heartbeat classification. 

Twenty-two records of DS1 as shown in Table 6.2 are used as training datasets. The table 

shows that k-NN, with k=3, yields the highest accuracy for classification with 98.60% 

compared with other algorithms. It also achieved higher results for N, S, V, F and Q with 

the SE being 99.69%, 76.86%, 92.16% 86.62 and 32.81%, respectively while the PP 

being 99.00%, 92.69%, 97.50%, 87.04% and 65.63%, respectively. After considering the 

results of classification model in Figure 6.5, the k-NN classification algorithms were 

selected as the best learning model in this study. 

 

Figure 6.5. Performance comparison of classification models using 10-fold cross 

validation on DS1 for arrhythmia classification. 
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6.4.2. Testing of the Classification Model on MIT-BIH 

 

    The performance of the k-NN learning model was tested using DS2 dataset. To 

investigate the performance of the heartbeat classification model, twenty-two records as 

distribution shown in Table 6.2 were used. Table 6.4 shows the classification performance 

of the learning model on the heartbeats in DS2. This assessment was unbiased as these 

beats were not used at any point of the development of the classification model. Note that 

not all records consisted of all types of N, S, V, F and Q beats (Table 3.2). In general, the 

performance of the classification model was evaluated when the classifier detected the 

types of beats consisted highly in the record. 

    As can be seen in Table 6.4, the classification model performed best on N class 

compared to other classes since the majority of the samples consisted of normal beats. For 

the arrhythmia beat, the assessment focused only on supraventricular arrhythmias, S class 

and ventricular arrhythmia, V class since F and Q class contained the fusion and unknown 

beats. In addition to that, the arrhythmia beat in V class was the most common arrhythmia 

correlated with sudden cardiac death as described in Section 1.2.2. Based on the results in 

Table 6.4, the learning model performed better to detect the arrhythmia beat in V class 

compared with S class. Even though the performance of detecting V class was much 

lower compared to N class, the learning model could detect the V class almost in each 

record that contained ventricular beats. 

    Figure 6.6 shows the confusion matrix used to test the learning model using the 

record 213 in DS2. The confusion matrix presented the summary table of beat by beat 

performance, providing insights into how each class was classified. The rows of the 

confusion matrix corresponded to the true class and the columns corresponded to the 

predicted class. Diagonal and off-diagonal cells corresponded to correctly and incorrectly 

classified observations. A summary of correctly (blue color) and incorrectly (orange 

color) classified observations for each predicted and true class was shown in percentages. 

The results showed that 2620 N beats, 166 V beats, 19 S beats and 93 F beats were 

classified correctly. It also showed that distinguishing normal beats from fusion beats was 

inherently a difficult problem as fusion beats were a union of ventricular and normal 

beats. 
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Table 6.4. Evaluation of classification method on records in DS2. 

Record 

Number of beats N S V F Q 

N S V F Q 
SE 

(%) 

PP 

(%) 

SE 

(%) 

PP 

(%) 

SE 

(%) 

PP 

(%) 

SE 

(%) 

PP 

(%) 

SE 

(%) 

PP 

(%) 

100 2239 33 1 - - 100.00 98.80 3.00 100.00 0.00 0.00 - - - - 

103 2081 2 - - - 100.00 99.90 0.00 0.00 - - - - - - 

105 2503 - 41 - 23 99.10 99.20 - - 73.20 46.90 - - 0.00 0.00 

111 2122 - 1 - - 92.70 100.00 - - 100.00 0.60 - - - - 

113 1787 6 - - - 99.90 100.00 100.00 85.70 - - - - - - 

117 1534 1 - - - 98.70 100.00 100.00 100.00 - - - - - - 

121 1860 1 1 - - 99.90 99.90 0.00 0.00 100.00 50.00 - - - - 

123 1510 - - - - 100.00 100.00 - - - - - - - - 

200 1736 30 819 1 1 98.20 95.10 13.30 4.00 69.60 99.10 100.00 0.80 0.00 0.00 

202 1945 42 16 1 - 99.50 98.40 4.80 50.00 100.00 50.00 0.00 0.00 - - 

210 2403 17 130 6 2 96.70 98.00 0.00 0.00 75.40 53.60 0.00 0.00 0.00 0.00 

212 2747 - - - - 98.90 100.00 - - - - - - - - 

213 2641 27 207 360 1 99.20 91.20 70.40 76.00 80.20 86.90 25.80 63.30 0.00 0.00 

214 1962 - 249 1 3 99.80 93.60 - - 33.30 94.30 0.00 0.00 0.00 0.00 

219 2051 7 52 1 - 99.80 99.40 0.00 0.00 90.40 95.90 0.00 0.00 - - 

221 2022 - 371 - - 99.40 99.70 - - 96.20 99.20 - - - - 

222 2140 196 - - - 95.90 93.20 1.00 50.00 - - - - - - 

228 1676 3 359 - 11 96.80 97.50 0.00 0.00 88.30 84.80 - - 9.10 20.00 

231 1568 1 2 - - 99.90 99.90 0.00 0.00 50.00 100.00 - - - - 

232 398 1362 - - 2 98.50 24.40 2.35 97.00 - - - - 0.00 0.00 

233 2120 6 806 11  93.80 94.30 50.00 3.00 76.20 94.30 27.30 3.60 - - 

234 2700 43 - - - 100.00 98.80 25.60 100.00 - - - - - - 

Maximum 100 100 100 100 100 100 100 63.30 9.10 20.00 

Minimum 92.70 24.40 0.00 0.00 33.30 46.90 0.00 0.00 0.00 0.00 
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Figure 6.6. The confusion matrix used to test the learning model using the record 213 in 

DS2. 

 

6.4.3. Comparison with other Heartbeat Classification Method 

 

    For the comparison, the performance of classification method was tested with all 

records in DS2 following the distribution data in Table 6.2. A total of 43,745 beats of N 

class, 1777 beats for of class and 3055 of V class, 382 beats of F class and 43 beats of Q 

class was used. Only the majority of arrhythmias classes, which were S and V, were 

evaluated because most problematic arrhythmias were found with this type. Furthermore, 

most of the previous works in heartbeat classification also focused on these three classes 

as reported previously [32, 38-39]. As stated in many previous works [5-7], there were 

issues in the evaluation process for heartbeat classification regarding the biased selection 

of the datasets used in the training and testing, contributing to highest detection results. 

Many previous works did not follow the AAMI recommendations by using different 

records for training and testing set, and it has become difficult to perform the comparison. 

    Considering the issues stated, four previous works [6, 32, 38-39] were selected for the 

comparison. These works were selected because they used the same distribution of 

testing and training dataset and the same classes of heartbeat categories in the 

experiments. Figure 6.7 (a), (b), and (c) shows the comparison results of the selected 

work for N, S and V class. Note that all the works in the previous study have been 

re-evaluated by using the protocol recommended by AAMI and using the proposed 
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division scheme [6] which has been discussed in previous works [5, 69]. Based on the 

comparison results, the performance of the work in this study was better than others to 

classify the N class, with 95.20% of SE and 98.50% of PP. The classification results also 

showed that the percentage of PP for V class was higher than others with 77.10% even 

though the SE was much lower from the previous works [42-43]. All of the results of S 

class were lower in all previous works included in this study. From the analysis, the 

reason of the low detection of S class was because of insufficient information in the 

training dataset in which only 726 beats of S class were used compared with the 1777 

beats for the testing dataset as shown in Table 6.3. This condition affected the 

classification performance since the predictive model would perform better if the 

constructed model had more information to analyze the patterns. 

 

 

      (a) 

 

       (b) 
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      (c) 

Figure 6.7. Performance comparison of classification results in this study with other 

previous studies for (a) N class, (b) S class and (c) V class.  

 

6.4.4. Evaluation on Noisy ECG Signal 

 

    Figure 6.8 (a) and (b) shows the SE and PP performance of heartbeat classification of 

N, S and V class using the ECG-noise simulated signals from record 213 contaminated 

with MA at SNR of 9 dB to -9 dB. In the figures, N Pro, S Pro and V Pro is a N, S and V 

values from proposed method while N PT, S PT and V PT is a values from Pan Tompkins 

algorithm. In general, the performance of the method decreased with the lower SNR and 

the best performance was with SNR of 9 dB. Compared with the original signal record 

213, where the performance of N class was 99.20% of SE and 91.20 of PP; S class was 

70.40% of SE and 76.00% of PP; and V class was 80.20 % of SE and 86.90% of PP as 

shown in Table 6.4, the performance of simulated signal with SNR of 9 dB was lower 

since it contained noise higher than the original ones. However, the performance of PP 

was high compared to the original signal, showing that the method was able to reduce 

false detections in noisy signal even though the noise affected the performance of SE. 

    The N class had a good performance with lower simulated signal at SNR of -9, 

producing 95.60% of SE and 75.40% of PP. For the arrhythmia beat, focusing on V class, 

the method performed better at SNR of 3 dB to 9 dB with both SE and PP being higher 

than 78%. The results showed that the method was sensitive when the signal was below 

SNR of 0 dB, contributing to the higher false detection. Different from V class, the 

performance on S class was much lower. However, compared with V class that had an 
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increasingly higher false detections, the performance of S class showed that the higher 

number of misdetections contributed to lower SE. The best performance of S class was 

when the SNR was above 6 dB at which the percentage of SE and PP was higher than 

50%. 

    To validate the performance of classification method with the proposed heartbeat 

detection in noisy signal, the experiment using Pan Tompkins algorithm as the heartbeat 

detection method was performed. The Pan Tompkins was performed using the same 

features and classification algorithm. Figure 6.8 shows the comparison results of the 

classification method using the Pan Tompkins algorithm with the proposed method. As 

shown in the Figure 6.8, the performance of the classification method was high in normal 

beats. However, the detection of arrhythmias in S and V class was both lower than 20% in 

the signal contaminated with MA noise. Compared with the Pan Tompkins algorithm, the 

proposed heartbeat detection in this study performed much better to detect the arrhythmia 

in noisy signal. 

 

 

                                              (a) 
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                                               (b) 

Figure 6.8. Comparison performance of the (a) SE and (b) PP of the proposed heartbeat 

detection method and Pan Tompkins in classification system with MA noise. 

 

    The performance of classification method was evaluated using the simulated signal 

with motion artifacts. Figure 6.9 (a) and (b) shows the comparison performance of 

heartbeat classification method and Pan Tompkins algorithm of N, S and V class using the 

record 213 contaminated with EM at SNR of 9 dB to -9. Based on the results, the 

proposed method and Pan Tompkins showed lower performance with lowest SNR. 

    Both of the method showed good performance in detecting N class where the 

percentage performance with the proposed method being above 81.70% of SE and 78% 

of PP; and that of Pan Tompkins algorithm was 72.60% of SE and 63% of PP. In the V 

class, the proposed method showed good performance at SNR of 3 dB to 9 dB with the 

percentage above 76.60% of PP and 78% of SE. The false detections of V class in the 

simulated signal below SNR of 3 dB highly increased and contributed to the drop in the 

percentage of PP. However, it showed better performance than Pan Tompkins that 

contributed below 9.70% of PP at SNR of 9 dB. Similar to the MA noise, in the EM noise, 

the performance of classification method also showed higher misdetections in S class. 

Based on both results, the proposed heartbeat detection with classification algorithm 

performed better in EM noise. 
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                                              (a) 

 

                                               (b) 

Figure 6.9. Comparison performance of the (a) SE and (b) PP of the proposed heartbeat 

detection method and Pan Tompkins in classification system with EM artifact. 

 

6.5. Summary 

 

    This chapter has presented the development of heartbeat classification system by 

using the proposed noise-tolerant heartbeat detection method. Four stages consisting of 

ECG pre-processing, proposed heartbeat detection, feature extraction and classification 

have been described. After the evaluation of the classification algorithms, the k-NN 

algorithm was used to construct the classification model and be tested in the experiments. 

The protocol recommended by AAMI and the data division scheme proposed in a study 
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[6] were used to solve the evaluation issues in the heartbeat classification problem. Based 

on the results, the proposed heartbeat classification system performed better to classify 

normal and ventricular beats, except the supraventricular beats that needed more 

information for constructing the model. In the noisy ECG signal, the classification 

method also performed better compared to using pan Tompkins algorithm as a heartbeat 

detection. It showed that the proposed heartbeat detection as described in Chapter 5 

contributed to improving the classification results in the noisy ECG signal.
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Chapter 7 

Conclusion and Future Work 

 
    In this chapter, the main contributions of the thesis are summarized and the works in 

previous chapters are concluded. Some of the future works as a continuation of the thesis 

are also suggested. 

 

7.1. Summary 

 

    The detection of heartbeat is one of the most important processes that influence the 

accurate detection of arrhythmias in the ambulatory ECG signal. Therefore, there is a 

need to develop a robust heartbeat detection method against the high-intensity noise 

produced during daily-life activities. For that reason, this thesis has taken the initiative to 

propose the noise-tolerant heartbeat detection method for the arrhythmia classification 

system. To achieve this goal, these questions need to be clarified. First, what types of 

noise and artifact are produced in the ambulatory ECG signal during daily life activities? 

Second, what is the type of noise that affects the performance of detecting a heartbeat the 

most? Third, does this noise affect the heartbeat morphology of the signal? Fourth, what 

are the levels of noise intensity that affects the performance detection of a heartbeat? Fifth, 

how is the performance of heartbeat in a noisy signal that contains arrhythmia beats? 

    To answer these questions, the first objective of this study was developed. The 

heartbeat detection method was decided to be employed to be able to understand and 

interpret the results and issues during the development of the method. The study of 

characteristics of ambulatory ECG signal recorded during daily life activities showed that 

among various types of noise, the BW, MA and EM were most troublesome noise. The 

findings showed that the EM noise had the highest number of misdetections and false 

detections that contributed to the poorest detection performance, followed by the MA and 

BW noise. The findings also implied that the signal contaminated with noise and artifacts 

degraded the ECG morphology of the signal, especially when contaminated with EM 

noise. The relationship between the types of noise and their different intensity level on 



 109 

beat detection performance showed that the effects of EM and MA noise were higher to 

the detection process, degrading their performance as reflected in the contents of Chapter 

4. In addition to that, the signal with noise has disrupted the arrhythmia beats, affecting 

the detection performance compared with the clean signal. 

    Further improvement was required and the second objective was developed in which 

the heartbeat detection method with noise tolerance was proposed. The autocorrelation 

techniques that generated a period of heartbeats were used to reduce the misdetections 

and false detections in fiducial points. Another important method to be robust against the 

noisy signal was using the smoothing technique by SGMA where it could increase the 

quality of the noisy signal. As a result, a heartbeat detection method with band-pass 

filtering, differentiation, squared, SGMA, autocorrelation techniques with the adaptive 

threshold was developed. With this proposed method, it slightly improved the 

performance of QRS detection in noisy signal especially with signals contaminated with 

EM noise. The results showed that the proposed method yielded a good result during 

activities such as walking and running in real ECG data. The methodology was explained 

and results were presented in Chapter 5. 

    To achieve the main goal in this study, the adaptation of the proposed heartbeat 

detection in the arrhythmia detection system was examined. For this purpose, the 

heartbeat classification approach for arrhythmia detection was developed as the third 

objective. Several features were explored to obtain the features that had a physiological 

meaning, and were simple to compute and robust against the noise present in ECG. At the 

same time, the methodology to classify the features was discovered. The features based 

on heartbeat interval and ECG morphology were extracted, and the k-NN algorithm was 

used to classify the heartbeats. Finally, a heartbeat classification system that adapted the 

proposed heartbeat detection in Chapter 5 was evaluated and the results were discussed in 

Chapter 6. 

 

7.2. Conclusion 

 

    In this section, the conclusions drawn through the chapters of the thesis are 

summarized. Starting with emphasizing the importance of the detection of QRS complex 

to detect the arrhythmias in order to predict the sudden cardiac death in ambulatory 

monitoring, the process of understanding the problem is needed. Without a proper 
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understanding of the basic problem, it is impossible to design a robust heartbeat detection 

system against the noisy signal. It is important to perform the experiment to evaluate the 

effects of a noisy signal on heartbeat detection performance. In the applications of the 

detection of QRS, there exist variations of noise conditions, proving that false detection 

of heartbeat misleads the detection performance of all algorithms. It can be concluded 

that until the artifact in the signals cannot be accurately reduced, the algorithms will not 

be capable to provide the accurate information required in the detection of arrhythmias. 

    The proposed heartbeat detection showed a good performance to reduce false 

detections and misdetections. The importance of identifying the slope of the QRS in the 

condition affected by various higher amplitude noise has become one of the true 

challenges. To smooth the signal and generate the length period as a reference to estimate 

the slope of the QRS have contributed to the good detection performance of the proposed 

method. In fact, the threshold-based methods are traditional compared with the other 

algorithms and are sensitive to noise. The performance of the proposed method has 

proven to be well against the noisy signal. From this study, the importance of accuracy 

and error detection as a measure to evaluate the overall performance of QRS detection is 

also shown. 

    The accuracy of heartbeat detection becomes one of the most important 

characteristics of a heartbeat classifier. The experiment has shown that it is possible to 

perform arrhythmia classification in noisy signal data. When applying the classification 

of heartbeats, there exist large variations of patients with different quality of ECG signal, 

thus the performance of classification can be misleading. Therefore, it is more important 

to have a different subjects, than a small number of repeated subject with ECG signal 

recording to avoid the biased result in the classification performance. This fact reinforces 

the importance of evaluating a classifier with the standard ECG arrhythmias database 

especially in noisy ECG signals to have a better estimation of its real performance. 

    All the comparisons performed in the previous chapters have been performed in a fair 

manner up to the best of our knowledge. The works included in the comparisons have 

comparable methodologies and are of the state of the art. To conclude, the results 

presented in this thesis represent a performance improvement with respect to the 

published works in the field of heartbeat detection and arrhythmia classification. 
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7.3. Future Work 

 

    During the study performed for this thesis, a number of future avenues for further 

research has been identified. Below are some of the identified possible future works: 

 

1. Test the proposed method with the other real signal data. During this study, it was 

difficult to find or collect the ECG signal from arrhythmia patients especially during 

high-intensity activities such as exercising. The real-life signals available did not 

have annotations of heartbeat or arrhythmia beat as practiced in the MIT-BIH 

Database. Thus, it is necessary to verify the performance of the proposed method 

using other real ECG signals from arrhythmias patients in the future. 

 

2. Improve QRS detection in arrhythmia beats. In Section 5.3.1, the lower results of the 

QRS detection was presented because of the dynamic signal due to the arrhythmia 

beats. It is clear that the proposed method still has limitations in signal with dynamic 

arrhythmia beats. Therefore, the parameter settings or new techniques should be 

investigated to improve this part. 

 

3. Investigate the others noise reduction or artifact removal method to detect the QRS 

complex. Application of some other methods such as adaptive filters to reduce the 

artifact in the ECG signal is of interest for QRS detection. The adaptive filters need 

the noise reference input from other signals, such as accelerometer or 

electromyography signal that can measure the motion information of the signal. To 

use more than one signals may probably lead to reduced noise and improved SNR 

signal. 

 

4. Improve the classification model for supraventricular heartbeats. Throughout 

Chapters 6, the weakest point of all the classifiers presented was the supraventricular 

class performance. From Chapter 6, it is clear that the features models and k-NN 

algorithms still have limitations to discriminate the supraventricular class. New 

features and classification strategies should be explored to improve this aspect. 
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5. Signals such as the blood pressure or the plethysmography signal are of much interest 

for heartbeat classification. In this study, only ECG signal was used to develop the 

classification model. Using any signals that include the mechanical counterpart can 

allow better characterization of the heart function in an ambulatory monitoring. 

Therefore, to include other signals in the classification model would probably lead to 

performance improvement. 
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