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Abstract

Recent advances in the clone technique based on the nuclear transfer in the fields of animal production

and regenerative medicine demonstrate that a nucleus has all the information for the mammalian

development. The huge mass of DNA molecules forms chromatin and is packed into the nucleus. The

fundamental intranuclear events such as DNA replication, transcription, and repair proceed dynamically

under the strict regulation and the disruption of these processes drives cells to mutation, malignancy, and

death. In this review, methods based on visualization of single copy DNA/RNA molecules under the

fluorescence microscope to solve the mysterious processes in the nucleus are described. Advanced methods

using fluorescence in situ hybridization and the overview of their applications covering the analysis of DNA

replication timing, replication forks, gene transcription, and the role of the nuclear matrix in the nuclear

processes are mentioned.
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Abstract

An experimental investigation was conducted with the objective to find out the effects of types of soils
and geosynthetics on pullout behavior because of their contentious issues in designing all sorts of reinforced
earth structures. A series of pullout tests with two types of geosynthetics such as fortrac and stabilanka
under six normal stresses were carried out in order to obtain the pullout resistances both in sandy and
clayey soils. The analyses of the data and information revealed that the stabilanka has more frictional
resistance in clayey soil than that of the fortrac whereas it has less frictional resistance in sandy soil and the
cohesion of stabilanka is conspicuously higher as compared to fortrac in both types of soils. The usual
characteristic is that there is an increase in pullout stress with the increase in displacement as well as with
the increase in normal stress for any combination of geosynthetic and soil. This feature agrees the results

of other studies found in the literature.

Key Words: geosynthetics, reinforced soil, pullout behavior, fortrac, stabilanka,

experiment, multiple effects

1. INTRODUCTION

It is well recognized that the types of soil and reinforcement in earth structures plays a significant role
on the overall performance of reinforced soil structures (Williams et al, 1987). Pullout behavior is one of
the major phenomena for examining the stability of reinforced embankments and soil structures (Madhab
et al., 1998, Zanzinger et al., 2001). Various types of geosynthetics are widely utilized for the improvement
of stability of embankments and soil structures. In the present investigation, two types of geosynthetics
such as fortrac and stabilanka are used owing to their ease of availability in the local market as well as their
wide spread use all over the world for soil reinforcement applications. The available literature review
clearly indicates that the pullout resistances are scattered in strengths depending on different reinforcing
materials as well as soil types (Kuwano et al., 1999, Izawa, et al., 2001, Mahmood, et al., 2000, Ghionna,
et al., 2001). It is, therefore, most important to investigate the individual reinforcement with varying soil
properties for clear understanding of pullout behavior as well as their effectiveness and suitability for
practical application. Unfortunately, there is no code or guideline available on the effect of types of
geosynthetics such as fortrac and stabilanka on pullout strength of reinforcement even though it presents
a considerable versatility in the development of reinforced soil structures. Moreover, to the knowledge of
the authors, no attempt has so far been made to investigate the comparative study on pullout strength of
geosynthetics treated in this paper with sandy and clayey soils.

The present investigation is, therefore, undertaken for comparing the overall response of types of
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geosynthetics on the pullout behavior of reinforcement embedded in two types of soils. Pullout tests of two
types of geosynthetics namely fortrac and stabilanka are carried out using sandy and clayey soils of Mie
prefecture, Japan. A series of pullout tests under six normal stresses such as 6 kN/m?®, 12 kN/m’, 18 kN/
m’, 24 kN/m’, 30 kN/m’ and 36 kN/m” have been carried out in order to find out the effect of type of soil
and geosynthetics on pullout behavior. Results of these tests are depicted to understand thoroughly of the

stress-displacement relationships and ultimate strengths of pullout tests.

2. Properties of materials

1.1 Properties of sandy soil

The particle size distribution curve of sandy soil reveals that nearly 99 of the soil is coarse clay, 7% is
fine silt, 696 is coarse silt, 1494 is fine sand, 449 is medium sand and more than 209 is coarse sand which
mean that more than 90 percent of the soil being in the silt and sand fraction. The average specific gravity
of the sandy soil is calculated as 2.64 (Fig. 1). The other properties of the sandy soil used in these tests are

given in Table 1.

Percentage passing (%) -
W
3

0.0001 0.001 0.01 0.1 1

Particles diameter (mm) |

Fig. 1 Particle size distribution curve of sandy soil

Table 1 Properties of sandy soil

Dry density ( 74) 1.83 t/m’
Optimum water content (W)pt) 15.3%
Specific gravity ( o5) 2.64
Cohesion (¢) 5.01 kN/m?
Angle of internal friction (@) 32.19°
Sand, >75um 78%

Silt, 5—75 um 13%

Clay, <5um 9%

1. 2 Properties of clayey soil
The particle size distribution curve of clayey soil plotted in Fig. 2 indicates that nearly 339 of the soil
is clay, 249 is fine silt, 59 is medium silt, 494 is coarse silt, 1294 is fine sand, 1496 is medium sand and

6% is coarse sand which mean that more than 669 percent of the soil being in the clay and silt fraction.
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Fig. 2 Particle size distribution curve of clayey soil
Liquid limit, plastic limit and the plasticity index of the soil are 56.2%, 29.3% and 26.9, respectively. The
average specific gravity of the soil is calculated as 2.70. The other properties of the clayey soil used in these

tests are depicted in Table 2.

Table 2 Properties of clayey soil

Dry density (74) 1.53 t/m®
Optimum water content (VVop[) 25.0%
Specific gravity ( o;) 2.70
Cohesion (¢) 64.31 kN/m”
Angle of internal friction (¢) 16.01°
Sand, >75 um 34%

Silt, 5—75 um 33%
Clay, <5um 33%
Liquid limit 29.3%
Plastic limit 56.2%
Plasticity index 26.9

1. 3 Properties of fortrac geosynthetic

The physical appearance of fortrac geosynthetic obtained commercially is manufactured from polyester
yarns (Fig. 3a). The junctions of this mesh are directly connected and greatly improved by interweaving
the yarns and then it is coated with protective sheathing. The strength of the junctions is adequate to
transmit the envisaged loadings. The cross-section of geogrid strand is 2mm X 6mm in longitudinal
direction and 1.0mm filament diameter in transverse direction with center to center openings of 24mm in
longitudinal direction and 20mm in transverse direction. This mesh is commercially nomenclatured as
Type 150/30-20 which has tensile strength 150kN/m in longitudinal direction and 30kN/m in transverse

direction.

1. 4 Properties of stabilanka geosynthetic
The stabilanka geosynthetic is made of polyester yarns by interweaving each other in such a way that
there is no gap among the filaments (Fig. 3b). Thus, the stabilanka geosynthetic looks like a sheet in

nature. The junctions are not sheathed nor connected with protective sheathing. This sheet is
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commercially nomenclatured as Type 800/100, which means that it has tensile strengths 800 kN/m in

longitudinal direction and 100 kN/m in transverse direction. The thickness of the sheet is 2mm.

a. Fortrac b. Stabilanka

Fig. 3 Physical appearance of geosynthetic

2. EQUIPMENT AND METHODOLOGY

2.1 Major parts of the testing equipment

The apparatus used in this study is capable of performing both pullout and direct shear tests (Fig. 4).
For convenience of the readers, the important components of the testing equipment are numbered
numerically starting from top-left to right-down in the increasing way such as, the number from [1] to
[12] where the number [1] is the pullout stress monitoring display, [2] is the normal stress reactor, [3]
is the upper part of the pullout box, [4] is the electrically operated pullout jack, [5] is the pullout stress
measuring device, [6] is the reinforcement clamping jack, [7] is the reinforcement, [8] is the clearance
screw between the upper box and the reinforcement, [9] is the lower part of the pullout box, [10] is the
horizontal displacement measuring dial gauge, [11] is the vertical displacement measuring dial gauge and

[12] is the normal stress measuring dial gauge.

Fig. 4 Pullout and shear test apparatus

2.2 Outline of the testing equipment
Some important features incorporated in the testing equipment are the monitoring of soil dilatancy and
the testing arrangement wherein the clamping system for pullout test is located outside the compacted soil

to ease of clamping the reinforcement. The pullout box is a rectangular shape of size 150 mm in length,
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100 mm in width and 100 mm in height. The box is divided into two parts namely lower and upper boxes,
both are 50mm in depth. The apparatus is designed in such a way that the upper box can be separated
from the lower box to ease in pouring the soil into the lower box as well as geosynthetics setting and
clamping. The lower box is fixed while the upper box can be pushed forward relative to the lower box
during shear testing. The friction between the upper box and the geosynthetics is eliminated with the help
of the vertical screw those have been set at both sides of the upper box. The normal stress at the bottom
surface of the lower box applied through the lower jack in the upward direction is balanced by the opposite
stresses of the upper box. The stresses into the soil are uniformly distributed by adjusting the screw at the
top surface of the upper box. The lower and upper boxes are set in such a way that there is no friction
between the box wall and the geosynthetics. For the pullout test, the upper part is set to the lower part
with clamping screw. It can be freed while performing the direct shear test. The upper box can then be
pushed forward relative to the lower box. As for the instrumentations, the pullout/direct shear force can
be measured by means of an electrical loading cell, which is set to a display panel. Front displacements,
vertical displacements and the displacements along the reinforcement (for pullout test only) can be
monitored using dial gages. The width of the geosynthetics was the same as that of the width of the pullout

box (inner sides).

2. 3 Method of testing

The geosynthetic was cut to obtain rectangular pieces of 200 mm by 100 mm in size. The specified
lengths of the pieces were selected in order to facilitate ease of clamping with the pullout apparatus. The
geosynthetic was clamped into the box in such a way that the embedded length of the geosynthetic is 150
mm in the loading direction and 100 mm in the transverse direction. Water was added gradually to the
soil and mixed up to obtain desired water content uniformly throughout the soil and then it was poured
into the bottom box. After embedding the geosynthetics on the soil poured in the lower part of the box,
the upper part was fastened to the lower part and then additional soil was filled in the upper box. The tests
were carried out in the way of pulling out the geosynthetic from the soil with constant speed of 1 mm/min
by means of screw jack under electrically operated constant pressure. The pullout force was measured
using a tension load cell with a least count of 5 N. The load cell was set between the geosynthetic and the
clamping jack to facilitate direct load measurement on the cell avoiding any frictional discrepancy on the
machine components. The displacements were measured at the front of the mesh by means of a dial gage
with a least count of 0.001 mm. After each testing, the geosynthetic piece was removed and replaced with
another one to account for the damages in the geosynthetic’s texture that might have occurred as a result
of previous test. The dilatancies were measured at the lower side of vertical load jack by means of a dial
gage with a least count of 0.001 mm.

The soil was compacted in three layers for all the tests and thus obtained the same density of the soil for
all the pullout tests. The tests were carried out with 14.63% water content of sandy soil and 26.54% water
content of clayey soil whereas the optimum water contents were calculated as 15.3% and 27.0% for sandy

and clayey soils, respectively.

3. RESULTS AND DISCUSSION

3.1 Pullout behavior as stress-displacement relationships
The pullout behavior as stress-displacement relationships of the four categories such as fortrac in sandy

and clayey soils, and stabilanka in sandy and clayey soils are plotted in Fig. 5, Fig. 6, Fig. 7 and Fig. 8,
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respectively.

3.1.1 Stress-displacement relationships for fortrac in sandy soil

The relationships between the pulling stress and the displacement of fortrac geosynthetic under normal
stresses of 6 kN/m’, 12 kN/m’, 18 kN/m?, 24 kN/m’, 30 kN/m’ and 36 kN/m? for sandy soil with water
content of 14.63% are given in Fig. 5. It can be seen from this figure that the pullout stress is increasing
linearly with the increase in displacement in the amount of about 12mm. After that, the pullout stress
increases nonlinearly with the increase in displacement of about 16mm. The pullout stress fluctuates with
displacement exceeding 16 mm and continues in the same fashion of up to 50 mm. This may be due to the
variation of stress distribution along the reinforcement in the loading direction. Because of the rectangular
cross section of the fortrac reinforcement, there might be an accumulation of some soils in the front side of
the filament section which gives an increase in soil pressure and after accumulation of certain amount of
soil i.e. while the accumulation exceeds the limit to cause failure, the pullout stress becomes decrease by
slippage of the soil particles. As expected, for all the test results, the pullout resistance is more for higher
normal stresses. It is noted here that most of the stress-displacement curves became horizontal or changed
their upward trend to downward trend at pullout displacement of 15mm i.e. at 109§ strain for most of the
cases, indicating the ultimate pullout strengths of the stress-displacement curves. Therefore, the pullout
displacement in the amount of 15mm is considered as the key distance for calculating the ultimate pullout
strengths by taking account of the maximum cases of results reported in this paper. The ultimate pullout
strengths for fortrac geosynthetic in sandy soil are calculated as 14.4 kN/m?* 12.4 kN/m?, 26.6 kN/m’, 30.8
kN/m?’, 36.6 kN/m® and 58.4 kN/m’ for normal stresses 6 kN/m? 12 kN/m?, 18 kN/m?®, 24 kN/m?, 30 kN/
m’ and 36 kN/m’, respectively.

Pullout stress, KN/t

——6kN/nf  —o— 12kN/nf
oK N —X=24KN/nf  =x=30KN/mf  =—o—36kN/nf |
0 5 10 15 20 25 30 35 40 45 50‘

Pullout displacement, mm 3

3. 1.2 Stress-displacement relationships for fortrac in clayey soil

Fig. 6 indicates a typical stress-displacement relationship of the pullout tests for fortrac in clayey soil
with 26.5496 water content. An inspection of the plotted results of the stress-displacement relationships
indicates that they are, in general, apparently bi-linear characteristics. However, a resemblance of
linearity is seen for smaller part of the relationships between 0.0mm to 1.0mm displacement in which the
pullout stress increases proportionately with the increase in displacement. The nonlinear range at the
lower limit starts with displacement of nearly 2.0 mm and then gradually changing its direction to x-axis

of up to 10.0 mm displacement. A greater part of linearity of the pullout stress can be taken from 12.0 mm
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to 35.0 mm displacement and then it shows downward trend upto the displacement of 50 mm except for
the lower normal stresses such as of 12 kN/m? 18 kN/m’ and 24 kN/m?, for which the stress-displacement
curves slightly fluctuate and show upward trend upto the end of the test. Unlike the curves of sandy soil
in Fig. 5, all the graphs of clayey soil are almost same trend owing to the effect of even distribution of
stresses on the fortrac geosynthetic. It is noted here that the pullout stress-displacement curves under
higher normal stresses are slightly upward trend for sandy soil (Fig. 5) whereas it is slightly downward
trend for clayey soil (Fig. 6). This is thought to be the combined effect of fortrac geosynthetic and
particles size of the soil. As compared to sandy soil, the clayey soil containing more amounts of smaller
particles, and therefore, undergoes more deformation easily and thereby facilitates more compression
especially under higher normal stresses. Moreover, the fortrac geosynthetic with transverse filament
creates more accumulation of sandy soil due to its coarser particles than that of the clayey soil in front of
the transverse strands and thus, showed more pullout stress at higher normal stresses. Similar to the
previous case, the ultimate pullout strengths for clayey soil are recorded as 17.6 kN/m®, 19.8 kN/m’, 24.0
kN/m?, 29.0 kN/m?, 32.6 kN/m’ and 34.0 kN/m? corresponding to normal stresses 6 kN/m’, 12 kN/m’, 18
kN/m? 24 kN/m’ 30 kN/m® and 36 kN/m’, respectively.
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Fig. 6 Stress-displacement curve (fortrac, clay, w=26.54%)

3. 1.3 Stress-displacement relationships for stabilanka in sandy soil

The stress-displacement relationships of pullout tests for stabilanka under six normal stresses for sandy
soil with water content of 14.63% are depicted in Fig. 7. All the six graphs belong to the same
characteristic at the initial stage and can be taken in a group with the linear portion restricted to the
displacement of about 3.0 mm. After that, all the curves become nonlinear with the pullout displacement
of 4.0 mm to 10.0 mm. A greater part of linearity can be taken from 10.0 mm to 45.0 mm displacement
for higher normal stresses such as 18 kN/m’, 24 kN/m’, 30 kN/m’ and 36 kN/m®. The fluctuating trend of
the pullout stresses with the increase in pullout displacement for lower normal stresses such as 6 kN/m’ and
12 kN/m® is clearly evident from this figure. This phenomenon mainly depends on the soil type and
geosynthetic type. Unlike to the previous two cases, pullout stresses are almost smooth at higher normal
stresses and fluctuates rapidly at lower normal stresses owing to more smoothing surface of stabilanka than
that of the fortrac geosynthetic. The sandy soil with more coarse particles allowed a uniform distribution
of stresses on the stabilanka geosynthetic with higher normal stresses. Similar to the previous two cases, the
ultimate strengths vary apparently; they have values of 13.66 kN/m’, 20.73 kN/m’, 21.2 kN/m®, 26.33 kN/
m?, 26.66 kN/m’ and 29.53 kN/m® for the six applied normal stresses.
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Fig. 7 Stress-displacement curve (stabilanka, sand, w=14.63%)

3. 1.4 Stress-displacement relationships for stabilanka in clayey soil

Fig. 8 depicts the stress-displacement relationships of pullout tests for the stabilanka geosynthetic with
clayey soil having 26.54% water content. It can be observed from this figure that the applied pullout stress
increases proportionately with the increase in displacement of about 4.0 mm. After the displacement of
about 4.0 mm, it is clearly evident that the pullout stresses are getting upswing and downswing
simultaneously for any normal stress condition. Obviously, this oscillation depends on the finer particles
of soil as well as surface roughness of the stabilanka. Unlike to all the previous cases, the stabilanka
geosynthetic with its rough surface and smaller grid than the fortrac allows clay particles to accumulate
and release simultaneously on its surface with the increase in pullout displacement causing fluctuation of
the pullout stresses under any normal loading condition. Due to the more compressive feature of clayey soil
than that of the sandy soil, the clayey soil showed its oscillating characteristics even with the higher normal
stress condition. The ultimate pullout stresses are found as 30 kN/m?, 34.73 kN/m’, 38.4 kN/m’, 46.33 kN/
m’, 48.0 kN/m’ and 61.13 kN/m’ corresponding to the normal stresses 6 kN/m? 12 kN/m? 18 kN/m?, 24 kN/
m’, 30 kN/m’ and 36 kN/m’, respectively.
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Fig. 8 Stress-displacement curve (stabilanka, clay w=26.54%)
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3. 1. 5 Pullout behavior as ultimate strengths

For the sake of clear perception of the bearing capacity of reinforced soil under pullout test, the ultimate
pullout strengths corresponding to the different overburden pressures (normal stresses) of pullout test are
plotted as bar diagram in Fig. 9. It is evident that the ultimate pullout strengths are increasing with the
increase in overburden pressure containing any type of soil and geosynthetic. Fortrac geosynthetic shows
more pullout stress in sandy soil whereas stabilanka geosynthetic has higher pullout stress in clayey soil
under higher normal stresses. This may be the effect of surface resistance as well as cohesion of the soil and
the geosynthetic. The surface resistance of fortrac geosynthetic is more in sandy soil and cohesion of
stabilanka is comparatively more for clayey soil. A slight scatter is observed in the test results that the
ultimate pullout strength of stabilanka in sandy soil with 12 kN/m® normal stress is more than that of the
fortrac geosynthetic in clayey soil. The ultimate pullout strengths of fortrac under normal stresses 6 kN/
m? and 12 kN/m? are higher values in clayey soil than in sandy soil. The other features are followed the

usual trends of the ultimate pullout strengths.
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Fig. 9 Comparison of ultimate strengths of pullout tests

3.1. 6 Regression analysis of the ultimate strengths

For more clarification of ultimate strengths among the four types of combinations reported in this paper,
least square linear regression lines of the ultimate pullout strengths corresponding to applied normal stress
are depicted in Fig. 10. This figure indicates the applied normal stress as the controlled variable as given
in abscissa and the ultimate pullout strengths as the random variable as given in ordinate. As it can be
observed from this figure that the rate of increase of the ultimate pullout strength for fortrac geosynthetic
in sandy soil is more than that of the other cases with the increase in overburden pressure i.e. applied
normal stress. This feature is mainly attributed owing to the more frictional resistance of the sandy soil
with larger grid size of fortrac than that of the other cases. Because of the larger grid of fortrac, the soil
particles interlock into the grid and possess higher surface traction and thus, it gives more frictional
resistances as compared to others. Clayey soil having finer particles may have lower frictional resistances
even they get interlock into the grid. Though the rate of increase of stabilanka in clayey soil is smaller than
that of the fortrac in sandy soil, it possesses highest ultimate strengths among all the categories. This may
be depends on the bonding phenomena between clayey soil and stabilanka. For this case, the surface area
of stabilanka is too high as compared to fortrac and thereby facilitating more bonding properties of
stabilanka in clayey soil. It is noted here that the R-square or the coefficient of determination of the

regression analysis has the values of 0.886, 0.9789, 0.9181 and 0.9481 for the cases of fortrac-sand fs),



24 Md. Zakaria HOSSAIN

fortrac-clay (fc), stabilanka-sand (ss) and stabilanka-clay (sc), respectively, 1.e. the R-square value for all
the cases close to 1.0 indicates that the tests data are fitted well and we have accounted for almost all of

the variability with the variables specified in this paper.
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Fig. 10 Linearized curves of ultimate strengths

3. 1.7 Pullout behavior as interaction resistances

In calculating the interaction resistances under pullout test, it is necessary to clarify the common method
of finding out these important parameters. In general, the methods of Failure Envelope and Mohr-Circle
are well known in determination of cohesion and internal frictional resistances. In the first method, for
obtaining a failure envelope, a number of identical specimens are tested under different normal stress. The
shear stress required to cause failure is determined for each normal stress. The failure envelope is obtained
by plotting the points corresponding to the shear strength at different normal stresses and joining them by

The inclination of the failure envelope to the horizontal gives the angle of the shearing

The Mohr-Circle

a straight line.
resistances and its intercept on the vertical axis is equal to the cohesion intercept.
method is needed when the stress on failure planes are not directly known. In the present research, the
pullout test is carried out by pulling out the reinforcement from the soil under different normal stresses.
The pullout stresses acted on both sides of reinforcement are measured directly and plotted in Fig. 10 with
the applied normal stresses as abscissa and pullout out stresses as ordinate. The least square linear lines
obtained by the regression analysis for the four categories are similar to that of the method of failure
envelope for direct shear test but having the resistance at two surfaces of the reinforcements. Two surfaces
of reinforcement means two times of pullout stresses as compared to direct shear test which gives double
intercept at y-axis but there is no effect on the angle of the linear lines because all the normal stresses will
increase in the same fashion when the resistance acted on two surfaces. These points should be taken into
account in calculating the cohesion and internal frictional resistances under pullout test.

The following equations are obtained as a result of pullout tests for the fortrac-sand (fs), fortrac-clay

(fc), stabilanka-sand (ss) and stabilanka-clay (sc), respectively from the straight lines as plotted in Fig. 10.

T = 14067 op + 04489 - (1)
s 0.5956 0p + 13.693 -— (2
To = 04870 g, + 12796 -— (3)
Te = 09686 0. + 22760 -— (4)
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Where, 7 is the shear resistance of reinforced soil on both surface of reinforcement under pullout test in
kN/m’ and ¢ is the applied normal stress (overburden pressure) on reinforcement in kN/m®. Therefore, the
angles of internal friction are calculated as 55.42, 25.97, 30.78 and 44.09 degrees. The values of cohesion
as given in the above equations are obtained as 0.4489 kN/m’, 13.693 kN/m’, 12.796 kN/m’ and 22.76 kN/

m’, respectively.

4. CONCLUSION

In designing earth structures where clay particles are more, utilization of stabilanka geosynthetic may be
recommended for more improvement of strengths and stability. Fortrac geosynthetic may be recom-
mended in designing reinforced soil structures with sandy soil. The design cohesion values may be taken
as the half of the pullout cohesion values where the soil structures tends to slip over the geosynthetic like
as a direct shear failure on one surface of the geosynthetic. Equations for strength parameters of reinforced
soil such as cohesion and internal friction of the individual categories presented in this paper may be useful

to aid in design of reinforced soil structures.
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