赤潮発生予察と殺藻細菌による赤潮プランクトンの殺藻効果に関する研究

Red tide forecasting and effects of algicidal bacteria against red tide phytoplankton

2018年9月

岩田 友三
第Ⅰ章 序論

Ⅰ-1. 現在の赤潮発生状況 ... 1
Ⅰ-2. 赤潮の予察 .. 6
Ⅰ-3. 赤潮発生の予防 ... 7
Ⅰ-4. 赤潮の防除法 ... 7

Ⅰ-4-1. 物理的・化学的方法 ... 7
Ⅰ-4-2. 生物的方法 ... 9

第Ⅱ章 五ヶ所湾における Karenia mikimotoi 赤潮の発生予察

Ⅱ-1. 材料および方法 ... 13

Ⅱ-2-1. 五ヶ所湾における Karenia mikimotoi 赤潮発生状況 16

Ⅱ-2-2. 五ヶ所湾における Karenia mikimotoi の AGP 16

Ⅱ-2-3. AGP による Karenia mikimotoi の増殖因子の考証 21

Ⅱ-3. 考察 .. 22

Ⅱ-4. 要約 .. 25

第Ⅲ章 Karenia mikimotoi 殺藻細菌の性状と動態

Ⅲ-1. 殺藻細菌 66-46 株の性状と動態

Ⅲ-1-1. 材料および方法 ... 26

Ⅲ-1-1-1. 赤潮プランクトンの培養 .. 26

Ⅲ-1-1-2. 殺藻細菌 66-46 株の単離 .. 27
Ⅲ－1－1－3. 殺藻細菌 6/6-46 株の同定 ... 28
Ⅲ－1－1－4. 6/6-46 株の殺藻能 ... 28
Ⅲ－1－1－5. 自然細菌群存在下における 6/6-46 株の K. mikimotoi 殺藻能 ... 29

Ⅲ－1－2. 結果
Ⅲ－1－2－1. 殺藻細菌 6/6-46 株の同定 ... 30
Ⅲ－1－2－2. 6/6-46 株の殺藻能 ... 30
Ⅲ－1－2－3. 自然細菌群存在下における 6/6-46 株の K. mikimotoi 殺藻能 ... 32

Ⅲ－1－3. 考察 ... 35

Ⅲ－1－4. 要約 ... 37

Ⅲ－2 殺藻細菌 MA10 株の性状と動態
Ⅲ－2－1. 材料および方法
Ⅲ－2－1－1. 赤潮プランクトンの培養 ... 39
Ⅲ－2－1－2. 殺藻細菌 MA10 株の単離 ... 39
Ⅲ－2－1－3. 殺藻細菌 MA10 株の同定 ... 40
Ⅲ－2－1－4. MA10 株の殺藻スペクトル ... 41
Ⅲ－2－1－5. MA10 株の初期接種量が K. mikimotoi の増殖に及ぼす影響 ... 41
Ⅲ－2－1－6. 自然細菌群存在下における MA10 株の K. mikimotoi 殺藻能 ... 41

Ⅲ－2－2. 結果
Ⅲ－2－2－1. 殺藻細菌 MA10 株の性状と同定 ... 42
Ⅲ－2－2－2. MA10 株の殺藻スペクトル ... 43
Ⅲ－2－2－3. MA10 株の初期接種量が K. mikimotoi の増殖に及ぼす影響 ... 43
Ⅲ－2－2－4. 自然細菌群存在下における MA10 株の K. mikimotoi 殺藻能 ... 46

Ⅲ－2－3. 考察 ... 46
第Ⅳ章 Karenia mikimotoi の殺藻過程における殺藻細菌の動態

Ⅳ－１．材料および方法
Ⅳ－１－１．K. mikimotoi の培養法 ... 51
Ⅳ－１－２．K. mikimotoi 殺藻細菌 ... 51
Ⅳ－１－３．垂直に設置した円柱型培養槽における 66-46 株の殺藻能 52
Ⅳ－１－４．垂直に設置した円柱型培養槽における MA10 株の殺藻能 52
Ⅳ－１－５．水平に設置した円柱型培養槽における 66-46 株の殺藻能 53
Ⅳ－１－６．水平に設置した円柱型培養槽における MA10 株の殺藻能 53

Ⅳ－２．結果
Ⅳ－２－１．垂直に設置した円柱型培養槽における K. mikimotoi の殺藻 54
Ⅳ－２－２．水平に設置した円柱型培養槽における K. mikimotoi の殺藻 54

Ⅳ－３．考察 .. 57

Ⅳ－４．要約 .. 58

第Ⅴ章 現場海域の細菌群存在下における Heterosigma akashiwo 殺藻細菌の殺藻能とその動態

Ⅴ－１．材料および方法
Ⅴ－１－１．殺藻細菌の単離 ... 61
Ⅴ－１－２．殺藻細菌 9/27-2 株の同定 ... 62
Ⅴ－１－３．殺藻細菌 9/27-2 株と H. akashiwo の培養 ... 63
Ⅴ－１－４．DNA 抽出と PCR による 16S rRNA 遺伝子の増幅 63
Ⅴ－１－５．DGGE の条件 ... 64
V-2. 結果
V-2-1. 殺藻細菌9/27-2株の同定 ... 65
V-2-2. 9/27-2株によるH. akashiwoの殺藻能 .. 65

V-3. 考察 .. 68

V-4. 要約 .. 72

第VI章 総括 ... 74

参考文献 .. 81
第Ⅰ章 序論

I-1. 現在の赤潮発生状況

植物プランクトンが大量発生して魚介類の大量斃死を引き起こして漁業被害を与える現象は「有害赤潮」と呼ばれ、ラフィド藻であるChattonella属（C. antiqua、C. marina）やHeterosigma属（H. akashiwo）、渦鞭毛藻Kareina属（K. mikimotoi）、Heterocapsa属（H. circularisquama）などが代表的な有害赤潮プランクトンである。図1-1で表した赤潮発生額のピークの位置に、それぞれの原因プランクトンを示している。

させ、養殖魚に被害を与えるタイプの赤潮であったが、H. circularisquama は主に養殖二枚貝に影響を与え、一方、K. mikimotoi は魚類と二枚貝の両者を斃死させるタイプの赤潮であることが判明している。\(^{3-6}\)この様に、原因プランクトンの多様化によって被害を及ぼす魚介類の種類も拡大し、漁業被害も低減の傾向は認められないまま現在に至っている。

赤潮被害が顕著になった 1972 年以降では、大きな漁業被害を生じる赤潮の原因プランクトンは Chattonella 属一種類であったが、80 年代以降は Heterosigma 属や Karenia 属などの原因プランクトンの種類が広がり、被災を受ける水産物の種類も拡大している。最近では、2009
年に新潟県佐渡島で *H. circularisquama* が、7）2015年には北海道函館湾で *K. mikimotoi* による赤潮の発生が初めて確認され、8）漁業被害が生じている。以上述べたように、赤潮の発生件数は最も頻発した時期の三分の一程度で推移しているにもかかわらず、1件あたりの赤潮の発生が長期化・広域化し、赤潮の問題は一層複雑となり、深刻さが増大している状況にある。

さらに、70年代の赤潮原因プランクトンである *Chattonella* 属赤潮の海面は濃い朱色を呈していたが、80年代からの赤潮プランクトンの多様化によって海面の色調が灰緑色や赤褐色、白色などの色へと変化した。そのため、一般の認識とは異なる「赤潮」の発生件数が増加することとなり、それに伴い報道等で扱われる機会が非常に少なくなった。その結果、「赤潮」は過去の問題であるという誤った認識が一般に広まり、我国の赤潮被害の実情が国民に伝わり難い一因となっている。また、海外では赤潮を意味する*red tide* から、*harmful algal bloom*（有害植物プランクトンの異常発生）へと名称が変更されている。

次に、全国的な赤潮発生傾向および三重県の赤潮発生傾向を検討した。図1・3には瀬戸内海、土佐湾および熊野灘における2000年代の漁業被害額（水産庁資料）を示し、2012年以降での *K. mikimotoi* および *H. akashiwo* 赤潮の発生総数は、*Chattonella* 属より多くな
図 1-3 瀬戸内海、土佐湾及び熊野灘における原因プランクトン別の赤潮発生件数
（水産庁資料）

図 1-4 三重県における原因プランクトン別の赤潮発生件数（三重県資料）

以上、全国と三重県の赤潮の発生状況について述べてきたが、K. mikimotoiによる赤潮は三重県のみならず日本の全海域に拡大して深刻な漁業被害を引き起こしてきた。現状の赤潮被害の対策としては、養殖生け簀の移動などの応急処置に留まっており、天然の魚類や二枚貝に対しては対応策がないのが現状である。赤潮防除法が確立していないまま現況を放置すると、新種赤潮の出現や温暖化による海洋環境の変化等によって、赤潮被害が将来増大して我が国の水産業が成り立たなくなることが懸念される。そこで、本研究では赤潮防除法の早期確立を目指して、赤潮発生の予測（予察）と連動した赤潮プランクトンを殺藻する細菌による生物学的防除法を開発することを主眼とした。

赤潮プランクトンを殺藻する細菌は、今までに多くの研究者によって報告がなされており、赤潮消失期に自然海域で生起している微生物間の相互作用を補完・拡充するという観点から、微生物を農薬として応用する方法が国際的に期待されている。

我国の動きとしては、“微生物等の働きを利用した環境修復事業の健全な発展および利用の拡大による環境保全を図ること”を目的とする「微生物によるバイオレメディエーション利用指針」（経済産業省環境省告示第4号）が2005年に定められた。この指針では「外部から導入された微生物が生態系へ影響を及ぼすことがない」ように強調され、導入された微生物が作業区域の外に拡散しないことが必要条件となっている。このため、流動拡散系である海域において殺藻細菌を用いた実証研究を行うことが我が国では事実上困難となり、2005年以降は現場
海域での実証実験は考慮されなくなった。一方、殺藻細菌に関する研究は2018年以降の報告数30件を超え、現在も活発に実用化に向けた基礎研究が盛んに行われている。また、韓国においては殺藻細菌を用いた大規模な実証実験が近年実施された。（Ⅲ章、Ⅵ章参照）

赤潮防除法の実用化の際に第一に考慮すべきことは、赤潮プランクトンの防除法である。しかしながら、突発的に発生する赤潮海域を事前に予測（予察）できなければ、防除法の実用化は実際には困難である。そこで、次節では赤潮の予察の可能性について考察し、第Ⅱ章では実際の観察結果を基に検討を行った。本章第4節からは、具体的な赤潮防除法について個別に検討を行った。

I-2. 赤潮の予察

赤潮の被害を軽減するために、赤潮の発生を事前に予測（予察）する技術は1960年代より検討されてきた。本研究の対象海域である五ケ所湾においては、冬期（12月～3月）の平均水温を測定することで夏季のK. mikimotoiによる赤潮の発生時期が予測可能であることがHonjo et al.によって報告されている。本報告では、五ケ所湾において冬季の水温が上昇すると、次年の赤潮の発生時期が早まると結論付けている。この理由として、冬期の海水温の上昇によって越冬したK. mikimotoiの数が増加し、次年度の五ケ所湾におけるK. mikimotoiの数が例年よりも増大することにより、赤潮の早期発生に繋がったと推測している。一方、周防灘におけるK. mikimotoiの赤潮発生予察に関しても研究が進んでいる。それによると、赤潮が発生する以前に周防灘西部浅海域で形成された貧酸素水塊が、強風によって周防灘から伊予灘へと拡大する現象が明らかとなった。このことから、貧酸素水塊の形成域の特定およびそれらの海域におけるK. mikimotoiの密度に伴って強風の気象予報を組み合わせれば、周防灘における赤潮発生の予察が可能と結論している。この根拠として、これらの報告では周防灘の海域に貧酸素水塊が形成されることによって底泥からアンモニア態窒素とリン酸態リンが溶出され、これらを摂取したK. mikimotoiの増殖が促進されて赤潮の発生に至る機序を考察している。

これらの知見により赤潮の発生を予察することができれば、想定される発生海域から養殖筏を回避させることなどにより赤潮の被害を低減する事が可能となる。また、赤潮防除の対策を講じる際には、殺藻細菌の手配など準備期間が必要となるため、赤潮の予察に即応して対応する
態勢を整備することにより、効率的な赤潮防除が可能になると思われる。以上述べたように、赤潮の防除を考える上では第一に赤潮の発生の予察が重大な意義を持つものと思われる。K. mikimotoi による赤潮発生については、先行研究 22,28 によって明らかにされたように、冬期の海水温が発生時期に影響を与えていることや、赤潮の発生海域が既に特定されている事例もある。しかしながら、赤潮発生年と非発生年との違いによるどのような要因によって決定されるのかという点は未だ解明されておらず、赤潮の発生時期を高精度に予察できる段階まで至っていないのが現状である。本研究では、対象海域として石川県の五ヶ所湾を設定し、当海域における K. mikimotoi 赤潮の発生予察の可能性について海水温の観測とは別に、K. mikimotoi の潜在的な増殖ボテンシャルを測定することによる検討も行った。（第Ⅱ章参照）

Ⅰ-3. 赤潮発生の予防

赤潮被害を防止あるいは軽減するためには、第一義的には海域の富栄養化を防ぐことが重要である。そのため我が国においては、河川等から沿岸海域に流入する栄養塩（無機態窒素、無機態リンなど）を、水質汚濁防止法などによる法的規制で抑制することによって富栄養化を防止する対策が採られている。さらに、赤潮が発生する海域においては、養殖漁場の汚染が低減できるような飼の使用、海底泥の浚渫や覆砂、底質改善のための海底耕作などの方策によって、海底からの栄養塩の供給を低減する対策が講じられている。しかしながら、Ⅰ-1. で示した様に、現在でも依然として赤潮は多発しており、上述した対策だけでは赤潮の発生を完全に予防できないことは明瞭である。現時点では赤潮の発生を予察することは困難な状況であるため、既に発生した赤潮によって生じる漁業被害をできるだけ軽減させるという、応急の対処法を含めた赤潮防除法の開発が最も優先されるというのが水産業の現実での認識である。以下に我国において今まで研究・試行されてきた赤潮の防除技術の詳細について述べる。

Ⅰ-4. 赤潮の防除法

Ⅰ-4-1. 物理的・化学的方法

物理的・化学的な赤潮防除技術は、以前から国内外において数多くの研究者が開発に取り組んできた。主な物理的方法としては、① 回収、② 超音波、③ 紫外線照射が挙げられ、主な化学的の手法としては、④ 化学薬品、⑤ 凝集剤、⑥ 粘土が挙げられる。

これらの防除法の中で、⑥ 粘土の散布は過去実用化された唯一の方法であるが、防除効果を
示す赤潮プランクトンが限定されるという欠点がある。そのため、我国で最も発生件数が多い \textit{K. mikimotoi} および \textit{H. akashiwo} に対応する防除技術は、物理的や化学的方法のどちらの方法においても未だ何も提案されていない状況である。以下に赤潮プランクトン防除の物理的・化学的方法の利点と短所について詳述し、併せて実用化に向けた検討を行う。

① 回収
気泡発生装置で発生させた細かな気泡を赤潮プランクトンに吸着させ、海面に浮上させた後に回収する方法で、加圧浮上法 27 や泡沫分離法 28 がある。泡沫分離法は凝集剤（I -4 -1 -5 参照）と併用することで処理効率が改善することが示されているが、実用化には至っていない。

② 超音波
過密の状態で存在する赤潮プランクトンの水塊に超音波を発信し、プランクトンの細胞を直接破壊する方法であるが、超音波の到達距離が短いために赤潮プランクトンが低密度の水塊では効率が著しく低下する等の問題があり、実用化には至っていない。29

③ 紫外線照射
照射強度 400 \(\mu \text{W} \) 以上、300 秒以上の紫外線照射で \textit{H. akashiwo} が駆除できることが報告されている。しかしながら、大量の海水を短時間で処理するための紫外線照射装置を、現場の海域に設置することは現実的に困難なために実用化に至っていない。30

④ 化学薬品
過去に過酸化水素（オキシドール）31,32 等の海中散布が検討され、実証試験の準備段階まで進んだが、散布した際の他の生物への影響や大規模適用における持続性に問題があることが提起されて、計画は中止となった。さらに経済的なコストがかかることなどの問題もあり、未だに実用化に至っていない。

⑤ 凝集剤
凝集剤を海中散布して、赤潮プランクトンを凝集させた後に回収する方法であるが、凝集剤は一般的に高価なものが多いため、経済的なコストが生じる。また、赤潮プランクトンの増殖
促進物質と考えられる鉄などの微量元素や、硫化水素の発生に繋がる硫酸基を含むような凝集剤を大規模に使用することは避けるべきと考えられている。29 そのため、現在は実用化の検討は、なされていない。

⑤ 粘土

粘土を海中に散布することによる赤潮プランクトンの防除法は、我国で実用化が可能となった唯一の方法である。粘土鉱物由来のコロイド粒子が海中で懸濁物質を凝集・吸着する性質を利用した上で、鹿児島県産のモンモリロナイト系粘土（以下粘土）は、赤潮プランクトンの萎縮および破壊作用を持つアルミニウムの溶出量が多いことから、少ない散布量で赤潮防除効果を示すことが知られている。29, 33

粘土の海中散布においては、陸上とは異なる開放系であるために、環境に及ぼす影響が広範囲に及ぶ虞がある。そのため、本方法や他の化学的方法を海域で用いる場合は、その安全性についてアセスメント等の十分な検討が必要である。粘土散布法については、同方法が環境に与える影響は既に評価されており、2,000 mg/l の粘土散布による底泥からのリン酸塩の溶出抑制や、pH の一時的な低下が観察されている。一方、Cochlodinium polykrikoides 対策で使用される際での 1,000 mg/l 以下の粘土濃度では、水質や底質に与える悪影響は極めて少ないとされている。33

以上述べたように粘土散布は赤潮プランクトンの防除に有効な方法であるが、実際に粘土散布を実施する海域は閉鎖的な環境に限定される。また、赤潮プランクトンの種類によって防除効果に差がみられ、C. polykrikoides 対する粘土散布の実施は可能である。一方、K. mikimotoi および H. akashiwo に対する最低粘土濃度は、200 〜 1,000 mg/l と比較的低濃度で、K. mikimotoi では 2,000 〜 4,000 mg/l, H. akashiwo では 5,000 〜 6,000 mg/l の程度である。また、マダイの孵化率は、粘土濃度 2,000 mg/l で 97.8% であるが、4,000 mg/l に増大すると 87.5%に低下することが報告されており、33 他の海産生物に影響を与えない濃度での粘土散布の実施を考慮した場合、K. mikimotoi および H. akashiwo を粘土散布で除去することは困難である。

I－4－2. 生物的方法

1960 年代より物理的・化学的赤潮防除について精力的に研究が行われているにもかかわらず、主要な赤潮プランクトンである K. mikimotoi および H. akashiwo に対する赤潮防除技術に関しては、未だ確立されていない状況である。物理的方法では採水した海水を装置に通し
て処理しなければならず、効率が悪いことが主な原因となって今日まで実用化に至っていない。
現場海域に薬剤等を直接散布する化学的方法では、物理的手法より効率性および作業性の点で優れているが、生態系に与える影響が大きな障壁となっている。（I-4-1. 参照）
一方、生物学的方法については、海域に赤潮プランクトンを防除する生物を直接散布できることから、化学的手法と同様に効率性や作業性が高い。また、海域における赤潮の消失期に、実際に現場で生じている微生物間の相互作用を補完・拡充するという観点から、現場海域の生態系に与える影響は極めて少ないと考えられている。
実用化の可能性が高い生物的方法としては、①赤潮プランクトンと競合あるいは捕食する生物、②殺藻ウイルス、③殺藻細菌などが挙げられる。これらの生物的方法について、以下に詳述する。

① 赤潮プランクトンと競合あるいは捕食する生物
板倉34は、赤潮プランクトンの内で魚介類を殲死させる原因となる鞭毛藻（主にラフィド藻や渦鞭毛藻）が珪藻類と競合関係にあることに着目し、海域に珪藻類を投与することによる赤潮発生の予防を提案している。
一方、従属栄養性渦鞭毛藻であるGyrodinium dominans は、赤潮プランクトンであるChattonella antiquaやHeterocapsa triquetaを餌として増殖することが明らかになっている。35, 36瀬戸内海の家島においてK. mikimotoiによる赤潮の発生期間中に従属栄養性渦鞭毛藻類が増殖し、K. mikimotoiの細胞数の減少が観察されている。37また、纖毛藻類は、赤潮プランクトンであるHeterocapsa circularisquamaを捕食することが報告されている。38これらの知見から、従属栄養性渦鞭毛藻類や纖毛藻類による赤潮プランクトンの捕食能利用した赤潮防除の可能性が考えられる。しかしながら、自然海域において赤潮プランクトンの捕食者が他の生物に食べ尽くされた事例も報告されており、39 捕食生物の能力が発揮できるための他生物の状況や環境要因などの条件について、更なるデータの収集が不可欠である。また、捕食生物が赤潮プランクトンと競合する藻類を捕食することによって、結果的に赤潮プランクトンの増殖を助長する可能性や、捕食生物の大量培養法やその保存方法についても、併せて検討を行う必要がある。

②殺藻ウイルス
現在までに、魚類に被害を与えるH. akashiwoおよび貝類の殲死原因となるHeterocapsa
circularisquama をそれぞれ特異的に溶解（溶藻）するウイルスが単離されており、これららのウイルスを用いた生物農薬としての利用が期待されている。ウイルスによる赤潮プランクトンの駆除を考慮する場合は、抵抗性を持つ宿主タイプの出現が問題となる。H. akashiwo を溶藻する HaV は、宿主によって溶藻する H. akashiwo 株と溶藻しない H. akashiwo 株が存在することが知られており、さらにウイルスの大量培養法などの解決しなければならない課題が未だ多数残されている。

③ 殺藻細菌

赤潮プランクトンを殺藻する細菌の存在は、今までに多くの研究者によって報告がなされている。44-49 これら殺藻細菌は、自然海域における赤潮消失期で生じている微生物間の相互作用を補完・拡充するという観点から、環境に负荷を与えることの少ない微生物農薬としての活用が期待されている。今井 49 は、マクサやアオサに多数の殺藻細菌（II-4 参照）が付着していることから、大型藻類を海域へ移植することによって殺藻細菌を海域に分布させることによる赤潮の予防法を提案した。さらに赤潮を予防するだけでなく、移植した大型藻類を養殖魚類の飼料としても利用するという着想は、非常に独創的なものがある。

そこで、本研究では赤潮プランクトンを殺藻する細菌を使用した赤潮防除法の実用化を目指し、現場の海域を想定した条件下での殺藻細菌の有効性を検討することを目的とした。

まず、次章（第 II 章）においては赤潮防除法の第一段階である「予察」の方策を検討するため、三重県 五ヶ所湾における K. mikimotoi の潜在的な増殖ポテンシャルを、Algal growth potential (AGP) を用いて観測した。次に、得られた K. mikimotoi の AGP の観測結果と赤潮発生の記録を併せて検討することにより、五ヶ所湾における K. mikimotoi 赤潮発生予察の可能性を考察した。

第 III 章においては、赤潮被害の低減および予防法を開発するため、K. mikimotoi を特異的に殺藻する細菌を五ヶ所湾および伊勢湾から探索して単離・同定を行った。さらに、海域中の自然細菌群の存在下における殺藻細菌の殺藻能についても検討した。第 IV 章では、殺藻細菌の現場海域での有効性をさらに検討するため、培養規模を拡大した培養槽を設置して模擬赤潮を
再現し、殺藻細菌の動態を明らかにする実験を行った。

しかしながら、本研究での目的である防除法の実用化を目指すためには、現場海域での殺藻細菌の動態に関する知見をさらに得なければならない。そこで、第Ⅴ章では、K. mikimotoi 並ぶ赤潮原因プランクトンであるラフィド藻 H. akashiwo を殺藻する細菌を伊勢湾岸から探索・単離した。続いて、現場海域の細菌群存在下での殺藻細菌 9/27-2 株の海域における動態を検討するため、細菌由来の 16S rRNA 遺伝子を、変性剤添加濃度勾配ゲル電気泳動法を用いて、採取・培養した海水より検出した。

最終章（第Ⅵ章）では、第Ⅱ章から第Ⅴ章までに得られた実験結果を基に、予察を含めた殺藻細菌を用いた赤潮防除法の実地応用への可能性について総合的に考察した。
第II章 五ヶ所湾における *Karenia mikimoti* 赤潮の発生予察

殺藻細菌による赤潮の制御は、従来の化学物質による手法と比べると環境に対する負荷が少ない（＝環境にやさしい）ことが特徴である。しかし、突然的に発生した赤潮の海域に対し、その時点で適切に、大量の殺藻細菌を海域に散布することは困難である。そのためには、予め殺藻細菌を大量に培養した後に、殺藻細菌を保存・保管できれば対応が可能となる。

細菌の保存方法としては、凍結保存法や凍結乾燥保存法などが報告されているが、50,51 環境に負荷を与えるような保護剤を添加することなしに、高い生残率および殺藻能を維持したままでの細菌を保存する方法は未だに報告されていない。以上の観点から、微生物による赤潮被害の防除法を検討する際は、赤潮の発生を“予察した時点”において速やかに殺藻細菌の培養を開始して海域に散布する準備を行うことが重要となる。そこで本章では、赤潮プランクトンの一種である渦鞭毛藻 *Karenia mikimoti*（＝*Gymnodinium mikimoti*）による赤潮の発生予察の可能性について、三重県五ヶ所湾を対象海域とした検討を行った。

飯塚・入江52 は、長崎県大村湾において *K. mikimoti* による赤潮の発生と環境状況の関連性を調査し、*K. mikimoti* 赤潮について「降水性赤潮」と「無酸素化関連赤潮」の2つの型に大別した。「降水性赤潮」は河川水の流入によって栄養塩が供給され、一方、「無酸素化関連赤潮」は底泥からの溶出によって栄養塩が供給される。しかし本城53 によると、1984年夏期に五ヶ所湾において発生した赤潮は、降水による塩分低下とは無関係であることから「降水性赤潮」ではないと判断している。また、1986年における赤潮発生による *K. mikimoti* 密度の増大と、その地点の底層における溶存酸素低下とは相関性がなかったとしている。上記の観測結果から、五ヶ所湾での *K. mikimoti* 赤潮の発生型については、「降水性赤潮」および「無酸素化関連赤潮」のどちらにも該当しなかったと報告している。

Honjo et al.54 は、五ヶ所湾における *K. mikimoti* 赤潮の発生時期と冬期の平均水温との間に強い関連性を観察し、赤潮の出現時期を予察できる可能性を報告した。さらに Honjo et al.55 によると、この原因として冬期の海水温の上昇によって生残する *K. mikimoti* の遊泳細胞数が増大し、それにより越冬した *K. mikimoti* の細胞数が増加して次年では赤潮が早期に発生したと推測している。しかし、上記の報告以外では、五ヶ所湾における赤潮発生の予察に関する知見は得られていない。

そこで本研究では、Honjo et al. と同様の五ヶ所湾の観測地点において *K. mikimoti* の潜在的増殖ポテンシャルである Algal growth potential（AGP）を測定し、得られた AGP と観
測定点での環境状況を解析することで K. mikimotoi 赤潮の発生機構を検討し、赤潮発生の予察の可能性について検討を行った。

II - 1. 材料および方法

II - 1 - 1. 海洋観測法

海洋観測は1991年から1994年の赤潮発生時期前後に、三重県五ヶ所湾 追間浦の観測定点（水深19 m）で実施した（Fig. 2・1）。観測の間隔は基本的に1ヶ月に1回（1991年の6月から8月の間は1ヶ月に2回）とし、水温、塩分および溶存酸素量を観測した。また、観測定点において0.5 m、2.0 m、5.0 m層および海底直上1.0 m層（B-1 m）の海水を採取し、採取後の海水試料は4℃に冷蔵したまま研究室に搬入した後に、AGP測定試験に供した。さらに、0.5 m、2.0 m、5.0 m、10 mおよびB-1 m層で採取した海水を用いて無機態窒素、無機態リンおよび生息する植物プランクトンの分布を常法56に従って測定した。なお、K. mikimotoiの細胞密度が100 cells/ml以上となった場合に、赤潮が形成されたとした。

![Fig. 2・1 Location of sampling station (●) in Gokasho Bay.](image-url)

II - 1 - 2. K. mikimotoiのAGP測定法

供試赤潮プランクトンとして使用した渦鞭毛藻 K. mikimotoi は、水産庁南西海区水産研究所 山口峰生博士によって分離された無菌クローン株（G303 株）を用いた。

五ヶ所湾で採取した海水試料は、GF/Cガラスフィルター（Whatman）（450℃で1時間乾熱滅菌を行って有機物の灰化処理を行ったもの）でろ過した後、さらに0.2 μm nuclepore フィ
ルター（Whatman）でろ過を行うことにより、無細菌区の海水を調製した。調製した無細菌区海水を、100 ml 容フラスコ（450℃で1 時間乾熱滅菌を行って有機物の灰化処理を行ったもの）に40 mlずつ分注した。その後、予め無菌海水で改変SWM-3 培地を10 倍希釈したものを用いて前培養し、得られたK. mikimotoi クローン株培養液0.1 ml を、各々100 ml 容フラスコに接種し（初期細胞数11〜36 cells/ml）、その後、水温20-23℃、照度50.4 μE/m²/s、初期接種した細胞数11〜36 cells/ml とし、前培養から転移された培地成分がAGP に与える影響は無視でき得ると判断した。

II - 1 - 3. AGP によるK. mikimotoi の増殖因子の検討

1994 年における赤潮発生の前後の時点で採取した海水試料（0.5 m 層）をGF/C ガラスフィルターでろ過した後、さらに0.2 μm nuclepore フィルターで再度ろ過して無菌区海水を調製した。得られた海水に栄養塩（終濃度 2.0 mM NaNO₃ および 0.1 mM NaH₂PO₄）を添加して「窒素添加海水区」、「リン添加海水区」および「窒素・リン添加海水区」の3 種を調製した。その後、1/10 改変SWM-3 培地で前培養を行ったK. mikimotoi 培養液 0.1 ml をそれぞれの試験区に接種した。接種時の初期細胞数は11〜36 cells/ml であった。接種後の海水培地は水温20-23℃、照度50.4 μE/m²/s、初期14 時間／暗期10 時間の条件で培養を行った。K. mikimotoi
の細胞数は、隔日ごとに光学顕微鏡で藻体を直接計数して、平均を最大増殖量（cells/ml）とし
た。求めた最大増殖量から初期接種量を引いたものを AGP（cells/ml）とした。なお、栄養塩
添加試験は各試験区 3 連の検体で行い、最大増殖量を計数して AGP を求めた。

II - 2. 結果

II - 2 - 1. 五ヶ所湾における K. mikimotoi 赤潮発生状況

五ヶ所湾 追問浦地点における K. mikimotoi 細胞の季節的・鉛直的分布を Fig. 2-2 に示し
た。1991 年では 7 月下旬から 8 月中旬にかけて 2～5 m 層を中心に中規模な K. mikimotoi
赤潮の発生がみられ、その最高細胞密度は 750 cells/ml 程度であった。1992 年は 7 月中旬か
ら、採取海水中に K. mikimotoi が観察され始め、8 月中旬には最高細胞密度 640 cells/ml 程度
の赤潮が発生した。1993 年では 8 月初旬に K. mikimotoi 細胞が観察されたが、その密度は
100 cells/ml 以下であり、赤潮形成には至らなかった。1994 年は 6 月中旬から K. mikimotoi
細胞が見られ、7 月中旬から 8 月初旬にかけて大規模な K. mikimotoi 赤潮が発生し、赤潮の
最盛期（8 月初旬）での最高細胞密度は 3,100 cells/ml に達した。

II - 2 - 2. 五ヶ所湾における K. mikimotoi の AGP

Fig. 2-3 に示したように、1991 年では 4 月 17 日から 7 月 4 日にかけて、採取海水の AGP
は各層で低い値（0～150 cells/ml）を示したが、赤潮形成初期の 7 月 23 日では、特に B-1 m
層で AGP の増大がみられ、1,150 cells/ml となった。赤潮最盛期に至ると、表層を除く各層で
高い AGP を示したが、その後の赤潮の消失に伴って AGP は減少した。

1992 年も 1991 年と同様に、ほぼ同じ時期の 4 月 21 日から 5 月 20 日にかけて、AGP は各
層で低い値（60～350 cells/ml）を示したが、赤潮発生直前の 6 月 16 日の AGP は B-1 m 層で
860 cells/ml まで増大し、赤潮形成時も AGP は高い値を維持した。

赤潮形成に至らなかった 1993 年では 9 月に B-1 m 層で AGP の増大がみられなかったが、赤潮発
生が観察される 7 月から 8 月の期間や、それ以前の期間での B-1 m 層における AGP の増大は
観察されなかった。

赤潮の大規模な発生がみられた 1994 年では、赤潮発生前の B-1 m 層で AGP の顕著な増大
が観察され、6 月 15 日の AGP は 2,690 cells/ml に達した。その後の赤潮最盛期に B-1 m 層の
AGP は最大値となったが、赤潮の消失に伴って B-1 m 層の AGP は減少傾向を示した。
Fig. 2 - 2 Seasonal and vertical distribution of K. mikimotoi in Gokasyo Bay in 1991, 1992, 1993 and 1994.
Fig. 2 - 3 Changes in AGP and cell number of K. mikimotoi at the station in Gokasho Bay. AGP at each depth: □, 0.5m; △, 2.0m; ■, 5.0m; ▼, B-1m; ■, Maximum cell number of K. mikimotoi at the station. Error bar indicates standard deviation in 1994. *, Growth potential was less than 10^3 cells/ml.
1991年から1994年においてK. mikimotoi細胞が観察された期間（6月〜8月）の同藻細胞数（各層の最大値）と各層におけるAGPとの関係を検討した結果、水深が深いほど赤潮発生との相関係数が高くなる傾向がみられ（Table 2・1）、K. mikimotoi細胞数とB-1 m層のAGPとの間で最も高い相関関係がみられた（Fig. 2・4）。

次にAGPと水質環境の関係を検討するために、大規模な赤潮が発生した1994年におけるB-1 m層のAGPと、底層における水質環境の変動をFig. 2・8に示した。K. mikimotoiの赤

<table>
<thead>
<tr>
<th>Depth</th>
<th>Sample size</th>
<th>Correlation coefficient</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m</td>
<td>n = 14</td>
<td>r = 0.033</td>
<td>p > 0.05</td>
</tr>
<tr>
<td>2.0 m</td>
<td>n = 14</td>
<td>r = 0.526</td>
<td>p > 0.05</td>
</tr>
<tr>
<td>5.0 m</td>
<td>n = 14</td>
<td>r = 0.534</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>B-1 m</td>
<td>n = 14</td>
<td>r = 0.731</td>
<td>p < 0.01</td>
</tr>
</tbody>
</table>

Table 2-1 Correlation between AGP at each depth and maximum cell numer of K. mikimotoi at the station in Gokasyo Bay from June to August in 1991-1994.
Fig. 2-5 Seasonal changes in AGP, DO, NH₄-N and PO₄-P at B-1 m at the sation in Gokasho Bay in 1991.

, *K mikimotoi* bloom at a level of more than 10⁶ cells/ml

, Growth potential was less than 10⁵ cells/ml

Fig. 2-7 Seasonal changes in AGP, DO, NH₄-N and PO₄-P at B-1 m at the sation in Gokasho Bay in 1993.

Fig. 2-6 Seasonal changes in AGP, DO, NH₄-N and PO₄-P at B-1 m at the sation in Gokasho Bay in 1992.

, *K mikimotoi* bloom at a level of more than 10⁶ cells/ml

Fig. 2-8 Seasonal changes in AGP, DO, NH₄-N and PO₄-P at B-1 m at the sation in Gokasho Bay in 1994.

, *K mikimotoi* bloom at a level of more than 10⁶ cells/ml
潮が発生した7月中旬から9月初旬にかけて、底層での溶存酸素量の低下が観察され、それに伴うアンモニア態窒素およびリン酸態リンの底泥からの溶出が観察された。また、AGPと溶存酸素との間には負の相関関係が認められ、底層の貧酸素化に伴って栄養塩が溶出してAGPの増大をもたらし、K. mikimotoi赤潮が発生したと推測した。1991年および1992年の赤潮形成時においても同様に、B-1m層での溶存酸素量の低下に伴うAGPの増大が観察された（Fig.2-5, 2-6）。

1993年ではK. mikimotoi赤潮は発生しなかったが、B-1m層の溶存酸素量が低下した9月中旬においてAGPの増大が認められた（Fig.2-7）。しかしながら、Fig.2-5とFig.2-7に示したように、溶存酸素が低下してもAGPが増大しなかった期間も存在し、貧酸素化とAGPの増大が直接的に相関を有しているとは考え難いと考察した。

II-2-3. 五ヶ所湾におけるK. mikimotoiの増殖因子

五ヶ所湾における赤潮発生前後のK. mikimotoi増殖因子を明らかにするため、1994年に採取した0.5m層の海水に、リン酸塩と硝酸塩を添加した後の表層におけるAGPを測定した（Fig.2-9）。

赤潮最盛期前の6月15日および7月12日では、リン酸塩の添加によるK. mikimotoiの増殖促進効果が観察され、リン酸塩がK. mikimotoiの増殖因子となっていることが示唆された。一方、栄養塩無添加海水においても赤潮最盛期の8月12日ではAGPが10³cells/ml程度まで

![Fig.2-9 Effects of various nutrient addition on AGP for K. mikimotoi.](Fig.2-9)
The seawater sample collected from Gokasho Bay (0.5 m) in 1994, NO₃-N and PO₄-P was added to filtered seawater to final concentration of 2 mM NO₃-N and 0.1 mM PO₄-P, respectively.

21
増大し、リン酸塩添加および硝酸塩を添加した海水と同程度の増殖がみられたことから、リン酸塩や硝酸塩の添加による増殖効果は見られなかったと判断した。

その後、赤潮が消失した9月7日では、硝酸塩の添加によるK. mikimotoiの増殖促進効果が若干観察された。さらに、硝酸塩とリン酸塩を同時に添加した海水では、赤潮最盛期前（6月15日、7月12日）でのAGPは10⁵cells/ml程度の増加となり、赤潮最盛期および終息期（8月12日、9月7日）では10⁶cells/ml程度に増加し、全ての海水試料で増殖効果が確認された。また、赤潮最盛期および終息期においてはリン酸塩および硝酸塩添加では顕著なK. mikimotoiの増殖効果が見られない一方で、リン酸塩と硝酸塩を同時に添加した場合、10⁷cells/ml程度の顕著なAGP増大が認められた。

Ⅱ-3. 考察

五ヶ所湾においてK. mikimotoi赤潮の形成時期および形成以前におけるB-1 m層のAGPを測定した結果、K. mikimotoi赤潮の形成時期および形成以前におけるB-1 m層のAGPが約10⁴cells/ml程度に増大することが観察され（Fig. 2-3）、赤潮の発生がみられた期間（6月〜8月）のK. mikimotoi細胞数とB-1 m層のAGPとの間に高い相関性が認められた（Fig. 2-4）。B-1 m層のAGPに着目すると、K. mikimotoiの赤潮が発生しなかった1993年以外での6月から8月にかけては、B-1 m層におけるAGPの増大がみられ、AGPが増大した時点から2週間から1ヶ月半後にK. mikimotoi赤潮は最高細胞密度に達した。さらに、大規模な赤潮が発生した1994年におけるB-1 m層のAGP値は、1991年および1992年の中規模の赤潮が発生したAGPよりも高い値を示した。一方、K. mikimotoi赤潮が発生しなかった1993年では、7月から8月またはそれ以前におけるAGP値の変動は観察されず、赤潮が発生した年とは異なる傾向を示した。

以上の結果から、K. mikimotoi赤潮発生の最盛期より2週間から1ヶ月半前の時点でのB-1 m層におけるAGP値の増大が観察され、五ヶ所湾での赤潮発生とB-1 m層のAGPとの間には関連性があることが認められた。このことから、B-1 m層のAGPの観測結果を用いれば、五ヶ所湾における赤潮発生の予察が高い確度で可能であると判断した。しかしながら、1991年の観測結果の裏に、AGPの増大が赤潮発生の直前に生じた場合は、AGP試験が完了するまでに約2週間が必要であることを考慮すると、赤潮発生の予察によって赤潮被害を未然に防除することは困難であると思われた。
一方、AGPの変動が1992年および1994年と同様な傾向を示した場合には、6月中旬の底層のAGPを測定することによって、赤潮発生を予察して赤潮被害を防除することは十分可能であると判断した。今後の課題として、赤潮発生予察の確実性を更に向上させるためにAGPの変動傾向のデータを蓄積する必要がある。また、赤潮発生予察の実用化に関する他の課題としては、AGP試験の測定時間短縮法などを検討する必要があると思われる。

次に、赤潮発生とAGP増大の関連性を検討するために、五ヶ所湾の底層における赤潮発生前後の水質環境の変動を検討した。その結果、大規模な赤潮が発生した年の7月中旬から9月初旬にかけて溶存酸素が低下し、それに伴う底泥からのリン酸塩の溶出が観察された。溶存酸素とAGPとの間には負の相関関係が認められたことから、底層海水の貧酸素化によって底泥からリン酸塩が溶出し、K. mikimotoiに対して増殖促進効果を示したためにAGPが増大したと推察した。

山口59は福岡県宇島港においてK. mikimotoiの鉛直分布の経時変動を調べた結果、K. mikimotoiの分布の中心が日没後に底層へ移行することを示し、本藻は昼夜で鉛直移動を行っている可能性を報告した。またHonjo et al.60は、五ヶ所湾で発生したK. mikimotoi赤潮の明瞭な日周鉛直移動を観察し、遊泳速度は1.3 m/hと算出した。Koizumi et al.61はK. mikimotoiの最高移動速度は2.2 m/hで、20 mの鉛直移動が可能であると報告している。また、本城53はK. mikimotoiの最高到達水深を16 m付近と推定した場合、五ヶ所湾において夜間に同藻が底層へ到達できる面積は、全域の2/3を占めると報告している。これららの報告から、五ヶ所湾で発生するK. mikimotoiは、底層から湧昇してきた栄養塩を摂取するだけでなく、底層へ遊泳して栄養塩を直接利用できることが推測される。このことから、底層における同藻の増殖ポテンシャル（＝AGP）が赤潮発生に強く影響したと推察される。

飯塚・入江52は長崎県大村湾においてK. mikimotoiの発生と環境要因を解析した結果、降水性赤潮と無酸素化関連赤潮の2つに類別できるとした。また、山口59は周防灘におけるK. mikimotoiの赤潮発生年（1985年および1986年）と赤潮非発生年（1987年）との間での海況の差異を比較して、赤潮発生の機構を考察した。それによると、赤潮が発生した年では、表層塩分は全域に亘って30‰以下に低下し、その結果、密度躍層が形成されて底層での溶存酸素の低下が観察されたとしている。すなわち、周防灘における降雨とその結果である貧酸素水塊の形成が、K. mikimotoi赤潮の発生に相関性があると結論付けている。

一方、本研究の五ヶ所湾においては、赤潮発生年の1991年と赤潮非発生年の1993年での7月から8月にかけての塩分値は、表層において30‰強の低下が観察されたが、赤潮発生と低
塩分化との間に明らかな相関性は確認できなかった。一方で、1991年から1994年の期間におけるK. mikimotoi赤潮発生時には、底層において溶存酸素量の低下が観察された（Figs. 2 - 5 - 8）。この時のAGP値は、底層で最も高い値を示した。この結果は、五ヶ所湾においては貧酸素化による底泥からの栄養塩の溶出が、K. mikimotoi赤潮の発生に寄与したと推察できる。

以上の結果から、五ヶ所湾で1991年、1992年および1994年に発生したK. mikimotoi赤潮は、赤潮の発生時には、底層において溶存酸素量の低下が観察された（Fig. 2-5~8）。この時のAGP値は、底層で最も高い値を示した。この結果は、五ヶ所湾においては貧酸素化による底泥からの栄養塩の溶出が、K. mikimotoi赤潮の発生に寄与したと推察できる。

Fig. 2-9の結果から、1994年の赤潮発生以前における五ヶ所湾の表層でのK. mikimotoiの増殖促進因子はリン酸塩であることが明らかとなった。そのため、貧酸素化によって底泥から供給された栄養源は、リン酸塩である可能性が高いと推測した。西島・深見52は高知県浦の内湾におけるK. mikimotoiは、リン酸塩によって増殖したと報告しており、本論文と同様の結論を得ている。また、山口57は、他の海産植物プランクトンと比べるとK. mikimotoiは最適N：P比が低い数値を報告しており、K. mikimotoiの増殖は、海域で進行したN：P比の増大によるリン酸塩量の変化によって影響される可能性があると考えている。他の報告としては、播磨灘の海水にリン酸塩を添加した後にSkeletonema costatumおよびPeridinium sp.のAGPを測定した結果、これらのプランクトンに対するリン酸塩の増殖促進効果が観測されている。63また、大阪湾の海水にリン酸塩を添加することによってもHeterosigma akashiwoの増殖が促進されたことが報告されている。64これらの結果から、内湾海域に生息する植物プランクトンにとっては、リンは主要な増殖因子であると判断できる。さらに、キレート鉄やビタミン類による植物プランクトンの増殖促進効果についても報告がある。65,66

本研究における赤潮最盛期および終息期（8月12日、9月7日）の五ヶ所湾の海水のAGPは、硝酸塩およびリン酸塩ののみを添加したもの、あるいは無添加のものでは増加はみられなかった一方で、硝酸塩とリン酸塩を添加した場合は10^4 cells/ml程度と顕著に増加した（II-2-3）これらの結果から、赤潮最盛期および終息期の海水には、窒素やリンの栄養塩以外にビタミン類などの何らかの増殖促進因子が存在し、そこに添加されたリン酸塩と硝酸塩の相乗効果によって、K. mikimotoiの増殖が顕著に促進した可能性が示唆された。

増殖促進因子やその発生源などは特定されていないが、殺藻細菌によって死滅したK.
mikimotoi の細胞や、殺藻細菌自身から産生された増殖促進因子が海水中に存在する可能性が考えられる。

II - 4．要約

1991 年の 4 月から 1994 年の 10 月までの赤潮発生前後の期間を観測期間とし、三重県五ヶ所湾迫間浦における観測定点での K. mikimotoi の Algal growth potential（AGP）を測定した。K. mikimotoi 赤潮が発生した 1991 年、1992 年および 1994 年では、赤潮発生の最盛期以前での海底直上 1 m 層 (B-1 m) における AGP 値は 10^3 cells/ml レベルに增大した。一方、K. mikimotoi 赤潮が発生しなかった 1993 年では、赤潮盛期である 7～8 月において、B-1 m の AGP 値には変化が見られなかった。これらの結果から、B-1 m の AGP 測定を基にすれば、赤潮発生を予察できる可能性があると判断した。

また、五ヶ所湾の K. mikimotoi 増殖因子を明らかにするため、窒素およびリンの栄養塩を添加した AGP 試験を行った。その結果、1994 年の赤潮発生以前における表層での K. mikimotoi の増殖因子はリン酸塩であることが判明した。そのため、五ヶ所湾での底層海水の貧酸素化によって底泥から供給された K. mikimotoi の栄養源はリン酸塩であると推測した。
第Ⅲ章 Karenia mikimotoi 殺藻細菌の性状と動態

植物プランクトンの一種である渦鞭毛藻 Karenia mikimotoi は日本沿岸に分布しており、近年では大きな漁業被害を引き起こす赤潮プランクトンの一つとなっている。この赤潮プランクトンを防除するための研究は 1960 年代から始まっているが、近年では赤潮プランクトンを殺藻する細菌を用いた防除法が注目されている。赤潮プランクトンを殺藻する細菌が単離・同定され、これらの細菌が現場海域において赤潮の消長に大きく関わっていることが報告されている。我々の環境浄化の理念が進展すると共に、これらの殺藻細菌を「微生物農薬」として用いた赤潮防除の可能性が現在最も注目されている。

Ishio et al. は、K. mikimotoi の増殖を阻害するビブリオ属である Vibrio algoinfestus を福岡県博多湾の堆積物から単離した。Fukami et al. は高知県浦ノ内湾の海水から K. mikimotoi を殺藻する Flavobacterium sp. 5N-3 株を単離し、特異的に同藻を殺藻することを報告している。また、Yoshinaga et al. は和歌山県田辺湾において、K. mikimotoi 赤潮が発生している期間に現場海水から探索を行って、28 株の同藻の殺藻細菌を単離している。以上のように、K. mikimotoi を殺藻する細菌は幾つか報告がなされているが、現場への応用を図るためには更なるデータの蓄積が必要である。

Ⅲ-1. では、K. mikimotoi に対して殺藻能を有する細菌を三重県五ヶ所湾迫間浦の海水から探索を行い、得られた Alteromonas (= Pseudoalteromonas) 属 6/6-46 株についての性状および動態について検討した。Ⅲ-2. では、さらに新たな殺藻細菌を単離するため、五ケ所湾とは異なる内湾環境（伊勢湾沿岸の三重県町屋浦）の海水から探索を行って、得られた Flavobacterium 属 MA10 株の性状を検討し、併せて自然細菌群存在下での K. mikimotoi 殺藻能について検討を行った。

Ⅲ-1. 殺藻細菌 6/6-46 株の性状と動態

Ⅲ-1-1. 材料および方法

Ⅲ-1-1-1. 赤潮プランクトンの培養

水産庁南西海区水産研究所 山口藤生博士から譲された無菌クローン株 K. mikimotoi G303 株を対象赤潮プランクトンとして実験に供した。また、国立環境研究所から譲された
Chattonella antiqua NIES-1 株、Chattonella marina NIES-3 株、H. akashiwo NIES-5 株およびSkeletonema costatum NIES-32 株（全て無菌クローン株）も、併せて対象藻類として使用した。これらの赤潮プランクトンは、全て改変SWM-3培地（7071）を用い、水温20℃、照度45.3-74.4 µE/m²/s、前期14 時間暗期10 時間の条件で培養を行った。また、同条件でプランクトンの継代培養を行った。

III-1-1-2. 殺藻細菌 6/6-46 株の単離

1990年6月から8月の期間に、五ヶ所湾迫間浦の観測定点（Fig. 3-1）における0.5 m、2.0 m、5.0 m層および海底直上1 m層（B-1 m）の海水を採取した。得られた海水試料は、冷蔵（4°C）した状態で研究室に搬入し、普通寒天培地（ポリペプトン 5 g、酵母エキス 3 g、寒天 15 g／海水 1 l）を用いて海水中の細菌の培養を行い、併せてAGP試験を実施して殺藻細菌を単離した。

AGP測定は以下の条件で行った。すなわち、海水試料をGF/Cガラスフィルター（450℃で1時間乾熱滅菌を行って有機物の灰化処理を行ったもの）でろ過し、次いで0.8 µm あるいは0.2 µm nuclepore フィルターのどちらかでろ過を行った。ろ過海水試料は、三角フラスコ（450℃で1時間乾熱滅菌を行って有機物の灰化処理を行ったもの）に分注した。0.8 µm ろ過海水は、植物プランクトンは含まないが、細菌のみを含む「細菌区」とし、0.2 µm ろ過海水は、植物プランクトンと細菌の両者とも含まない「無細菌区」とした。次に、K. mikimotoi を1/10改変SWM-3培地で前培養を行って得られた培養海水0.1 mlを、各々の三角フラスコに接種し、水温20-23℃、照度50.4 µE/m²/s、前期14 時間、暗期10 時間の条件で培養を行った。隔日毎に各実験区の藻体を光学顕微鏡下で直接計数して最大増殖量を計測し、最大増殖量から

Fig. 3-1 Location of sampling station (●) in Gokasho Bay.
初期接種量を引いたものを AGP（Algal growth potential）とした。細菌区の AGP が無細菌区の AGP より低い値を示した海水試料については、殺藻細菌による殺藻が行われたと判断し、その海水試料を寒天平板培地に塗沫した後に培養を行い、出現したコロニーを釣菌することにより、単離した殺藻細菌（6/6-46 株）を得た。

Ⅲ-1-1-3. 殺藻細菌 6/6-46 株の同定
細菌の形態的、生化学的性状は、Bergey's Manual Vol. 1 に従って決定し、単離した殺藻細菌の同定を行った。また、DNA の G+C 含量（mol%）は、HPLC による方法で測定を行った。

Ⅲ-1-1-4. 6/6-46 株の殺藻能
単離した殺藻細菌 6/6-46 株が K. mikimotoi の増殖に及ぼす影響を明らかにするため、6/6-46 株と K. mikimotoi の二培養を行った。普通培地で 6/6-46 株を培養して得られた培養液を、終濃度が 1×10^6 cfu/ml となるように調整した。次に、予め改変 SWM-3 培地で培養した K. mikimotoi 培養海水に、6/6-46 株の培養液を接種し、水温 20℃、照度 45.3-74.4 μE/m²/s、明期 14 時間暗期 10 時間の条件で培養した。隔日毎に K. mikimotoi の細胞数を光学顕微鏡により直接計測し、6/6-46 株の生菌数については、普通培地を用いた寒天平板培地法によって生じたコロニーの計測を行った。なお、細胞数および生菌数は 3 連の検体で計測し、その平均値を求めた。また、6/6-46 株の培養液の代わりに普通培地を K. mikimotoi 培養海水に添加したものを対照区とした。

K. mikimotoi の増殖期における 6/6-46 株の殺藻活性を測定した。対数増殖初期または対数増殖後期の K. mikimotoi 培養海水を用いて、6/6-46 株を 1×10^6 cfu/ml となるように接種し、水温 20℃、照度 45.3-74.4 μE/m²/s、明期 14 時間暗期 10 時間の条件で培養した。培養開始後、隔日毎に K. mikimotoi の細胞数を光学顕微鏡により直接計測した。6/6-46 株の生菌数は、普通培地を用いた寒天平板培地法により計測を行った。なお、増殖期毎に 3 連の検体を用い、その平均値を求めた。また、6/6-46 株の培養液の代わりに普通培地を K. mikimotoi 培養海水に添加したものを対照区とした。

6/6-46 株の殺藻スペクトルを明らかにするため、6/6-46 株と 3 種のラフィド藻（C. antiqua、C. marina および H. akashiwo）と 1 種の珪藻類（S. costatum）を用いて二培養を行い、各々のプランクトンの増殖阻害能を測定した。普通培地で培養した 6/6-46 株を、終濃度 5×
10^3 cfu/ml となるように調整した後、対数増殖前期のプランクトン培養海水にそれぞれ接種した。

その後、水温 20℃、照度 45.3-74.4 µE/m²/s、明期 14 時間暗期 10 時間の条件で培養した。

各々の赤潮プランクトンの増殖は、ターナー蛍光光度計（Turner Fluorometer、Model 450）を用いて測定した。なお、測定にはプランクトンの種類毎に 3 連の検体を用い、その平均値を求めた。また、6/6-46 株の培養液の代わりに普通培地を、各赤潮プランクトン培養液に添加したものを対照区とした。

次に、6/6-46 株の増殖特性を明らかにするため、赤潮プランクトンが体外に排出する有機物（Extracellular Organic Carbon: EOC）を用い、6/6-46 株の EOC 利用能を検討した。上記 4 種の赤潮プランクトンをそれぞれ培養した後、培養海水を 6,000 rpm で 20 分間の遠心分離を行い、得られた上澄み液を 0.2 µm フィルターでろ過してプランクトンを除去したものを三角フラスコに分注した。次に、6/6-46 株を ST10^1 培地で培養し、細菌培養液からの「持ち込み」の有機物の影響を極力小さくするため、細菌培養液を人工滅菌海水で 100 万倍に希釈した溶液を、前記の三角フラスコに接種した。接種した 6/6-46 株の細菌数は、普通培地を用いた寒天平板培地法により計測した。なお対照区は、EOC を含まない改変SWM-3 培地を用いて培養後の 6/6-46 株の生菌数を測定することにより求めた。

Ⅲ－１－１－５．自然細菌群存在下における 6/6-46 株の K. mikimotoi 殺藻能

自然細菌群存在下における 6/6-46 株の殺藻能について検討を行った。海水試料は 1997 年 9 月 24 日に 五ヶ所湾 迫間浦の観測定点で採取した。採取した海水試料は植物プランクトン捕食者を除去するために 5 µm nuclepore フィルター（Whatman）でろ過した。次に、改変SWM-3 培地で培養した K. mikimotoi を 270×g、10 分間の遠心分離を行い、得られた沈殿（K. mikimotoi 細胞の集合体）を上記の 5 µm より海水試料に懸濁し供試した。三角フラスコに移した。同時に、6/6-46 株を普通培地で培養し、終濃度が 1×10^6 cfu/ml となるように調整した後に、細菌培養液を K. mikimotoi を含む三角プラスコに接種した。その後、水温 20℃、照度 45.3-74.4 µE/m²/s、明期 14 時間暗期 10 時間の条件で培養を行った。なお、生菌数および細胞数は 2 連の検体を用いてその平均値を求めた。また、6/6-46 株の培養液の代わりに普通培地を K. mikimotoi 培養液に添加したものを対照区とした。三角プラスコ中の K. mikimotoi の細胞数は、顕微鏡によって直接計測し、6/6-46 株および自然細菌群の生菌数は、普通培地を用いた寒天平板培地法により計測した。平板培地上の 6/6-46 株のコロニーは橙色の色素を生成するため、橙色コロニーを 6/6-46 株とし、その他のコロニーは自然細菌群として計測した。さらに実
験開始時の細菌群の組成を明らかにするため、上記のろ過海水試料を滅菌海水で希釈した後、ST10-1寒天培地（トリプチカーゼペプトン0.5g、酵母エキス0.05g、寒天12g/熟成海水1l）平板上にコンラージ棒でろ過海水試料を塗抹した後、20℃で培養を行った。平板上にコロニーが出現した後に、無作為に30コロニーを単離して絵面の図式に従って簡易同定を行った。

Ⅲ－1－2．結果

Ⅲ－1－2－1．殺藻細菌6/6-46株の同定

1990年6月6日に五ヶ所湾観測定点の海水から単離された6/6-46株は、K. mikimotoiに対して強い殺藻能を示した。殺藻細菌6/6-46株の分類学的性状をTable 3・1に示した。6/6-46株は橙色の色素を産生し、極鞭毛を有するグラム陰性の桿菌（W:0.8-1.0, L:1.5-2.5μm）であった。amylase, gelatinase, lipaseおよびDNaseを産生し, mannose, cellobioseおよびN-acetylglucosamineを用いてよく増殖するが, fructose, sucrose, maltose, succinate, fumarate, citrate, sorbitol, malate, α-ketoglutarateおよびm-hydroxybenzoateを炭素源として利用することはできなかった。NaClが0%の培地では生育しなかったことから海洋性細菌と判断した。また、DNAのG+C含量は42mol%であった。以上の結果から、6/6-46株はAlteromonas（=Pseudoalteromonas）属であると同定された。6/6-46株はAlteromonas（=Pseudoalteromonas）rubra, Alteromonas（=Pseudoalteromonas）aurantiaおよびAlteromonas（=Pseudoalteromonas）citrateに近い性状を示したが、どの種とも一致しなかったため、6/6-46株はAlteromonas（=Pseudoalteromonas）sp.とした。

6/6-46株は他のAlteromonas属とは異なり、Chitinaseを有し、N-acetylglucosamineの利用能を有することから、植物プランクトンの外殻を溶解して利用することが示唆され、この性状が同株の殺藻能発現に関与していると推察された。

Ⅲ－1－2－2．6/6-46株の殺藻能

6/6-46株とK. mikimotoiを二者培養した場合における、それぞれの増殖曲線をFig. 3・2に示した。6/6-46株の細菌数は時間の経過と共に速やかに増加し、培養4日後に10⁰ cfu/mlに達した。一方、K. mikimotoiの細胞数は経時的に減少し、培養6日後には同藻の細胞は初期細胞数の1%以下まで減少した。
Table 3: Taxonomic properties of strain 6/6·46

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Strain 6/6·46</th>
<th>Alteromonas rubra*</th>
<th>Alteromonas citrea*</th>
<th>Alteromonas aurantiaca*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Length</td>
<td>1.5-2.5 μm</td>
<td>1.8-3.0 μm</td>
<td>1.8-3.0 μm</td>
<td>1.8-3.0 μm</td>
</tr>
<tr>
<td>Width</td>
<td>0.8-1.0 μm</td>
<td>0.7-1.5 μm</td>
<td>0.7-1.5 μm</td>
<td>0.7-1.5 μm</td>
</tr>
<tr>
<td>Pigmentation</td>
<td>Orange</td>
<td>Red</td>
<td>Lemon-yellow</td>
<td>Orange</td>
</tr>
<tr>
<td>Gram</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flagellar</td>
<td>Polar</td>
<td>Polar</td>
<td>Polar</td>
<td>Polar</td>
</tr>
<tr>
<td>O/F Test</td>
<td>Non-fermentative</td>
<td>Non-fermentative</td>
<td>Non-fermentative</td>
<td>Non-fermentative</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Catalase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth at 4°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>35°C</td>
<td>+</td>
<td>+</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>40°C</td>
<td>-</td>
<td>-</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>Growth in 0% NaCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate Reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Production of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatinase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lipase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alginase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chitinase</td>
<td>+</td>
<td>-</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>Extracellular DNase</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Mannose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Galactose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d-Fructose</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maltose</td>
<td>-</td>
<td>-</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salicin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetylglucosamine</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Succinate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fumarate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.L.-Lactate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erythritol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycerol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.L.-Malate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-Ketoglutarate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(para)-Hydroxybenzoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G+C content of DNA</td>
<td>42 mol%</td>
<td>46-48 mol%</td>
<td>41-45 mol%</td>
<td>38-43 mol%</td>
</tr>
</tbody>
</table>

K. mikimotoi の細胞数は、同藻の対数増殖前期および対数増殖後期に相当する期間においても減少し、6/6-46 屆の接種後 4 ～ 5 日の細胞数は初期細胞数の 1%以下となった（Fig. 3 - 3）。以上の結果から、6/6-46 屆は K. mikimotoi のいずれの増殖期の段階においても、同藻を殺藻する能力を有することが判明した。

次に、6/6-46 屆が C. antiqua、C. marina、H. akashiwo および S. costatum の増殖に及ぼす影響について Fig. 3 - 4 に示した。供試した赤潮プランクトンのいずれにおいても、6/6-46 屆による殺藻能は観察されず、本菌株は K. mikimotoi に対して特異性が強い殺藻細菌であることが判明した。

K. mikimotoi と 3 種のラフィド藻および 1 種の硅藻が産生する EOC の利用性について、6/6-46 屆の増殖曲線を各プランクトン毎に作成して検討した（Fig. 3 - 5）。EOC を含まない培地における最大生菌数は 10^6 cfu/ml 程度であったが、K. mikimotoi の EOC が含まれる培地では、最大生菌数は 10^7 cfu/ml に達した。また、K. mikimotoi 以外の供試赤潮プランクトンの場合においても最大生菌数は 10^6 ～10^7 cfu/ml となり、6/6-46 屆による全ての供試 EOC の利用が確認された。

Ⅲ - 1 - 2 - 3. 自然細菌群存在下における 6/6-46 屆の K. mikimotoi 殺藻能

1997 年 9 月 24 日に五ヶ所湾観測定点から採取したろ過海水試料中の生菌数は、約 1×10^4 cfu/ml であった。また、本ろ過海水試料における自然細菌群の組成（細菌叢：ミクロフローラ）を検討した結果、Vibrio (60%)、Pseudomonas-Alteromonas 群（30%）、Moraxella（7%）および Alcaligenes（3%）となった。以上の自然細菌群存在下における K. mikimotoi と 6/6-46 屆の増殖曲線を Fig. 3 - 6 に示した。自然細菌群が存在する状態では、6/6-46 屆は培養開始直ちに対数増殖期に至り、培養 1 日後には 10^7 cfu/ml に達した。しかし、培養 1 日後に 10^7 cfu/ml となった後は徐々に減少し、培養 4 日目には 10^5 cfu/ml 程度になった。一方、K. mikimotoi の細胞数は培養 2 日後までは若干減少傾向がみられたが、以降の培養期間では対照区と比較すると K. mikimotoi の細胞数には大きな変動は観察されなかった。
Fig. 3-2 Growth of *Karenia mikimotoi* and the bacterium strain 6/6-46 in mixed culture.
- ○, Density of *K. mikimotoi* without strain 6/6-46
- △, Density of *K. mikimotoi* with strain 6/6-46
- ●, Density of the bacterium strain 6/6-46

Fig. 3-3 Effects of the bacterium strain 6/6-46 on growth of *Karenia mikimotoi* with inoculation at different growth phases.
- ○, without bacteria
- ●, Addition of the bacterium at early logarithmic growth phase
- ■, Addition of the bacterium at late logarithmic growth phase

Fig. 3-4 Growth of red tide plankton species in the presence of the bacterium strain 6/6-46.
- ○, without strain 6/6-46; ●, with strain 6/6-46
Fig. 3-5
Growth of strain 6/6-46 in phytoplankton EOC

Karenia mikimotoi

Chalcomona erina

Stellateella calcarata

Nematocyst destru
Fig. 3-6 Growth of Karenia mikimotoi and the bacterium strain 6/6-46 in the presence of a marine microbial assemblage.

○, Density of K. mikimotoi without strain 6/6-46
△, Density of K. mikimotoi with strain 6/6-46
●, Density of strain 6/6-46
■, Density of marine microbial assemblage

III - I - 3. 考察

Karenia mikimotoiに対して殺藻能を有する6/6-46株を、五ヶ所湾から単離した。本菌株の同定を、Bergey's Manual Vol. 1およびDNAのG+C含量（mol%）によって行った結果、Alteromonas (= Pseudoalteromonas) sp.と同定した。Imai et al. 78) はK. mikimotoiを殺藻する細菌4株を広島湾から単離し、それらの菌株は、Alteromonas sp.と報告している。また、Mitsutani et al. 79) は、K. mikimotoiに対して弱い殺藻能を有するAlteromonas sp.1株を有明海から単離している。Yoshinaga et al. 80) は、和歌山県田辺湾からK. mikimotoiの増殖を阻害する細菌28株を単離し、その内の1株は、Pseudomonas・Alteromonas群に属していたと報告している。これらの知見より、K. mikimotoiを殺藻するAlteromonas属は、
日本全国の内湾に広く分布していると推察される。

本研究で単離した 6/6-46 株は、ろ過滅菌した海水中では、2×10^6 cfu/ml 程度まで増殖できるが（データ未掲載）、K. mikimotoi が産生した EOC を含む海水中では、EOC を利用することによって 1×10^7 cfu/ml まで増殖した。さらに本株は、その他の赤潮プランクトン（C. antiqua、C. marina、H. akashiwo および S. costatum）が産生する EOC も利用して増殖が可能であった。以上の結果から、自然界に存在する海水中に溶存する有機物や、植物プランクトンが排泄する有機物の利用によって、6/6-46 株の増殖は充分可能であることが推察された。

K. mikimotoi と 6/6-46 株を二者培養した実験では、6/6-46 株は接種後に速やかに対数増殖し 1×10^7 cfu/ml に達した後に K. mikimotoi に対して殺藻能を示した。この結果より、K. mikimotoi の殺藻には、6/6-46 株の生菌数は 10^7 cfu/ml 程度必要であることが示唆された。

II一1 2 3. では、自然細菌群存在下における 6/6-46 株の増殖曲線を示した。6/6-46 株を接種する以前の海水中の自然細菌群を培養したところ、平板培地上に橙色色素を有する自然細菌は検出されなかった。この結果から、培養後に平板上に出現した橙色コロニーは全て 6/6-46 株であると判断し、6/6-46 株の生菌数とした。Vibrio 属が優占する自然細菌群存在下における 6/6-46 株の生菌数は、培養 1 日後には 10^7 cfu/ml に増加したものので、2 日後より減少に転じた。自然細菌群が共存する状態での培養実験においては、6/6-46 株を 10^6 cfu/ml という高濃度で接種してもかかわらず、K. mikimotoi の殺藻は観察されなかった。他のミクロフローラを有する自然細菌群存在下での実験によって、さらに検討を加える必要はあるものの、本実験結果からは、6/6-46 株の増殖能および殺藻能は、その海域に存在する自然細菌群によって抑制されることが判明した。

自然細菌群存在下において 6/6-46 株の殺藻能が低下した原因については、① 6/6-46 株が生成する殺藻物質を、自然細菌群が分解または消費した。② 6/6-46 株が増殖する際に必要とする有機物を、自然細菌群が消費または分解した。③ ろ過海水中に含まれる従属性鞭毛虫類による 6/6-46 株の捕食や細菌間の相互作用などによって、殺藻に必要な細菌数まで 6/6-46 株が増殖できなかった・などの原因が考えられる。これらの原因を特定するには、6/6-46 株の殺藻機序や、従属性鞭毛虫類の影響および自然細菌群が 6/6-46 株に与える影響について検討する必要がある。

6/6-46 株は K. mikimotoi に対して高い殺藻能力を有しているが、C. antiqua、C. marina、H. akashiwo および S. costatum に対する殺藻能は観察されなかった（II 1 2 2）。これらの結果から、6/6-46 株は殺藻スペクトルが狭く、特異性が高いことが判明した。Fukami
et al. は、高知県浦内湾から単離された K. mikimotoi 殺藻細菌 (Flavobacterium sp. 5N-3 株) は、C. marina, H. akashiwo および S. costatum に対する殺藻能は保有していないと報告しており、本研究の 6/6-46 株と同様な特異性を有していた。

その一方で、複数の植物プランクトンに対して殺藻活性を有している殺藻細菌も報告されている。これら報告されているような殺藻スペクトルの広い細菌では、赤潮とは無関係な通常分布している植物プランクトンを殺藻する可能性が考えられる。本研究で用いた 6/6-46 株は、K. mikimotoi に対して種特異的に殺藻能を示すために、通常存在している植物プランクトンに対して増殖阻害などの影響は生じない。このことから、6/6-46 株は生態系に与える負荷が極めて少ないと考えられ、本株を赤潮の防除法に用いるには有用な殺藻細菌であると判断できる。しかしながら、自然細菌群の存在下の K. mikimotoi 培養液に対して 6/6-46 株を 10⁶ cfu/ml という高濃度で接種したにもかかわらず、培養 4 日後には細菌数が 10⁵ cfu/ml まで減少し、さらに K. mikimotoi の死滅は観察されなかった。以上の結果から、実際の海域で発生した K. mikimotoi 赤潮を防除するためには、6/6-46 株を海域に直接散布しても、赤潮除去効果は期待できないと推察される。そのため、6/6-46 株に替わる新たな K. mikimotoi 殺藻細菌の探索・単離を試みる必要が生じた。

III-1-4. 要約

Karenia mikimotoi に対して殺藻能を有する細菌 6/6-46 株を三重県五ヶ所湾から単離した。本細菌を、Bergey's Manual Vol. 1 に準じて同定した結果、Alteromonas sp. と同定された。6/6-46 株を用いて K. mikimotoi との二者培養実験を行ったところ、細菌数は 10⁷ cfu/ml 程度まで増殖した後、同藻を殺藻・消滅させた。さらに、6/6-46 株はラフィド藻類 3 種（Chattonella antiqua, Chattonella marina, Heterosigma akashiwo）と珪藻類 1 種（Skeletonema costatum）の増殖は阻害しなかった。この結果より、6/6-46 株は K. mikimotoi を特異的に殺藻する細菌であることが示唆された。自然細菌群の存在が 6/6-46 株の殺藻能に及ぼす影響を調べるため、自然細菌群（優占種 Vibrio 属）が存在する K. mikimotoi 培養海水に 6/6-46 株を接種した後に、同藻の増殖曲線を作成した。その結果、培養 2 日後から 6/6-46 株の生菌数は減少し始め、それに従い K. mikimotoi の増殖を抑制はしたが、同藻の消失は観測されなかった。これらの結果より、自然細菌群の共存下では K. mikimotoi に対する 6/6-46 株の殺藻能が低下することが判明し、赤潮防除法に本菌株を用いることは困難であると
判断した。
Ⅲ－2．殺藻細菌 MA10 株の性状と動態

Ⅲ－2－1．材料および方法

Ⅲ－2－1－1．赤潮プランクトンの培養

水産庁南西海区水産研究所　山口峰生博士から移譲された無菌クローン株 K. mikimotoi G303 株を赤潮プランクトン対象藻類として実験に使用した。また、国立環境研究所から分譲された C. antiqua NIES-1 株、C. marina NIES-3 株、H. akashiwo NIES-5 株および S. costatum NIES-32 株（全て無菌クローン株）も、併せて対象藻類として使用した。上記の赤潮プランクトンは、全て改変 SWM-3 培地を用いて、水温 20℃、照度 45.3-74.4 μE/m²/s、明期 14 時間 暗期 10 時間の条件で培養を行った。また、同条件で赤潮プランクトンの継代培養を行った。

Ⅲ－2－1－2．殺藻細菌 MA10 株の単離

新たな殺藻細菌を探索するため、6/6-46 株を分離した五ヶ所湾とは異なる内湾環境である三重県津市の海岸の町屋浦（Fig. 3・7）から 1997 年 1 月に表層海水を採水した。植物プランクトン等を除去するために、得られた海水試料を 0.8 μm Nuclepore filter でろ過した。次いで、改変 SWM-3 培地で培養した K. mikimotoi に等量のろ過海水を混合した後、水温 20-23℃、照度 50.4 μE/m²/s、明期 14 時間暗期 10 時間の条件で培養を行った。培養後、K. mikimotoi が死滅した培養海水を、新たに調製した同藻培養海水に再び接種した。培養後、再び K.
mikimotoi が死滅した培養海水を用い、ST10培地（トリプチカーゼペプトン 0.5 g、酵母エキス 0.05 g、寒天 12 g／海水 1 1）(6) 上に塗抹して殺藻細菌の単離を行った。

III-2-1-3. 殺藻細菌 MA10 株の同定

単離した殺藻細菌 MA10 株の分類学的性状を調べ、絵面らの図式(7)に従って、簡易同定を行った。また、他の殺藻細菌と MA10 株の 16S rRNA を比較するため、16S rRNA 遺伝子の解析を以下的方法で行った。菌体 1 白金耳を超純水 50 μl に懸濁して、100℃で 10 分間処理した後、12,000×g、10 分間の遠心分離を行い、得られた上澄み液をテンプレート DNA とした。

真 正 細 菌 の 16S rRNA 遺伝子に特異的なプライマーである 27F (5'-AGAGTTTGATCCTGGCTCAG-3') および 1492R (5'-GGCTACCTTGTTACGACTT-3') を使用した。PCR 反応液の組成は、10×PCR Buffer (TOYOBO) 10.0 μl、2 mM dNTP (TOYOBO) 10.0 μl、プライマー溶液 2 種類（クラボウバイオメディカル）各 0.2 μl、2.5 U/μl KOD'（TOYOBO）2.0 μl、テンプレート DNA 15.0 μl、Mili Q水 62.6 μl とした。PCR 反応は TaKaRa Thermal Cycler MP（TaKaRa）を用いて 94℃ 60 秒、55℃ 45 秒、72℃ 90 秒を 1 サイクルとして、30 サイクルで行った。PCR 増幅産物は 1.0%のアガロース電気泳動を行って確認した。

PCR 増幅産物を精製するため、PCR 増幅産物にクロロホルム：イソアミルアルコール混液（24:1，v/v）100 μl を加え、よく攪拌した後、遠心分離（12,000×g、10 分間）を行い、水層（上層部）を回収した。この水層に 3.0 M 酢酸ナトリウム溶液を 1/10 量 添加し、よく攪拌した後にエタノールを 250 μl 加えて再びよく攪拌し、氷上で 10 分間静置した。その後、0℃で遠心分離（12,000×g、10 分間）を行い、DNA を沈殿させた。沈殿に 200 μl の Mili Q 水を加えて再懸濁し、分子量分画約 30,000 の限外ろ過膜 SUPREC-02（TaKaRa）を用いて限外ろ過を行い、未反応のプライマーと dNTP を除去した。

Dye Terminator Cycle Sequencing Ready Reaction Kit（PERKIN ELMER）および回収した DNA をテンプレートとして、サーマルサイクルシーケンス PCR 反応を行って、シーケンスサンプルを作成した。作成したシーケンスサンプルは ABI373DNA Sequencer（PERKIN ELMER）を用いて泳動した後、塩基配列を決定した。なお、プライマーには 27F (5'-AGAGTTTGATCCTGGCTCAG-3')、517R (5'-GTATTACCGCGGCTTGACC-3')、380R (5'-TCCYACTGCTGCTCCCG-3')、323F (5'-AGACACGCCCCAGACTCT-3')、1100R (5'-AAGGTTTGCGCTCCTTG-3')、702F (5'-GTAACCGGAAATGCCTAGA-3')、1395F (5'-
GTACTTGGCCGGRGAAC-3')、1092F（5'-AAGTCCCGCAACGAGCGC-3')および1492R（5'-GGCTACCTTGTTACGACTT-3')を使用した。得られた塩基配列は遺伝子解析ソフトウェアDNASISを用いて編集し、16S rRNAの塩基配列を決定した。

III-2-1-4. MA10株の殺藻スペクトル
3種のラフィド藻（C. antiqua、C. marinaおよびH. akashiwo）および1種の珪藻類（S. costatum）の無菌クローン株を、感F1 arabidopsisのトリンピングを用いて培養した。MA10株をMA液体培地（トリプチカーゼペプトン3g、酵母エキス1g/海水1l）で培養し、細菌培地成分を除去するために遠心分離（10,800×g、10分）を行い、集菌した菌体を滅菌海水にて2回洗浄した。得られた洗浄菌体を用いて、約10^5 cfu/mlとなるように調整した細菌懸濁液を、各プランクトン培養海水を含む三角コラジョンに接種した。培養は水温20℃、照度45.3-74.4 µE/m²/s、暗期14時間、明期10時間の条件で行った。赤潮プランクトンの細胞数は顕微鏡下で直接計測し、細菌数はMA寒天培地を用いた寒天平板培地法を用いて出したコロニーを計測した。なお、各プランクトンあたり3連の検体を用い計測を行い、その平均値を示した。また、MA10株を接種していない各赤潮プランクトン培養海水を対照区とした。

III-2-1-5. MA10株の初期接種量がK. mikimotoiの増殖に及ぼす影響
MA10株をMA液体培地で培養し、遠心分離（10,800×g、10分）を行って集菌した。得られた菌体を滅菌海水で懸濁した後、同条件で遠心分離を行い、集菌した菌体を滅菌海水にてさらに2回洗浄した。次いで、感F1 arabidopsisの培養海水に、MA10株の菌体を約10^5、10^6および10^7 cfu/mlとなるように調整した後、それぞれの細菌懸濁液をK. mikimotoi培養海水に接種した。その後、水温20℃、照度45.3-74.4 µE/m²/s、暗期14時間、明期10時間の条件で培養を行った。K. mikimotoiの細胞数は顕微鏡を用いて直接計測し、MA10株の細胞数はMA培地を用いた寒天平板培地法を用いて出したコロニー数を計測した。なお、各細菌濃度当たり3連の検体を用い細胞数とコロニー数を計測し、その平均値を求めた。また、MA10株を接種していないK. mikimotoiの培養海水を対照区とした。

III-2-1-6. 自然細菌群存在下におけるMA10株のK. mikimotoi殺藻能
1997年8月20日に三重県五ヶ所湾から採水した表層水を用いた。採取した海水試料は、微
細藻類捕食者等を除去するが、海水に含まれる自然細菌群を保持させるために 5 µm Nuclepore filter を用いてろ過を行った。次に、改変 SWM-3 培地で約 1.0×10^4 cells/ml まで増殖させた K. mikimotoi の培養海水を、270×g で 10 分間遠心分離した。得られた K. mikimotoi 細胞に上記のろ過海水を添加して懸濁させたものを、三角プラスコに分注した。併せて、MA10 株を ST10^1 液体培地で培養した後、遠心分離（10,800×g、10 分間）を行って集菌した菌体に滅菌海水を添加した後、同条件で遠心分離を行って菌体の洗浄を行った。この操作を 2 回繰り返した。得られた MA10 株の菌体を約 10^1、10^2、10^3 および 10^4 cfu/ml となるように調整した後、MA10 株を接種した K. mikimotoi 培養海水を、水温 20 ℃、照度 45.3-74.4 µE/m²s、明期 14 時間 暗期 10 時間の条件で培養した。各細菌濃度は 2 連の検体を用い、計数値を平均した。対照区として MA10 株を接種していない K. mikimotoi 培養海水を用いた。なお、共存する自然細菌群の組成を明らかにするために、上記ろ過海水試料を滅菌海水で希釈した後、ST10^1 培地にコンラージ棒を用いて塗抹し平板培養を行った。培地表面に生じたコロニーの中から無作為に 30 コロニーを単離した後、それぞれのコロニーについて絵面の図式 (58) に従い簡易同定を行った。

Ⅲ－2－2. 結果

Ⅲ－2－2－1. 殺藻細菌 MA10 株の性状と同定

海水試料と K. mikimotoi を培養後に、同藻が死滅した培養海水を直接 ST10^1 培地に塗抹することによって殺藻細菌の単離を試みた。その結果、3 株の K. mikimotoi 殺藻細菌を単離した。3 株の中で最も増殖が速く、培地成分が残存しない状態でも強い殺藻能を示した菌株を MA10 株とし、以下の実験に使用した。

MA10 株の分類学的性状を Table 3-2 に示した。MA10 株は黄色色素を産生する非運動性の

<table>
<thead>
<tr>
<th>Isolate</th>
<th>MA10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Rods</td>
</tr>
<tr>
<td>Pigment</td>
<td>Yellow</td>
</tr>
<tr>
<td>Gram Reaction</td>
<td>—</td>
</tr>
<tr>
<td>OF test</td>
<td>None</td>
</tr>
<tr>
<td>Oxidase</td>
<td>—</td>
</tr>
<tr>
<td>Catalase</td>
<td>—</td>
</tr>
<tr>
<td>Motility</td>
<td>—</td>
</tr>
<tr>
<td>Gliding</td>
<td>—</td>
</tr>
</tbody>
</table>
グラム陰性桿菌であることから、Flavobacterium sp.であると同定した。また、MA10 株と K. mikimotoi を殺藻する Flavobacterium sp. 5N-3 株の 16S rRNA の塩基配列を解析した結果を Table 3-3 に示した。marine Cytophaga/Flavobacter/Bacteroides（CFB）群
に属する殺藻細菌と MA10 株の 16S rRNA の塩基配列を比較した結果、MA10 株は特異的に K. mikimotoi を殺藻する Flavobacterium sp. 5N-3 株と 95.9% の相同性を示した（Table 3-4）。また、Heterosigma 殺藻細菌である Cytophaga sp. AA8-2 株および Chattonella 殺藻細菌 Cytophaga sp. J18/M01 株における MA10 株との相同性は、それぞれ 91.0 および 90.6% であった。

Ⅲ-2-2-2. MA10 株の殺藻スペクトル
3 種のラフィド藻および 1 種の珪藻の培養海水に MA10 株懸濁液をそれぞれ接種し、MA10 株が各赤潮プランクトンの増殖に及ぼす影響を調べた（Fig. 3\·8）。MA10 株は赤潮プランクトンの培養海水の中で 10^7 cfu/ml 程度 またはそれ以上増殖したが、C. antiqua、C. marina、H. akashiwo および S. costatum の増殖阻害は観察されなかった。その他の微細藻類についても更なる実験を行う必要性はあるが、MA10 株は K. mikimotoi に対して特異的な殺藻能を有することが判明した。

Ⅲ-2-2-3. MA10 株の初期接種量が K. mikimotoi の増殖に及ぼす影響
MA10 株の初期接種量が K. mikimotoi の増殖に及ぼす影響を検討するため、MA10 株を約 10^1、10^2、10^3 および 10^6 cfu/ml となるように調整した懸濁液をそれぞれ K. mikimotoi 培養海水に接種した後、培養を行った。同藻および MA10 株の細胞数の変化を Fig. 3・9 に示した。約 10^1 および 10^6 cfu/ml の MA10 株を K. mikimotoi に接種した場合は、培養 2 日後に MA10 株の生菌数はそれぞれ 6.2×10^6 および 8.4×10^6 cfu/ml に増大した。一方、K. mikimotoi の細胞数は培養 3 日後から減少し、培養 6 日目には培養開始時の 1% 以下となった。一方、MA10 株の初期接種量を約 10^5 cfu/ml とした場合、MA10 株の生菌数は培養 1 日後に 10^7 cfu/ml に達し、培養 3 日後の K. mikimotoi は培養開始時の 1% 以下まで減少した。MA10 株の初期接種量が 10^7 cfu/ml の場合は、培養 1 日後の K. mikimotoi の細胞数は、対照区とほぼ同じ値であったが、培養 2 日後に細胞数は急減してほぼ死滅した。
Strain MA10: 1 cggcaaggcttaacacatgcgaagtcgagggtaacattgtagcttgctacagatgcggacc 60
Strain SN3: 33 cggcaaggcttaacacatgcgaagtcgagggtaacattgtagcttgctacagatgcggacc 92

Strain MA10: 61 gcccagcgggttacctaaaggggtataaataaatctgctcttgactgggaggtacgcccttggaac 120
Strain SN3: 93 gggcagcgggttacctaaaggggtataaataaatctgctcttgactgggaggtacgcccttggaac 151

Strain MA10: 121 cggagatgcccttttagctatctttactttgcatcagaactaatcaggtttacgc 178
Strain SN3: 152 aacagatgcccttttagctatctttactttgcatcagaactaatcaggtttacgc 210

Strain MA10: 179 gcagccagatctagatctgcttagatgtgtaacgctgacatctgacagccgac 238
Strain SN3: 211 gcagccagatctagatctgcttagatgtgtaacgctgacatctgacagccgac 270

Table 3.3 16S rRNA gene sequencing of strain MA10 and strain 5N-3
Table 3 - 3 16S rRNA gene sequenc of strain MA10 and strain 5N-3
Table 3 - 4 16S rRNA gene sequence similarities between strain MA10 and algicidal bacteria

<table>
<thead>
<tr>
<th>Algicidal bacteria</th>
<th>Strain</th>
<th>Similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavobacterium sp.</td>
<td>5N-3</td>
<td>95.9</td>
</tr>
<tr>
<td>Cytophaga sp.</td>
<td>AA8-2</td>
<td>91.0</td>
</tr>
<tr>
<td>Cytophaga sp.</td>
<td>J18/M01</td>
<td>90.6</td>
</tr>
</tbody>
</table>

Ⅲ - 2 - 2 - 4. 自然細菌群存在下における MA10 株の *K. mikimotoi* 殺藻能

自然細菌群の存在下において MA10 株が *K. mikimotoi* の増殖に及ぼす影響を検討するため、自然細菌群と共存する *K. mikimotoi* 培養海水に MA10 株を接種し、*K. mikimotoi* の増殖曲線を作成した（Fig. 3 - 10）。MA10 株の初期接種量が約 10^1 cfu/ml の場合は、*K. mikimotoi* の対照区との差異は見られなかった。しかしながら、MA10 株の初期接種量が約 10^2 および 10^3 cfu/ml の場合は、培養 2 日後から *K. mikimotoi* の細胞数は減少し始め、6 日後には死滅に至った。さらに、初期接種量が約 10^4 cfu/ml の場合は、*K. mikimotoi* は培養 2 日後から減少し始め、4 日後には死滅が確認された。なお、共存した細菌群の細胞数は 1.0×10^4 cfu/ml であり、細菌群組成を解析した結果は、*Pseudomonas*: *Alteromonas* 属が 77.2% と優勢であり、*Alcaligenes* 属および *Vibrio* 属も各 4.5% 存在した。さらに、MA10 株と同様の *Flavobacterium* 属は検出されなかったことから、自然細菌群中では MA10 株は優占種でないことが判明した。

Ⅲ - 2 - 3. 考察

伊勢湾沿岸の海水から単離された *K. mikimotoi* 殺藻細菌 MA10 株は、*Flavobacterium sp.* に属していた。本菌株は特異的に *K. mikimotoi* を殺藻することが示唆された。Fukami et al. がの報告によると、高知県浦の内湾から単離された 5N-3 株は *Flavobacterium sp.* と同定され、*C. antiqua*、*H. akashiwo* および *S. costatum* の増殖を阻害せずに *K. mikimotoi* を特異的に殺藻している。報告されている 5N-3 株と本研究での MA10 株の属名および殺藻スペクトルは同様の結論となった。さらに、MA10 株と 5N-3 株の 16S rRNA の塩配列を比較した結果、両者は 95.9% の相同性を示し、MA10 株と 5N-3 株は近縁であることが判明した。一方、
Inoculum size: 4.5×10^5 cfu/ml

Inoculum size: 5.3×10^5 cfu/ml

Fig. 3-8 Effects of the bacterium MA10 on the growth of three Raphidophyceae, *C. antiqua*, *C. marina* and *H. akashiwo*, and a Bacillariophyceae, *S. costatum*. Each point indicates the average of the duplicates. •: Cell number of phytoplankton with MA10, ○: Cell number of phytoplankton without MA10, △: Cell number of MA10

Inoculum size: 1.0×10^8 cfu/ml

Inoculum size: 1.7×10^3 cfu/ml

Fig. 3-9 Effects of the inoculum size of MA10 on the growth of *K. mikimotoi*. Each point indicates the average of the duplicates. •: Cell number of *K. mikimotoi* with MA10, ○: Cell number of *K. mikimotoi* without MA10, △: Cell number of MA10
Chattonella 殺藻細菌 J18/M01 株と *Heterocapsa* 殺藻細菌 AA8-2 株の 16S rRNA は、ホスト藻類が異なるにもかかわらず、98.5%の相同性を示したことが報告されている 81)。このため、殺藻スペクトルには遺伝的距離以外の因子が関与している可能性が推察された。

MA10 株の殺藻機序として、殺藻物質はタンパク質（分子量 50,000 以上のタンパク質）であると推察されている。80) 一方、5N-3 株は MA10 株と同様に殺藻物質産生型であるが、水溶性塩基性物質（分子量約 100）の殺藻物質を産生することが報告されている。68) 両菌株は分類学的性状や *K. mikimotoi* に対する特異的殺藻性などにおいて共通点がみられるが、産生する殺藻物質は異なっていると推察される。

MA10 株を 10^6 や 10^9 cfu/mL の低濃度で *K. mikimotoi* に接種して両者の二者培養を行った結果、MA10 株の生菌数はそれぞれ 6.2 × 10^6 および 8.4 × 10^6 cfu/mL に増大した時点から、*K. mikimotoi* の細胞数は経時的に減少した。しかし、MA10 株を約 10^5 および 10^8 cfu/mL の高
濃度で接種した場合、どちらも生菌数が10⁷ cfu/ml に達した 2 日目からK. mikimotoi の減少が観察された。Mitsutani et al. 79) は溶藻細菌 Cytophaga sp. をS. costatum の培養海水に高濃度で接種した実験では、低濃度の接種実験と比較すると溶藻を開始するまでの時間が短が観察されたとしている。本実験結果より、MA10 株がK. mikimotoi に対して殺藻能を発現するためには、生菌数が10⁷ cfu/ml 付近まで増殖する必要があると考えられる。しかしながら、高濃度でMA10 株を接種した後に生菌数が10⁷ cfu/ml に達しても、その時点でK. mikimotoi の殺藻能は発現せず、その 2 日後より殺藻能は発現した。そのため、生菌数以外の因子がK. mikimotoi の殺藻能に影響を与えている可能性が考えられる。

自然細菌群が存在しない場合では、MA10 株は4.5×10⁹ cfu/ml の初期接種量でもK. mikimotoi を殺藻した。(データ未掲載) このことから、極めて少ない初期接種量でもMA10 株はK. mikimotoi の殺藻能を保持することが判明している。しかしながら、自然細菌群の存在下においては、1.1×10¹ cfu/ml の初期接種量ではK. mikimotoi を殺藻できなかった。一方、1.1×10² cfu/ml 以上の接種量にすると、K. mikimotoi の殺藻能が発現した。今回の実験に用いた自然細菌群の優占種はPseudomonas-Alteromonas 群であったが、今後はその他の細菌群と共存する場合の実験データを集積する必要がある。本実験結果からは、自然細菌群の存在下において、MA10 株が殺藻能を発現するためには、初期接種量を増大させる必要があると考えた。初期接種量がなぜ増大するのかの検討はしていないが、MA10 株は自然細菌群との競合によって殺藻能が発現するまで増殖できない可能性があると考えられる。

今回の実験では、細菌培地からの培地成分の影響が出ないようにするために、洗浄したMA10 株の菌体をK. mikimotoi 培養海水に接種したが、MA10 株はK. mikimotoi の殺藻能を保持しており、さらに自然細菌群の存在下でも洗浄菌体のみの接種においてK. mikimotoi を殺藻した。この結果より、MA10 株を現場海域に散布した場合、培地などの有機物等の添加を必要とせずにK. mikimotoi は海域で増殖し、赤潮を殺藻すると予測できる。さらに、MA10 株は特異的にK. mikimotoi を殺藻する性状に富んでいる。他の報告でも殺藻細菌は幾つか単離されているが、それらは広い殺藻スペクトルを有しており、78-80 このような細菌では赤潮プランクトン以外の他の微細藻類の増殖に影響を及ぼす可能性がある。本研究で扱った MA10 株はK. mikimotoi を特異的に殺藻するために、環境に負荷を与える影響が少ないことが予測できる。

以上考察を行った MA10 株の性状は、赤潮防除法の実用化を考える際には非常に有益であると考えられる。さらに実用化に向けて MA10 株の安全性や環境に対する影響を検討する必要があるが、拡散系である海域でも一定の細菌濃度が維持できるような MA10 株の散布法なども併
せて検討する必要があると思われる。

III - 2 - 4. 要約

渦鞭毛藻Karenia mikimotoiを殺藻する細菌MA10株を伊勢湾沿岸海水より単離し、Flavobacterium sp.と同定した。MA10株はラフィド藻3種（Chattonella antiqua、Chattonella marina、Heterosigma akashiwo）と珪藻類1種（Skeletonema costatum）に対して殺藻能は観察されなかった。この結果より、MA10株はK. mikimotoiを特異的に殺藻する細菌であると考えられた。MA10株とK. mikimotoiを二培斎した場合、MA10株の初期接種量が10⁴cfu/mlであっても生菌数は急激に増大し、K. mikimotoiに対して殺藻能を示した。一方で、自然細菌群が共存するK. mikimotoiの培養海水にMA10株を接種した場合、MA10株の初期接種量が10⁴cfu/ml程度ではK. mikimotoiの殺藻能は発現されず、殺藻反応が観察されるには、10⁵cfu/ml以上の初期接種量が必要であった。この結果より、自然細菌群はMA10株の殺藻に対して抑制的に作用することが判明した。以上の結果より、MA10株の初期接種量が10⁵cfu/ml以上であれば、現場海域に散布した場合でもK. mikimotoiに対して充分に殺藻能を発現する可能性が示唆された。
第IV章 Karenia mikimotoiの殺藻過程における殺藻細菌の動態

1990年以降、海洋環境における赤潮殺藻細菌の生態について研究がなされており、幾つかの赤潮殺藻細菌が自然海域から単離されている。さらに、これらの殺藻細菌が赤潮プランクトンの消長に大きくかかわっていることも報告されている。赤潮の防除にこのような殺藻細菌の使用は、化学物質による赤潮防除よりも環境に与える負荷が少ないと考えられ、「微生物農薬」として期待されている。そのためには、殺藻細菌の現場海域での散布を考えた場合、擬似現場実験等で殺藻能をシミュレーションする必要がある。しかしながら、これまでに単離された殺藻細菌では、数mlから数十ml程度の培養系の実験で殺藻能が検討されているに過ぎない。そこで第IV章では、本研究で単離したK. mikimotoi殺藻細菌2株（6/6-46株およびMA10株：第III章参照）を用いて、擬似現場の環境で実験を行って殺藻能をシミュレーションした。対象赤潮プランクトンのK. mikimotoiと殺藻細菌（6/6-46株およびMA10株）を1.51程度の培養系でそれぞれ二者培養を行って、殺藻細菌の動態について検討を行った。

自然海域ではK. mikimotoiは日周鉛直運動していることが知られている。さらに、赤潮プランクトンは海域の一部に高密度に水平分布することも判明している。そこで水深における赤潮プランクトンの動態および水平移動に関する動態を観察するために、円柱型培養槽を垂直と水平に設置することによって模擬赤潮を発生させ、現場に即した赤潮プランクトンの動態解析を試みた。

IV-1．材料および方法

IV-1-1．K. mikimotoiの培養法
実験に使用したK. mikimotoi G303株は、III-1-1-1. に記したものを使用した。

IV-1-2．K. mikimotoi殺藻細菌
K. mikimotoi殺藻細菌6/6-46株は、III-1-1-2. に記したものを使用した。また、MA10株は、III-2-1-2. に記したものを使用した。6/6-46株を用いる実験の場合は、K. mikimotoiを円柱型培養槽で培養した後、細菌培養液を培養槽に直接接種した。MA10株については、培地成分の培養海水への混入がなくても強い殺藻能を示すため（III-2-3参照）
集菌した菌体の洗浄を行った後の細菌懸濁液を *K. mikimotoi* 培養槽に接種した。

Ⅳ-1-3. 垂直に設置した円柱型培養槽における 6/6-46 株の殺藻能

改変 SWM-3 培地で *K. mikimotoi* を培養し、細胞数が約 1.0×10⁴ cells/ml まで増殖した時点の培養海水約 1.3 l を垂直に設置した円柱型培養槽（内径 46 mm、長さ 1.0 m）に投入した。円柱型培養槽の底から 61 cm までの外筒をアルミホイルで覆って遮光した（Fig. 4・1 A）。*K. mikimotoi* の培養条件は、水温 20℃、照度 74.4 µE/m²/s（水面）、暗期 12 時間 明期 12 時間周周期とした。円柱型培養槽中で *K. mikimotoi* の培養を開始した 30 時間後に、6/6-46 株の培養液 3.75 ml を円柱型培養槽の水面に投与した。6/6-46 株の培養液は、予め普通液体培地（ポリペプトン 5 g、酵母エキス 3 g／海水 1 l）で 24 時間培養したものを用いた。なお、接種時の細菌数は 5.5×10⁸ cfu/ml であった。*K. mikimotoi* の培養開始後、経時的に各採取箇所（Fig. 4・1, Surface-1 ~ Bottom-1）から採水を行い、*K. mikimotoi* の細胞数を顕微鏡で直接計測した。一方、6/6-46 株の生菌数は、寒天平板培地法で出現したコロニーを計測して求めた。

Ⅳ-1-4. 垂直に設置した円柱型培養槽における MA10 株の殺藻能

改変 SWM-3 培地で *K. mikimotoi* を培養し、細胞数が約 1.0×10⁴ cells/ml まで増殖した時

Fig. 4- Schematic diagram of vertical cylindrical culture(A) and horizontal cylindrical culture(B) used in this experiment.
点の培養海水約 1.6 l を、垂直に設置した円柱型培養槽（内径 46 mm、長さ 1.0 m）に投入した。円柱型培養槽の底から 61 cm までの外筒をアルミホイルで覆った。（Fig. 4・1 A）K. mikimotoi の培養条件は、水温 20℃、照度 74.4 µE/m²/s（水面）、明期 12 時間 暗期 12 時間周期とした。円柱型培養槽で K. mikimotoi の培養を開始した 24 時間後に、MA10 株の細菌懸漉液 1.5 ml を円柱型培養槽の水面に投与した。MA10 株の懸漉液は、予め ST101 培地（トリプチカーゼペプトン 0.5 g、酵母エキス 0.05 g / 海水 1 l）で 48 時間培養し、細菌培地成分を除去するために遠心分離（10,800 × g、10 分間）を行い、集菌した菌体は滅菌海水で 2 回洗浄した。なお、接種時の細菌数は 1.5 × 10^8 cfu/ml であった。K. mikimotoi の培養開始後、経時的に各採水箇所（Fig. 4・1, Surface-1〜Bottom-1）から採水を行った。K. mikimotoi の細胞数と MA10 株の生菌数の測定は IV-1-3 の方法に従った。

IV-1-5. 水平に設置した円柱型培養槽における 6/6-46 株の殺藻能

改変 SWM-3 培地で K. mikimotoi を培養し、細胞数が約 1.0 × 10^4 cells/ml まで増殖した時点の培養海水 1.5 l を円柱型培養槽（内径 46 mm、長さ 1.0 m）に投入した。円柱型培養槽は水平に設置し、K. mikimotoi が局在するように培養槽の右端から 70 cm までアルミホイルで覆い、明部と暗部に区分した（Fig. 4・1 B）。K. mikimotoi の培養条件は、水温 20℃、照度 74.4 µE/m²/s（水面）、明期 12 時間 暗期 12 時間周期とした。K. mikimotoi の培養を開始した 24 時間後に、6/6-46 株の細菌培養液 1.0 ml を円柱型培養槽の明部（採水地点: No. 2）に投与した。6/6-46 株の培養液は、IV-1-3. と同様の条件で調製した。接種時の細菌数は 6.9 × 10^8 cfu/ml であった。K. mikimotoi の培養開始後、経時的に各採水箇所（Fig. 4・1, No.1〜No.6）から採水を行った。K. mikimotoi の細胞数と 6/6-46 株の生菌数の測定は IV-1-3. の方法に従った。

IV-1-6. 水平に設置した円柱型培養槽における MA10 株の殺藻能

改変 SWM-3 培地で K. mikimotoi を培養し、細胞数が約 1.0 × 10^4 cells/ml まで増殖した時点の培養海水約 1.5 l を円柱型培養槽に投入した。円柱型培養槽および K. mikimotoi の培養は、IV-1-5. の方法に従った。K. mikimotoi の培養を開始した 24 時間後に、MA10 株の細菌懸漉液 1.0 ml を円柱型培養槽の明部（採水地点: No. 2）に投与した。細菌懸漉液の調製は IV-1-4. に従った。なお、接種時の生菌数は 1.8 × 10^8 cfu/ml であった。K. mikimotoi の培養開始後、経時的に各採水箇所（Fig. 4・1, No.1〜No.6）から採水を行った。K. mikimotoi
の細胞数と MA10 株の生菌数の測定は IV－1－4 の方法に従った。

IV－2．結果

IV－2－1．垂直に設置した円柱型培養槽における K. mikimotoi の殺藻

垂直に設置した円柱型培養槽における K. mikimotoi の細胞数および 6/6-46 株の生菌数を円形で表示し、その円を縦軸に各採水箇所、横軸に培養時間を示したグラフにプロットした（Fig. 4-2）。上図は K. mikimotoi の細胞数の推移を、下図は 6/6-46 株の生菌数の推移を表している。この図より、K. mikimotoi は明期では表層部に多く分布し、暗期では下層部に多く分布していることから、本藻の日周鉛直運動が確認された。6/6-46 株の投与後 18 時間（K. mikimotoi 培養開始後 48 時間）には、生菌数は培養槽の全箇所において 10^7 cfu/ml まで増殖した。それに伴い K. mikimotoi の細胞数は減少し、投与後 30 時間（同 60 時間）には、K. mikimotoi の生菌数は初期細胞数の 1%以下となり殺藻反応が観察された。

次に、同様の円柱型培養槽における MA10 株と K. mikimotoi の細胞数の経時的推移を表したものを Fig. 4-3 に示した。上図を K. mikimotoi の細胞数の推移を、下図は MA10 株の生菌数の推移を表している。K. mikimotoi で同様の日周鉛直運動が観察された後に MA10 株を培養槽に投与した 24 時間（同 48 時間）後には、生菌数は培養槽の全箇所において 10^6 cfu/ml まで増殖した。さらに、MA10 株の投与後 72 時間（同 96 時間）より K. mikimotoi の細胞数が減少する傾向がみられ、投与後 108 時間（同 132 時間）には初期細胞数の 1%以下となり殺藻反応が観察された。

IV－2－2．水平に設置した円柱型培養槽における K. mikimotoi の殺藻

Fig. 4-4 の横軸には、円柱型培養槽を水平に設置した場合の採水箇所（No. 1～No. 6）を示した。また、K. mikimotoi の細胞数および 6/6-46 株の生菌数を円形で表示し、縦軸に培養時間、横軸に採水箇所を示したグラフにプロットした（Fig. 4-4）。左図が K. mikimotoi の細胞数の推移を、右図が 6/6-46 株の生菌数の推移を表している。この図より、K. mikimotoi は暗部よりも明部に多く分布しており、K. mikimotoi の光周期性が観察された。6/6-46 株を明部に投与した後は、殺藻細菌は全領域に拡散しながら増殖を続け、投与後 24 時間（K. mikimotoi 培養開始後 48 時間）には全箇所において 10^7 cfu/ml まで増殖した。それに関連して K. mikimotoi の細胞数は減少し、6/6-46 株の投与後 36 時間（同 60 時間）には、K. mikimotoi は初期細胞
Fig. 4-2 Growth of *Karenia mikimotoi* and the bacterium strain 6/6-46 in vertical cylindrical culture.

Fig. 4-3 Growth of *Karenia mikimotoi* and the bacterium strain MA10 in vertical cylindrical culture.
Fig. 4-4 Growth of *Karenia mikimotoi* and the bacterium strain 6/6-46 in horizontal cylindrical culture.

Fig. 4-5 Growth of *Karenia mikimotoi* and the bacterium strain MA10 in horizontal cylindrical culture.
数の1％以下となり殺藻反応が観察された。

次に、水平に設置した円柱型培養槽における MA10 株の生菌数と K. mikimotoi の細胞数の推移を表した図を Fig. 4・5 に示した。左図が K. mikimotoi の細胞数の変化を、右図が MA10 株の生菌数の推移を表している。この図でも、K. mikimotoi は6/6-46 株の場合と同様の局在性を示している。MA10 株を投与後36 時間（同60 時間）には、生菌数は全箇所で10⁶ cfu/m まで増殖し、投与後84 時間（同108 時間）では明部で生菌数はさらに増加して10⁷ cfu/ml に達した。それに伴せて明部に局在していた K. mikimotoi の細胞数は減少し、MA10 株を投与後96 時間（120 時間）にはK. mikimotoi は初期細胞数の1％以下となり殺藻反応が観察された。

IV－3. 考察

K. mikimotoi と殺藻細菌6/6-46 株および MA10 株をそれぞれ垂直に設置した円柱型培養槽で二者培養を行い、同藻の細胞数と殺藻細菌の生菌数の経時的変化を Fig. 4・2 および4・3 に表した。K. mikimotoi は自然海域において、昼間は表層・夜間は底層への日周鉛直運動を行っている。本実験でも、垂直に設置した円柱型培養槽でK. mikimotoi の日周鉛直運動を確認した。その後、殺藻細菌6/6-46 株および MA10 株をK. mikimotoi 培養槽に投与したところ、両菌株は日周鉛直運動をしているK. mikimotoi を捕捉・殺藻した。その後、6/6-46 株は接種後60 時間、MA10 株は接種後108 時間までにK. mikimotoi の殺藻は完了し、同藻は死滅した。

K. mikimotoi と殺藻細菌6/6-46 株および MA10 株を、それぞれ水平に設置した円柱型培養槽で二者培養した場合の、同藻の細胞数と殺藻細菌の生菌数の経時的変化を Fig. 4・4 および4・5 に示した。K. mikimotoi が高密度に局在している明部に、6/6-46 株および MA10 株をそれぞれ投与したところ、両細菌は接種後速やかに培養槽全体へ拡散した。両菌株とも、K. mikimotoi の分布局在に対応して、細菌が明部に局在する現象は観察されず、培養槽全体で増殖を続けた。今後さらに詳細な検討が必要であるが、この結果より考察できる事は、6/6-46 株および MA10 株は① K. mikimotoi に接触しても細胞に付着しない② K. mikimotoi が産生する物質には誘引されないことが推測される。K. mikimotoi の殺藻完了時において6/6-46 株は装置全体にほぼ均一に分布した状態であったが、一方で MA10 株の生菌数はK. mikimotoi が局在する明部で増加した。この結果より、衰弱・死滅した K. mikimotoi 細胞に MA10 株が付着している可能性が推測できる。現場海域は流動拡散系であるので、これら殺藻
細菌の海中への散布を考慮した場合、MA10株は赤潮プランクトンに付着し易いために6/6-46株よりも海中に拡散し難いことが示唆され、より実用化が高いと判断した。

小規模な培養系（K. mikimotoi 培養海水 40 ml/三角フラスコ）においては、6/6-46株とK. mikimotoi と二者培養した場合、細菌数が10⁷ cfu/mlに増大した後にK. mikimotoiを殺藻した。80 大型の円柱型培養槽で6/6-46株とK. mikimotoiを二者培養した実験では、6/6-46株は小規模培養系と同じく10⁷ cfu/mlまで増殖した時点よりK. mikimotoiの殺藻が観察された。一方、MA10株では小規模な培養系（K. mikimotoi 培養海水 40 ml/三角フラスコ）では約10⁷ cfu/mlまで増殖した時点からK. mikimotoiを殺藻した。80 水平に設置した円柱型培養槽においても、K. mikimotoiが局在する明部において同様の生菌数に達した時点からK. mikimotoiの殺藻反応が観察された。一方、垂直に設置した円柱型培養槽の場合は、生菌数が10⁶ cfu/mlに増加した時点から殺藻能を示した。このことは、垂直に設置した円柱型培養槽では、MA10株の菌数が10分の1少ない段階から殺藻能が観察されることになる。この原因は明瞭ではないが、殺藻細菌によって死滅した藻体は、複数の個体が繋がって塊状に凝集することである。そのためMA10株が付着した凝集体が沈降し、培養槽の底部に滞留したために、結果として菌体が採取できずに細菌数が低く計測された可能性が考えられる。

これまでに、幾つかのK. mikimotoi殺藻細菌が海域から単離された報告があるが、それらの報告での殺藻能の検討実験は、数mlから数十mlの小規模な培養系を用いている。本研究では、1.5 l程度の大型の培養槽を用いた培養系での実験によって、MA10株および6/6-46株のK. mikimotoi殺藻能が確認された。今後はさらに大規模な模擬赤潮に対する両菌株の殺藻能について実験を行う必要性があると思われる。それと併せて殺藻細菌の安全性や環境への影響等についても評価・検討する必要があると思われる。

Ⅳ-4. 要約

渦鞭毛藻K. mikimotoiの培養液を垂直に設置した円柱型培養槽において培養し、K. mikimotoiが日周鉛直運動していることを確認した後に、殺藻細菌MA10株および6/6-46株の懸濁液をそれぞれ投与し、同藻と殺藻細菌の細胞数の変化を検証した。その結果、両菌株共に細菌数が一定数に増大した後に、日周鉛直運動しているK. mikimotoiを捕捉・殺藻することが判明した。

K. mikimotoiが局在するように、明部と暗部に区分した水平に設置した円柱型培養槽で培
養し、K. mikimotoi が高密度に分布する明部の位置に MA10 株および 6/6-46 株の培養液をそれぞれ投与した後の細胞数の変化を検証した。その結果、両菌株の生菌数は K. mikimotoi の密度分布には関係なく、投与直後より培養槽全体に拡散して増殖した。K. mikimotoi の殺藻完了時には、6/6-46 株は装置全体にほぼ均一に分布していたが、MA10 株については K. mikimotoi が局在していた明部における細菌数が、暗部よりも多かった。この結果から、衰弱・死滅した K. mikimotoi 細胞に MA10 株が付着した可能性が示唆された。流動拡散系である現場海域に対してこれら殺藻細菌の散布を考慮した場合は、MA10 株は 6/6-46 株よりも拡散し難いことが示唆され、より実用性が高いと判断した。
第Ⅴ章 現場海域の細菌群存在下における *Heterosigma akashiwo* 殺藻細菌の殺藻能とその動態

本研究の目的である殺藻細菌を用いた赤潮防除法の実用化を目指すためには、第Ⅲ－Ⅳ章で述べた *K. mikimotoi* 以外の他の赤潮プランクトンを対象とした殺藻細菌や、通常の海域に存在する細菌群の動態についても更に知見を得る必要がある。1990年以降、多くの研究者によって赤潮プランクトンを殺藻するウイルスや細菌に関する研究が行われている中でも、赤潮プランクトンであるラフィド藻 *Heterosigma akashiwo* は、同藻を殺藻するウイルスが報告されており、40, 41 本ウイルスは特異的な殺藻性から微生物農薬としての活用が期待されている。しかしながら、抵抗性を持つ宿主タイプの出現などが問題となり、85 今のところ実用化に至っていない。

一方、*H. akashiwo* を殺藻する細菌が内湾環境から幾つか単離され、44, 78 さらに、自然海域における殺藻細菌の生態についても調査されている。広島湾においては *H. akashiwo* および同藻に対する殺藻細菌の細胞数を計測した結果、赤潮の消失過程では殺藻細菌が増殖していることが確認され、赤潮の消長に殺藻細菌が関与していることが報告されている。47 これらの知見から、*H. akashiwo* を対象とした殺藻細菌を微生物農薬として活用する可能性が検討されている。これら微生物農薬の海域での活用を考えた場合、殺藻細菌が現場海域で自律的な増殖能を有することが不可欠であると共に、ある海域から単離した殺藻細菌を同海域で使用すれば、より生態系に与える負荷が少ないことが考えられる。また、殺藻細菌による赤潮の防除法を実用化するためには、対象となる赤潮プランクトンが発生した海域に元々存在している生物相が、殺藻細菌に対してどの様な影響を及ぼすかについても検討する必要がある。最も影響を与える生物相としては、殺藻細菌を海中に散布する海域に共棲する細菌群が考えられる。

しかし、これまでに海域から単離されて報告がある殺藻細菌（*Cytophaga* sp. J18/M01 株 80, *Alteromonas* spp. S 株、K 株、D 株、R 株 78, *Flavobacterium* sp. 5N-3 株 68, *Cytophaga* sp. A5Y 株 79, 田辺湾から分離された 28 株 69 など）の赤潮プランクトンに対する殺藻能の検証は、実験室レベルにおける赤潮プランクトン（無菌培養株）と殺藻細菌との二者培養で検討され、現場海域細菌群存在下における殺藻能の検証はこれまでほとんど行われていない。

本論文では自然細菌群が殺藻細菌に及ぼす影響を検討し、第Ⅲ章では三重県五ヶ所湾より単離した 66－46 株は、現場細菌群の存在によって殺藻能が抑制されたことを示した。また、第
Ⅲ章で、伊勢湾岸で単離した K. mikimotoi 殺藻細菌 MA-10 株は、殺藻能を示す初期接種量が現場細菌群存在下ではより増加した。これらの知見から、現場海域での細菌群が、殺藻細菌による赤潮防除法の実用化の鍵になることが判明した。

そこで、本論文で上述したように（I - 1. 参照）、近年において最も頻発しており、かつ現在最も注目されている H. akashiwo を、第Ⅴ章での対象赤潮プランクトンとし、さらに 第Ⅲ章と第Ⅳ章の実験手法とその結果を基に、殺藻細菌を用いた H. akashiwo 赤潮防除法の実用化のための基礎的知見を得るための研究を行った。まず、H. akashiwo を殺藻する細菌 9/27-2 株を伊勢湾湾口より単離した。ついで、現場細菌群が存在する状態での H. akashiwo 殺藻細菌の動態を明らかにするため、今までの無菌状態での培養による検証とは異なり、現場細菌群が共存する赤潮プランクトン培養海水に直接殺藻細菌を接種し、同藻の消失過程における殺藻細菌の挙動の検討を行うこととした。单離した H. akashiwo 殺藻細菌 9/27-2 株のコロニーは特有の色素を産生しないために培養法では検出しにくく、変性剤濃度勾配ゲル電気泳動法（DGGE）を用いることにより、殺藻細菌や現場細菌群由来の 16S rRNA の塩基配列を直接解析する手法を選択した。H. akashiwo 殺藻細菌の探索箇所として、伊勢湾湾口部に位置する愛知県栽培漁業センターのクルマエビやナマコの種苗生産水槽に H. akashiwo が混入し、発生した事例であること 89 から、伊勢湾湾口部における H. akashiwo 殺藻細菌の存在を予測し、H. akashiwo 殺藻細菌の探索・単離を行った後、本菌株の自然海域における挙動を解析した。

V-1. 材料および方法

V-1-1. 殺藻細菌の単離

2009 年 9 月 27 日に伊勢湾湾口のサンプリング地点（Fig. 5・1）から表層水を採水し、植物プランクトン等を除去するために、海水試料を 2.0 μm の Nuclepore filter でろ過した。H. akashiwo は、国立環境研究所から分譲された H. akashiwo NIES-5 株（無菌クローン株）を使用した。f/2 培地（NaNO₃ 7.5 mg、NaH₂PO₄・2H₂O 0.6 mg、Vitamin B₆ 0.05 μg、Biotin 0.05 μg、Thiamine HCl 10 μg、Na₂SiO₃・9H₂O 1.0 mg、Na₂EDTA・2H₂O 440 μg、FeCl₃・6H₂O 316 μg、CoSO₄・7H₂O 1.2 μg、ZnSO₄・7H₂O 2.1 μg、MnCl₂・4H₂O 18 μg、CuSO₄・5H₂O 0.7 μg、Na₂MoO₄・2H₂O 0.7 μg（海水 100 ml）87 で培養した H. akashiwo 培養海水
20 ml と、上記のろ過した採取海水 20 ml を 100 ml 三角フラスコに添加し、III- 2-1-1. で述べた条件で培養した。数日後、液色に変化があった培養海水は、その一部を新たに調製した同培養海水に再度接種した。再度培養を行った後に、H. akashiwo が死滅した培養海水の一部を ST10 培地（トリプチカーゼペプトン 0.5 g、酵母エキス 0.05 g、寒天 12 g／海水 1 l）に塗抹し、20℃で培養した後に平板上に出現したコロニーを釣菌して殺藻細菌を単離した。

単離した殺藻細菌を 9/27-2 株として、以下の実験に供した。

V-1-2. 殺藻細菌 9/27-2 株の同定

殺藻細菌 9/27-2 株の分類学的な性状を調べると共に、16S rRNA の塩基配列解析を行った。

9/27-2 株の培養液 1 ml を 1.5 ml マイクロチューブに入れて 12,000 × g で 10 分間遠心して集菌し、400 µl の TE バッファーで再懸濁後、100℃に設定した恒温槽で 5 分間インキュベートし、すぐに氷中に移した。その後 12,000 × g で 10 分間遠心して上清を得た。これを DNA 粗抽出液として PCR 用の DNA テンプレートとした。PCR のプライマーは 16S rRNA 遺伝子をターゲットにした 25F および 1115R のプライマーセットを用いた。16S rRNA の塩基配列解析は、BigDye Terminator Cycle Sequencing Ready Reaction Kit ver. 3.1（PE Biosystems）の取扱説明書に従いサイクルシークエンスを行った。具体的には 1 反応あたり BigDye v3.1 Kit Pre mix を 0.25 µl、x5 バッファーを 2 µl、primer（5 pmol）を 0.32 µl、蒸留水を 6.43 µl、テ
コンプレート DNA を 1 µl（10 ng の DNA を含むように調整したもの）添加し、サーマルサイクライタで 96℃、1 分を 1 サイクル行った後 96℃を 10 秒、50℃を 5 秒、60℃を 4 分間のサイクルを 25 回繰り返した。この PCR 産物を 1 反応あたり 125 mM の EDTA を 5 µl および 60 µl の 100% ユトノールを添加して 10,000 × g の遠心することでエタノール沈殿により精製した。その後遺伝子解析装置 ABI PRISM AVANT 3100（PE Biosystems）でシークエンシングを行った。シークエンシングの際には 25F（フォワードプライマー）および 1115R（リバースプライマー）を用いて、それぞれ約 600 bp のデータが得られたので、BioEdit（version 7.2.5）を用いて塩基配列データを結合した。得られた塩基配列は、DNA Data Bank of Japan（DDBJ）サーバー（www.ddbj.nig.ac.jp/Welcome-j.html）の BLAST を用いて相同性検索を行った。

V - 1 - 3. 殺藻細菌 9/27-2 株と H. akashiwo の培養

2009 年 10 月 20 日に V - 1 - 1 に記した地点と同じ地点から表層水を採取した。採取した海水は 0.45 µm Nuclepore filter または 2.0 µm Nuclepore filter でろ過し、0.45 µm でのろ過液は無細菌海水、2.0 µm でのろ過海水は現場細菌群が含まれる海水とした。次いで、f/2 培地を用いて H. akashiwo を培養し、その培養海水 30 ml と各々のろ過海水 10 ml を 100 ml 三角フラスコに添加し、0.45 µm でのろ過液を添加したフラスコを <0.45 µm 海水区（無細菌海水）、2.0 µm でのろ過海水を添加したフラスコを <2.0 µm 海水区（現場細菌群が含まれる海水）とした。殺藻細菌 9/27-2 株は ST101 液体培地を用いて 20℃ で 24 時間培養し、その後、遠心分離（10,800 × g、10 分間）して集菌し、得られた菌体を f/2 培地で 2 回洗浄し、10^4 cells/ml 程度になるように終濃度を調整し、その後、遠心分離（10,800 × g、10 分間）して集菌し、得られた菌体を f/2 培地で 2 回洗浄し、10^4 cells/ml 程度になるように終濃度を調整後、両試験区に接種した。その後、III - 2 - 1 - 1 で述べた条件で培養を行った。 対照として 9/27-2 株を接種しない試験区も設定した。 1 試験区あたり 2 連の検体を用い、H. akashiwo の細胞数は顕微鏡下で計測し、全細菌数（9/27-2 株と現場細菌群の合計値）は海水を 4'6-diamidino-2-phenylindole（DAPI）880 で染色後、蛍光顕微鏡下で直接計数した。 なお、現場細菌群を含まない <0.45 µm 海水区で計測した細菌数は、全て 9/27-2 株の菌体数とした。

V - 1 - 4. DNA 抽出と PCR による 16S rRNA 遺伝子の増幅

<2.0 µm 海水区は 1 試験区あたり 2 連の三角フラスコを用いて実験を行ったが、2 連の三角フラスコは同様な傾向を示し、差異が見られなかったため、DNA 抽出試料は一方の三角フラスコから経日にサンプリングを行った。また、9/27-2 株の純粋培養液も DNA 抽出試料とし
それぞれの培養液1.5 mlをマイクロチューブに入れ、15,000 × gで15分間遠心分離して集菌を行った。得られた菌体からキット（Quick Gene mini 80、フジフィルム社）を用いてDNAの抽出を行った。作業手順は取扱説明書に従った。GCクランプ（CGCCGCCCAGCGCCGCGCGCGCGCGCGG）の付いた341F（5’-CCTACGGGAGGCAGCAG-3’）をフォワードプライマーおよび907R（5’-CCGTCATTCCTTTRAGTTT-3’）をリバースプライマーとして16S rRNA遺伝子を増幅した。なお、これらのプライマーはEscherichia coliの341-357と907-927に位置し、550bp rDNA断片が増幅される。PCR反応液25 µlの組成は、ExTaq（タカラバイオ）0.6 units、10×ExTaqバッファー2.5 µl、dNTP混合液（各2.5 mM）2.5 µl、各プライマー2.0 µl（5 pmol）、DNAフリー精製水11.0 µl、DNAテンプレート（1～10 ng）5 µlとした。PCR条件には、以下に示すタッチダウンプログラム90°を用いた。反応液を95℃で5分間保った後、変性95℃1分間、アニーリング62℃1分間、伸長72℃1分間の反応を、アニーリング温度を1サイクルごとに0.8℃ずつ下げながら19サイクル行い、引き続き、変性95℃1分間、アニーリング52℃1分間、伸長72℃1分間の反応を9サイクル行った。最後の1サイクルは95℃1分間、55℃1分間、72℃10分間とした。PCR反応はサーマルサイクラーDice Mini（タカラバイオ）を用い、得られたPCR産物はアガロースゲルで電気泳動を行った。電気泳動後、エチジウムプロマインド（1 µg/ml）を用いてゲル中のDNAを染色し、出現した単一バンドを確認した。

V－1－5．DGGEの条件

DGGE電気泳動は、Okunishi et al.90の方法に従った。

PCR産物はWizard SV GelおよびPCR Clean-Up System（Promega）を用いて精製し、DNA含量を測定した。レーン当たりのDNA含量が700 ngとなるように、PCR産物をDGGEゲルに添加した。DGGEは25～55％変性剤濃度勾配（100％変性剤は7 M尿素、40%ホルムアルデヒドに相当）の6％ポリアクリルアミドゲルでDGGEシステム（D-code、Bio-Rad）を用いて60℃、60Vの条件で、16時間泳動を行った。DGGEゲル中のDNAは1×SYBR Gold（Invitrogen）で染色後、BIO View UV light（Biostep）で観察した。
V − 2． 結果

V − 2 − 1．殺藻細菌 9/27-2 株の同定

_H. akashiwo_を殺藻する 9/27-2 株と _Pseudoalteromonas bacteriolytica_ の 16S rRNA の塩基配列を Table 5・1 に示した。9/27-2 株は _Pseudoalteromonas bacteriolytica_ と 99% の相同性を示した（Table 5・2）。また、細菌の性状特性として、9/27-2 株はグラム陰性の運動性のある桿菌で、オキシダーゼ試験陽性の 0/F テスト酸化型であり、_Pseudoalteromonas bacteriolytica_ のそれと一致していた（Table 5・3）。なお、9/27-2 株の 16S rRNA の塩基配列は、アクセッションナンバー AB571544 にて DDBJ データベースに提出した。

V − 2 − 2．9/27-2 株による _H. akashiwo_ の殺藻能

＜0.45 μm 海水区および＜2.0 μm 海水区にそれぞれ 9/27-2 株を接種した場合および接種しない場合の _H. akashiwo_ 細胞数の変化を Fig. 5・2 に示した。＜0.45 μm 海水区において 9/27-2 株を接種しない場合の _H. akashiwo_ の細胞濃度は培養開始時の 1.2 × 10^4 cells/ml から 3.4 × 10^6 cells/ml まで増大した。

＜0.45 μm 海水区で 9/27-2 株を接種した場合、9/27-2 株の細胞数は培養開始時の 2.8 × 10^4 cells/ml から速やかに増大し、培養開始 1 日目には 9.5 × 10^6 cells/ml に達した（Table 5・4）。それに伴い _H. akashiwo_ の細胞濃度は培養開始時の 1.2 × 10^4 cells/ml から 1% 以下に減少し、9/27-2 株は _H. akashiwo_ に対して殺藻能を発現したことを確認した（Fig. 5・2）。

＜2.0 μm 海水区で 9/27-2 株を接種した場合、培養後 2 日目には _H. akashiwo_ の細胞数は、培養開始時の 1.2 × 10^4 cells/ml から 1% 以下に減少した（Fig. 5・2）。＜2.0 μm 海水区で 9/27-2 株を接種した場合の DGGE の電気泳動像を Fig. 5・3-A に示した。培養 0 日目および 1 日目には、9/27-2 株を単独で電気泳動した場合に検出された DGGE バンドと同じ位置にバンドは検出されなかった。しかし、_H. akashiwo_ が殺藻された培養 2 日目には 9/27-2 株単独の場合に検出された DGGE バンドと同じ位置に DGGE バンドが出現した。一方、培養 2 日目における 9/27-2 株を含む全細菌数は 10^7 cells/ml まで増大していた（Table 5・4）。これらの結果から、9/27-2 株は現場細菌群存在下で増殖し、_H. akashiwo_ を殺藻したと考察した。

＜2.0 μm 海水区で 9/27-2 株を接種していない場合でも、培養開始 4 日目に _H. akashiwo_ の細胞数は、培養開始時の 1.2 × 10^4 cells/ml から 1% 以下に減少した（Fig. 5・2）。その時点での培養液 DGGE 電気泳動像を Fig. 5・3-B に示した。9/27-2 株を接種していないにもかかわ
| Strain 9/27-2: | 1 | tcgcgtgcagcgcgcgcggctctctctctttag}
Table 5.1 16S rRNA gene sequence of strain 9/27-2 and Pseudoalteromonas bacteriolytica
Table 5-2
16S rRNA gene sequence similarities between strain 9/27-2 and type strains of related species

<table>
<thead>
<tr>
<th>Related species</th>
<th>Accession number</th>
<th>Similarity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoalteromonas bacteriolytica</td>
<td>D89929</td>
<td>99</td>
</tr>
<tr>
<td>Pseudoalteromonas carrageenovora</td>
<td>KT730055</td>
<td>92</td>
</tr>
<tr>
<td>Pseudoalteromonas lipolytica</td>
<td>KF472185</td>
<td>91</td>
</tr>
<tr>
<td>Algicola sagamiensis</td>
<td>AB063324</td>
<td>91</td>
</tr>
<tr>
<td>Pseudoalteromonas marina</td>
<td>LK391521</td>
<td>91</td>
</tr>
</tbody>
</table>

Table 5-3
Taxonomical properties of strain 9/27-2 and P. bacteriolytica

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Strain 9/27-2</th>
<th>P. bacteriolytica<sup>⁷⁸</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-stain</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shape</td>
<td>Rod</td>
<td>Rod</td>
</tr>
<tr>
<td>Size(μm)</td>
<td>0.70.8×1.22.2</td>
<td>0.60.9×1.92.5</td>
</tr>
<tr>
<td>OF test</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

らず、培養4日目のH. akashiwoの殺藻が観察された培養液では、9/27-2株の位置にDGGEのバンドが出現した。また、全細菌数は培養開始時の3.1×10⁶ cells/ml から培養2日目には2.7×10⁶cells/ml に増殖し、その後は10⁷cells/ml の細菌数を維持していた（Table 5-4）。培養4日日に9/27-2株のDGGEバンドが出現したことから、元々海域に存在した9/27-2株が増殖して検出されると推測され、一定数まで増殖した9/27-2株がH. akashiwoを殺藻したと推測した。

V-3. 考察

16S rRNA 遺伝子の部分塩基配列1225bpを解析した結果、H. akashiwoを殺藻する9/27-2株はPseudoalteromonas bacteriolyticaと99%の相同性を示した。Imai et al.^{⁷⁸}は瀬戸内海の広島湾からH. akashiwoに対して殺藻能を有する細菌を4株単離し、Altermonasと同
Fig. 5-2 Growth and survival of *H. akashiwo* in < 0.45 μm and < 2.0 μm seawater fractions with and without strain 9/27-2. Seawater collected from the surface at the sampling station was filtered through a 0.45 μm or 2.0 μm filter. Each filtrate was added to *H. akashiwo* cultures in F/2 medium. Algicidal bacteria (strain 9/27-2) were individually inoculated into *H. akashiwo* cultures at an initial cell density of 2.8×10^4 cells/ml. The growth and survival of *H. akashiwo* in < 0.45 μm seawater fractions with (▲) and without (●) strain 9/27-2 were monitored via direct observation using a microscope. Likewise, the growth and survival of *H. akashiwo* in < 2.0 μm seawater fractions with (△) and without (○) strain 9/27-2 were monitored. Arrows indicate less than 10^2 cells/ml. Error bar indicates standard deviation.

<table>
<thead>
<tr>
<th>Incubation time (day)</th>
<th><0.45 μm seawater with strain 9/27-2</th>
<th><2.0 μm seawater with strain 9/27-2</th>
<th><2.0 μm seawater without strain 9/27-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.8×10^4</td>
<td>3.2×10^6</td>
<td>3.1×10^6</td>
</tr>
<tr>
<td>1</td>
<td>9.5×10^6</td>
<td>6.7×10^6</td>
<td>9.7×10^6</td>
</tr>
<tr>
<td>2</td>
<td>9.5×10^6</td>
<td>3.3×10^7</td>
<td>2.7×10^7</td>
</tr>
<tr>
<td>4</td>
<td>1.6×10^7</td>
<td>1.8×10^7</td>
<td>1.5×10^7</td>
</tr>
<tr>
<td>6</td>
<td>1.7×10^7</td>
<td>9.2×10^6</td>
<td>2.1×10^7</td>
</tr>
<tr>
<td>17</td>
<td>No Data</td>
<td>1.1×10^7</td>
<td>3.4×10^7</td>
</tr>
</tbody>
</table>

Table 5-4 Changes of the density of total bacteria in the <0.45 μm and <2.0 μm seawater fractions with and without strain 9/27-2
Fig. 5·3 DGGE profiles of the microcosm experiments investigating the behavior of strain 9/27·2 with bacterial community in natural sea during *H. akashiwo* decay. The DGGE profiles of <2.0 μm seawater fractions with (A) and without (B) strain 9/27·2 are shown. Strain 9/27·2, used as standard, is shown in the lane at the extreme right.
定した。Mitsutani et al.
も Skeletonema costatum を溶藻する Alteromonas 属の細菌 1 株を有明海から単離している。Yoshinaga et al. は和歌山県田辺湾から 28 株の K. mikimotoi の増殖を阻害する細菌を単離し、そのうち 1 株が Pseudomonas Alteromonas 群であったと報告している。これらのことから、Pseudoalteromonas に属する殺藻細菌は国内の内湾環境に広く存在していると考えられる。

<0.45 μm 海水区で 9/27−2 株を接種しない場合は、H. akashiwo の細胞数は 10^4 cells/ml から 10^5 cells/ml に増加した。（Fig. 5・2）一方、H. akashiwo は、藻体に感染するウイルスが報告されており、40, 41, 83 今回の実験で用いた <0.45 μm 海水区にはウイルスが混入する可能性が存在するが、H. akashiwo の通常の増殖が観察されたことから、この様々なウイルスならびに何らかの化学物質に起因する阻害作用は発生しなかったと判断した。

Fig. 5・2、5・3 および Table 5・4 に示した様に、<0.45 μm 海水区に 9/9−27 株を接種した場合、培養開始 1 日目に同菌株は増殖して H. akashiwo を殺藻した。さらに、<2.0 μm 海水区に 9/9−27 株を接種した場合も、同菌株は現場細菌群存在下で増殖し、H. akashiwo を殺藻することを確認した。本研究は DGGE の手法を用いて、現場海域の細菌群存在下での殺藻細菌の挙動を明らかにしたが、これは国内初めての研究と思われる。他のミクロフローラを有する現場細菌群存在下での実験によって、さらに検討を加える必要があるもので、9/27−2 株は現場細菌群の存在下でも H. akashiwo に対して殺藻能を示す可能性が強く示唆された。

Fig. 5・2、5・3 および Table 5・4 に示した様に、<0.45 μm 海水区および <2.0 μm 海水区に 9/27−2 株を接種した場合、両実験区において H. akashiwo の殺藻が観察された（Fig. 5・2）。しかし、殺藻に至る時間には差があり、現場細菌群が存在する <2.0 μm 海水区での殺藻に要する期間は 2 日であったのに対し、<0.45 μm 海水区のそれは 1 日であった。これらの結果より、現場細菌群の存在は 9/27−2 株の殺藻を抑制することが判明した。この原因としては、① 細菌間の競合により 9/27−2 株が殺藻に必要な細菌濃度に増殖するまで時間を要した ② 現場細菌群が 9/27−2 が産生する殺藻物質を消費したなどが考えられる。今回の <2.0 μm 海水区に 9/27−2 株を接種した実験では、9/27−2 株の DGGE バンドが出現した時点で H. akashiwo 細胞数の減少が観測されたことから、殺藻が遅れた原因として、共存する現場細菌群によって 9/27−2 株の増殖が阻害されたためと考えられる。一方、K. mikimotoi を殺藻する細菌 66−46 株は、現場細菌群存在下では同藻を完全に殺藻することはできなかった。（III−2−3 参照）その原因として、66−46 株は現場細菌群存在下では殺藻能を発現する細菌数が維持できなかったためと考察した。83 また、Mayali et al. は渦鞭毛藻 Karenia brevis の培養液中に共存する細菌が、殺藻細菌 41−
DBG2 株の増殖を阻害し、殺藻能を抑制したと報告している。

今回、<2.0 μm 海水区において 9/27－2 株が存在しない状態での H. akashiwo の増殖を検討するため、同株を接種しない試験区を設定した。その結果、9/27－2 株を接種しないにもかかわらず、H. akashiwo の胞子数は培養 4 日目に初期濃度の 1% 以下に減少し、殺藻反応が観察された（Fig. 5・2）。その培養液中の現場細菌群の挙動を、DGGE の電気泳動像で確認した結果、9/27－2 株と同じ位置にバンドが検出された（Fig. 5・3 (B)）。この結果より、DGGE の電気泳動で検出されるまでに増殖した 9/27－2 株によって H. akashiwo が殺藻されたと推測した。

この結果は、<2.0 μm 海水区に含まれる細菌細胞群の中に 9/27－2 株が存在しており、採水を行った 10 月 20 日の自然海域において同菌株が存在していたことを示している。さらに、<2.0 μm 海水区で 9/27－2 株を接種した場合と未接種の場合の DGGE 電気泳動像においても、培養 17 日目の海水中に 9/27－2 株の DGGE バンドが確認された（Fig. 5・3 (B)）。これらの結果から、伊勢湾口の定点において 9/27－2 株は長期間存在していることが考えられた。殺藻細菌として単離された数種の細菌は、有機物を添加していない滅菌海水でも増殖可能であると報告されている。69, 78, 80 また、広島湾で H. akashiwo を殺藻する細菌数を MPN 法で測定したところ、同藻が消失した後も殺藻細菌が長期間存在したことが示されている。49 今回の結果からも、殺藻細菌は自然海域にかなりの期間に亘って広く存在していることを示唆している。

Fig. 5・2 および 5・3 (B) で示した様に、現場細菌群を含む天然海水を H. akashiwo 培養液に接種したところ、現場細菌群の中から 9/27－2 株が増殖して同藻に対して殺藻能を発現させた。これらの結果から、9/27－2 株は自然海域において常在し、H. akashiwo の増殖阻害や消失に恒常的に関与している細菌である可能性が示唆された。

自然海域において実際に H. akashiwo の消失に関与している細菌を微生物農薬として活用することは、生態系に与える影響も少なく、有効な手段と考えられる。今後は実際に 9/27－2 株を現場海域に散布した場合の安全性などを検討する必要があると思われる。

V - 4. 要約

伊勢湾湾口から単離された Heterosigma akashiwo 殺藻細菌 9/27－2 株の 16S rRNA 遺伝子の部分配列 1225 bp を解析した結果、Pseudoalteromonas bacteriolytica と 99% の相同性を示した。現場細菌群存在下において 9/27－2 株が H. akashiwo を殺藻する過程における同株の動態を変性剤濃度勾配ゲル電気泳動法で検証した。その結果、H. akashiwo が死滅した培養 2
第Ⅵ章 総 括

我国では1970年代から瀬戸内海において赤潮被害が多発しており、1972年には70億を超える甚大な漁業被害をもたらすことなく、赤潮は大きな社会問題に発展した。その後、赤潮発生海域の栄養塩化を防ぐ対策が採られることにより、1987年以降の赤潮発生件数は1970年代の1/3程度まで減少した。しかしながら、近年でも10億を超える漁業被害が依然として発生しており、赤潮対策は水産学において最も重要な課題であることに変わりはない。

最近の漁業被害を引き起こした主要な赤潮プランクトンは*Chattonella*属から*Karenia mikimotoi*に移行し、2012年には15億円の漁業被害が赤潮プランクトンによって発生している。また、瀬戸内海、土佐湾および熊野灘における赤潮発生件数は、*Karenia mikimotoi*と*Heterosigma akashiwo*が高い割合を示し、三重県の内湾海域でも同様な傾向が認められた。このため、両赤潮プランクトンは近年では最も警戒する必要のある赤潮プランクトンであると考えられている。

これらの赤潮被害を軽減させる目的から、本論文では赤潮プランクトンを殺藻する細菌による*K. mikimotoi*および*H. akashiwo*赤潮の防除法について検討を行った。本論文で実施した本研究の履歴および国内外における赤潮防除研究の動向を表6-1にまとめて示した。

本論文の目的である赤潮プランクトンを殺藻する細菌による赤潮防除を図るためには、殺藻細菌の大量培養などの事前準備が必要となるため、確度の高い赤潮の予察方法の開発が最初の前提条件となる。そこで、*K. mikimotoi*赤潮によって養殖ヒラメなどの被害が発生している三重県の五ヶ所湾において、同藻の潜在的増殖能の指標であるAlgal growth potential（AGP）を用いた同藻の予察の可能性について検討した。

1991年から1994年までの赤潮発生前後における五ヶ所湾迫間浦の観測定点で*K. mikimotoi*のAGPを測定した。その結果,*K. mikimotoi*細胞が観察された期間（6月~8月）の*K. mikimotoi*遊泳細胞数の最大値と底層（B1m）のAGPとの間で高い相関関係がみられた。

1994年の赤潮発生前後において、栄養塩を添加した海水を用いたAGP測定の結果から、赤潮最盛期前後における深い深層の海水中ではリン酸塩の不足が観察された。五ヶ所湾に発生した*K. mikimotoi*赤潮は、明瞭な日周鉛直移動を示すことをHondo et al.が観察しており、*K. mikimotoi*が夜間に到達可能な水深を有する海面面積は、五ヶ所湾では全海域の2/3に及ぶと報告している。つまり、五ヶ所湾の表層に分布する*K. mikimotoi*は、不十分
本論文における研究履歴と赤潮防除研究の動向

<table>
<thead>
<tr>
<th>年次</th>
<th>赤潮発生状況と研究内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970年代</td>
<td>瀬戸内海で赤潮が発生し、漁業被害が顕著化する。</td>
</tr>
<tr>
<td>1980年代</td>
<td>赤潮による漁業被害の拡大</td>
</tr>
<tr>
<td>1990年代</td>
<td>国内での赤潮殺藻細菌の研究が活発化</td>
</tr>
<tr>
<td>[1997年]</td>
<td>五ケ所湾におけるK. mikimotoi、赤潮の発生予察の研究</td>
</tr>
<tr>
<td>[2000年]</td>
<td>国内での赤潮被害は依然として続発</td>
</tr>
<tr>
<td>[2006年]</td>
<td>単離した6646株およびMA10株の生物農薬としての特性を評価</td>
</tr>
<tr>
<td>[2009年]</td>
<td>H. akashiwo殺藻細菌（9272株）の単離・同定</td>
</tr>
<tr>
<td>[2010年]</td>
<td>我国での赤潮発生の広域化（北海道や新潟で赤潮が発生）</td>
</tr>
<tr>
<td>[2012年]</td>
<td>単離したH. akashiwo、S. hantzschiiの殺藻細菌に関する研究（韓国）</td>
</tr>
<tr>
<td>2012年</td>
<td>現場海域にスポンジ固定化した殺藻細菌を投与する研究（韓国）</td>
</tr>
<tr>
<td>2017年</td>
<td>韓国の洛東江におけるS. hantzschii赤潮に対する野外実証実験の実施（韓国）</td>
</tr>
</tbody>
</table>

現在 | 国際的に生物農薬として殺藻細菌を利用する赤潮防除法が注目される |

[] 内は本研究が行われた年を示す。

赤潮発生年である1992年では、赤潮発生最盛期の約2カ月前でAGP値は10^3cells/mlに増大していた。さらに、K. mikimotoiの細胞を確認する1カ月前の時点でもB-1mのAGP値は10^3cells/mlに増大していた。この傾向が安定して再現されれば、B-1mのAGP値が10^3cells/mlに達する時点を目安とすることによって、赤潮発生の予察は十分可能となると判断した。
月半前の期間において AGP は増大し、その時点で既に K. mikimotoi は確認された。1991年および1994年のような状況の場合は、B-1m の AGP 値で「赤潮最盛期」の予察は可能であるが、赤潮発生の「初期段階」を B-1m の AGP 値で予察することは困難であった。従って、1991年および1994年の赤潮発生傾向では、事前に殺藻細菌を大量に増殖させて赤潮被害を未然に予防することは困難であると推察された。

周防灘では K. mikimotoi 赤潮の初期発生場所は特定されており、初期発生場所でのデータが予察に最も重要となる。本研究の五ヶ所湾においては、K. mikimotoi 赤潮の初期発生場所は未だに定着されていない。五ヶ所湾でも K. mikimotoi 赤潮の初期発生場所が特定されれば、その地点での B-1m の AGP を測定することで今回の実験よりも早期に K. mikimotoi 赤潮の発生を予察できる可能性が十分にあると思われる。今後は、五ヶ所湾全域における K. mikimotoi 赤潮の発生動向を明らかにし、初期発生場所を特定することによって、K. mikimotoi 赤潮の B-1m の AGP 値による予察手法が将来確立されることが期待される。

赤潮の防除を図るために、1970年代から今日までに様々な方法が検討されてきた。第1章で述べた様に、生態系に及ぼす影響が最も少ない生物学的な赤潮防除方法が、現在注目されている。その内でも赤潮プランクトンを殺藻する殺藻細菌を用いた方法の有効性に関しては、最も有望視されている。国際的にみても殺藻細菌を用いた方法の有効性に関しては、多くの殺藻細菌が赤潮発生地域から単離されている。44-65 また、それらの殺藻細菌は、実際に現場海域で赤潮を防除するとの報告も存在する。45-46 最近になっても韓国では新たな殺藻細菌が分離されている。90 しかしながら、報告されている殺藻細菌の全てが現場へ応用可能であるとは言い難く、個々の殺藻細菌について実用化の可能性を十分に検討する必要があると思われる。

さらに、殺藻細菌を直接現場海域に投与する方法として、韓国では殺藻細菌をスポンジに固定化する技術が検討されている。90 スポンジに固定化された殺藻細菌は、水温低下や錆性栄養生物などの捕食者から保護されることで、水中に殺藻細菌の菌体を直接投与するよりも効果的に赤潮を殺藻すると報告されており、殺藻細菌の赤潮海域への投与方法としてのスポンジ固定化技術は現在注目を浴びている。

本論文で扱った殺藻細菌の 6/646 株、MA-10 株および 9/27-2 株を用いた赤潮防除法の実用化の可否について検討するため、実用化を考慮した際に必要と思われる各菌株の特性を表
殺藻細菌 6/6-46 株、MA-10 株および 9/27-2 株の特性比較

<table>
<thead>
<tr>
<th>対象赤潮プランクトン</th>
<th>6/6-46 株</th>
<th>MA10 株</th>
<th>9/27-2 株</th>
</tr>
</thead>
<tbody>
<tr>
<td>対象赤潮プランクトン</td>
<td>K. mikimotoi</td>
<td>H. akashiwo</td>
<td></td>
</tr>
<tr>
<td>○殺藻の種に対する特異性</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>○日周鉛直運動する赤潮プランクトンを殺藻</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>○殺藻細菌の増殖能</td>
<td>EOC 又は天然海水での増殖</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>現場海域に恒常的に分布</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>○殺藻条件</td>
<td>菌体のみでの殺藻</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>少量接種量による殺藻能発現</td>
<td>—</td>
<td>○</td>
<td>○ (推定)</td>
</tr>
<tr>
<td>自然細菌群存在下での殺藻</td>
<td>—</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>○現場海域で赤潮の消失に関与</td>
<td>—</td>
<td>—</td>
<td>— (推定)</td>
</tr>
</tbody>
</table>

一方、赤潮プランクトンの殺藻に多量の初期接種が必要とされる殺藻細菌は、当然のことながら現場での使用は困難となる。K. mikimotoi との二培養実験では、MA10 株は約 5 cels/ml という微量の初期接種量でも増殖を開始し、同藻を殺藻する能力を示した。一方、6/6-46 株の K. mikimotoi 殺藻に必要な初期接種量は本実験では判明しなかった。

殺藻細菌の殺藻能は、細菌と赤潮プランクトンの二培養実験で評価されることが多いが、現場での応用を考えた場合には、現場海域に生存する他生物の影響を特に考慮する必要がある。
そこで、現場海域に存在する自然細菌群の存在下での殺藻能について検討した。MA10 株は二者培養において、10^1 cfu/ml の初期接種量で K. mikimotoi を殺藻したが、自然細菌群の存在下では 10^2 cfu/ml 以上の接種量が必要であった。この結果より、現場海域で本菌株を散布する場合は、より多量の初期接種量が必要であることが判明した。6/6-46 株においては、自然細菌群存在下では培養 2 日目以降から生菌数が減少し、K. mikimotoi の増殖を若干阻害したものの、殺藻能の発現は観察されなかった。

Jung et al. は淡水赤潮 Stephanodiscus hantzschii を殺藻する細菌 Pseudomonas fluorescens SK09 株を用いた実用化に向けた実証研究を行っており、S. hantzschii が発生した河川水 10 ℓ を容器に移し、その容器に殺藻細菌 SK09 株を投与した。その結果、同藻の細胞数の低下が観察されたことから、この SK09 株の初期接種量は 5×10^6 cells/ml とされ、本論文の MA10 株が現場海域で殺藻効果を示す初期接種量と比較すると極めて多量であった。さらに、S. antszchii の減少も、培養 8 日間で約 3×10^4 cells/ml から約 1×10^4 cells/ml と僅かに減少した。これに対して、本研究の MA10 株では 10 ℓ 規模での実験を行っておらず、小規模の実験では 10^2 cfu/ml レベルの初期接種量でも K. mikimotoi の細胞数を 1％以下に減らすことができるため、MA10 株の殺藻能は SK09 株よりも強い可能性が推察される。

細菌を、赤潮の防除に利用することができれば、生態系に影響の少ない（＝環境にやさしい）手法の一つになると考えられる。さらに、9/27-2株を単離した2009年9月27日から、上記培養実験に用いるための海水を採取した2009年10月20日までの約1カ月間、同株は同海域中に存在していたと判断できることから、一度散布を行うと、相当期間は生息が可能であると推測できる。

以上述べてきた実験の結果を考察すると、6/6-46株については自然細菌群存在下での殺藻能の発現が抑制されることなどから、現場海域での赤潮防除への応用は困難であると判断した。一方、9/27-2株については、現場海域において赤潮の消失過程に関与している殺藻細菌である可能性が強く示唆され、微生物農薬としての活用は十分可能であると判断した。MA10株についても、その増殖性や自然細菌群共存下での殺藻能の発現などから、現場海域でも十分機能することが可能であると判断した。

現場海域で単離した9/27-2株は、赤潮の消失過程に直接関与している細菌である可能性が非常に高いと考えられる。このことは、本研究で採用した殺藻細菌の探索法は、現場海域での赤潮の消失過程に関与している殺藻細菌を探索する方法として、極めて有用な方法であると判断した。

最近の国外での赤潮研究の動向として、韓国の洛東江においてSK09株を河川に投与する大規模な野外実証実験が行われた。97 この実験では、予期に反してS. hantzschiiの殺藻は観察されなかった。また、この報告ではSK09株の水域での細菌数は示されていないが、実施時の環境等にSK09株が適応できなかったため、本菌株の増殖能が維持できなかったことが考えられる。この実証実験ではS. hantzschiiの殺藻反応が生じなかったために、無機態窒素量の変化は無かった。しかし、100ℓ規模で行われた実験では、SK09株による殺藻で産生した栄養塩の増加が観察され、さらなる赤潮の増殖を誘発するという逆効果の可能性も指摘されている。98

これらの諸課題を踏まえて、赤潮防除法のプロトコールを図6-1にまとめた。まず、1）赤潮が発生した際の海域内で自然増殖する殺藻細菌を約2009年9月27日までに単離した後、本菌株の大量培養を行う。2）赤潮発生を予察または赤潮発生初期の海域に、大量培養した殺藻細菌を海中散布する。3）赤潮が増殖・拡大する以前の段階において、殺藻細菌が赤潮プランクトンを捕捉・殺藻する。

以上示した過程を経ることで、赤潮プランクトンの拡大を未然に防ぐことが可能になり、赤潮被害が防除できると予想した。このプロトコールであれば、殺藻細菌は現場環境に適応して
速やかに増殖すると推察される。また、赤潮の発生を未然に防ぐことで、赤潮プランクトンを殺藻細菌が殺藻することによって産生される栄養塩増加の心配はない。以上述べたような生物的な赤潮防除法であれば、生態系に及ぼす影響はほとんどなく、赤潮被害の軽減または防止を図ることが十分可能であると思われる。

今後は、殺藻細菌が現場海域の生態系に及ぼす影響などを実地に評価し、殺藻細菌が生態系に及ぼす影響がないことを証明できれば、我国での殺藻細菌の海域での利用に関する制度面での整備が進み、赤潮プランクトン殺藻細菌による赤潮防除法の早期実用化が期待できる。

図 6-1 殺藻細菌による赤潮防除の行程（イメージ図）
参考文献

2. 水産庁瀬戸内海漁業調整事務所（2017）: 平成28年瀬戸内海の赤潮
3. 今井一郎（2008）: 沿岸環境と赤潮, ソルト・サイエンス研究財団, 7-18.
5. 郷譲治, 水野 清仁, 潮川 進, 本城凡夫（2016）: 英虞湾に発生した渦鞭毛藻Karenia mikimotoi赤潮のアコヤガイへの影響, 日本水産学会誌, 82, 737-742.
6. 水野健一郎, 若野真, 高辻英之, 永井崇裕（2015）: 有害渦鞭毛藻Karenia mikimotoiがマガキ幼生の着底に及ぼす影響, 日本水産学会誌, 81, 811-816.
7. 近藤伸一, 中尾久子, 岩巻光雄, 柏本節子, 板倉茂, 松山幸彦, 長崎慶三（2012）: 有室赤潮藻ヘテロカプサの分布域北上現象—佐渡島加茂湖での赤潮によるマガキの大量死, 日本水産学会誌, 78, 719-725.
8. 嶋田宏, 金森誠, 吉田秀嗣, 今井一郎（2016）: 2015年秋季北海道函館湾における渦鞭毛藻Karenia mikimotoiによる有害赤潮の初記録, 日本水産学会誌, 82, 934-938
9. 水産庁瀬戸内海漁業調整事務所（2016）: 平成27年瀬戸内海の赤潮
10. 水産庁瀬戸内海漁業調整事務所（2015）: 平成26年瀬戸内海の赤潮.
12. 水産庁瀬戸内海漁業調整事務所（2013）: 平成24年瀬戸内海の赤潮.
13. 水産庁瀬戸内海漁業調整事務所（2012）: 平成23年瀬戸内海の赤潮.
15. 水産庁瀬戸内海漁業調整事務所（2010）: 平成21年瀬戸内海の赤潮.
16. 三重県（2017）: 平成29年三重県沿岸海域に発生した赤潮
17. 三重県（2016）: 平成28年三重県沿岸海域に発生した赤潮
18. 三重県（2015）: 平成27年三重県沿岸海域に発生した赤潮
19. 三重県（2014）: 平成26年三重県沿岸海域に発生した赤潮
20. 三重県（2013）: 平成25年三重県沿岸海域に発生した赤潮
三重県（2012）：平成24年三重県沿岸海域に発生した赤潮
三重県（2011）：平成23年三重県沿岸海域に発生した赤潮
三重県（2010）：平成22年三重県沿岸海域に発生した赤潮

小泉 喜嗣, 高島 景, 神薗 真人, 江藤 拓也, 馬場 俊典, 桧山 篤久, 池田 武彦, 岩男 昌, 樋下 雄一, 内間 満明, 三浦 秀夫, 矢沼 隆 (1991): 西部瀬戸内海における初期出現域とその環境特性, 日本水産学会誌, 57, 2179-2186.

長崎 慶三 (2002): 杀藻ウイルスによる赤潮の駆除「有害・有毒藻類ブルームの予防と駆除」, 恒星社厚生閣, 東京, pp.54-62

82 岳和寛恵 (2000): 赤潮藻殺藻細菌の殺藻機構に関する研究, 三重大学修士論文, 95-133
84 岩田 友三, 菅原 庸, 木村 俊夫, 河和 寛恵, 松本 晴人, 則武 健太郎 (2004): 伊勢湾から分離された*Flavobacterium* sp.による*Karenia mikimotoi*の殺藻, 日本水産学会誌, 70, 537-541.
86 財団法人 愛知県水産業振興基金栽培漁業部 (2007): 平成18年度 業務報告

本論文は、以下の論文を基に作成したものである。

第Ⅱ章
・岩田 友三, 菅原 庸, 木村 俊夫, シラバジャン コム, 佐野 元宏, 水口 忠久, 西村 昭史, 井上 美佐, 竹内 俊博 (1997): 五ヶ所湾における Gymnodinium mikimotoi の増殖ポテンシャル, 日本水産学会誌, 63, 578-584

第Ⅲ章 第 1 節

第Ⅲ章 第 2 節
・岩田 友三, 菅原 庸, 木村 俊夫, 河和 寛恵, 松本 晴人, 則武 健太郎 (2004): 伊勢湾から分離された Flavobacterium sp. による Karenia mikimotoi の殺藻, 日本水産学会誌, 70, 537-541

第Ⅳ章

第Ⅴ章
・岩田 友三, 奥西 将之, シャロン N ヌナル, アデル アーマー リガル, 中野 みよ, 前田 広人 (2018): 現場海域の細菌群集存在下における Heterosigma akashiwo 殺藻細菌の殺藻活性とその動態, 日本防菌防黴学会誌, 46, 337-342