2	Dominance hierarchy among workers changes with colony development in <i>Polistes japonicus</i>
3	(Hymenoptera: Vespidae) paper wasp colonies with a small number of workers
4	
5	Running head:
6	Dominance hierarchy changes with colony development
7	
8	Authors:
9	Yoshihiro Ishikawa · Yoshihiro Y. Yamada · Makoto Matsuura · Morio Tsukada · Koji Tsuchida
10	
11	Y. Ishikawa, Y. Y. Yamada (corresponding author), M. Matsuura, and M. Tsukada
12	Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu, Mie
13	514-8507, Japan
14	E-mail: yamada-y@bio.mie-u.ac.jp; Tel.: +81 59 231 9498; Fax: +81 59 231 9540
15	
16	K. Tsuchida
17	Laboratory of Insect Ecology, Faculty of Applied Biological Sciences, Gifu University,
18	Yanagido 1-1, Gifu, Gifu 501-1193, Japan
19	
20	$\textbf{Keywords} \text{emergence order} \cdot \text{dominance hierarchy} \cdot \textit{Polistella} \cdot \text{Polistinae} \cdot \text{social wasp}$
21	

22	Abstract. Dominance hierarchy in the primitively eusocial wasp <i>Polistes japonicus</i> was	
23	analysed in four colonies for two periods: (1) the first-brood period, when only early emerging	ŗ
24	vorkers are present on the nest, and (2) the mixed-brood period, when the first and second	
25	last) broods are present on the nest. The rank in the dominance hierarchy was determined	
26	based on a sociogram showing a dominance-subordinance relationship for all pairs of worker	s.
27	During the first-brood period, older workers were likely to be more dominant	
28	older-dominance hierarchy), while the rank of workers was reversed during the mixed-brood	l
29	period, with younger workers being likely to be more dominant (younger-dominance	
30	nierarchy). However, the oldest and youngest workers were not always the top-ranked	
31	vorkers in the dominance hierarchy during the first- and mixed-brood periods, respectively,	
32	and during the mixed-brood period no younger-dominance hierarchy was evident when the	
33	irst or second brood was analysed separately. Higher-ranked workers displayed dominance	;
34	behaviour more frequently, and the lowest-ranked worker hardly displayed dominance	
35	behaviour. Most workers displayed dominance behaviours primarily toward the worker	
36	canked immediately below in the dominance hierarchy during the mixed-brood period but no	t
37	luring the first-brood period. The bodies of younger workers were larger for the mixed brood	d,
38	out not for the first brood in some colonies or the second brood in all colonies. The	
39	association between body size and rank in the dominance hierarchy was negative during the	
40	irst-brood period and positive during the mixed-brood period, with a nearly significant trend	l

41	also seen even when the analysis was limited to the second brood. To explain the above
42	temporal change from an older-dominance hierarchy to a younger-dominance hierarchy, we
43	propose the hypothesis that the probability of a worker inheriting the colony increases rapidly
44	with colony development, and consequently younger larger workers attempt to move up the
45	dominance hierarchy in order to produce their own offspring by becoming the superseder late
46	in colony development, rather than working harmoniously so as to boost the overall
47	production of reproductive progeny for a colony, which is the strategy adopted early in colony
48	development.
49	
50	
51	
52	
53	Introduction
54	
55	The subfamily Polistinae (paper wasps) comprises four tribes (Polistini, Epiponini,
56	Mischocyttarini and Ropalidiini) and exhibits a dominance hierarchy among workers, as do
57	many other social hymenopteran species (Michener, 1974; van Honk et al., 1981; Higashi et
58	al., 1994; Monnin and Peeters, 1999). The dominance hierarchy in paper wasps is
59	determined by frequent aggressive encounters among workers, in which one worker displays

60	dominance behaviour over another, such as rushing, mounting or biting with the mandibles
61	(Pardi, 1948; Gadagkar, 1980; Gadagkar and Joshi, 1982). The resulting rank in the
62	dominance hierarchy usually determines the kind of labour performed by an individual
63	worker: the frequency of foraging is higher for low-ranked workers, whereas high-ranked
64	workers stay on the nest and perform intranidal tasks, but they are often lazy (Gamboa et al.,
65	1990; O'Donnell, 1998). As a result, more-dominant workers are likely to live longer because
66	foraging is riskier and physically and physiologically more demanding than intranidal tasks
67	(O'Donnell, 1998; Heinsohn and Legge, 1999; Finkel and Holbrook, 2000; Cant and Field,
68	2001, 2005; Nilsson, 2002; Williams, 2008). Moreover, the top-ranked worker usually
69	replaces the queen when she disappears (Pardi, 1948; Yoshikawa, 1963; Jeanne, 1972; Litte,
70	1977; West-Eberhard, 1978, 1981; Yamane, 1986; Bridge and Field, 2007), and thus
71	more-dominant workers have more opportunities to produce their own progeny (Field and
72	Cant, 2006; Field et al., 2006).
73	It has been considered that the main factor determining the dominance hierarchy in
74	primitively eusocial wasps is not body size (Pardi, 1948; Strassmann and Meyer, 1983;
75	Hughes and Strassmann, 1988; Reeve, 1991; Bridge and Field, 2007) but rather worker age:
76	older workers are ranked higher in temperate regions (Pardi, 1948; Yoshikawa, 1956, 1963;
77	Litte, 1979; Dew and Michener, 1981; Strassmann and Meyer, 1983; Miyano, 1986; Hughes
78	and Strassmann, 1988; Iwahashi, 1989; Reeve, 1991) while younger workers are ranked

79	higher in tropical regions (West-Eberhard, 1969, 1978, 1981; Jeanne, 1972; Yamane, 1986;
80	Gadagkar, 1987; O'Donnell, 2001). However, there are some exceptions, such as <i>Parapolybia</i>
81	indica (Suzuki, 2003), Polistes instabilis (Hughes and Strassmann, 1988), Ropalidia
82	marginata (Gadagkar, 1980) and Liostenogaster flavolineata (Bridge and Field, 2007). [Note
83	that Suzuki (2003) did not investigate the relationship between dominance hierarchy and
84	emergence order, even though a relatively young worker inherits the colony when the
85	foundress disappears in spite of <i>Parapolybia indica</i> being a temperate species.] A reasonable
86	explanation for the first two exceptions is that the distributions of these species differ from
87	those of their ancestral species.
88	Tsuji and Tsuji (2005) have recently developed a model in which the age-related
89	dominance hierarchy is determined by the life expectancies of the colony and the superseding
90	worker when that worker inherits the colony. Younger workers obtain lower fitness returns
91	in temperate regions by superseding the foundress than by being workers because the colony
92	ends soon thereafter and younger workers have limited chances for ovipositing after becoming
93	the superseder. However, the reverse is true in tropical regions, where a younger worker
94	that inherits the colony has a longer time for ovipositing and more workers to rear its progeny
95	compared to in temperate regions, which is because the colony survives throughout the year
96	with many workers. Furthermore, Tsuchida and Suzuki (2006) have proposed that a
97	younger-dominance hierarchy (where younger workers are likely to be more dominant) is

98	more likely in a larger colony and when the species exhibits a perennial life cycle. However,
99	it should be noted that previous researches of dominance hierarchy have largely ignored the
100	possibility of temporal changes in the dominance hierarchy. Moreover, studies of dominance
101	hierarchy have been limited to only a small proportion of social-insect species; for example,
102	only 19 of the 943 Polistinae species have been studied (Strassmann and Meyer, 1983; Arévalo
103	et al., 2004; Tsuji and Tsuji, 2005; Tsuchida and Suzuki, 2006). Most data on the Polistini
104	tribe (which comprises one genus, <i>Polistes</i>) have been derived from only 4 of the 12 subgenera
105	(Polistes sensu stricto, Megapolistes, Fuscopolistes and Aphanilopterus). Observation of
106	many species – particularly ones belonging to subgenera that have not been studied
107	previously – is required to obtain a deeper understanding of dominance hierarchy.
108	In this paper, we describe the observed frequencies of dominance behaviour among
109	workers and reveal the dominance hierarchy in <i>Polistes japonicus</i> (Hymenoptera: Vespidae), a
110	member of the subgenus <i>Polistella</i> . We also present the effects of emergence order on the
111	dominance hierarchy among workers. The relationships between body size and emergence
112	order and between body size and dominance hierarchy are also examined. Our study has
113	two novel features. Firstly, this is the first study to reveal the dominance hierarchy in the
114	subgenus <i>Polistella</i> . Secondly, the dominance hierarchy was analysed for two periods to
115	reveal possible temporal changes therein: (1) the early period (first-brood period), when only
116	early emerging workers are present on the nest, and (2) the late period (mixed-brood period),

117	when both young and old workers are present on the nest. This analysis has shown that
118	there are temporal changes in dominance-determining mechanisms, as described below.
119	
120	
121	Materials and methods
122	
123	Biology of <i>Polistes japonicus</i>
124	
125	Three Polistella species are found in Japan: P. japonicus, P. nipponensis and P. snelleni.
126	Around May an overwintered foundress of <i>P. japonicus</i> starts to found a nest, which
127	eventually comprises 40–80 cells (Matsuura, 1995). Workers emerge in June and July,
128	followed by the emergence of males and then reproductive females in August. There are
129	around 10 workers and a maximum of 50 reproductive adults in a colony (Matsuura, 1995);
130	this number of workers is as small as that for <i>P. nipponensis</i> .
131	
132	
133	Colonies and rearing conditions
134	
135	Four colonies were reared for observation in a field cage $(3.2 \times 3.4 \times 1.9 - 3.7 \text{ m})$ with a roof on
136	the Mie University campus in Tsu, Mie, Japan over 3 years: 2002 (colonies A and B), 2003

137	(colony C) and 2004 (colony D). One wall of the cage was glazed and the remaining three
138	walls were made of a vinyl chloride net with a 1×1 mm mesh, and the roof was constructed
139	from corrugated clear-plastic sheets. The cage contained live trees (including Neolitsea
140	sericea, Prunus jamasakura and Dendropanax trifidus) that provided nesting sites and nest
141	materials for the wasps. Foundresses were collected in April in Tsu, reared in a small cage
142	$(11 \times 15 \times 8 \text{ cm})$ containing a honey solution as food, and released into the field cage early in
143	May. Wasps were provided with flesh, honey and water placed on dishes on a table in the
144	cage that were renewed every day. The flesh usually included lepidopteran larvae, adult
145	cicadas (particularly their thoraxes), and honeybee larvae or pupae, most of which were split
146	in half.
147	Workers were divided into the first and second broods, each of which comprised two
148	to four individuals. The first brood was provisioned by the foundress and not by workers,
149	while the second brood was provisioned mainly by workers. The former emerged
150	continuously for 2–8 days and the latter started to emerge 3–7 days after the last emergence $\int ab/e$
151	of the first brood, and completed their emergence in 4–12 days (Table 1).
152	
153	
154	Observation and determination of dominance hierarchy
155	

156	The head width of each newly emerged worker was measured as an index of body size with a
157	vernier caliper to an accuracy of 0.05 mm. Workers were marked by attaching small pieces
158	of differently coloured photographic paper labelled with numbers to the mesonotum with clear
159	nail polish. The paper was kept as light as possible by removing its backing chartaceous
160	part. The behaviours of individual wasps on the nest were recorded by a video camera and
161	recorder. Video recording usually started at noon and finished at about 1800 hours, and was
162	performed several times before male emergence in August. The total recording times were
163	72, 42, 72 and 84 h for colonies A, B, C and D, respectively, of which 48, 42, 12 and 12 h of
164	observations were made before the emergence of the second brood: in colony B, the second
165	brood was not produced and observation was limited to July.
166	Each episode of dominance behaviour was determined for each individual wasp by
167	watching the videotape. The dominance behaviour was defined as aggressive contact of a
168	target worker with another worker; that is, where a target worker rushed another worker or
169	bit part of the body of another worker with its mandible. Episodes where a worker adopted a
170	posture for rushing but did not actually rush or rushed but did not contact another worker
171	were not counted. Vibration of the abdomen (Molina and O'Donnell, 2009) was often
172	observed in foundresses but rarely observed in workers, and is not reported on here. Other
173	dominance behaviours that are typically found in other species, such as the dominant worker
174	buzzing its wings, stinging the subordinate, and rising on its legs above the subordinate

175	(Wilson, 1974; Spradbery, 1991), were not observed. The dominance hierarchy was
176	determined based on a table listing the results of dominance contests as frequencies of
177	episodes of dominance behaviour for all possible pairs of workers. Episodes of all kinds of
178	dominance behaviour were counted without weightings. In each pair, one worker that
179	displayed dominance behaviour over the other of the pair with a higher frequency was
180	considered the dominant one of the pair. A worker was ranked based on the number of
181	subordinate individuals for that worker minus the number of dominant individuals.
182	
183	
184	Statistical analysis
185	
186	All statistical analyses were performed using the software package NCSS 2007. General
187	linear model analysis (which is the same as ANCOVA in this application) was used to test
188	whether the emergence order influenced the body size of workers, whether emergence order
189	and body size influenced the rank in the dominance hierarchy, and whether this rank
190	influenced the frequency of dominance behaviour. The model included two groups of factors:
191	(1) the emergence order, rank in the dominance hierarchy and body size, and (2) colony
192	characteristics (i.e. differences in the first factors among colonies). Data sets that did not
193	conform to the normality assumption were log transformed to impose normality. Correlation

194	analysis was applied separately to each colony when there was significant interaction
195	between the two factors. Moreover, the following parameter was used to indicate the rank in
196	the dominance hierarchy, emergence order and order of body size in order to exclude the
197	influence of the total number of emerged workers: (order of a given worker -1)/(number of
198	workers – 1); this produced values of 0 and 1 for the first and last workers, respectively. The
199	relationship between the frequency of dominance behaviour and the rank in the dominance
200	hierarchy was also analysed using Spearman rank correlation analysis separately for each
201	colony to examine whether the frequency of dominance behaviour can be used as an index for
202	the rank in the dominance hierarchy. Higher-ranked workers reportedly display dominance
203	hierarchy more frequently in many paper wasps (Wilson, 1974; Spradbery, 1991). All of the
204	above analyses were performed separately for two periods: (1) the first-brood period, from the
205	emergence of the last worker of the first brood to the emergence of the first worker of the
206	second brood (usually from early to mid July), and (2) the mixed-brood period, from the
207	emergence of the last worker of the second brood to the emergence of males in August (usually
208	from late July to late August). Moreover, the analysis of the mixed-brood period was
209	performed separately for first- and second-brood workers.
210	Furthermore, we analysed whether workers displayed dominance behaviour over the
211	other workers at random. Whether the observed frequencies of dominance behaviours

 \quad among the other workers conform to a random distribution was tested based on the

213	probability that the observed highest frequency or a frequency higher than that is expected to
214	occur if the target worker displays all dominance behaviours toward the other workers at
215	random (i.e. according to a binomial distribution). This was done since the samples were too
216	small to perform a familiar chi-square goodness-of-fit test.
217	
218	
219	Results
220	
221	Basic characteristics of colonies
222	
223	A foundress established a colony in the field cage by herself. The foundresses performed all
224	kinds of extranidal and intranidal tasks before worker emergence, after which the
225	foundresses rarely performed extranidal tasks except collecting nest materials, but they
226	continued all intranidal tasks. The foundress exclusively laid eggs and it hardly received
227	any dominance behaviour from workers with one exception in colony A, in which a worker of
228	the second brood was dominant over the foundress, and finally replaced her (Y. Ishikawa,
229	unpublished). In colonies A, B, C and D there were 49, 29, 79 and 39 cells, respectively, with
230	3, 4, 4 and 4 first-brood workers, and 5, 0, 3 and 2 second-brood workers emerging. One
231	worker of the second brood (the fourth-emerging worker in colony A was missing immediately

232	after emergence, so the actual number of workers was seven (Table 1).
233	Two, one and two males (so-called early males: Strassmann, 1981; Suzuki, 1985,
234	1997; Ono, 1989; Page et al., 1989) emerged before the last worker emerged in colonies A, B
235	and D, respectively. These early males were removed from the colony by the observer since
236	they might have interfered with the activity of workers.
237	The foundresses disappeared for unknown reasons from colonies A and D on 15 July
238	2002 and 12 August 2004, respectively (the foundress of colony A was found dead on the table
239	for food supply on 15 July), and the top-ranked workers became superseders, which were
240	observed ovipositing (a future paper will provide the details). Analyzing the data obtained
241	before the foundress disappeared produced almost the same results as analyzing all of the
242	data (i.e. including that obtained after the foundress disappeared), and hence the results of
243	the latter analysis are presented here since they relate to longer observations.
244	
245	
246	Relationship between body size and emergence order

Analysis of all workers in the first and second broods revealed that earlier-emerging workers were likely to be smaller ($F_{1, 19} = 27.1$, P < 0.001; Fig. 1). In addition, the body sizes of workers were significantly associated with the colony ($F_{3, 19} = 10.3$, P < 0.001), but not with

251	the interaction between emergence order and colony ($F_{3, 16} = 1.39$, $P = 0.28$). However, the
252	influence of emergence order or colony on worker size disappeared when the analysis was
253	limited to the second brood ($F_{1,5} = 0.045$, $P = 0.84$ for emergence order; $F_{2,5} = 0.888$, $P = 0.47$
254	for colony; $F_{2,3} = 0.433$, $P = 0.68$ for the interaction). When the analysis was limited to the
255	first brood, the relationship between worker size and emergence order differed between
256	colonies ($F_{3,7} = 4.64$, $P = 0.043$ for the interaction): earlier-emerging workers were
257	significantly or nearly significantly smaller in colonies B and D (P = 0.010 and P = 0.056,
258	respectively) but not in colonies A and C (P = 1.00 and P = 0.23, respectively).
259	
260	
261	Dominance hierarchy among workers
262	
263	During the first-brood period, older workers were likely to be ranked higher in the dominance
264	hierarchy ($F_{1,10} = 4.99$, $P = 0.050$; Table 2, Fig. 2). The tendency was the same in all colonies;
265	that is, this was not influenced by the colony ($F_{3, 10} < 0.001$, $P = 1.00$) and there was no
266	interaction between emergence order and colony ($F_{3,7} = 0.245$, $P = 0.86$). However, it should
267	be noted that the oldest worker did not become the top-ranked worker in two colonies. In
268	addition, smaller workers were likely to be ranked higher ($F_{1, 10} = 9.79$, $P = 0.011$ for body size;

lable

271	A hierarchy with older dominance ($r = 0.949$, $P = 0.051$) was present in mid July in
272	colony B (which had no second brood), while in late July (no observation in August) the
273	relationship between emergence order and rank in the dominance hierarchy was not
274	significant ($r = 0.632$, $P = 0.37$), although the oldest worker was the top-ranked worker.
275	Analysis of all workers present during the mixed-brood period revealed that younger
276	workers were likely to be ranked higher in the dominance hierarchy in all colonies ($F_{1, 16}$ =
277	11.0, $P = 0.004$ for emergence order; $F_{2, 16} = 0.001$, $P = 1.00$ for colony; $F_{2, 14} = 0.236$, $P = 0.79$
278	for the interaction; Table 2, Fig. 2; colony B was excluded from the analysis because it had no
279	second brood). However, the youngest worker became the top-ranked worker in only one
280	colony. Separate analysis of the first and second broods revealed no significant relationship
281	between rank in the dominance hierarchy and emergence order in all colonies, suggesting
282	that a younger-dominance hierarchy was due to a difference in the average rank in the
283	dominance hierarchy between the first and second broods. Larger workers were likely to be
284	ranked lower during the first-brood period($F_{1, 10}$ = 9.79, P = 0.011 for body size; $F_{3, 10}$ < 0.001, P
285	= 1.00 for colony; $F_{3,7}$ = 0.282, P = 0.84 for the interaction; Fig. 3) and ranked higher during
286	the mixed-brood period ($F_{1, 16} = 17.4$, $P = 0.001$ for body size; $F_{2, 16} = 0.044$, $P = 0.96$ for colony;
287	$F_{2,14} = 0.159$, $P = 0.85$ for the interaction; Fig. 3), because the body size was positively
288	associated with the emergence order (Fig. 1). The effect of either the body size or the

emergence order may be attributable to the strong association between these two features, and one of them may be independent of the rank in the dominance hierarchy. When the analysis was limited to the second brood, the effect of body size was nearly significant ($F_{1,5} =$ 5.15, P = 0.073) but that of the emergence order was not significant ($F_{1,5} = 0.079$, P = 0.79). This suggests that body size is likely to be the main factor determining the dominance

294 hierarchy during the mixed-brood period.

289

290

291

292

293

295Several high-ranked workers performed most of the dominance behaviours observed Fig.4 in each colony, with low-ranked workers hardly displaying these behaviours during both the 296297first- and mixed-brood periods (Fig. 4); consequently, higher-ranked workers displayed 298dominance behaviour at significantly higher frequencies (first-brood period: $F_{1, 10} = 25.4$, P =0.001 for rank; $F_{3,10} = 2.47$, P = 0.12 for colony; $F_{3,7} = 3.77$, P = 0.067 for the interaction; 299300 mixed-brood period: $F_{1, 16} = 51.2$, P < 0.001 for rank; $F_{2, 16} = 0.237$, P = 0.79 for colony; $F_{2, 14} = 0.237$ 3010.592, P = 0.57 for the interaction; Fig. 4). In particular, the worker displaying the highest 302 frequency of dominance behaviour became the top-ranked worker except in colony B, in which 303the top-ranked worker displayed dominance behaviour at nearly the highest frequency 304 (Table 2). Spearman rank correlations between rank in the dominance hierarchy and the 305frequency of dominance behaviour were negative for all colonies for the two periods, and they were significant in most cases (Table 3). This was also the case when the Spearman rank (Table 3) 306 307correlation analysis was performed separately for the first and second broods during the

308	mixed-brood period. This suggests that the frequency of dominance behaviour is a good	
309	indicator of the rank in the dominance hierarchy.	
310		
311	Displays of dominance behaviour toward other workers	
312		
313	During both the first- and mixed-brood periods, workers displayed most of the dominance	T. C
314	behaviours toward particular workers (Table 2, Fig. 5). However, in the mixed-brood period	Fig.s
315	(but not the first-brood period), a worker displayed dominance behaviours primarily toward	
316	the worker ranked immediately below it in the dominance hierarchy. Similar results were	
317	obtained when the frequency divided by the observation time in hours was used for the hourly	
318	frequency of dominance behaviour (data not presented).	
319		
320		
321	Discussion	
322		
323	The rank in the dominance hierarchy was more likely to be higher for older and younger	
324	workers during the first- and mixed-brood periods, respectively – this is the first report of the	
325	hierarchy changing from older dominance to younger dominance with colony development	
326	among primitively eusocial wasps. Although the sample was small, the tendency was found	

327	in all colonies studied and was statistically significant, suggesting that it is a common
328	characteristic of <i>P. japonicus</i> . Moreover, a younger-dominance hierarchy was found during
329	the mixed-brood period in the other three colonies; one was reared in the same cage before the
330	present study and the other two were observed in the field, although the observation time was
331	too short to allow the rank to be determined accurately (Y. Ishikawa, unpublished). <i>Polistes</i>
332	wasps are distributed mainly in temperate areas, which indicates that the
333	younger-dominance hierarchy does not derive from the ancestor. The following two points
334	should be noted: (1) the oldest and youngest workers often failed to become the top-ranked
335	worker during the first- and mixed-brood periods, respectively, which may often be the case in
336	<i>Polistes</i> species (Strassmann and Meyer, 1983; Suzuki, 2003); and (2) body size rather than
337	emergence order may determine the dominance hierarchy during the mixed-brood period,
338	because larger workers tended to be ranked higher in the second brood while emergence order
339	was not related to the rank in the dominance hierarchy for the second brood. However,
340	worker size has been considered to be either a minor factor in determining the rank in the
341	dominance hierarchy in many paper wasps (Klahn, 1981; Strassmann and Meyer, 1983;
342	Hughes and Strassmann, 1988) or not related to it at all (Reeve, 1991). The sample in the
343	present study was too small to draw a definitive conclusion, and hence further studies are
344	required to confirm the influence of body size on the dominance hierarchy.
345	Neither the model of Tsuji and Tsuji (2005) nor the idea proposed by Tsuchida and

346 Suzuki (2006) as described in the Introduction explains why the hierarchy changes from older 347dominance to younger dominance in *P. japonicus*. Focusing on the future fitness prospects of 348workers, we propose the hypothesis that the temporal changes in mechanisms determining 349the dominance hierarchy in *P. japonicus* are caused by a high probability of a worker 350producing its own offspring by inheriting the colony due to a rapid reduction in the vigour of 351the foundress (Y. Ishikawa, unpublished) and there being only a small number of workers 352present (Bourke, 1999; Shreeves and Field, 2002). Actually, the foundress disappeared in 353two of the four *P. japonicus* colonies before the end of colony development, and the top-ranked 354worker inherited the colony and laid eggs. It appears that foundresses are more likely to lose 355their vigour in the field due to them performing physically and physiologically demanding 356foraging in the solo-founding period. Under such conditions in a species that forms colonies 357with a small number of workers, workers are considered to obtain better fitness returns by 358refraining from foraging for food in order to maintain their physical and physiological vigour 359and by increasing their ranks in the dominance hierarchy so as to increase the likelihood of 360replacing the foundress rather than becoming subordinates and foraging for food (Field and 361Cant, 2006; Field et al., 2006). Consequently, workers are expected to be more concerned 362about their rank in the dominance hierarchy during the mixed-brood period than during the 363 first-brood period, which may have been reflected by dominance behaviour being displayed 364toward the worker ranked immediately below in the dominance hierarchy during the

365	mixed-brood period, as seen in many social wasps (Downing and Jeanne, 1985; Miyano, 1986;
366	Reeve and Gamboa, 1987; Hughes and Strassmann, 1988; Cant et al., 2006). Younger
367	workers appear to be more likely to move up the dominance hierarchy because older workers
368	are smaller and more physiologically and physically damaged due to them having worked
369	hard for a longer time. Furthermore, an older worker appears to be uninterested in contests
370	for a high rank in the dominance hierarchy because it will survive for a shorter time and lay
371	fewer eggs than younger workers even if it replaces the foundress. Here it should be noted
372	that younger workers should forage during the mixed-brood period in order to boost the
373	overall production of reproductive adults for a colony, particularly because the larger size of
374	younger workers makes them better foragers. However, for each younger worker the option
375	of waiting for a chance to become the superseder is more profitable than the option of
376	cooperatively rearing the offspring of the foundress.
377	Meanwhile, older workers were likely to be ranked higher during the first-brood
378	period, which is explained as follows: The probability of a worker inheriting the colony is
379	considered to be much lower during the first-brood period than during the mixed-brood period,
380	due to the foundress maintaining a high vigour. Under these conditions, all workers are
381	considered to adopt the option of boosting the total number of reproductive progeny per colony
382	through cooperative rearing. Actually, intranidal and extranidal tasks were performed as
383	often by high-ranked workers as by other workers during the first-brood period (Y. Ishikawa,

384	unpublished). A hierarchy with older dominance during the first-brood period may be
385	established based on only small differences in the amount of experience (Reeve, 1991), or
386	emergence order is used only as a cue to avoid potentially costly dominance contests
387	(Maynard Smith, 1982; Hughes and Strassmann, 1988; Reeve, 1991).
388	A worker displayed dominance behaviours primarily toward the worker ranked
389	immediately below it in the dominance hierarchy during the mixed-brood period but not
390	during the first-brood period. This suggests that the function of the dominance hierarchy
391	differs between the first- and mixed-brood periods. In the mixed-brood period, its function is
392	considered to be determining which workers have a chance to produce their own offspring
393	(Cant et al., 2006). Meanwhile, the dominance hierarchy may promote efficient foraging
394	during the first-brood period, as seen in <i>Ropalidia marginata</i> (Bruyndonckx et al., 2006).
395	The above hypothesis of temporal changes in dominance-determining mechanisms
396	could be verified by detailed observations of behaviour of the foundress and workers and by
397	investigating the physiological changes of the foundress in large samples of colonies. It
398	would be helpful to examine whether the dominance hierarchy during the first-brood period
399	changes after the vigour of the foundress is reduced experimentally (see Reeve and Gamboa,
400	1983, 1987) or which worker is the superseder after the foundress is artificially removed.
401	Experiments for the mixed-brood period should be planned to examine whether there is a
402	positive relationship between body size and rank in the dominance hierarchy for the second

403	brood using a substantial number of colonies (to facilitate statistical analyses), and which
404	type of dominance hierarchy is established among workers after removing the first or second
405	brood. Furthermore, the probability of the foundress disappearing should be determined
406	under true field conditions.
407	The optimal option for workers is likely to change with colony development in other
408	paper wasp species, and also in other social wasps and bees, particularly in species with a
409	small number of workers because the vigour of the foundress is expected to reduce during
410	colony development and a worker is highly likely to become the superseder. Comparing the
411	type of dominance hierarchy between early and late in colony development is considered to be
412	highly effective for obtaining a comprehensive understanding of the social structure of social
413	wasps and bees.
414	
415	
416	Acknowledgements
417	We thank two anonymous referees for helpful comments on the manuscript.
418	
419	
420	References
421	
422	Arévalo E., Zhu Y., Carpenter J.M. and Strassmann J.E. 2004. The phylogeny of the social

423	wasp subfamily Polistinae: evidence from microsatellite flanking sequences,
424	mitochondrial COI sequence, and morphological characters. BMC Evol. Biol. 4: 8
425	Bourk A.F.G. 1999. Colony size, social complexity and reproductive conflict in social insects.
426	J. Evol. Biol. 12: 245-257
427	Bridge C. and Field J. 2007. Queuing for dominance: gerontocracy and queue-jumping in
428	the hover wasp <i>Liostenogaster flavolineata</i> . Behav. Ecol. Sociobiol. 61 : 1253-1259
429	Bruyndonckx N., Kardile S.P. and Gadagkar R. 2006. Dominance behaviour and
430	regulation of foraging in the primitively eusocial wasp <i>Ropalidia marginata</i> (Lep.)
431	(Hymenoptera: Vespidae). Behavioural Processes 72: 100-103
432	Cant M.A. and Field J. 2001. Helping effort and future fitness in cooperative animal
433	societies. Proc. R. Soc. Lond. B 268: 1959-1964
434	Cant M.A. and Field J. 2005. Helping effort in a dominance hierarchy. <i>Behav. Ecol.</i> 16:
435	708-715
436	Cant M.A., Llop J.B. and Field J. 2006. Individual variation in social aggression and the
437	probability of inheritance: theory and a field test. Am. Nat. 167 : 837-852
438	Dew H.E. and Michener C.D. 1981. Division of labor among workers of <i>Polistes metricus</i>
439	(Hymenoptera: Vespidae): Laboratory foraging activities. Insect. Soc. 28: 87-101
440	Downing H.A. and Jeanne R.L. 1985. Communication of status in the social wasp <i>Polistes</i>
441	fuscatus (Hymenoptera: Vespidae). Z. Tierpsychol. 67: 78-96

	442	Field J.,	Cronin A. and Bridg	e C. 20	006. Fut	ture fitness	and hel	ping in	social o	Jueues
--	-----	-----------	---------------------	---------	----------	--------------	---------	---------	----------	--------

- 443 Nature **441**: 214-217
- 444 Field J. and Cant M. 2006. Helping effort in primitively eusocial wasps. Ann. Zool.
 445 Fennici 43: 481-487
- 446 Finkel T. and Holbrook N.J. 2000. Oxidants, oxidative stress and the biology of ageing.
 447 *Nature* 408: 239-247
- 448 Gadagkar R. 1980. Dominance hierarchy and division of labour in the social wasp
- 449 Ropalidia marginata (Lep.)(Hymenoptera: Vespidae). Curr. Sci. 49: 772-775
- 450 Gadagkar R. and Joshi N.V. 1982. Behaviour of the Indian social wasp *Ropalidia*
- 451 *cyathiformis* on a nest of separate combs (Hymenoptera: Vespidae). J. Zool. London
- 452 **198**: 27-37
- 453 Gadakar R. 1987. Social structure and the determinants of queen status in the primitively
- 454 eusocial wasp *Ropalidia cyathiformis*. In: *Chemistry and biology of social insects*
- 455 (Eder J. and Rembold H., Eds), Verlag J. Peperny, München. pp 377-378
- 456 Gamboa G.J., Wacker T.L., Scope J.A., Cornell T.J. and Shellman-Reeve J. 1990. The
- 457 mechanism of queen reguration of foraging by workers in paper wasps (*Polistes*
- 458 *fuscatus*, Hymenoptera: Vespidae). *Ethology* **85**: 335-343
- 459 Heinsohn R. and Legge S. 1999. The cost of helping. Trends Ecol. Evol. 14: 53-57
- 460 Higashi S., Ito F., Sugiura N. and Ohkawara K. 1994. Worker's age regulates the linear

461	dominance hierarchy in the queenless ponerine ant, Pachycondyla sublaevis
462	(Hymenoptera: Formicidae). Anim. Behav. 47: 179-184
463	van Honk C.G.J., Röseler PF., Velthuis H.H.W. and Hoogeveen J.C. 1981. Factors
464	influencing the egg laying of workers in a captive <i>Bombus terrestris</i> colony. <i>Behav.</i>
465	Ecol. Sociobiol. 9: 9-14
466	Hughes C.R. and Strassmann J.E. 1988. Age is more important than size in determining
467	dominance among workers in the primitively eusocial wasp, <i>Polistes instabilis</i> .
468	<i>Behaviour</i> 107 : 1-15
469	Iwahashi O. 1989. Society of <i>Ropalidia fasciata</i> . In: <i>Society of Ropalidia wasp</i> (Iwahashi
470	O. and Yamane S., Eds), Tôkai University Press, Tokyo. pp 3-209 (in Japanese)
471	Jeanne R.L. 1972. Social biology of the neopropical wasp <i>Mischocyttarus drewseni</i> . <i>Bull</i> .
472	Mus. Comp. Zool. 144: 63-150
473	Klahn J.E. 1981. Alternative reproductive tactics of single foundresses of a social wasp,
474	Polistes fuscatus. PhD thesis, University of Iowa
475	Litte M. 1977. Behavioral ecology of the social wasp, Mischocyttarus mexicanus. Behav.
476	<i>Ecol. Sociobiol.</i> 2 : 229-246
477	Litte M. 1979. <i>Mischocyttarus flavitarsis</i> in Arizona: social and nesting biology of a
478	polistine wasp. Z. Tierpsychol. 50: 282-312
479	Matsuura M. 1995. General remarks on the Japanese social wasps: Polistinae. In: <i>Social</i>

489

- 481 Japanese)
- 482 Maynard Smith J. 1982. Evolution and the theory of games. Cambridge University Press,
- 483 Cambridge. 224 pp
- 484 Michener C.D. 1974. The social behavior of the bees. Harvard University Press,
- 485 Canbridge. 404 pp
- 486 Miyano S. 1986. Colony development, worker behavior and male production in orphan
- 487 colonies of a Japanese paper wasp, *Polistes chinensis antennalis* Pérez (Hymenoptera:
 488 Vespidae). *Res. Popul. Ecol.* 28: 347-361

Molina Y. and O'Donnell S. 2009. Worker reproductive competition affects division of labor

- 490 in a primitively social paperwasp (*Polistes instabilis*). *Insect. Soc.* **56**: 14-20
- 491 Monnin T. and Peeters C. 1999. Dominance hierarchy and reproductive conflicts among

492 subordinates in a monogynous queenless ant. *Behav. Ecol.* **10**: 323-332

493 Nilsson J.-Å. 2002. Metabolic consequences of hard work. Proc. R. Soc. Lond. B. 269:

494 1735-1739

- 495 O'Donnell S. 1998. Dominance and polyethism in the eusocial wasp Mischocyttarus
- 496 mastigophorus (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 43: 327-331
- 497 O'Donnell S. 2001. Worker age, ovary development, and temporal polyethism in the
- 498 swarm-founding wasp *Polybia occidentalis* (Hymenoptera: Vespidae). *J. Insect Behav.*

500	Ono M.	1989.	Multiple-comb	nest for	unation b	ov a	single	inseminated	ł worker	of th	ıe
~ ~ ~						/					

- 501 temperate paper wasp, *Polistes snelleni* Saussure (Hymenoptera, Vespidae). J. Ethol.
- **5**02 **7**: **5**7-58
- 503 Page R.E., Post D.C. and Metcalf R.A. 1989. Satellite nests, early males, and plasticity of
 504 reproductive behavior in a paper wasp. *Am. Nat.* 134: 731-748
- 505 Pardi L. 1948. Dominance order in *Polistes* wasp. *Physiol. Zool.* 21: 1-13
- 506 Reeve H.K. 1991. Polistes. In: The social biology of wasps (Ross K.G. and Matthews R.W.,
- 507 Eds), Comstock Publishing Associates, A division of Cornell University Press, London.
 508 pp 99-148
- 509 Reeve H.K. and Gamboa G.J. 1983. Colony activity integration in primitively eusocial
- 510 wasps: the role of the queen (*Polistes fuscatus*, Hymenoptera: Vespidae). *Behav. Ecol.*511 Sociobiol. 13: 63-74
- 512 Reeve H.K. and Gamboa G.J. 1987. Queen regulation of worker foraging in paper wasps: a
- 513 social feedback control system (*Polistes fuscatus*, Hymenoptera: Vespidae). *Behaviour*
- **102**: 147-167
- 515 Shreeves G. and Field J. 2002. Group size and direct fitness in social queues. Am. Nat.
 516 159: 81-95.

517 Spradbery J.P. 1991. Evolution of queen number and queen control. In: The social biology

518	of wasps (Ross K.G. and Matthews R.W., Eds), Comstock Publishing Associates, A
519	division of Cornell University Press, London. pp 336-388
520	Strassmann J.E. 1981. Evolutionary implications of early male and satellite nest
521	production in <i>Polistes exclamans</i> colony cycles. <i>Behav. Ecol. Sociobiol.</i> 8 : 55-64
522	Strassmann J.E. and Meyer D.C. 1983. Gerontocracy in the social wasp, <i>Polistes</i>
523	exclamans. Anim. Behav. 31: 431-438
524	Suzuki T. 1985. Mating and laying of female-producing eggs by orphaned workers of a
525	paper wasp, <i>Polistes snelleni</i> (Hymenoptera, Vespidae). Ann. Entomol. Soc. Am. 78:
526	736-739
527	Suzuki T. 1997. Worker mating in queen-right colonies of a temperate paper wasp.
528	Naturwissenchcaften 84 : 304-305
529	Suzuki T. 2003. Queen replacement without gerontocracy in the paper wasp Parapolybia
530	<i>indica</i> in temperate Japan. <i>Ethol. Ecol. Evol.</i> 15 : 191-196
531	Tsuchida K. and Suzuki T. 2006. Conflict over sex ratio and male production in paper
532	wasps. Ann. Zool. Fennici 43 : 468-480
533	Tsuji K. and Tsuji N. 2005. Why is dominance hierarchy age-related in social insects?
534	The relative longevity hypotesis. Behav. Ecol. Sociobiol. 58: 517-526
535	West-Eberhard M.J. 1969. The social biology of Polistine wasp. Misc. Publ. Mus. Zool.
536	Univ. Mich. 140: 1-140

- 537 West-Eberhard M.J. 1978. Temporary queens in *Metapolybia* wasps: non-reproductive
 538 helpers without altruism? *Science* 200: 441-443
 539 West-Eberhard M.J. 1981. Intragroup selection and the evolution of insect societies. In:
- 540 *Natural selection and social behavior: research and new theory.* Chirion Press, New
- 541 York. pp 3-17
- 542 Williams J.B, Roberts S.P. and Elekonich M.M. 2008. Age and natural
- 543 metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms.
- 544 *Exp. Gerontol.* **43**: 538-549.
- 545 Wilson E.O. 1974. Group effects and the control of nestmates. In: Insect societies.
- 546 Harvard Uiversity Press, Cambridge. pp 296-305
- 547 Yamane So. 1986. The colony life cycle of the Sumatran paper wasp *Ropalidia* (*Icariola*)
- 548 *variegata jacobsoni* (Buysson). With reference to the possible occurrence of serial
- 549 polygyny (Hymenoptera: Vespidae). *Monit. Zool. Ital.* **20**: 135-161
- 550 Yoshikawa K. 1956. Compound nest experiments in *Polistes fadwigae* dalla Torre.
- 551 Ecological studies of *Polistes* wasp IV. J. Insect Polytech. Osaka City Univ. 7: 229-243
- 552 Yoshikawa K. 1963. Introductory studies on the life economy of polistene wasp II. Super
- 553 individual stage 2. Division of labor among workers. Jpn. J. Ecol. 13: 53-57
- 554
- 555

556	Figure	captions
557		
558	Fig. 1	Relationship between body size and emergence order (0, first; 1, last) among P .
559		<i>japonicus</i> workers. Open and solid data points are for the first and second broods,
560		respectively.
561		
562	Fig. 2	Relationship between rank (0, top; 1, bottom) in the dominance hierarchy and
563		emergence order among workers during the first-brood (a) and mixed-brood (b)
564		periods.
565		
566	Fig. 3	Relationship between rank in the dominance hierarchy and order of body size (0,
567		largest; 1, smallest) during the first-brood (a) and mixed-brood (b) periods.
568		
569	Fig. 4	Relationship between hourly frequency of dominance behaviour (frequency divided by
570		hours spent on the nest by each individual) and rank in the dominance hierarchy
571		during the first-brood (a) and mixed-brood (b) periods.
572		
573	Fig. 5	Frequencies with which top-ranked and second-ranked workers displayed dominance
574		behaviour toward other workers during the first-brood (a) and mixed-brood (b)

575 periods.

Colony	Emergence order of individual workers										
	1	2	3	4	5	6	7	8			
А	0(F) a	2(F)	3(F)	-	10(S)	11(S)	14(S)	22(S)			
В	0(F)	1(F)	2(F)	3(F)	-	-	-	-			
С	0(F)	2(F)	5(F)	7(F)	10(S)	14(S)	15(S)	-			
D	0(F)	4(F)	6(F)	8(F)	14(S)	18(S)	-	-			

578 emergence of workers)

^a Letters within parentheses indicate the brood type: F, first; S, second.

	Worker	Worker ID ^a										Comparison
Colony	ID	F1	F2	F3	F4	S5	S6	$\mathbf{S7}$	S8	Scoreb	Rank	with binominal distribution (<i>P</i>) ^c
First-bro	od period											
А	F1	-	$13-25^{d}$	15-5	-	-	-	-	-	1-1	2	0.851
	F2	25-13	-	110-0	-	-	-	-	-	2-0	1	< 0.001
	F3	5 - 15	0-110	-	-	-	-	-	-	0-2	3	0.063
в	F1	-	1-0	10-0	6-0	-			-	3-0	1	0.055
	F2	0-1	-	1-0	6-0	-	-	-	-	2-1	2	0.014
	F3	0-10	0-1	-	19-0	-	-	-	-	1-2	3	< 0.001
	F4	0-6	0-6	0-19	-	-	-	-	-	0-3	4	-
С	F1	-	5-0	0-6	10-0	-	-	-	-	2-1	2	0.017
	F2	0-5	-	0-15	5-0	-	-	-	-	1-2	3	0.008
	F3	6-0	15-0	-	7-0	-	-	-	-	3-0	1	0.043
	F4	0-10	0-4	0-7	-	-	-	-	-	0-3	4	-
D	F1	-	9-0	6-0	2-1	-	-	-	-	3-0	1	0.151
	F2	0-9	-	1-0	0-3	-	-	-	-	1-2	3	0.667
	F3	0-6	0-1	-	0-4	-	-	-	-	0-3	4	-
	F4	1-2	3-0	4-0	-	-	-	-	-	2-1	2	0.517
Mixed-br	ood period											
А	F1	-	1-0	0-0	-	0-82	0-4	0-1	0-0	1-3	5	0.333
	F2	0-1	-	0-0	-	1-81	0-4	0-0	0-0	0-3	6	0.333
	F3	0-0	0-0	-	-	0-79	0-5	0-3	0-1	0-4	7	-
	$S5^{e}$	82-0	81-1	79-0	-	-	179-0	68-0	16-0	6-0	1	< 0.001
	$\mathbf{S6}$	4-0	4-0	5-0	-	0-179	-	17-0	14-0	$5 \cdot 1$	2	0.001
	$\mathbf{S7}$	1-0	0-0	3-0	-	0-68	0-17	-	0-0	2-2	3	0.032
	S 8	0-0	0-0	1-0	-	0-16	0-14	0-0	-	1-2	4	0.333
С	F1	-	1-0	0-0	3-0	1-1	0-3	0-3	-	2-2	4	0.071
	F2	0-1	-	1-8	2-0	0-2	0-3	0-2	-	1-5	6	0.148
	F3	0-0	8-1	-	10-0	70-0	1-27	1-11	-	3-2	3	< 0.001
	F4	0-3	0-2	0-10	-	0-4	0-0	0-0	-	0-4	7	-
	S5	1-1	2-0	0-70	4-0	-	0-13	1-7	-	2-3	5	0.061
	$\mathbf{S6}$	3-0	3-0	$27 \cdot 1$	0-0	13-0	-	28-2	-	5-0	1	< 0.001
	$\mathbf{S7}$	3-0	2-0	11-1	0-0	7-1	2-28	-	-	4-1	2	0.002
D	F1	-	12-0	5-0	1-6	1-2	0-15	-	-	2-3	4	< 0.001
	F2	0-12	-	0-1	0-4	0-6	0-9	-	-	0-5	6	-
	F3	0-5	1-0	-	0-7	0-0	0-13	-	-	1-3	5	0.400
	F4	6-1	4-0	7-0	-	0-28	0-21	-	-	3-2	3	0.075
	S5	2-1	6-0	0-0	28-0	-	2-70	-	-	3-1	2	< 0.001
	$S6^{e}$	15-0	9-0	13-0	21-0	70-2	-		-	5-0	1	< 0.001

581 **Table 2.** Results of dominance contests for all pairs of workers in colonies

^a Letter indicates the brood type (F, first; S, second), and the number indicates the emergence

583 order.

⁵⁸⁴ ^bScore for the dominance contest, which indicates the numbers of subordinate (left) and

- 586 on the difference between the two numbers.
- ^c Value of *P* indicates the probability that the observed highest frequency or a frequency
- 588 higher than that is expected to occur if the target worker displays all dominance behaviours
- 589 toward the other workers at random.
- ⁵⁹⁰ ^d Worker F1 displayed dominance behaviour toward worker F2 and received dominance
- 591 behaviour from worker F2 with frequencies of 13 and 25, respectively.
- ⁶ Superseder.

594 **Table 3.** Results of Spearman rank correlation analysis of the relationship

595 between the rank in the dominance hierarchy and the frequency of dominance

596	behaviour

Observation period	Brood	Colony	R	Р
First brood	First	А	-1.000	<0.001
		В	-0.400	0.600
		С	-1.000	< 0.001
		D	-1.000	<0.001
Mixed brood	First and second	А	-0.857	0.014
		С	-0.893	0.007
		D	-0.928	0.008
	First	А	-a	-
		С	-1.000	<0.001
		D	-0.738	0.262
	Second	А	-1.000	<0.001
		С	-1.000	<0.001
		D	-1.000	<0.001

^a Analysis was impossible because two of the three workers were ranked the same.

