
Res.Rep.Fac.Eng.Mie Univ.,Vol.11,pp.43T54(1986)

OriginalPaper

Algebraic Specification Method of

Programming Languages

Hid8hiko KITA*,ToshikiSAKABE

and YasuyoshiINAGAKI*

(Comrnon Chair of Engineering Mathematics)

(Received September18,1986)

The purpose of formalspecification of programming

languages are to establish the mathematical foundation for

SpeCification and verification of programs,prOOf of compiler

COrreCtneSS and automatic compiler generation. We propose a

purely algebraic approach to develop a nev algebraic

畠pecificatlon method of programming languages. In this paper,

the syntactic and semantic domains are considered as algebras,

i.e.,abstract data types,and the semantics of the language is

given by a mapping from the syntactic domain to the semantic

One. As an illustrative exaJ7)Ple,We describe a very simple

language by our method.

1.Introduction

The purposes of formal specification of programming languages are to

establish the mathematical foundations for specification and verification of

programs,prOOf of comp11er correctness and automatic compiler generation.

The formalspecification of a programminglanguage consists of a syntactic

SpeCification and a semantic one.Our understanding of the former has nov

reached a practicallevel. We ar8 nOV able to automatically construct

reasonably goodlexicaland syntactic analyzers for most programminglanguages

directly from defining grammars.

As for the latter,reCently the mathematicalfoundations of programming

* Department of ElectricalEngineering,Faculty of Engineering.Nagoya

University



44 H.KITA,T.SAKABE and Y.INAGAKI

1anguage semantics have become much better understood,but not yet as wellas

those of syntax. The formalspecification
of programminglanguage semantics and

its automatic translationinto machinelanguage semantics are stillin active

research areas.

Among many approaches such as attribute grammar,aXiomatic semantics,VDL,

and denotationalsemantics,the algebraic specification method has been given

much attention by many researchers since ADJ-grOuP3)and Mosses8)In their

approaches,the syntactic and the semantic domains are considered as algebras,

i･e･,abstract data types,and the semantics of thelanguageis given by a

mapping from the syntactic domain to the semantic one.

Many algebraic specification methods have been proposed so far. Most

attractive one among themis Mosses's approachin the sense that the compiler

Can be considered to be the composition of the semantic mapping and

implementation mapping asillustrated by the conceptualdiagramin Fig.1.In

the diagram Mosses considered the semantic domain S and the targetlanguage T as

abstract data types. But,the concept of his abstract data typesis somewhat

Vague and the semantic domain S can not be describedin a purely algebraic way.

He used some operators not belonging to S for the specification of S. For

example,the binding operators of S are given with the help of the notation for

SyntaCtic substitution,Whichis considered as a meta-nOtation. On the other

hand.some operators act oninfinite families. These seem to undermine the

Whole algebraic framework. Thisinjures the comprehensibility of the

SpeCification and makesit difficult to directly apply the results obtainedin

the theory of algebraic specification. Thus,it is req11ired to overcome these

defects.

In this paper,We have taken a purely algebraic approach to develop a new

algebraic specification method of programminglanguages. Thatis,We have

developed a new algebraic specification method which uses only the equational

logic. We have also applied our method successfully to specifying the

programminglanguage PL/0,Which WirthlO)used as anillustrative example to

explain the structure of compiler in his book. PL/O has the fundamental

features of programming languages althoughit is a very simplified one. Our

experience shows that o11r SpeCification method has enough power and formality

for our purpose.

The rest of this paperis organized as follows:Section 2introduces the

fundamentalalgebraic notions and notations which willbe used throughout this

paper. Sections from 3 to 6 describe our specification method of programming

languages. Finally,SeCtion 7 describes how we can specify the language PL/O by

using our specification method.



Algebraic Specification of Programming Languages 45

2.Manyqsorted algebras and related notions

This sectionintroduces the concepts and notations concerning many-SOrted

algebras,Which willbe used throughout this paper.Our notati6ns are similar to

those of ADJ2).

[Def.2.1] Let S be a set of sorts. An S-SOrted signatureis a set ∑ of

operation symboIs associated with mappings sort:∑->S and arity‥∑->S*where

s*denotes the set of allsequences over Sincluding the empty string e･We

callf∈∑
an operator symboIwith arity w and sort sif arity(f)=w and sort(f)=s･

An operation symbolf with arity 8is called a constant.

【Def.2.2] Let ∑ be an S-SOrted signature. A ∑-algebra A consists of an

S-SOrted set!Al and a function

arity sl･･･S and sort s･Where
n

function sort::A:-> S,and

fA:;A:×･‥×:A:s ->:A:s for each f∈∑with

a｡S_S｡;teds｡tis望setiA;ass｡Ciated
wit

:A: =(a∈;A;:sort(a)=s).

;A:(:A:)is sometimes called the carrier of A(of sort s).In what follovs,

we often write A to denote algebra A andits carrier:A;in the case that no

COn王usionis caused･Note that for each f∈∑if arity(f)=e and sort(f)=s then fA

designate an element of As･Therefore･We regard fA aS an element of As as well

as a nullary function.

【Def.2.3] Let ∑ be an S-SOrted signature. Define T[∑]to be the smallest

S-SOrted set T[∑】satisfying the following two conditions:

(1).If f∈∑is with arity e and sort s then f∈T[∑】.

(2)If f∈∑･arity(f)=sl‥･Sn･SOrt(f)=s･and ti∈T【∑]s.fori=1･････n then

f(tl･…･tn)∈T【∑】･

Elements of T[∑]are called ∑-termS.

【Def.2.4】 For an S-SOrted signature ∑,We define the ∑-term algebra T as

(1)For each sort s∈S･:T:s=T[∑】s
that is,We define the carrier of sort

s to be the set of all∑-termS Of sort s.

(2)If f∈∑and arity(f)=e then fT=f･

(3)If f∈∑･arity(f)=sl‥･Sn and ti∈T[∑]s.fori=1･‥･･n then fT(tl･‥･･tn)

=f(tl･‥リtn)･

We willoften use the notation T[∑]instead of Tin order to explicitly

indicate the signature ∑.

3.Algebraic Approach to Programming Languages Specification

Generally,formal

parts.Oneis syntactic

programs.The otheris

formed programs.

In tbis paper,We

specification of a programminglanguage consists of two

specification which defines the set oJwell-formed

semantic specification which gives meanings for well-

take an algebraic approach to specification of



46 H.KITA,T.SAKABE and Y.INAGAKI

programminglanguages･Thatis･We COnSider the syntactic and semantic domains

Strictly as algebras and specify the meaning of thelanguage by defining a

mapping from the syntactic domain to the semantic one.This approach allows us

tO Capture these domains as abstract data types and to directly apply the theory

Of abstract data types to specification of programminglanguages.

Our specification of a programminglanguage consists of three parts,i.e.,

the specification of the syntactic domain,the semantic domain,and the semantic

mapplng.

Here we adopt the following definition:

[Def･3･1】A
specification of alanguageis a triple <G,D,r>where Gis

the specification of the syntactic domain(the
context-free grammar).Dis the

SpeCification of the semantic domain(the specification of an abstract data

type)･ris the specification of the semantic mapping(the set of semantic

equations).

In the following three sections,We discuss hov to specify the syntactic

domain･the semantic domain,and the semantic mapping.

4.Specification of Syntactic Domain

Context-free grammars have been used for formalsyntactic specification of

programminglanguages since the publication of the Algo160 report. The

associated theory of context-freelanguages has become so wellunderstood that

We are nOV able to automatically construct reasonably goodlexicaland syntactic

analyzers for most programminglanguages directly from defining grammars.We

naturally decide to use context-free grammars to define the specifications of

SyntaCtic domains.

[Def.4.1】 くSpecification of Syntacl:ic Domain)

A specification of a syntactic domainis an unambiguous context-free

grammar G=<Ⅴ･VT･P,So>･Vhere V and VT are the disjoint finite sets of

nonterminaland terminalsymboIs･reSpeCtively･Sois the distinguished
symbol

Of V called the start symbol･and Pis the set of productiqns･the
form of which

isp:N->a･VhereN∈V,α∈(Ⅴ∪VT)*,andpis thename of theproduction･

An unambiguous context-free grammarinduces a term algebra which gives the

SyntaCtic domain:Let G=<V･VT･P･So>be a context-free grammar･We regard

the set V of nonterminalsymboIs as a set of sort and define the V-SOrted

Signature㌔as
f01lows･

∑G= 〈p‡p‥N->sα∈P)

and

arity(p)=nt(a)and sort(p)=N

for each p:N->αin G,Vhere nt(a)denotes the sequence of nonterminalsymboIs

Obtained from α by removing allterminalsymboIs occurringin α. We denote such

a
signature∑Ginduced

by a grammer G by G for short･

According to the definition 2･4● the signature G defines the G-term algebra



Algebraic Specification of Programming Languages 47

T[G],Which constitutes the syntactic domain.

[Def.4.2] (Syntactic Domain)

For a context-free grammar G,Whichis a specification of a syntactic

domain.the specified syntactic domainis the G-term algebra T[G】. It vill

Often be denoted by L(G).

Elements of the carrier of the term algebra T[G],Which are G-termS,

COrreSpOnd to the usualderivation treesin the l:1manner. Thatis.the

Carrier of sort N corresponds to the set of derivation trees with the root node

labeled by N.

5.Specification of Semantic Domains

In this paper,We take the semantic domain to be an abstract data type and

adopt an algebraic approach to abstract data type specification. ADJ
3)

Mosses and other authors5)･6)･7)･9)have already tried algebraic approaches to
8)

formal specification of programming languages. These approaches(except for

pair9)) COntain some informal treatmentsin specifying semantic domain,Which

Seem tO undermine their whole algebraic frameworks.

To overcome this point.we have the idea that the semantic domain should be

an abstract data type andit should be interpreted through only the equationa1

logic.

We begin vithintroducing some concepts of the equationallogic. Let ∑ be

an S-SOrted signature and X be an S-SOrted set of variables. The signature

obtained by adding variables of X to ∑ as constantsis denoted by ∑(X). A

formula of equationallogicis a sequence of the form ∈==77,Where ∈ and 77 are

∑(X)-termS Of the same sort,and ==is the logicalsymbolof equationallogic.

An equation over ∑(Ⅹ)-termS Villoften be called the ∑-aXiom. Theinference

rules of equationallogic are the following five rules.

(1)Reflexitivity 卜E==E

(2)Symmetry E==〃ト り==∈

(3)Transitivity E==77,り==Eト E==E

(4)Substitution ∈==77l-Eほ/v]==7?[E/v]

(5)Replacement ∈==?卜 と【∈/v】==g[り/v〕

Where E･77and E are∑(X)-termS and E[El/vl･･‥･En/vn]denotes the term

obtained from E by simultaneo11Sly replacing allv.'s occurringin ∈ by?7.for

i=1,‥.,n. For a set E of ∑-aXioms,if an equation E==77is obtained from E by a

finite number of applications of aboveinference rules then we write Eトー∈==77

and say that E==77is deducible from E.

Using the concept of this deducibility,We define the congruence relation†
≡

over the term algebra T[∑】by:For any terms t and t,in T[∑], t≡t,iff E t-

†For an S-SOrted signature ∑.a ∑-COngruenCe ≡ on a ∑一algebra Ais an

equivalence relation
≡

such that if a.≡b.and sort(a.)=sort(b.)=s.for

i=1･････n･and f∈∑is with arity sl…S then fA(al･････an)≡fA(bl･････bn)･

For a∈Alet[a]denote the ≡-equivalence class of a,that is,[a]=(b∈A;a≡b).



48 H.KITA,T.SAKABE and Y.INAGAKI

t==t,.

The quotient algebra††of the term algebra T[∑】by congruence relation≡

is theinitialalgebra of the class Alg∑,E Of∑-algebras which satisfies the set

E
of∑-aXioms･Thatis･for any algebra A∈Alg∑,E･there exists the unique

homomorphism from T[∑]/≡ to A. Theinitialalgebrais unique up toisomorphism

and can be used to define the meaning of abstract data types vhichis specified

by the set of axioms E.

From the above observation,We give the following definition.

[Def. 5.1】 (Semantic domain)

The specification of a semantic domainis a quadruple D = <S,∑,X,E>,

Where Sis a set of sorts,∑is an S-SOrted signature.Xis an S-SOrted set of

Va.riables･and Eis a set of∑-aXioms･

The meaning of the specification D,i.e.,the semantic domain specified by

Dis the quotient algebra T[∑]/≡.It willbe often denoted by SD(D).

6.Specification of Semantic Mappings

We are now ready to define the semantic mapping from the syntactic domain

to the semantic domain. Here,We uSe a primitive recursive scheme to specify a

Semantic mapping.

[Def.6.1】 (Specification of Semantic Mapping)

Let G=<V･VT･P･So>be a specification of a syntactic domain and D=

<S.∑,Ⅹ,E> be a specification of a semantic domain. The specification of of a

semantic mappingis a quadruple｢= <d,M.Y,R> where dis a function d:Ⅴ -> S

which associates each nonterminalsymboIwith
a sort of the semantic domain,M

is a set of function variables MN With arity(MN)=N(∈V)and sort(MN)=d(N)(∈S)･Y

is a V-SOrted set of variables･and Ris a set of semantic equationsIRp‡p:N-

>α∈P). For each production p vith arity Nl‥.Nn and sort N,the semantic

equation R is givenin the form

MN(p(yl,‥･･yn))=E[MNl(yl)/xl･ ･MNn(yn)/xn]

Where yiis a variable with sort Ni･X･is a variable with sort d(Ni)on the

Semantic domain for eachi=1･････n･and∈is a∑((yl･････yn))-term･

Note that the class of sets of semantic equationsis a subclass of

primitive recursive schemes usedin Courcelle
4)

The semantic mapping determined by the specification ris defined to be the

††For a∑-COngruenCe…on a∑-algebra
A,the quotient algebra A/≡is

a∑一

algebra defined as follows.

(2)If f∈∑is vith arity sl･･･S･and sort s･

thenfA/≡([al】･‥･･【an])=[f(al･･‥･an)]forall【ai]:A/≡;si

(i=1‥‥,n).



Algebraic Specification of Programming Languages 49

s｡1ution of the set of semantic equations R. Let r=<D,M,Y,R> be a

specification of a semantic mapping and A be
a∑-algebra･The solution of the

set of semantic equations R over the ∑-algebra Ais theindexed family of

王unctionsMA=<鳩:T[G]N->Ad(N,>N∈VSuChthat
foranysemantic equationR｡

(with arity(p)=Nl…Nn and sort(p)=N)and any ti∈T【G]with sort Nifor

MN(p(tl,…tn))=∈A(嶋1(tl)‥‥礪n(tn))･
=ere･EAis the derived operation†††of

E over A･

Since the specification of semantic mappingis a primitive recursive

scheme,We Can eaSily prove the following result･

[Proposition6.1] Let A be ∑-algebra. A set of semantic equations R given

in the form of Def.6.1has the unique solution over A･

Now we can define a semantic mapping.

[Def.6.2](Semantic Mapping)Let｢=<D,M,Y● R>be the specification of

a semantic mapping and SD(D)be a semantic domain･The semantic mapping sem(｢)

is the solution of the set of semantic equations R over the semantic domain

SD(D).

The next corollaryisimmediately obtained from Proposition 6･1･

【Corollary 6.2〕 For a specification｢of semantic mapping･We Can uniquely

determin雪 the semantic mapping sem(r)

7.Example

We have tried to give the specification of PL/0,a tOy prOgramminglanguage

given by Wirth,tO Show that our specification method works satisfactorily･

PL/Ois,Of course,a Very Simplifiedlanguage
butit has fundamentalfeatures

of programminglanguages･It has declarations of variables･COnStantS and

procedures,arithmetic operations overintegers,aSSignment statements･and

controIstructures such as sequencing,if-then statement,and while statement･

†††For a∑({yl･‥･･yn))-termE with sort(yi)=si(i=1,‥･･n)･We
define a

mapping∈A‥AslX‥･×A ->A,CalledthederivedoperationofEoverA･aS
S S

n

If a=(al････a)∈A X･･･×A then
n SI Sn

∈A(a)=

EAif E=f∈∑･arity(f)=e and sort(f)=s

aiif∈=yi

fAくどlA(a)･‥‥㌔A(a))
if e=f(El･････E)･f∈∑･arity(f)=sl…Sm･SOrt(f)=s･and

Ei∈T[((yl･････yn))]s.fori=1･‥･･

1



50 Ii.KITA,T.SAKABE and Y.INAGAKI

By using our method,the specification of programminglanguage PL/Ois

given as follows.

(* Specification of the syntactic domain(Excerpts)*)

G=<V･VT･P･So>

V =(PROGl?AM BLOCK CONST DEF PART CONST DEF VAR DCL PAIiT VAR NAME

PIiOC DCL PART PROC DCL STATEMENT STATEMENT LIST CONDITION

EXPRESSION IDENT
‥.)

VT=(･COnSt;･=var
procedure:=ca11begin endif then

While do odd <> < > <= >= + - */()a.‥ Z O
‥.9)

P = (pOlO:PROGRAM
-> BLOCK

pO20:BLOCK -> CONST DEF PART VAR DCL PART

PROC DCL PAI‡T STATEMENT

pO30

pO70

pO80

p120

p130

p170

p180

p190

p200

p210

p220

p230

p240

p250

CONST DEF PART

CONST DEF

VAR DCL PART

VAR NAME

PROC DCL PART

PI‡OC DCL

STATEMENT

STATEMENT

STATEMENT

STATEMENT

STATEMENT

STATEMENT
STATEMENT LIST

STATEMENT LIST

-> const CONST DEF LIST;

-> IDENT = NUMBER

-> var VAfiNAME LIST;

-> IDENT

-> PROC DCL LIST;

-> procedure IDENT;BLOCK

-> IDENT:= EXPRESSION

-> callIDENT

一> begin STATEMENT LIST end

-> if CONDITION then STATEMENT

-> while CONDITION do STATEMENT

->

-> STATEMENT

-> STATEMENT;STATEMENT LIST

So=PROGRAM

(* Specification of the semantic domain(Excerpts)*)

D = <S,∑,Ⅹ,E>

S =(STATE (* tree and stack for dynamic link *)

STATE-STATE (* function from STATE to STATE *)

STATE-STATE-STATE (* function from STATE to STATE-STATE *)

POS (* pointer denoting current scope *)

NODE (* node that keepinformations for procedures

SuCh as local symbol table *)

EE

B

‥

‥

R

D

A

T

I

T

(* tree keeping the static scope for identifiers *)

(*identifiel･*)

(* symboltable *)

∑=(INIT_STATE

EMPTY TREE

EMPTY POS

ADDID,UPDATE

RETRIEVE

ENTER BLOCK,

I STATE-STATE

APPLY STATE

APPLY STATE D

IF STATE D

ITERATE

COMPOSITION

ADD ID D

:-> STATE

:-> TREE

:-> POS

:STATE ID ATTR -> STATE

:STATE ID -> ATTR

LEAVE BLOCK:STATE -> STATE

:一> STATE-STATE

STATE-STATE STATE -> STATE

STATE-STATE-STATE STATE-STATE -> STATE-STATE

STATE-BOOL STATE-STATE STATE-STATE

-> STATE-STATE

STATE-BOOL STATE-STATE 一> STATE-STATE

STATE-STATE STATE-STATE ->
STATE-STATE

ID ATTR -> STATE-STATE



Algebraic Specification of Programming Languages

ENTER BLOCK_D,LEAVE BLOCK D:-> STATE-STATE

UPDATE D :ID STATE-ATTI‡-> STATE-STATE

GET TAB :TIiEE POS -> TAB

PUT TAB :TREE POS TAB -> TREE

RETRIEVE TAB :TAB ID -> ATTR

UPDATE TAB,ADDID TAB:TABID ATTR -> TAB

)

Ⅹ =(sO,Sl,S2:s∈S)

E =(INIT STATE() MAKE STATE(EMPTY TREE(),EMPTY POS())

UPDATE(MAKE STATE(treeO,POSO),idO,attrO)

==IF STATE(ISIN ClJRRENT NODE(treeO,pOSO,idO),

MAKE STATE(

PUT TAB(treeO,POSO,

UPDATE TAB(GET TAB(treeO,pOSO),

idO,attrO)),

posO),

UPDATE(MAKE STATE(treeO,FATHER(posO)),idO))

UPDATE TAB(ADDID TAB(tabO,idO,attrO).idl,attrl)

==IF TAB(EQUALID(idO,idl).

ADDID TAB(tabO,idl.attrl),

UPDATE TAB(tabO,idl,attrl))

ADDID(MAKE STATE(treeO,pOSO),idO,attrO)

== ADD ID TAB(GET TAB(treeO,pOSO),idO,attrO)

APPLY STATE(I STATE-STATE(),StateO) stateO

APPLY STATE(IF STATE D(state-boolO,State-StateO,State-Statel),

stateO)

==IF STATE(APPLY STATE BOOL(state-boolO,StateO),

APPLY STATE(state-StateO,StateO),

APPLY STATE(state-Statel.stateO))

APPLY STATE(ITERATE(state-boolO,State-StateO),StateO)

==IF STATE(APPLY STATE BOOL(state-boolO.stateO),

APPLY STATE(

COMPOSITION(

ITERATE(state-boolO,State-StateO),

State-StateO),

StateO).

StateO)

APPLY STATE(COMPOSITION(state-StateO,State-Statel),StateO)

== APPLY STATE(state-StateO,APPLY STATE(state-Statel,StateO))

APPLY STATE(ADD ID D(idO,attrO),StateO)

== ADDID(stateO,idO,attrO)

(* Specification of the semantic mapping(Excerpts)*)

｢= < d,M,Y,R >

_ d:Ⅴ -> S

d(PROGRAM) = STATE

d(BLOCK)= d(CONST DEF PAfiT)= = d(STATEMENT)= STATE-STATE

d(CONDITION) = STATE-BOOL

d(EXPRESSION)= STATE-INT

M =(M N‡N-Ⅴ,SOrt(M N)=d(N),arity(M_N)=N)

Y=UN∈VYN

YBLOCK=(blkO)

YsTATEMENT=(stmOl

YcoNST
DEF PART=(c

d pO)

YcoNDITION=(cndO)

51



52 H.KITA,T.SAKABE and
Y.INAGAKI

R =((* pOlO:PROGRAM -> BLOCK.*)

M PfiOGfiAM(pOlO(blkO))

= APPLY STATE(M BLOCK(blkO),INIT STATE())

(* pO20:BLOCK -> CONST DEF PART VAR DCL PART

PIモOC DCL PART STATEMENT *)

M BLOCK(pO20(c d pO,V_d_pO,p_d_pO.stmO))
言coMPOSITION(

M STATEMENT(stmO),

COMPOSITION(

M PIiOC DCL PART(p_d_pO),

COMPOSITION(

M VAR DCL PAfiT(v_d_pO),

M CONST DEF PART(c d pO))))

(* pO70:CONST DEF -> IDENT = NtJMBER *)

M CONST DEF(pO70(idO,numO))

= ADD ID D(M IDENT(idO),

MAKE ATTfiCONST(M NUMBER(numO)))

(* p120:VAfiNAME -> IDENT *)

M VAR NAME(p120(idO))

= ADDID D(MIDENT(idO),MAKE ATTR VAR(ZERO()))

(* p170:PROC DCL -> procedureIDENT;BLOCK *)

M PROC DCL(p170(idO,blkO))

= ADD PROC ID D(M IDENT(idO),

MAKE ATTR PROC(M BLOCK(blkO)))

(* p180:STATEMENT -> IDENT:= EXPRESSION *)

M STATEMENT(p180(idO.expO))

= UPDATE D(M IDENT(idO),

MAKE ATTR VAR(M EXPRESSION(expO)))

(* p190:STATEMENT -> callIDENT *)

M STATEMENT(p190(idO))

= COMPOSITION(

LEAVE BLOCK D(),

COMPOSITION(

APPLY STATE D(

MAKE STATE-STATE D(

RETRIEVE PROC D(MIDENT(idO))),

ENTER BLOCK D()))

(* p210:STATEMENT -> if CONDITION then STATEMENT*)

M STATEMENT(p210(cndO,StmO))

言IF STATE D(M CONDITION(cndO),M STATEMENT(stmO),

I STATE-STATE())

(* p220:STATEMENT -> while CONDITION do STATEMENT*)

M STATEMENT(p220(cndO,StmO))

≡ITERATE(M CONDITION(cndO),M STATEMENT(stmO))

Finally we should make some words concerning ourideain writing the above

specification:To capture the meaning of programs･Weintroduced the concept of

state whichis the abstraction of configuration of the computation mechanism･

And we consider that the meanings of a programis the finalstate after

executing the program. Thatis.we consider that the meanings of statements as

wellas declarations are the functions to change the states･ For example･an

assignment statement changes the state through renewing the value of a variable･

and a variable declaration also changes the state by entering a new variable

into the name table.

Note that we use
a conveniently simplified vay to treat semantic errorsin



Algebraic Specification of Programming Languages 53

the specification of PL/0･ For example,if the update operationis applied to

theinitialstate thatis the state where no variables are yet declared,then

the resultis specified to be theinitialstate･ But,this should be specified

to be a semantic error. Thus,how to specify and treat semantic errorsis one

of the future problems.

8.Conclusion

In this paper,We have proposed a plユrely algebraic method for specification

of programminglanguages. The semantic domain of our specificationis specified

as an abstract data type by using only equations.
This gives us the

mathematicalfoundations of our algebraic approach for the formalspecification,

implementation,Verification of programs,the formalproof of compiler

correctness,and the automatic compiler generation･

As anillustrative example,We have also given the specification of the

programminglanguage PL/0･It shows that our method works satisfactorily･

There are many future problems. For example,the error handling problemis

one of them.In fact,in our example of PL/O specification we used conveniently

simplified ways to treat semantic errors,e･g･We aSSumed thatif a numberis

divided by zero then the result valueis zero. We are now developing the system

for automatic compiler generation based on our specification method･ We already

have a prototype of the system but there are many problems to be solved･

Acknowledgement

The･authors wish to express their gratitude to Dr･Namio HONDA,President of

ToyohashiUniversity of Technology,Dr.Teruo FUKUMURA,Professor of Nagoya

University and Dr.Nariyasu MINAMIDE,Professor of Mie University for their

encouragements to conduct this work･ They also thank their colleagues for their

helpfuldiscussions.

Eeferences

l)ADJ(Goguen,J.A.,Thatcher,J.W.,Wagner,E.G.,Wright,J･B･):InitialAlgebra

Semantics and Continuous algebras,J.ACM,Vol.24.pp.68-95(1977).

2)ADJ(Goguen,J.A.,Thatcher,J.W･,Wright,J･B･):AnInitialAlgebra Approach

to the Specification,Correctness andImplementation of Abstract Data

Types,Current Trendsin Programming Methodology,Vol･4(Yeh,R･T･･ed･)･

Prentice-Hall(1978).

3)ADJ(Thatcher,J.W.,Wagner,E.G.,Wright,J.B.):More on Advice on

Structuring Compilers and Their Correctness,Theor.Comput.Sci･,

Vol.15,pp.223-249(1981).

4)Courcelle,B.,Franchi-Zannettacci,P.:Attribute Grammars and Primitive

Recursive Schemes,Theor.Comput.Sci.,Vol.17,PP.163-191,pp.235-

257(19(‡2).

5)Despryroux,J.:An Algebraic Specification of a PascalCompiler,SIGPLAN

Notice.Vol.18,No.12,PP.34-48(1983).

6)Gaudel,M.C.:Specification of Compilers as Abstract Data Type



54 H.KITA,T.SAKABE and Y.INAGAKI

l?epresentations･Proc･On Workshop on Semantics-Directed Compiler

Generation,Aarhus･in Lecture Notesin Computer Science 94(1980).

7)Goguen･J･A･and Parsaye-Ghomi･K･‥Algebraic DenotationalSemantics
using

Parameterized Abstract Modules･in Lecture Notesin Computer Science

lO7,pp.292-309(1981).

8)Mosses･P･:A Constructive Approach to Compiler Correctness Proc.of

Workshop on Semantics-Directed Compiler Generation,Aarhus,in Lecture

Notesin Computer Science 94(1980).

9)Pair･C･:Abstract Data Types and Algebraic Semantics of Programming

Languages･Theor･Comput･Sci･,Vol.18,pp.1-31(1982).

10)Wirth,N･:Algorithms+Data Structure=Programs,Prentice-Hall(1976).


