- 2 parasitoid *Echthrodelphax fairchildii* (Hymenoptera: Dryinidae)
- 3
- 4 Emi Ito and Yoshihiro Y. Yamada*
- 5 Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu,
- 6 Mie 514-8507, Japan
- 7 Running title: Self/conspecific discrimination
- 8
- 9
- 10 *Correspondence: Yoshihiro Y. Yamada,
- 11 Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu,
- 12 Mie 514-8507, Japan
- 13 Tel.: +81 59 2319498, Fax: +81 59 2319540, E-mail: <u>yamada-y@bio.mie-u.ac.jp</u>
- 14
- 15 Key words infanticide, ovicide, plant hopper, self-recognition, sex ratio

- 17
- 18

19	Abstract Superparasitism in solitary parasitoids results in fatal competition
20	between the immature parasitoids, and consequently only one individual can
21	emerge. In the semisolitary ovicidal parasitoid Echthrodelphax fairchildii
22	(Hymenoptera: Dryinidae), two adults can emerge under superparasitism with a
23	short interval (<24 h) between the first and second ovipositions. We
24	determined the female parasitoid's behavioral responses under self- and
25	conspecific superparasitism bouts with first-to-second oviposition intervals of ≤ 2
26	h. The self- and conspecific superparasitizing frequencies increased up to an
27	oviposition interval of 0.75 h, with the former remaining lower than the latter,
28	particularly for oviposition intervals of \leq 0.25 h, suggesting the existence of
29	self/conspecific discrimination. The superparasitizing frequency plateaued for
30	oviposition intervals of \geq 0.75 h, with no difference between self- and conspecific
31	superparasitism. The ovicidal-probing frequency did not differ under self- and
32	conspecific superparasitism, and was usually <20%. The females exhibited no
33	preference for the oviposition side (i.e., ovipositing on the side with or without the
34	first progeny) and almost always laid female eggs for any oviposition interval
35	under self- and conspecific superparasitism. The sex ratio was not affected by
36	the type of superparasitism, oviposition sides, or the occurrence of ovicidal

37	probing. These observed results about the oviposition side, ovicidal probing,
38	and sex ratios differed from the predictions obtained assuming that the females
39	behave optimally. Possible reasons for the discrepancies are discussed: likely
40	candidates include the high cost of selecting oviposition sides and ovicidal
41	probing, and, for the sex ratio, the low frequency of encountering suitable hosts
42	before superparasitism bouts.
43	
44	Introduction
45	
46	Conspecific superparasitism, which involves ovipositing on or in a conspecifically
47	parasitized host (van Dijken & Waage, 1987), is usually profitable, in that it
48	rewards the parasitoid with a fitness gain, especially when the interval between
49	the first and second ovipositions (i.e., the oviposition interval) is short (e.g.,
50	Visser et al., 1992; Sirot, 1996; Field et al., 1997; Lebreton et al., 2009); however
51	the gain is less than that from ovipositing on or in a healthy host. Meanwhile,
52	self-superparasitism is generally considered less profitable than conspecific
53	superparasitism due to the siblings facing competition for limited resources (e.g.,
54	Yamada & Miyamoto, 1998; Yamada & Watanabe, 2002; Yamada & Ikawa,

55	2005); in particular, it is usually non- or negatively profitable for solitary
56	parasitoids except in cases where multiple parasitoid immatures guarantee a
57	higher emergence probability of one adult, which is probably due to greater
58	suppression of the immune systems of the host when multiple individuals are
59	present (Puttler & van den Bosch, 1959). Thus, an ability to discriminate
60	between self- and conspecifically parasitized hosts is expected to evolve (van
61	Alphen & Visser, 1990). Many parasitoids have this ability (van Dijken et al.,
62	1992), but it appears to diminish as the oviposition interval increases (Hubbard
63	et al., 1987; Visser, 1993; Ueno, 1994), with the few exceptions including
64	Dinarmus basalis (Gauthier et al., 1996) and Nasonia vitripennis (King, 1992).
65	Few studies have investigated the effects of the oviposition interval in detail.
66	The mated female must decide whether she should lay a male or female
67	egg after accepting superparasitism. If the local mate competition (LMC) model
68	(Hamilton, 1967) is applicable to the target parasitoid, the female should be
69	more likely to lay a male egg under conspecific superparasitism than under
70	self-superparasitism, because under the former she recognizes that local
71	competition for mates will be more likely to occur between her progeny and
72	those of another female (King, 1992; Darrouzet et al., 2008). Moreover, when

the fitness performance of the first and second progenies during the immature
stage differ according to their sex, the sex of the second progeny may differ
between self- and conspecific superparasitism (this is called asymmetric larval
competition; van Baaren et al., 1999; Darrouzet et al., 2003; Sykes et al., 2007;
Lebreton et al., 2010).

78 When the parasitoid is an ovicidal and/or larvicidal species (both ovicide 79 and larvicide are collectively called infanticide hereafter), it faces another 80 decision-making dilemma besides superparasitism acceptance and sex 81 allocation - the female parasitoid should always perform infanticide against 82 conspecifically parasitized hosts if the cost of infanticide is negligible (Netting & 83 Hunter, 2000; Takasuka & Matsumoto, 2011). On the other hand, when the host is self-parasitized the solitary parasitoid should usually avoid 84 85 superparasitism, and consequently does not need to decide whether she should 86 perform infanticide. The semisolitary parasitoid – in which emergence of two 87 parasitoids is possible under superparasitism even though a single egg is laid in 88 an ovipositing episode – should accept self-parasitized hosts without infanticide 89 instead of avoiding them when the host availability is low and the two eggs laid 90 will be likely to develop to adulthood. However, the above predictions are

91	based on the assumption that the female parasitoid can perfectly distinguish
92	between self- and conspecifically parasitized hosts. If the self/conspecific
93	discrimination is not perfect or even completely impossible, the female should
94	base her decision on the degree of accuracy of self/conspecific discrimination
95	and the difference between fitness gains obtained by correct and incorrect
96	decisions (Rosenheim & Mangel, 1994; Yamada & Ikawa, 2005; Segoli et al.,
97	2009).
98	The parasitoid Echthrodelphax fairchildii Perkins (Hymenoptera:
99	Dryinidae) is a semisolitary species (Yamada & Imai, 2000; Yamada & Ikawa,
100	2003): two adults can emerge from a single host for oviposition intervals of <24 h.
101	The female parasitoid lays an egg between the wing bud and the epimeron of
102	the thorax (Yamada & Imai, 2000; Yamada & Ikawa, 2003). Superparasitism in
103	E. fairchildii is classified into two types according to whether the first and second
104	ovipositions occur on the same side (S-type) or on different sides (D-type) of the
105	host: the first progeny is always killed by the superparasitizing female in the
106	former case (Yamada & Ikawa, 2005), while two adults may emerge when the
107	oviposition interval is <24 h in the latter case (Yamada & Ikawa, 2003). The
108	female parasitoid often probes the nonoviposition side for infanticide under

109	D-type superparasitism (Yamada & Ikawa, 2003); this probing takes less than
110	10 s and hence its time cost can probably be ignored. Our study group has
111	previously (Yamada & Ikawa, 2003, 2005) found that the frequency of
112	superparasitism and the preferred oviposition side among unmated females do
113	not differ between self- and conspecific superparasitism with oviposition intervals
114	of 1–96 h, but that the frequency of probing the nonoviposition side differs
115	slightly but significantly between self- and conspecific superparasitism. Our
116	group has also determined fitness gains from superparasitism when the first and
117	second eggs are male. If a larger quantity outweighs the loss of quality (i.e.,
118	small emerging adults), fitness gains are obtained from D-type
119	self-superparasitism with oviposition intervals of <24 h due to the emergence of
120	two adults. Meanwhile, fitness gains from S-type conspecific superparasitism
121	are similar to those from parasitism on a healthy host because the first progeny
122	is killed, and are higher than those from D-type conspecific superparasitism
123	because probing does not always occur or is successful under the latter
124	(Yamada & Ikawa, 2003). However, experiments have never been performed
125	for oviposition intervals of <1 h, and it is possible that the female parasitoid is
126	capable of accurate self/conspecific discrimination for such short oviposition

127	intervals, as seen in Itoplectis naranyae (Ueno, 1994). Moreover, sex
128	allocation has not previously been compared between self- and conspecific
129	superparasitism in E. fairchildii, although our group has suggested that eggs laid
130	under superparasitism are more likely to be female (Ito & Yamada, 2005).
131	Assuming that the effects of superparasitism on survival rates and adult
132	sizes are similar for female and male progenies, we predict that
133	self-superparasitism is less frequent than conspecific superparasitism among
134	parasitoids exhibiting perfect self/conspecific discrimination. Assuming that
135	ovicidal probing of the nonoviposition side incurs no cost, female parasitoids
136	would then be more likely to perform ovicidal probing on the nonoviposition side
137	under conspecific superparasitism than under self-superparasitism. Moreover,
138	females with self/conspecific discrimination may prefer D-type superparasitism
139	under self-superparasitism in order to ensure that two adults emerge, while
140	S-type superparasitism may be preferred under conspecific superparasitism
141	because ovicidal probing does not always succeed (Yamada & Ikawa, 2003).
142	The LMC model (Hamilton, 1967) may be applicable to <i>E. fairchildii</i> when
143	considering the sex allocation under superparasitism, since the host population
144	is distributed contagiously (Kuno, 1963). The LMC model was primarily

145 developed for gregarious species, but it can also be applied to solitary 146 parasitoids that are parasitic on hosts distributed in clumps (Godfray, 1994). 147 Then, conspecifically parasitized hosts are cues for the existence of conspecifics 148 and it is expected that the female is more likely to lay male progenies, but not in 149 response to self-parasitized hosts (King, 1992; Darrouzet, 2008). Moreover, 150 asymmetric larval competition may cause the sex ratio to differ between self-151 and conspecific superparasitism: under self-superparasitism the female may be 152 more likely to lay the sex that maximizes the total fitness performance of both the 153 first and second progenies, while under conspecific superparasitism she may be 154 more likely to lay the sex that maximizes the fitness performance of the second 155 progeny. However, this scenario is effective only when D-type superparasitism 156 occurs and ovicidal probing does not occur; that is, when the first egg is not 157 killed by the superparasitizing female. Therefore, the sex ratio may vary with 158 the type of superparasitism (self- or conspecific superparasitism), oviposition 159 sides, and the occurrence of ovicidal probing. In addition, the female may be 160 likely to lay a male egg under superparasitism following the host-quality model 161 (Charnov, 1982), because the second progeny is likely to emerge as a small wasp due to the small amount of food available (Yamada & Ikawa, 2005). This 162

163	model is applicable only when the first egg is not killed by the superparasitizing
164	female. However, it should be noted that the host-quality model does not
165	predict a difference between self- and conspecific superparasitism (King, 1992).
166	The first aim of the present study was to determine the ability for
167	self/conspecific discrimination in the parasitoid <i>E. fairchildii</i> by comparing
168	superparasitizing frequencies, probing frequencies, the sex ratio of progenies,
169	and preference for the oviposition side between self- and conspecific
170	superparasitism for oviposition intervals in the range of 0–2 h using mated
171	females. The second aim was to present possible reasons for any differences
172	between the above-predicted behaviors and those adopted by real female
173	parasitoids.
174	
175	Materials and Methods
176	
177	Insects
178	
179	Echthrodelphax fairchildii is a synovigenic ectoparasitoid of the following three
180	rice-damaging plant hoppers (Homoptera: Delphacidae): Nilaparvata lugens

181 (Stål), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén). The 182 female parasitoid often feeds on these hosts. Parasitized hosts continue to 183 feed on host plants, but they do not molt to the next instar. Immature 184 parasitoids are sedentary at the place where ovipositing occurs. 185 Echthrodelphax fairchildii female adults usually live for 2-4 weeks. The 186 daily fecundity is 15–25 eggs when the female parasitoid is 3–20 days old 187 (Yamada YY & Yamaguchi S, 1997, unpublished data), and the handling time for 188 laying an egg is usually less than 100 s even when probing for infanticide occurs 189 (Ito, 2009).

190 Echthrodelphax fairchildii and L. striatellus were collected at two places 191 during 1992 in Tsu, Mie, Japan, and reared separately and continuously under 192 laboratory conditions. Parasitoid pupae were gathered for experiments from 193 the laboratory populations and placed individually in 10-ml glass vials. The use 194 of related individuals for conspecific superparasitism was avoided by ensuring 195 that all pairs comprised two females that originated from different populations 196 that had been reared separately. After emergence, females were individually 197 reared in 340-ml plastic cages containing a 50% (by weight) honey solution, 1 198 fifth-instar host for parasitism or food, 15 first- or second-instar hosts for food,

199	and 2 male wasps for mating. These hosts and the honey solution were
200	renewed every day. Since females of <i>E. fairchildii</i> seldom parasitize first- and
201	second-instar hosts, this rearing method resulted in a very low availability of
202	hosts, which increased the likelihood of the superparasitizing by parasitoids.
203	Mated females aged 4–20 days (mostly <13 days) were used for
204	superparasitism bouts. The females were allowed to lay the first egg for
205	superparasitism on fifth-instar nymphs that were within 24 h of molting; single
206	parasitism at this stage maximizes the survival rate of immature parasitoids
207	(Yamada YY & Takayama T, 1996, unpublished data). Observations and
208	rearing were performed in a room at 24–26°C and with a light:dark photoperiod
209	of 16:8 h.
210	
211	Behavioral options in superparasitism bouts
212	
213	The oviposition interval for superparasitism was defined in the present study as
214	the interval between the time that the first oviposition occurred and the time that
215	a parasitoid and a parasitized host were placed together in a small vial; the
216	following periods were assigned: 0, 0.25, 0.5, 0.75, 1, 1.5, and 2 h. In each first

217 oviposition bout, the female in a rearing plastic cage was moved into a clean 218 4-ml transparent plastic vial containing two second-instar hosts for food 219 immediately after the light was turned on, and kept therein for 1 h before a 220 healthy fifth-instar host was added. The host was removed immediately after 221 being parasitized, and then returned after an assigned oviposition interval for 222 self-superparasitism bouts. The exception was for an interval of 0 h, in which 223 the host was kept in the vial with the parasitoid instead of being removed. For 224 conspecific superparasitism bouts, two hosts each parasitized by one or the 225 other of a pair were exchanged and given to the partner of the pair after an 226 assigned interval. An interval of 0 h for conspecific superparasitism was not 227 usually realized because two individuals of a pair rarely oviposited at the same 228 time, and so intervals of <8 min were categorized as 0 h. Consequently, 229 parasitoids used for conspecific superparasitism bouts were allowed to 230 parasitize an unparasitized host before an assigned interval, as were those used 231 for self-superparasitism bouts, which precluded the possibility that differences in 232 the experience of ovipositing would lead to the behavioral differences between 233 self- and conspecific superparasitism bouts. For both self- and conspecific 234 superparasitism bouts, a single second-instar host was supplied to the female

235	parasitoid for food during oviposition intervals of 0.5 and 0.75 h, while two, three,
236	and four hosts were supplied during intervals of 1, 1.5, and 2 h, respectively; this
237	experimental procedure ensured that female parasitoids did not feed on the
238	parasitized hosts. We observed the ovipositing behavior under fluorescent
239	lighting via a supersensitive video camera (WAT-902H, Watec, Yamagata,
240	Japan) attached to a binocular microscope (magnification, $40 \times$), and recorded
241	the oviposition side (right or left) of the host. Whether the female parasitoid
242	moved her abdominal tip to the nonoviposition side for probing was also
243	recorded. The sex of eggs laid was identified based on observation of the
244	movement of the genitalia (Yamada & Imai, 2000): these observations were not
245	successful for 0–10.6% of the superparasitism ovipositions for each oviposition
246	interval, and the sex was not determined for 0–11.4% of them due to a long
247	pausing time (>10 s), which suggests that the female parasitoid had trouble
248	releasing sperm, and consequently often laid male eggs even though she was
249	considered to have tried to lay female eggs (Yamada & Imai, 2000). We
250	stopped the observation when the female parasitoid did not superparasitize a
251	host within 10 min; these cases were regarded as superparasitism avoidance.
252	When superparasitism avoidance occurred, an unparasitized host was exposed

253 to the parasitoid to examine whether the avoidance occurred due to the female's 254 general lack of interest in ovipositing. If the female did not oviposit on the host 255 within 10 min, the data were discarded (such cases were very rare).

256 Individual females used for conspecific superparasitism were also used 257 for self-superparasitism. We had planned to allow individual females to perform 258 one self- and one conspecific superparasitism bout at each interval of 0,0.25, 0.5, 259 0.75, 1, 1.5, and 2 h (the order of oviposition intervals was selected randomly for 260 each individual), but this was impossible due to parasitoids dying; about half of 261 the planned bouts were performed in most cases. In total, between 36 and 64 262 superparasitism bouts were performed for each oviposition interval. Because 263 some bouts did not result in ovipositing, the sample size for each oviposition 264 interval varied from 23 to 51 for the oviposition sides and sex ratios, and from 9 to 26 for the probing frequency under D-type superparasitism. 265 266

267 Data analysis

268

269 The effects of the type of superparasitism and oviposition intervals on 270

271 oviposition sides, and sex ratios were analyzed. The cases in which the sex of 272 eggs was identified were used for analyzing sex ratios, and the effects of 273 oviposition sides (same or different) and the occurrence of probing on sex ratios 274 were also analyzed: Cases in which ovipositing occurred on the same side and 275 cases in which it occurred on different sides with no ovicidal probing were first 276 compared, and then the latter were also compared with cases of different 277 oviposition sides in which ovicidal probing occurred. In the latter comparison, 278 the effect of oviposition intervals was not included in the statistical models due to 279 the frequencies of ovicidal probing being too low. Logistic regression analysis was performed using the LogXact[®]9 software (Cytel Software, Cambridge, MA, 280 281 USA). Significance was tested by determining exact probability values (Cytel 282 Inc., 2010). The logistic regression model included (as a numeric variable) the 283 possible influences of the age of the ovipositing females. However, the 284 analysis revealed that the age did not affect the above-mentioned items, and so 285 the analysis results for ages of parasitoid females are not presented. In 286 addition to the above-mentioned factors, which are all fixed ones, the influence 287 of individual parasitoids was incorporated in the model as a random factor. The 288 sex ratio was also compared between the first and second eggs under self- and

289 conspecific superparasitism with different oviposition intervals using Fisher's

290 exact test with serial Bonferroni correction (Rice, 1989). Moreover, whether or

291 not the preference for the oviposition side was random was determined using the

binomial test with serial Bonferroni correction.

293 The analysis of superparasitizing frequencies revealed a significant

two-way interaction between oviposition intervals and the type of

superparasitism (P = 0.004). Therefore, the analysis was performed separately

for oviposition intervals of 0–0.75 and 0.75–2 h, for which no two-way interaction

297 was detected. No significant interactions were detected in the other analyses,

298 including ones for ovicidal-probing frequencies, preferred oviposition sides, and

sex ratios, and hence we do not refer to interactions of the factors in the Results.

300 Moreover, a significant difference was detected between self- and conspecific

301 superparasitizing frequencies for oviposition intervals of 0–0.75 h, as described

in the Results, and so we evaluated the extent of the difference at individual

303 oviposition intervals by using Fisher's exact test with serial Bonferroni correction.

304

305 Results

307	The effects of oviposition intervals and the type of superparasitism on
308	superparasitizing frequencies were significant for oviposition intervals of 0-
309	0.75 h (both $P < 0.00001$; Fig. 1). However, it is should be noted that the
310	conspecific-superparasitizing frequencies at oviposition intervals of 0–0.5 h were
311	similar, and increased abruptly between oviposition intervals of 0.5 and 0.75 h.
312	Comparison between the self- and conspecific superparasitizing frequencies at
313	individual oviposition intervals revealed a significant difference for oviposition
314	intervals of 0 and 0.25 h ($P < 0.001$ and $P < 0.01$, respectively), but not for those
315	of 0.5 and 0.75 h. Meanwhile, neither the oviposition interval nor the type of
316	superparasitism had significant effects for oviposition intervals of 0.75–2 h (P =
317	0.10 and $P = 0.34$, respectively).
318	The probing frequency was usually <20% (Fig. 2), and was independent
319	of the type of superparasitism ($P = 1.00$) and oviposition intervals ($P = 0.65$).
320	There was no preference for the oviposition side for any oviposition interval
321	(Fig. 3; $P > 0.05$, binomial test with serial Bonferroni correction); consequently,
322	the preference for the oviposition side was also independent of the two factors
323	($P = 0.85$ for oviposition intervals; $P = 0.67$ for the type of superparasitism).
324	Most of the progeny produced were female (Fig. 4). The sex ratio was

325	independent of oviposition intervals ($P = 0.91$), the type of superparasitism ($P =$
326	0.43), and the oviposition sides ($P = 0.46$). When ovicidal probing occurred, the
327	sex ratio (i.e., the proportion of males) was 0.0% for both self- and conspecific
328	superparasitism ($n = 10$ and 5, respectively); this value did not differ from those
329	when ovicidal probing did not occur (0.0% [$n = 93$] and 5.4% [$n = 93$] for self- and
330	conspecific superparasitism; $P = 1.0$ for both). The sex ratio for ovipositing on
331	healthy hosts was 0.35% ($n = 575$); this value did not differ from those under
332	self- and conspecific superparasitism for the different oviposition intervals,
333	irrespective of the oviposition sides ($P > 0.1$, Fisher's exact test with serial
334	Bonferroni correction).
335	
336	Discussion
337	
338	A difference in superparasitizing frequencies for a short oviposition interval
339	indicates that E. fairchildii females exhibit self/conspecific discrimination when
340	ovipositing. The superparasitizing frequency increased with the oviposition
341	interval, irrespective of whether the superparasitism was self- or conspecific
342	superparasitism. The increase in self-superparasitism is considered to be

343 caused mainly by an impaired ability for self-recognition. However, it should be 344 noted that the increase in self-superparasitism could have occurred because the 345 parasitoid did not encounter healthy hosts for a while; when healthy hosts are 346 abundant the parasitoid should conserve eggs and time in the hope of 347 encountering more profitable hosts in the near future. Not encountering hosts 348 for a longer period reportedly increases the probability of a parasitoid 349 superparasitizing (e.g., Hughes et al., 1994; Henneman et al., 1995; Hubbard et 350 al., 1999; Babendreier & Hoffmeister, 2002). However, it is considered that this 351 factor played only a minor role in our experiments since there was only a very 352 small increase in superparasitizing frequencies for oviposition intervals of 353 ≤0.75 h under conspecific superparasitism and no increase in superparasitizing 354 frequencies was found for oviposition intervals of 0.75-2 h under self- and 355 conspecific superparasitism. 356 The conspecific-superparasitizing frequency hardly increased for 357 oviposition intervals within the range of 0–0.5 h, but increased abruptly between 358 oviposition intervals of 0.5 and 0.75 h. Such a pattern of increase was also 359 found in self- and conspecific superparasitizing frequencies in another 360 experiment where the same procedures were performed except for the use of

361	parasitoids that encountered a conspecific before a superparasitism bout (Ito,
362	2009). We currently cannot explain why such a pattern of increase occurred,
363	but this could be addressed by performing the same procedures using a
364	parasitoid that encounters many unparasitized hosts before a superparasitism
365	bout. These females are less likely to accept superparasitism for shorter
366	oviposition intervals, and hence such an experiment would reveal more clearly
367	how the superparasitizing frequencies change with increasing oviposition
368	intervals.
369	The probing frequencies did not differ between self- and conspecific
370	superparasitism and were very low, even for the oviposition intervals for which
371	the superparasitizing frequency differed, although high probing frequencies had
372	been predicted for the intervals. There are three possible reasons for this,
373	which are not mutually exclusive. The first is that even when probing takes only a
374	short time (<10 s), it may cause unrecoverable fatigue or physiological damage,
375	and consequently the female parasitoid does not obtain net fitness gains by
376	probing conspecifically parasitized hosts. When ovipositing the female
377	parasitoid must hold the host away from the plant on which it is feeding.
378	Moreover, when probing, the female must move the host around while holding it

379 (Yamada & Ikawa, 2003). This procedure appears to represent hard work for 380 the female, and hard work has been recently considered to cause delayed 381 maturation, a low fecundity, or a short longevity in animals, including wasps and 382 bees (O'Donnell & Jeanne, 1992, 1995; Heinsohn & Legge, 1999; Finkel & 383 Holbrook, 2000; Nilsson, 2002; Williams et al., 2008). Our group's recent work 384 has revealed that repeated probing on many hosts leads to hesitation in future 385 probing (Yamada YY & Katsuyama H, 2010, unpublished data), suggesting that 386 ovicidal probing incurs a substantial physiological cost. The second possible 387 reason is that the female parasitoid discriminates the hosts that she has 388 parasitized just a short time previously from conspecifically parasitized hosts, but 389 not from the other self-parasitized hosts. This means that the parasitized hosts 390 that the female parasitoid does not recognize as self-parasitized include some 391 self-parasitized hosts, unless she can estimate perfectly the amount of time that 392 has passed since the first oviposition. In addition, not all hosts that have been 393 self-parasitized a short time ago are considered to be recognized as 394 self-parasitized. The inability to perfectly discriminate self-parasitized hosts 395 from conspecifically parasitized hosts will make her concerned about the risk of accidentally killing her own progeny. In other words, self-recognition does not 396

397	lead to conspecific recognition when it is not perfect. It is considered that the
398	above phenomenon is likely to occur if self-recognition is achieved by using the
399	temporary memory of the smell (chemicals) of self-parasitized hosts (Ueno &
400	Tanaka, 1996) or by comparing her own smell with that left on the host
401	(self-matching; Dawkins, 1982: Wyatt, 2003). The third possible reason is that
402	cues for discriminating between self- and conspecific superparasitism can differ
403	between when accepting superparasitism and when performing ovicidal probing.
404	King and Skinner (1991) found that the cues used by <i>N. vitripennis</i> females for
405	discriminating between unparasitized and parasitized hosts differ between when
406	deciding the clutch size and when performing sex allocation of progenies.
407	The absence of a difference in probing frequency between self- and
408	conspecific superparasitism is inconsistent with our previous findings (Yamada &
409	Ikawa, 2003) of the probing frequency being slightly but significantly higher
410	under conspecific superparasitism than under self-superparasitism for
411	oviposition intervals of 1–96 h. The reasons for this discrepancy are unclear,
412	but could be associated with differences between the experimental conditions:
413	the previous experiment (1) used unmated females that were reared with first-,
414	second-, and third-instar hosts (third-instar hosts are often used for ovipositing

when host availability is low [Yamada YY & Noda S, 2012, unpublished data]),
(2) kept the females in a vial without hosts for 1 h before superparasitism bouts,
and (3) did not use a constant time between the first oviposition and when the
light was turned on.

419 Most of the eggs laid under superparasitism were female in the present 420 study, and the sex ratio was independent of the type of superparasitism, 421 oviposition sides, and the occurrence of ovicidal probing. Therefore, the LMC

422 model, host-quality model, and asymmetric larval competition do not appear to

423 be applicable to these results. However, we cannot conclude that these three

424 theories do not apply at all to *E. fairchildii* females. Encountering a single

425 conspecifically parasitized host is insufficient to induce the female to change the

426 sex ratio, but this ratio may change after encountering many conspecifically

427 parasitized hosts and/or female adults (see Shuker & West, 2004). Moreover,

428 the host-quality model predicts that the female adult should adjust the sex ratio

429 based on the quality of the target host relative to the hosts she has encountered

430 previously (Charnov, 1982); evidence for this is found in several species,

431 including Lariophagus distinguendus (Charnov et al., 1981) and Diglyphus isaea

432 (Ode et al., 2002). All but one of the hosts that the female encountered in a

433	rearing cage before superparasitism bouts in the present study were first- and
434	second-instar hosts that were unsuitable for oviposition (the exception was a
435	fifth-instar host). The females may regard even parasitized hosts as being of
436	high quality under this rearing condition. As for asymmetric larval competition,
437	if the female is not only a stronger competitor but also produces the total fitness
438	performance of the first and second progenies, which appears to be rare, the
439	phenomena obtained in the present study can be seen. Further investigation is
440	required for understanding the sex allocation strategy in <i>E. fairchildii.</i>
441	Echthrodelphax fairchildii females exhibited no preference for the
442	oviposition side, which is probably due to the difficulties of detecting the side with
443	the first progeny before capturing the host and of changing the side after
444	capturing, as discussed by Yamada and Ikawa (2005).
445	Five species, including E. fairchildii (in this study), have been reported to
446	exhibit self/conspecific discrimination for only certain oviposition intervals when
447	facing the dilemma of whether to accept superparasitism. In four of the five
448	species, self/conspecific discrimination is possible up to a threshold oviposition
449	interval. This interval is between 30 and 60 min for <i>I. naranyae</i> (Ueno, 1994),
450	as in <i>E. fairchildii</i> ; between 3 and 22 h for <i>Leptopilina heterotoma</i> (Visser, 1993)

451	(experiments were performed only for the two oviposition intervals); and
452	between 1 and 2 days for Venturia canescens (Hubbard et al., 1987; see also
453	Rogers, 1972; Hubbard et al., 1999). Meanwhile, <i>D. basalis</i> females show a
454	strange response: they exhibit self/conspecific discrimination for oviposition
455	intervals of 8, 42, and 72 h but not for oviposition intervals of 0.5, 16, and 24 h.
456	This variation in threshold oviposition intervals appears to reflect variations
457	among the species in the probability of encountering self- and conspecific
458	parasitized hosts in the field and in fitness gains from self- and conspecific
459	superparasitism. This assumption remains to be verified in future studies.
460	
461	
462	Disclosure
463	
464	Neither author has any competing financial interests to declare.
465	
466	References
467	
468	van Alphen, J.J.M. and Visser, M.E. (1990) Superparasitism as an adaptive

469	strategy for insect parasitoids. Annual Review of Entomology, 35, 59–
470	79.
471	van Baaren, J., Landry, B.L. and Boivin, G. (1999) Sex allocation and larval
472	competition in a superparasitizing solitary egg parasitoid: competing
473	strategies for an optimal sex ratio. Functional Ecology, 13, 66–71.
474	Babendreier, D. and Hoffmeister, T.S. (2002) Superparasitism in the solitary
475	ectoparasitoid Aptesis nigrocincta: the influence of egg load and host
476	encounter rate. Entomologia Experimentalis et Applicata, 105, 63–69.
477	Charnov, E.L. (1982) The theory of sex allocation. Princeton University Press,
478	Princeton.
479	Charnov, E.L., Los-den Hartogh, R.L., Jones, W. and van den Assem, J. (1981)
480	Sex ratio evolution in a variable environment. <i>Nature</i> , 289, 27–33.
481	Cytel Inc. (2010) Lx9manual. Cytel, Cambridge, MA.
482	Darrouzet, E., Boivin, G. and Chevrier, C. (2008) Sex allocation decision under
483	superparasitism by the parasitoid wasp Eupelmus vuilleti. Journal of
484	<i>Insect Behavior</i> , 21, 181–191.
485	Darrouzet, E., Imbert, E., and Chevrier, C. (2003) Self-superparasitism
486	consequences for offspring sex ratio in the solitary ectoparasitoid

- 487 Eupelmus vuilleti. Entomologia Experimentalis et Applicata, 109, 167–
 488 171.
- 489 Dawkins, R. (1982) The extended phenotype. W.H. Freeman, San Francisco.
- 490 van Dijken, M.J., van Stratum, P. and van Alphen, J.J.M. (1992) Recognition of
- 491 individual-specific marked parasitized hosts by the solitary parasitoid
- 492 Epidinocarsis lopezi. Behavioural Ecology and Sociobiology, 30, 77–82.
- 493 van Dijken, M.J. and Waage, J.K. (1987) Self and conspecific superparasitism
- 494 by the egg parasitoid *Trichogramma evanescens*. *Entomologia*
- 495 *Experimentalis et Applicata*, 43, 183–192.
- 496 Field, S.A., Keller, M.A. and Calbert, G. (1997) The pay-off from superparasitism
- 497 in the egg parasitoid *Trissolcus basalis*, in relation to patch defence.
- 498 *Ecological Entomology*, 22, 142–149.
- 499 Finkel, T. and Holbrook, N.J. (2000) Oxidants, oxidative stress and the biology of
- 500 ageing. *Nature*, 408, 239–247.
- 501 Gauthier, N., Monge, J.E. and Huignard, J. (1996) Superparasitism and host
- 502 discrimination in the solitary ectoparasitoid *Dinarmus basalis*.
- 503 Entomologia Experimentalis et Applicata, 43, 183–192.
- 504 Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology.

- 505 Princeton University Press, Princeton.
- 506 Hamilton, W.D. (1967) Extraordinary sex ratios. Science, 156, 477–488.
- 507 Heinsohn, R. and Legge, S. (1999) The cost of helping. *Trends in Ecology and*
- 508 *Evolution*, 14, 53–57.
- Henneman, M.L., Papaj, D.R., Figueredo, A.J. and Vet, L.E.M. (1995)
- 510 Egg-laying experience and acceptance of parasitized hosts by the
- 511 parasitoid, *Leptopilina heterotoma* (Hymenoptera: Eucoilidae). *Journal*
- 512 *of Insect Behavior*, 8, 331–342.
- 513 Hubbard, S.F., Harvey, I.F. and Fletcher, J.R. (1999) Avoidance of
- 514 superparasitism: a matter of learning? Animal Behaviour, 57, 1193–
- 515 1197.
- 516 Hubbard, S.F., Marris, G.C., Reynolds, A. and Rowe, G.W. (1987) Adaptive
- 517 patterns in the avoidance of superparasitism by solitary parasitic wasps.
- 518 Journal of Animal Ecology, 56, 387–401.
- 519 Hughes, J.P., Harvey, I.F. and Hubbard, S.F. (1994) Host-searching behavior of
- 520 *Venturia canescens* (Grav.) (Hymenoptera: Ichneumonidae):
- 521 Superparasitism. *Journal of Insect Behavior*, 7, 455–464.
- 522 Ito, E. (2009) Adaptive significance of self-superparasitism in the parasitioid

523	Echthrodelphax fairchildii. Doctoral Dissertation, Graduate School of
524	Bioresources, Mie University, Mie, Japan (in Japanese).
525	Ito, E. and Yamada, Y.Y. (2005) Profitable self-superparasitism in an infanticidal
526	parasitoid when conspecifics are present: self-superparasitism deters
527	later attackers from probing for infanticide. Ecological Entomology, 30,
528	714–723.
529	King, B.H. (1992) Sex ratios of the wasp Nasonia vitripennis from self-versus
530	conspecifically-parasitized hosts: local mate competition versus host
531	quality models. Journal of Evolutionary Biology, 5, 445–455.
532	King, B.H. and Skinner, S.W. (1991) Proximal mechanisms of sex ratio and
533	clutch size responses of the parasitoid wasp Nasonia vitripennis to
534	parasitized hosts. Animal Behaviour, 42, 23–32.
535	Kuno, E. (1963) A comparative analysis on the distribution of nymphal
536	populations of some leaf- and planthoppers on rice plant. Researches
537	on Population Ecology, 5, 31–43.
538	Lebreton, S., Chevrier, C. and Darrouzet, E. (2010) Sex allocation strategies in
539	response to conspecifics' offspring sex ratio in solitary parasitoids.
540	Behavioral Ecology, 21,107–112.

- 541 Lebreton, S., Labarussias, M., Chevrier, C. and Darrouzet, E. (2009)
- 542 Discrimination of the age of conspecific eggs by an ovipositing
- 543 ectoparasitic wasp. Entomologia Experimentalis et Applicata, 130, 28–
- 544 34.
- 545 Netting, J.F. and Hunter, M.S. (2000) Ovicide in the whitefly parasitoid, *Encarsia*546 *formosa*. *Animal Behaviour*, 60, 217–226.
- 547 Nilsson, J-Å (2002) Metabolic consequences of hard work. Proceedings of the
- 548 Royal Society of London–Series B: Biological Sciences, 269, 1735–1739.
- 549 Ode, P.J., Kevin, M. and Heinz, K.M. (2002) Host-size-dependent sex ratio
- 550 theory and improving mass-reared parasitoid sex ratios. *Biological*
- 551 *Control*, 24, 31–41.
- 552 O'Donnell, S. and Jeanne, R.L. (1992) Life-long patterns of forager behaviour in
- a tropical swarm-founding wasp: effects of specialization and activity level
- on longevity. *Animal Behaviour*, 44, 1021–1027.
- 555 O'Donnell, S. and Jeanne, R.L. (1995) Worker lipid stores decrease with
- 556 outside-nest task performance in wasps: implications for the evolution of
- 557 age polyethism. *Experientia*, 51, 749–752.
- 558 Puttler, B. and van den Bosch, R. (1959) Partial immunity of Laphygma exigua

- 559 (Huebner) to the parasite *Hyposoter exiguae* (Viereck). *Journal of*
- 560 *Economic Entomology*, 52, 327–329.
- 561 Rice, W.R. (1989) Analyzing tables of statistical tests. *Evolution*, 43, 223–225.
- 562 Rogers, D. (1972) The ichneumon wasp Venturia canescens: oviposition and
- 563 avoidance of superparasitism. *Entomologia Experimentalis et Applicata*,
- 564 15,190–194.
- 565 Rosenheim, J.A. and Mangel, M. (1994) Patch-leaving rules for parasitoids with
- 566 imperfect host discrimination. *Ecological Entomology*, 19, 374–380.
- 567 Segoli, M., Keasar, T., Harari, A.R. and Bouskila, A. (2009) Limited kin

568 discrimination abilities mediate tolerance toward relatives in

- 569 polyembryonic parasitoid wasps. *Behavioral Ecology*, 20, 1262-1267.
- 570 Shuker, D.M. and West, S.A. (2004) Information constraints and the precision
- 571 of adaptation: Sex ratio manipulation in wasps. *Proceedings of the*

572 National Academy of Sciences of the USA, 101, 10363–10367.

- 573 Sirot, E. (1996) The pay-off from superparasitism in the solitary parasitoid
- 574 *Venturia canescens. Ecological Entomology*, 21, 305–307.
- 575 Sykes, E.M., Innocent, T.M., Pen, I., Shuker, D.M., Stuart, A. and West, S.A.
- 576 (2007) Asymmetric larval competition in the parasitoid wasp *Nasonia*

vitripennis: a role in sex allocation? Behavioural Ecology and

- 578 *Sociobiology*, 61, 1751–1758.
- 579 Takasuka, K. and Matsumoto, R. (2011) Infanticide by a solitary koinobiont
- 580 ichneumonid ectoparasitoid of spiders. *Naturwissenschaften*, 98, 529–
 581 536.
- 582 Ueno, T. (1994) Self-recognition by the parasitoid *Itoplectis naranyae*
- 583 (Hymenoptera: Ichneumonidae). *Oikos*, 70, 333–339.
- 584 Ueno, T. and Tanaka, T. (1996) Self-host discrimination by a parasitic wasp: the

585 role of short-term memory. *Animal Behaviour*, 52, 875–883.

586 Visser, M.E. (1993) Adaptive self- and conspecific superparasitism in the solitary

587 parasitoid *Leptopilina heterotoma*. *Behavioral Ecology*, 4, 22–28.

- 588 Visser, M.E., Luyckx, B., Nell, H.W. and Boskamp, G.J.F. (1992) Adaptive
- 589 superparasitism in solitary parasitoids: marking of parasitized hosts in
- relation to the pay-off from superparasitism. *Ecological Entomology*, 17,
- 591 76–82.
- 592 Williams, J.B., Roberts, S.P. and Elekonich, M.M. (2008) Age and natural
- 593 metabolically-intensive behavior affect oxidative stress and antioxidant
- 594 mechanisms. *Experimental Gerontology*, 43, 538–549.

- 595 Wyatt, T.D. (2003) *Pheromones and animal behaviour*: *communication by smell*
- 596 *and taste*. Cambridge University Press, Cambridge.
- 597 Yamada, Y.Y. and Ikawa, K. (2003) Adaptive significance of facultative infanticide
- in the semi-solitary parasitoid *Echthrodelphax fairchildii*. *Ecological*
- 599 *Entomology*, 28, 613–621.
- 600 Yamada, Y.Y. and Ikawa, K. (2005) Superparasitism strategy in a semisolitary
- 601 parasitoid with imperfect self/non-self recognition, *Echthrodelphax*
- 602 *fairchildii. Entomologia Experimentalis et Applicata*, 114, 143–152.
- 603 Yamada, Y.Y. and Imai, N. (2000) Determination of the sex of eggs and the
- 604 mating status of ovipositing females of *Echthrodelphax fairchildii* based on
- 605 oviposition behaviour. *Entomological Science*, 3, 579–583.
- 606 Yamada, Y.Y. and Miyamoto, K. (1998) Payoff from self and conspacific
- 607 superparasitism in a Drynid parasitoid, *Haplogonatopus atratus*. *Oikos*,
- 608 **81**, 209–216.
- 609 Yamada, Y.Y. and Watanabe, T. (2002) Payoff from self and conspecific
- 610 superparasitism in a parasitoid, *Haplogonatopus atratus* (Hymenoptera:
- 611 Dryinidae): the case of third instar hosts. *Entomological Science*, 5, 161–
- 612 170.

615 Figure legends

- 616 **Fig. 1** Frequency of superparasitism for different oviposition intervals in
- 617 Echthrodelphax fairchildii.
- Fig. 2 Frequency of probing of the nonoviposition side for different oviposition
 intervals in *Echthrodelphax fairchildii*.
- 620 **Fig. 3** Proportion of superparasitism events in which the first and second
- 621 ovipositions were on the same side in *Echthrodelphax fairchildii*.
- 622 Fig. 4 Proportion of male second progenies laid under superparasitism in
- 623 *Echthrodelphax fairchildii*, indicated according to whether the first and
- 624 second progenies were laid on the same side or different sides. When
- 625 the ovipositions were on different sides, the cases in which ovicidal
- 626 probing occurred were excluded.

Figure 2

Figure 3

