過酸化水素添加による BiFeO₃ の
光触媒活性促進と
そのリニュロン分解への応用

平成 25 年度
三重大学大学院 工学研究科
博士前期課程 分子素材工学専攻
生物機能工学講座 412M307
研究領域 F：先進物質・先進材料
分析環境化学研究室
井上 光一
目次

第 1 章 序論... 1
 1-1 水質汚染... 1
 1-2 農薬 .. 1
 1-2-1 リニュロン ... 2
 1-3 有機汚染物質の分解法 .. 3
 1-3-1 促進酸化法(Advanced Oxidation Process) .. 3
 1-3-2 Fenton 反応 .. 4
第 2 章 実験 ... 6
 2-1 試薬.. 6
 2-2 分析機器... 7
 2-3 実験操作 ... 8
 2-3-1 BiFeO₃ 触媒の調製 .. 8
 2-3-2 実際の BiFeO₃ の元素比測定 ... 9
 2-3-3 分解実験 ... 10
 2-3-4 反応中間体の検出 ... 11
第 3 章 結果と考察 .. 12
 3-1 SEM 測定 ... 12
 3-2 XRD 測定 ... 13
 3-3 XPS 測定 ... 14
 3-4 DRS 測定 ... 18
 3-5 FT-IR 分析 ... 19
 3-6 BiFeO₃ の元素比 .. 20
 3-7 触媒量の影響 .. 21
 3-8 H₂O₂ 初期濃度の影響 .. 23
 3-9 初期 pH の影響 ... 25
 3-10 溶出 Fe イオンによる分解 ... 27
 3-11 光照射の影響 ... 29
 3-12 H₂O₂ 消費量 ... 31
 3-13 添加剤による活性の向上 .. 33
 3-13-1 有機酸添加の影響 ... 33
 3-13-2 EDTA 初期濃度の影響 .. 35
 3-13-3 反応時間の影響 .. 37
 3-14 速度式 .. 39
 3-15 クマリン蛍光 ... 41
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-16</td>
<td>再利用性</td>
</tr>
<tr>
<td>3-17</td>
<td>溶解した Fe, Bi カチオン濃度</td>
</tr>
<tr>
<td>3-18</td>
<td>反応中間体の検出</td>
</tr>
<tr>
<td>3-19</td>
<td>反応機構</td>
</tr>
<tr>
<td>第4章</td>
<td>結論</td>
</tr>
<tr>
<td>参考文献</td>
<td></td>
</tr>
<tr>
<td>本研究に関する論文</td>
<td></td>
</tr>
<tr>
<td>謝辞</td>
<td></td>
</tr>
</tbody>
</table>
第1章 序論
1-1 水質汚染
水質汚染の60～70％は生活排水が原因とされている。特に割合が大きいのは台所排水であり、米のとき汁や食べ残しが河川や海に流れ込むと富栄養化を引き起こし、プランクトンや水草などの大量発生の原因となる。その結果、水中の酸素が不足し生物の死滅が起こる。また、油や合成洗剤に含まれる自然では分解されにくい化学物質も汚染と原因となっている。

工業排水も水質汚染の原因である。例えば、水俣病はアセトアルデヒド工場からの排水中のメチル水銀が、イタイイタイ病は鉛排水中のカドミウムが汚染の原因となった。現在では法律の規制や下水道の整備によって工業排水による水質汚染は改善されてきているが、法整備や下水道の整備が普及されていない地域はまだ多くあり、このような地域では処理されずにそのまま川や海へと流している現状である。

その他にもゴルフ場では除草剤が使用され、農業ではさらに殺虫剤、殺菌剤、殺そ剤が使用される。これらは空中散布や水系への流出、揮発、地下浸透によって環境中に残留することがある。人体に対する悪影響が大きい農薬はその使用が法律で禁止されているが、それが無視される場合やかつて使用された場合にはいまだに地中や地下水中に残留していることもある。また海上での船舶からの油の流出、大気中を漂う雨や雪などによって地表に降り水質を汚染することもある。このようなさまざまな原因によって水質汚染が引き起こされている。

1-2 農薬
過去から現在に至るまで、人類にとって食糧問題は大きな課題である。この中で、物質生産能力の向上において農薬が果たしてきた役割はきわめて大きい。しかし、一方で、毒性の高い農薬が人体や周辺環境に多大な悪影響を与え、農薬の大量投入などによって、深刻な環境汚染が引き起こされてきたことも事実である。

農薬とは、農薬取締法では「農作物を害する、線虫、ダニ、昆虫、ネズミ、その他の動物、またはウイルスの防除に用いられる殺菌剤、殺虫剤、その他の薬剤、および農作物などの生理機能の増進または抑制に用いられる成長促進剤、発芽抑制剤、その他の薬剤をいう」と定義されている。現在、世界中で使用されている農薬の種類は約700種、わが国では2010年において538種の農薬が使用されている。日本での農薬の生産量は、2011年において232,915tである（殺虫剤：86,184t、殺菌剤：45,504t、殺虫殺菌剤：20,765t、除草剤：67,935t、その他：12,527t）
リニュロン

我が国では1964年に農薬登録され、現在でも多くの商品が一般向けに販売されている。用途はほとんどが除草剤であるが、EUでは環境ホルモンの疑いがあるため、使用が禁止されている。人体に対しては、長期又は反復ばく露による血液系の障害のおそれがあり、水生生物に非常に強い毒性、長期的影響により水生生物に非常に強い毒性がある。

リニュロンの主な性質をTable.1・2・1に示す。平成23年度の国内排出量は111,353 kgであり、ほぼすべてが届出外排出量であり、畑・果樹園での使用が主である。

Table.1・2・1. Properties of linuron.

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Crystalline powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>93 – 95 °C</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>63.8 mg/L</td>
</tr>
<tr>
<td>Hydrolytic stability (DT$_{50}$)</td>
<td>pH5 1220 days</td>
</tr>
<tr>
<td></td>
<td>pH7 1460 days</td>
</tr>
<tr>
<td></td>
<td>pH9 1080 days</td>
</tr>
<tr>
<td>Oral LD$_{50}$ · rat</td>
<td>2600 mg/kg</td>
</tr>
<tr>
<td>Dermal LD$_{50}$ · rat</td>
<td>> 2000 mg/kg</td>
</tr>
<tr>
<td>Inhalation LC$_{50}$ · rat</td>
<td>> 1.7 mg/L</td>
</tr>
<tr>
<td>Fish toxicity LC$_{50}$</td>
<td>For Oncorhynchus mykiss 3.15 ppm/96 h</td>
</tr>
</tbody>
</table>
1・3 有機汚染物質の分解法
1・3・1 促進酸化法（Advanced Oxidation Process）

促進酸化法とは、オゾン、過酸化水素、紫外線、酸化チタンや鉄イオンを併用することで、強力な酸化剤であるヒドロキシルラジカル（・OH）を発生させ、現在水処理で主流となっている生物処理法では分解が困難な難分解性有機物などを効率よく分解除去する方法である。

Table.1・3・1に代表的な酸化物質の酸化還元電位を示す。フッ素に次ぐ酸化力を有するOHラジカルは、難分解性有機物の酸化分解のために現在広く研究されている。OHラジカルと有機物の反応は反応選択性が低いため、排水中の溶存有機物を水と炭酸ガスにまで完全分解することが原理的に可能である。これまでもうまくいった酸化処理では、有機物との反応選択性があり、代表的なものでは、オゾン処理は主として炭素不飽和結合を切断し、最終生成物としてシュウ酸や酢酸が残留する。促進酸化法では、従来の酸化処理では難分解であった物質も酸化できること、また、TOC濃度としても減少させることができることが期待できる。

<table>
<thead>
<tr>
<th>Acid solution</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₂(g) + 2e⁻ → 2F⁻</td>
<td>2.87</td>
</tr>
<tr>
<td>·OH + H⁺ → H₂O</td>
<td>2.85</td>
</tr>
<tr>
<td>O₃ + H⁺ + 2e⁻ → 2H₂O</td>
<td>2.07</td>
</tr>
<tr>
<td>H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O</td>
<td>1.78</td>
</tr>
<tr>
<td>MnO₄²⁻ + 4H⁺ + 3e⁻ → MnO₂ + 2H₂O</td>
<td>1.70</td>
</tr>
<tr>
<td>HO₂⁻ + H⁺ + e⁻ → H₂O₂</td>
<td>1.50</td>
</tr>
<tr>
<td>O₂ + 4H⁺ + 4e⁻ → 2H₂O</td>
<td>1.23</td>
</tr>
<tr>
<td>Alkaline solution</td>
<td>Volt</td>
</tr>
<tr>
<td>OH + e⁻ → OH⁻</td>
<td>2.02</td>
</tr>
<tr>
<td>O₃ + H₂O + 2e⁻ → O₂ + 2OH⁻</td>
<td>1.24</td>
</tr>
<tr>
<td>HO₂⁻ + H₂O + 2e⁻ → 3OH⁻</td>
<td>0.88</td>
</tr>
<tr>
<td>MnO₄²⁻ + 2H₂O + 2e⁻ → MnO₂ + 4OH⁻</td>
<td>0.60</td>
</tr>
<tr>
<td>O₂ + 2H₂O + 4e⁻ → 4OH⁻</td>
<td>0.40</td>
</tr>
</tbody>
</table>
1.3.2 Fenton 反応

排水処理のための高度酸化技術はその過程に強力な酸化剤である・OHを生成するため、注目を集めている。そのひとつに、古典的な Fenton 反応があり、有機汚染物質を無害な CO₂や H₂O に分解できる。反応系内に均一に Fe イオンが存在する均質 Fenton 反応では、フリーラジカル連鎖機構は、式(1)~(7)のようになる。

Homogeneous Fenton reaction

\[\begin{align*}
 \text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \cdot \text{OH} + \text{OH}^- \quad (1) \\
 \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{2+} + \cdot \text{HO}_2 + \text{H}^+ \quad (2) \\
 \text{H}_2\text{O}_2 + \cdot \text{OH} & \rightarrow \cdot \text{HO}_2 + \text{H}_2\text{O} \quad (3) \\
 \text{Fe}^{2+} + \cdot \text{OH} & \rightarrow \text{Fe}^{3+} + \text{OH}^- \quad (4) \\
 \text{Fe}^{3+} + \cdot \text{HO}_2 & \rightarrow \text{Fe}^{2+} + \text{O}_2 + \text{H}^+ \quad (5) \\
 \text{Fe}^{2+} + \cdot \text{HO}_2 + \text{H}^+ & \rightarrow \text{Fe}^{3+} + \text{H}_2\text{O}_2 \quad (6) \\
 \cdot \text{HO}_2 + \cdot \text{HO}_2 & \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (7)
\end{align*} \]

均質 Fenton 系は高効率であるが、Fe(II), Fe(III)の沈殿を防ぐために pH<3.0 での操作が要求され、通常、大過剰の Fe(II), Fe(III)は従来の Fenton システムにおいてリサイクルすることができず、大量の鉄廃棄物を生成する。近年、酸化鉄もしくはゼオライトや粘土、炭素材料で固定した鉄のような不均質 Fenton 触媒が数多く報告されており、広い pH 範囲で有機汚染物質を分解できる。(式(8)~(12))

Heterogeneous Fenton reaction

\[\begin{align*}
 \equiv \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \equiv \text{Fe}^{2+} + \cdot \text{OH}_2 + \text{H}^+ \quad (8) \\
 \equiv \text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \equiv \text{Fe}^{3+} + \cdot \text{OH} + \text{OH}^- \quad (9) \\
 \cdot \text{OH} & \equiv \text{O}_2^- + \text{H}^+ \quad (10) \\
 \equiv \text{Fe}^{3+} + \text{O}_2^- & \rightarrow \equiv \text{Fe}^{2+} + \text{O}_2 \quad (11) \\
 \equiv \text{Fe}^{3+} + \cdot \text{OH}_2 & \rightarrow \equiv \text{Fe}^{2+} + \text{O}_2 \quad (12)
\end{align*} \]

また、錯体の Fe(OH)²⁺に波長 410 nm 以下の光が作用して起きる光 Fenton 反応(14)も報告されている。

Photo Fenton reaction

\[\text{Fe(OH)}^{2+} + \text{hu} \rightarrow \text{Fe}^{2+} + \cdot \text{OH} \quad (13) \]
ペロブスカイト型混合酸化物(ABo₃)は工業用反応において重要な不均質触媒であり、BiFeO₃はペロブスカイト構造とFe元素を同時に持っているので、H₂O₂に対する触媒活性化のための有力な候補であると期待されている。本研究では、BiFeO₃の触媒活性によりH₂O₂の分解を向上させ、モデル物質としてリニュロンを対象に分解実験を行った。
第2章 実験
2-1 試薬

本研究で使用した試薬を以下に記す。

・硝酸鉄・9水和物 Fe(NO₃)₃・9H₂O 和光純薬工業㈱
・硝酸ビスマス・5水和物 Bi(NO₃)₃・5H₂O 和光純薬工業㈱
・硝酸 HNO₃ ナカライテスク㈱
・水酸化カリウム KOH ナカライテスク㈱
・ポリエチレングリコール CₙH₂₄Oₙ+₁ 和光純薬工業㈱
・エタノール C₂H₅OH 関東化学㈱
・メタノール CH₃OH 関東化学㈱
・リニュロン C₉H₁₀Cl₂N₂O₂ 和光純薬工業㈱
・エチレンジアミン四酢酸 C₁₀H₁₆N₂O₈ 和光純薬工業㈱
・過酸化水素 H₂O₂ 関東化学㈱
・クマリン C₉H₆O₂ 和光純薬工業㈱
・t-ブチルアルコール C₄H₁₀O 和光純薬工業㈱
・シュウ酸アンモニウム C₄H₇N₂O₄ 和光純薬工業㈱
・硫酸 H₂SO₄ ナカライテスク㈱
・水酸化ナトリウム NaOH ナカライテスク㈱
・硫酸バリウム BaSO₄ 和光純薬工業㈱
・無水硫酸ナトリウム Na₂SO₄ 和光純薬工業㈱
・アセトニトリル C₂H₃N 和光純薬工業㈱
・ジクロロメタン CH₂Cl₂ 和光純薬工業㈱
2-2 分析機器

本研究で使用した分析機器を以下に記す。

・高速液体クロマトグラフ（High Performance Liquid Chromatography）

- カラム GL Science
- 紫外検出器 GL-7450 GL Science
- ポンプ GL-7410 GL Science
- 検出波長 250 nm
- 溶離液 50%アセトニトリル水溶液
- 流量 1.0 mL min⁻¹
- 分析時間 14.5 min
- 分析サンプル量 20 μL

・ガスクロマトグラフ/質量分析計（GC/MS） GCMS-QP5000 ㈱島津製作所

- カラム HP-5
- キャリヤーガス He(99.9%) 1mL min⁻¹
- 分析時間 60 min
- 分析サンプル量 1 μL

・原子吸光光度計 SolaarS thermo electron

- ホロカソードランプ 浜松ホトニクス
- アセチレン流量 1.0 mL min⁻¹
- バーナー幅 50 mm
- 波長 Fe 248.3 nm
- 波長 Bi 223.1 nm

・X線回折装置（XRD） RINT2000/PC Rigaku Co

・走査型電子顕微鏡（SEM） S-4000 ㈱日立製作所

・X線分子分光測定装置（XPS） PHI Quantera SXM ULVAC,inc

・フーリエ変換型赤外分光装置（FT-IR） Spotlight 200/SP100 PerkinElmer

・拡散反射測定装置 UV-2450PC ㈱島津製作所

・可視紫外吸光光度計 UV-1650PC ㈱島津製作所

・分光蛍光光度計 RF-5300PC ㈱島津製作所
2-3 実験操作
2-3-1 BiFeO₃触媒の調製

ビスマスフェライトは水熱法で調製した。Bi(NO₃)₃・5H₂O、Fe(NO₃)₃・9H₂Oを濃硝酸に溶解させ、蒸留水で13.3 mLまで希釈した。3.56 gのPEGと53.95 gの水酸化カリウムを蒸留水に溶解させ、66.7 mLに希釈した。ビスマス・鉄の混合溶液を水酸化カリウム・PEGの混合溶液にゆっくりと滴下すると褐色の固体が沈殿する。沈殿物を含む混合溶液をテフロン容器に移し、鉄製の圧力容器で密閉した後、200℃で24時間加熱し水熱合成を行った。加熱後、容器を室温まで下げ0.2 μmのPTFEフィルターを用いて濾過した。蒸留水とエタノールで数回洗浄した後、60℃の真空乾燥機で乾燥させた。固体をメノウ鉢で粉砕して粒子を得た。実験手順をScheme 2-3-1に示す。

Scheme 2-3-1 Preparation of BiFeO₃.
2-3-2 実際の BiFeO₃の元素比測定

調製した BiFeO₃を 20 mg 量取り、1 mL の濃硝酸と 3 mL の濃塩酸で溶解させ、蒸留水で 50 mL に希釈した。原子吸光光度計で測定できる濃度まで希釈し、測定を行った。
2-3-3 分解実験

適当に希釈したリニュロン水溶液のpHを硫酸および水酸化ナトリウムで調整し、鉄酸ビスマス触媒を加え、最終的に目的の濃度・体積になるようにした。パイレックスガラス製反応容器を用いて、光照射下・非照射下でマグネットックスターラーで撹拌させながら過酸化水素を添加した。反応の停止にはメタノールを用いた。本実験装置図をFig.2-3-3に示す。

Scheme 2-3-3 Experimental procedure.

Linuron 10 ppm
BiFeO₃ 60mg
H₂O₂ 30 mM
Ligands 0.15 mM

UV or Visible light

Magnetic stirrer
2-3-4 反応中間体の検出

反応停止後の試料 50 mL とジクロロメタン 9 mL を分液漏斗に入れ、有機層を分液して中間体を抽出した。無水硫酸ナトリウムを添加し、水分を完全に抜き取ってから窒素ガスを液体表面に流して濃縮を行い、GC-MS により分析した。
第 3 章 結果と考察

3-1 SEM 測定

調製した BiFeO₃の粒子形態、粒径を調べるために SEM 測定を行った。結果を Fig.3-1
に示す。

粒子は一片 300 nm 程度の立方体であった。

Fig. 3-1 SEM images of BiFeO₃.
3-2 XRD 測定

調製した触媒が BiFeO₃ であるかを確認するために XRD 測定を行った。Fig.3-2 に結果を示す。(a)が使用前のもの、(b)が5回サイクル後である。

Fig.3-2(a)より、調製した触媒はペロブスカイト型 BiFeO₃ と同定された。5サイクル後の XRD パターンに変化が見られないことから、触媒の結晶構造が変質していないことが確認できた。

Fig.3-2 XRD patterns of BiFeO₃ before and after the degradation reaction.
3-3 XPS 測定

触媒表面のサーベイスペクトルをFig.3-3-1に、ナロースペクトルをFig.3-3-2～3に示す。
Fig.3-3-1より、反応の前後において触媒表面からビスマス、鉄、酸素以外のピークは検出されなかった。Fig.3-3-2より、鉄酸ビスマス中の鉄は3価で存在し、光照射や過酸化水素によって鉄が還元されFenton反応を生じると考えられる。また、Fig.3-3-3(a)で示すようにビスマスもまた3価で存在していた。
Fig 3-3-1 XPS spectra of BiFeO$_3$ before and after the degradation reaction.
Fig 3-3-2 XPS spectra of Fe2p on the BiFeO$_3$ before and after the degradation reaction.
Fig. 3.3.3 XPS spectra of (a) Bi 4f\(^{5/2}\) and (b) O 1s in BiFeO\(_3\) before and after the degradation reaction.
3-4 DRS測定

BiFeO₃の拡散反射スペクトルをFig.3-4に、tauc-plotを挿入図に示す。
500 nm付近に強い吸収があるため、可視光応答性であることがわかる。また、そのバンドギャップは約2.23 eVであった。反応後の触媒に大きな変化は見られなかったが、吸収端がわずかに青方に移動しており、そのためバンドギャップもわずかに変化していた。

Fig. 3-4 Diffuse reflection spectrometry of BiFeO₃ before and after the degradation reaction.
3-5 FT-IR分析

触媒の分子構造を決定するため、FT-IRスペクトルを測定した。結果をFig.3-5に示す。530 cm\(^{-1}\)付近の強い吸収はBiFeO\(_3\)ナノ粒子のO–Fe–O曲げ振動、435 cm\(^{-1}\)付近の吸収はFe–O伸縮振動であり、ペロブスカイト化合物の八面体FeO\(_6\)の特性である。また、反応前後において変化は見られなかった。

Fig.3-5 FT-IR spectrum of BiFeO\(_3\) before and after the degradation reaction.
3-6 BiFeO₃の元素比

酸に溶解させた触媒の原子吸光の結果は、Fe : Bi = 1 : 0.98 となり同量の原子が含まれていると考えられる。また前述の分析結果と併せて、ほぼ純粋な BiFeO₃を調製できたと考えられる。
3-7 触媒量の影響

触媒量がリニュロンの分解へ与える影響を検討した。実験条件を Table.3-7 に、測定結果をFig.3-7に示す。

Fig.3-7から分かる通り、触媒量60 mgまでは分解率が上昇したがそれ以上になると減少した。よって、最適な触媒量を60 mgとした。

60 mg以上加えた時の分解率の減少は、過剰な触媒が光を遮り、反応容器内全体で光Fenton反応が生じるのを妨げたためと考えられる。

Table.3-7 Experimental conditions.

<table>
<thead>
<tr>
<th>BiFeO₃ dosage</th>
<th>10 ~ 80 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>30 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig. 3-7 Effect of catalyst amount

Degradation(%) vs. Catalyst amount(mg)
3-8 H₂O₂初期濃度の影響

H₂O₂の初期濃度がリニュロンの分解に与える影響を検討した。実験条件をTable.3-8に、結果をFig.3-8に示す。

H₂O₂非存在下では分解反応が起きず、添加量の増加とともに分解率は向上していった。初期濃度30 mMで最大の分解率となり、それ以降は減少した。よって、H₂O₂の最適な初期濃度を30 mMとした。

初期濃度30 mM以上での分解率の減少は、Fenton反応により生じたOHラジカルがH₂O₂に補足されリニュロンとの反応が阻害されること、高濃度のOHラジカル同士が反応してH₂O₂に再結合し、分解反応が阻害されるためと考えられる。

<table>
<thead>
<tr>
<th>Table.3-8 Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
</tr>
<tr>
<td>linuron</td>
</tr>
<tr>
<td>Sample volume</td>
</tr>
<tr>
<td>H₂O₂</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
</tr>
</tbody>
</table>
Fig. 3-8 Effect of H$_2$O$_2$ concentrations.
3.9 初期 pH の影響

初期 pH がリニュロン分解へ与える影響を検討するため、初期 pH を 3.0,5.0,7.0 に調整したリニュロン溶液を用いて分解実験を行った。実験条件を Table.3-9 に、結果を Fig.3-9 に示す。

初期 pH3.0,5.0 で分解率はほぼ同等であり、60 分で 99%の分解に達した。Fenton 反応に最適な pH が>3.0 であることを考慮すると、より中性に近い pH でも BiFeO₃ の触媒作用が有効であったといえる。pH7.0 では分解率は劣るもの、120 分で 80%を超え、完全な中性域でも BiFeO₃ が有効に作用することが実証できた。

Table.3-9 Experimental conditions.

<table>
<thead>
<tr>
<th>BiFeO₃ dosage</th>
<th>60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>3.0 ~ 7.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>0 ~ 120 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig. 3-9 Effect of initial pH on the degradation of linuron.
3-10 溶出 Fe イオンによる分解

分解反応中に溶出した Fe イオンに起因する Fenton 反応を測定するため、BiFeO₃を分散させたリニュロン溶液に 120 分間紫外線照射して十分溶出させた後、ろ過して粒子を取り除き、H₂O₂を添加して分解実験を行った。実験条件を Table.3-10 に、結果を Fig.3-10 に示す。

pH3.0で溶出させたものは十分に Fe イオンが存在していたためか、Fig. 3-9 で示した pH3.0 での触媒分解より速く完全な分解に達した。溶出していた Fe イオンは 1.0 ppm であった。一方、pH5.0 で溶出させたものは原子吸光光度計の感度以下の溶出濃度だったが、分解が見られ、120 分で 90%ほどに達した。

Table.3-10 Experimental conditions.

<table>
<thead>
<tr>
<th>Linuron</th>
<th>10 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>3.0 ～ 5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>0 ～ 120 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig. 3-10 Degradation of linuron with dissolved ion at different pHs.
3-11 光照射の影響

光が分解に与える影響を検討するために、紫外光照射下、可視光照射下または暗所での分解実験を行った。また BiFeO₃、H₂O₂ それぞれ単独で存在した時のリニュロンに与える影響も検討した。実験結果を Fig. 3-11 に示す。

実験結果より、紫外光照射下で最も早く分解が生じ、30 分で 90%に達し、120 分でほぼ完全な分解が得られた。一方、可視光照射下、暗所では 30 分まではほぼ同等の分解率であったが、それ以降は可視光照射下でより大きな分解が得られた。最終的にはどちらも 90%を超える分解が得られた。

また、BiFeO₃、H₂O₂ 單独では分解が起きないことが確認できた。特に BiFeO₃ 單独でもリニュロンが減少しなかったことから、吸着は起きないものと考えられる。

<table>
<thead>
<tr>
<th>Table 3-11 Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
</tr>
<tr>
<td>linuron</td>
</tr>
<tr>
<td>Sample volume</td>
</tr>
<tr>
<td>H₂O₂</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
</tr>
<tr>
<td>Wavelength (Visible light)</td>
</tr>
<tr>
<td>Light intensity (Visible light)</td>
</tr>
</tbody>
</table>
Fig. 3.11 Degradation of linuron in the different systems.
3-12 H₂O₂消費量

反応中の H₂O₂消費量を測定するために、WAK-H₂O₂パックテストと可視紫外吸光光度計を用いて H₂O₂濃度の測定を行った。実験条件を Table.3-12に、結果を Fig.3-12に示す。

暗所での反応と比較して、紫外光照射下で H₂O₂消費量は大幅に増大していた。紫外光により、BiFeO₃が活性化されより多くの H₂O₂と反応したためと考えられる。また、H₂O₂の消費は強力な酸化種である OH ラジカルの生成をもたらすため、紫外光照射による分解率の向上が期待される。

<table>
<thead>
<tr>
<th>Table.3-12 Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
</tr>
<tr>
<td>linuron</td>
</tr>
<tr>
<td>Sample volume</td>
</tr>
<tr>
<td>H₂O₂</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
</tr>
</tbody>
</table>
Fig. 3-12 Time course of consumption of H$_2$O$_2$.
3-13 添加剤による活性の向上
3-13-1 有機酸添加の影響

種々の有機酸がフェントン反応を加速することが多くの文献で実証されている。本研究でも分解速度のさらなる向上のために、有機酸を加える分解実験を行った。実験条件をTable.3-13-1に、結果をFig.3-13-1に示す。

実験結果より、EDTA添加による活性の向上は明らかであるが、他の有機酸を添加した場合、非添加時の分解率を下回る結果となった。活性向上につながらなかった有機酸が分解対象となったため、リニュロンの分解と競合したために分解率が低下したと考えられる。よって、以降の実験ではEDTA添加による活性の向上を図る。

Table.3-13-1 Experimental conditions.

<table>
<thead>
<tr>
<th>BiFeO₃ dosage</th>
<th>60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>ligands</td>
<td>0.15 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>5 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig.3-13-1 Effect of different ligands.

- without ligand
- oxalic acid
- citric acid
- ascorbic acid
- succinic acid
- EDTA

Degradation (%)
3-13-2 EDTA 初期濃度の影響

EDTA の初期濃度が分解に与える影響を検討した。実験条件を Table.3-13-2 に、結果を Fig.3-13-2 に示す。

Fig.3-13-2 より、EDTA の初期濃度が 0.15 mM を超えると分解を妨げることがわかった。過剰な EDTA が先に分解されたためにリニュロンの分解率が低下したと考えられる。よって、最適添加量を 0.15 mM とする。

Table.3-13-2 Experimental conditions.

<table>
<thead>
<tr>
<th>条件</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
<td>60 mg</td>
</tr>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>EDTA</td>
<td>0 ~ 0.4 mM</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>5 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig.3.13-2 Effect of EDTA concentrations.
3-13-3 反応時間の影響

BiFeO₃/H₂O₂/EDTA 系において、紫外光・可視光照射下または暗所での分解率の時間変化を検討した。実験条件を Table.3-13-3 に、結果を Fig.3-13-3 に示す。

光照射・非照射下いずれの場合でも劇的な分解速度の向上が認められた。特に紫外光照射した場合は 10 分でほぼ完全分解に達し、可視光・暗所での分解は 20 分で十分な分解率が得られた。H₂O₂/BiFeO₃/UV 系では完全分解まで 60 分かかっているため、EDTA の効果が非常に大きいといえる。

<table>
<thead>
<tr>
<th>Table.3-13-3</th>
<th>Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
<td>60 mg</td>
</tr>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.15 mM</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>0 ~ 20 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
<tr>
<td>Wavelength (Visible light)</td>
<td>400 ~ 700 nm</td>
</tr>
<tr>
<td>Light intensity (Visible light)</td>
<td>5000 μW/cm²</td>
</tr>
</tbody>
</table>
Fig. 3-13:3 Degradation of linuron in the different systems.
3-14 速度式

多くの触媒反応は Langmuir – Hinshelwood モデルに一致することがよく知られており、次式(14)が得られる。

\[
\frac{dC}{dt} = \frac{kKC}{1+KC}
\]

ここで、\(r \) は分解速度(mg/L min)、\(k \) は反応速度定数(mg/L min)、\(K \) は吸着係数(L/g)、\(C \) は基質濃度(mg/L)、である。ここで、初期濃度 \(C_0 \) が非常に小さい時(式(14))は次のような(式(15))に近似でき、\(\ln(C/C_0) \) 対時間 \(t \) の一次式となる。ここで、\(k_{app} \) は一次の反応速で定数である。

\[
-ln\left(\frac{C}{C_0}\right) = kKt = k_{app}t
\]

リニュロンの分解・除去における\(\ln(C/C_0) \) 対時間 \(t \) をプロットしたグラフを Fig.3-14 に、擬一次反応速度定数を Table.3-14 に示す。

<table>
<thead>
<tr>
<th></th>
<th>(r^2)</th>
<th>(k_{app})(min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O}_2/\text{EDTA/ BiFeO}_3/ \text{UV})</td>
<td>0.9784</td>
<td>0.3912</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2/\text{EDTA/ BiFeO}_3/ \text{Visible light})</td>
<td>0.9712</td>
<td>0.1922</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2/\text{EDTA/ BiFeO}_3/ \text{In the dark})</td>
<td>0.9690</td>
<td>0.0831</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2/\text{BiFeO}_3/ \text{UV})</td>
<td>0.9763</td>
<td>0.0517</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2/\text{BiFeO}_3/ \text{Visible light})</td>
<td>0.9950</td>
<td>0.0364</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}_2/\text{BiFeO}_3/ \text{In the dark})</td>
<td>0.9743</td>
<td>0.0163</td>
</tr>
</tbody>
</table>

Table.3-14 Pseudo · first · order degradation kinetic of linuron.
Fig. 3.14 Photocatalytic kinetics of BiFeO$_3$ with different conditions.
3-15 クマリン蛍光

生成した OH ラジカルを測定するために、クマリン蛍光の測定を行った。実験条件を Table.3-15 に、結果を Fig.3-15 に示す。

クマリンは OH ラジカルと反応し、7-ヒドロキシルクマリンを生成するため、この蛍光強度で OH ラジカルの生成量を測定する。

EDTA 添加の有無により蛍光強度に顕著な差がでたため、EDTA が触媒を活性させ、OH ラジカル生成を促進していることが認められた。

<table>
<thead>
<tr>
<th>Table.3-15 Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
</tr>
<tr>
<td>Coumarin</td>
</tr>
<tr>
<td>Sample volume</td>
</tr>
<tr>
<td>H₂O₂</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
</tr>
</tbody>
</table>
Fig. 3-15 Fluorescence intensity generated from the oxidation of coumarin by OH radicals.
三重大学大学院 工学研究科

3-16 再利用性

触媒の安定性、再利用性は実用化の評価のために必要であるため、5 回の繰り返し実験を行った。反応停止後、遠心分離で触媒を回収し再利用した。実験条件を Table.3-16 に、結果を Fig.3-16 に示す。

5 サイクルの結果から極端な活性の損失は見られず、XRD,XPS,DRS,FT-IR の結果から連続するサイクルにおいて触媒の劣化が見られなかったため、BiFeO₃ は繰り返し使用あるいは長期間の連続使用に耐えるものであると考えられる。

Table.3-16 Experimental conditions.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
<td>60 mg</td>
</tr>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>30 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.15 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>5 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm²</td>
</tr>
</tbody>
</table>
Fig. 3-14 Bar plot showing the photodegradation rate of linuron in solution for 5 cycles using BiFeO$_3$.

Degradation (%) vs. Number of runs
3-17 溶解した Fe, Bi カチオン濃度

分解中に溶出したカチオン濃度を原子吸光光度計で計測した。実験条件を Table.3-17 に、結果を Fig.3-17 に示す。
溶出したカチオンはいずれも EDTA 添加により増加し、Fe イオンは UV 照射下でさらに溶出量が増加した。我が国での排水基準項目では溶解性鉄が 10 ppm 以内、ビスマスは規制されておらず、毒性も極めて低いとされているため実地での適用に問題無いと考えられる。

<table>
<thead>
<tr>
<th>Table 3-17 Experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO₃ dosage</td>
</tr>
<tr>
<td>linuron</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>Sample volume</td>
</tr>
<tr>
<td>H₂O₂</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
</tr>
</tbody>
</table>
Fig. 3-17 Dissolved ion concentrations.
3-18 反応中間体の検出

これまでの実験で、リニュロンが H_2O_2/BiFeO$_3$ 系において分解されていることが高速液体クロマトグラフィーにより確認された。しかし、高速液体クロマトグラフィーによる分解生成物の測定は容易ではない。そこで、反応停止後の試料を GC・MS で分析し、リニュロンの分解によって生じる反応中間体を同定した。実験条件を Table 3-18-1 に、検出した中間体を Table 3-18-2 に、測定結果を Fig.3-18-1~12 に、考えられる分解経路を Fig.3-18-13 に示す。

Table 3-18-1 Experimental conditions.

<table>
<thead>
<tr>
<th>BiFeO$_3$ dosage</th>
<th>60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>linuron</td>
<td>10 ppm</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.15 mM</td>
</tr>
<tr>
<td>Sample volume</td>
<td>30 mL</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>30 mM</td>
</tr>
<tr>
<td>pH</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>Room temp</td>
</tr>
<tr>
<td>Treatment time</td>
<td>10 min</td>
</tr>
<tr>
<td>Wavelength (UV)</td>
<td>365 nm</td>
</tr>
<tr>
<td>Light intensity (UV)</td>
<td>5050 μW/cm2</td>
</tr>
<tr>
<td>Peak No.</td>
<td>Retention time (min)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>14.60</td>
</tr>
<tr>
<td>2</td>
<td>16.48</td>
</tr>
<tr>
<td>3</td>
<td>17.36</td>
</tr>
<tr>
<td>4</td>
<td>24.52</td>
</tr>
<tr>
<td></td>
<td>and 24.60</td>
</tr>
<tr>
<td>5</td>
<td>26.20</td>
</tr>
<tr>
<td>6</td>
<td>28.095</td>
</tr>
<tr>
<td></td>
<td>and 28.305</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>linuron</td>
<td>29.13</td>
</tr>
<tr>
<td>7</td>
<td>30.01</td>
</tr>
<tr>
<td>8</td>
<td>31.775</td>
</tr>
<tr>
<td>9</td>
<td>32.145</td>
</tr>
<tr>
<td>10</td>
<td>32.385</td>
</tr>
</tbody>
</table>
Fig. 3-18-1 Total ion chromatogram obtained by GC-MS analysis of degradation products of linuron after degradation for 10 min
Fig.3·18·2 Mass spectrum of linuron.

Fig.3·18·3 Mass spectrum of compound 1 generated in the degradation.

Fig.3·18·4 Mass spectrum of compound 2 generated in the degradation.

Fig.3·18·5 Mass spectrum of compound 3 generated in the degradation.
Fig. 3-18-6 Mass spectrum of compound 4 generated in the degradation.

Fig. 3-18-7 Mass spectrum of compound 5 generated in the degradation.

Fig. 3-18-8 Mass spectrum of compound 6 generated in the degradation.
Fig.3-18-9 Mass spectrum of compound 7 generated in the degradation.

Fig.3-18-10 Mass spectrum of compound 8 generated in the degradation.

Fig.3-18-11 Mass spectrum of compound 9 generated in the degradation.

Fig.3-18-12 Mass spectrum of compound 10 generated in the degradation.
Fig. 3-18-13 Degradation pathway of linuron.
3-19 反応機構

分解メカニズムの決定のため、捕捉剤の存在・非存在下でリニュロンの分解を行った。捕捉剤には、t-BuOH, シュウ酸アンモニウムを用いた。実験条件を Table.3-19 に、結果を Fig.3-19-1 に示す。

シュウ酸アンモニウムでホールを補足した場合分解率の低下はわずかであり、ホールによる分解への寄与は少ないことを意味している。一方、t-BuOH で・OH を補足した場合、急激な分解率の低下が見られたため、本法における主要な攻撃種は・OH であることが確認できた。

BiFeO₃ dosage	60 mg
linuron	10 ppm
t-BuOH	10 mM
Ammonium oxalate	10 mM
Sample volume	30 mL
H₂O₂	30 mM
pH	5.0
Temperature	Room temp
Treatment time	0 ~ 120 min
Wavelength (UV)	365 nm
Light intensity (UV)	5050 μW/cm²
Fig. 3-19-1 Effect of different scavengers on the photocatalytic activity of BiFeO$_3$ nanoparticles
これまでの実験結果から考えられる反応経路を Fig.3-19-2 に示す。

Fig.3-19-2 Schematic of the reaction mechanism in the dark

暗所での反応はまず、触媒表面の Fe^{3+} が過酸化水素によって還元される。生成した Fe^{2+} が Fenton 反応を起こす。Fig.3-18-1 の結果から、本法の主要な攻撃種である・OH がリンウロンを攻撃し、無機化していく。Fe^{3+} の還元により生成した・OH もまた Fe^{3+} を還元し、さらに生成する O_2^{-} が還元を果たし、最終的に O_2 が発生する。
前述の経路に加え、光照射を行うと触媒内で電荷分離が起きる。光励起した電子は触媒表面の Fe$^{3+}$を還元し、Fenton 反応を加速させる。さらに、励起した電子が過酸化水素を直接還元し、\cdotOH を生成する反応も考えられる。また、Fig.3-19-1 の結果から電荷分離で生成したホールによるリニュロンの直接酸化も分解へ寄与している。

Fig.3-19-3 Schematic of the reaction mechanism under light irradiation.
EDTA は触媒表面上に吸着し、そのアーチ骨格内で過酸化水素の濃度が局所的に上昇するという報告がある。裸の BiFeO₃ は、H₂O₂ は 4 つの Fe 原子で構成される BiFeO₃ の小平面中空サイトに吸着されやすく、H₂O₂ の O 原子と Fe 原子間の相互作用は H₂O₂ の O·O 結合を伸長する。EDTA はカルボキシル基のいずれかを介して BiFeO₃ 表面に吸着し、EDTA の大きな空間構造のため、表面上に 91.3 Å³ の体積空間を形成できる。H₂O₂ の分子体積は約 30 Å³ であるため、EDTA 分子により BiFeO₃ 表面に包括される事ができる。これにより、H₂O₂ の局所的濃度が上昇し、裸の BiFeO₃ のみよりも活性化になったと考えられる。H₂O₂ の分子体積は約 30 Å³ であるため、EDTA 分子により BiFeO₃ 表面に包括される事ができる。これにより、H₂O₂ の局所的濃度が上昇し、BiFeO₃ のみよりも活性化になったと考えられる。さらに、H₂O₂ の H と EDTA の N またはカルボキシル基との水素結合は H₂O₂ の O·O 結合の電子密度を下げ、OH ラジカルを生成する分解に有利である。⑧
第4章 結論

触媒は水熱合成法により調製され、XRD,XPS,DRSにより BiFeO₃と同定され、繰り返し使用後でも大きな形態変化や劣化は認められなかった。

リニュロンの分解は不均質 Fenton 反応、光 Fenton 反応によるものであり、暗所、紫外光、可視光下で確認された。BiFeO₃によるリニュロンの分解は、紫外光照射下で最も活性が高く、pH 5.0, H₂O₂ 30.0 mmol L⁻¹, BiFeO₃ 60 mg 照射時間 120 分で 99.7%に達した。

添加剂としての EDTA は BiFeO₃の触媒活性を劇的に向上させ、特に紫外光照射下では10分でほぼ完全な分解が得られた。また速度定数より非添加、紫外光照射の5.4倍の速度であると分かった。

分解の反応経路は・OHによる分解が主経路であり、・OH ラジカルの生成速度は光照射・EDTA 添加により大幅に加速されることがクマリン蛍光で確認できた。
参考文献
1) グリーンジャパン
http://www.greenjapan.co.jp/n_torokjokyo22.htm
2) 農林水産省
3) 中央労働災害防止協会
4) PRTR インフォメーション広場
http://www.env.go.jp/chemi/prtr/risk0.html
6) Dengrong Cai, Jianmin Li “Phase evolution of bismuth ferrites in the process of hydrothermal reaction” Materials Chemistry and Physics Volume 134, Issue 1, 15 May 2012, 139–144
本研究に関する論文

1. “Heterogeneous Fenton degradation of linuron with BiFeO₃” The 2nd International Symposium for Sustainability by Engineering at MIU (IS²EMU 2012) p413, 2012
3. “Degradation of linuron utilizing photocatalyst BiFeO₃” The 3rd International Symposium for Sustainability by Engineering at MIU (IS²EMU 2013) 講演番号 FO-6
5. “BiFeO₃の光触媒作用を応用するリニュロンの分解” 「分析中部・ゆめ 21」若手交流会 第13回高山フォーラム ポスター番号 P5.
謝辞

本研究を行うにあたり、終始熱心にご指導いただきました太田清久名誉教授、金子聡教授、勝俣英之助教、鈴木透助教、中口敏技術指導員、Ahamed Dabwan博士、Gomathi Sankar Paramasivan博士、Abdus Samad博士に厚く御礼申し上げます。そして、3年間一緒に頑張ってきた浅間健人さん、安藤秀希さん、坂直幸さん、清水佑典さん、谷口雅直さん、西本翔さん、また、M1の一色克起さん、加藤寛之さん、林貴博さん、堀添靖史さん、4年の大久保貴裕さん、萩野勇紀さん、酒井翼さん、佐々木隆浩さん、舘裕介さん、中根悠貴さん、早川沙依さん、松井祐樹さん、水谷彼方さんありがとうございました。

最後に、多くの面で支えてくれ、大学生活を助けてくれた両親に感謝します。