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Abstract

In investigations on electronic structures of correlated materials such as transition-metal

oxides, rare-earth compounds, and organometallic molecules, first-principles calculations based

on density functional theory (DFT) play a central role. However, there is a problem remaining to

deal with correlation effects in the DFT for correlated materials. On a practical level, DFT+U

method that introduces Hubbard-model parameters to represent screened on-site Coulomb

(U) and exchange (J) interaction is one of the powerful and conventional tools suitable for

calculations of large systems without expensive costs. The values of U and J are commonly

chosen to match experimental observations, but optimal values depend on which exchange-

correlation functional is used and the calculated material properties are very sensitive to values

of on-site U and J even in the ground state. More recently the parameters have been calculated

directly from first-principles calculations, but they vary over wide ranges of values even for the

same ionic state in a given material. Unfortunately, this implies that choosing ”good” values

is problematic.

In order to address this issue, here, non-empirical method for deriving scaled +U parameters

is developed and applied to the prototypical materials of correlated transition-metal monoxides

and organometallic molecules. This dissertation consists of five chapters. After an introduction

to electronic structures of correlated materials and general failures of the DFT-based first-

principles calculations in chapter one, methodologies of the DFT and linear response approach

to estimate an effective on-site Coulomb interaction, Ueff , of correlated elements are described

in chapter two, where the Ueff values determined from the second derivative of the total energy

with respect to the occupation numbers of localized d-electrons within the linear response

theory. All calculations were carried out by means of the all-electron full-potential linearized

augmented plane wave (FLAPW) method. Chapter three devotes to an application of this

approach to the transition-metal monoxides, TMO (TM＝Mn, Fe, Co, and Ni), where the

variation of Ueff values by changing the muffin-tin (MT) sphere radius was examined. It is

found that the Ueff value depends strongly on MT sphere size by more than 2 3 eV in all

systems, for example, in MnO when the MT radius is 2.0 bohr, the Ueff value results in 10.1 eV

but it decreases to 7.2 eV as the MT radius increases to 2.7 bohr. The same trend in the Ueff

values was confirmed in other considered oxide systems. However, despite this large variation,

essentially identical valence band structures are obtained, and I found an approximate scaling
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of Ueff with regard to size of MT sphere. Thus, although simple transferability of the Ueff value

among different calculation methods is not allowed, guidelines for estimating Ueff are proposed.

In chapter four, this approach was applied to ground-state electronic structure calculations

of correlated organometallic metallocens, TMCp2 (TM＝V, Cr, Mn, Fe, Co, and Ni). In these

complexes, however, an additional difficulty intrinsically related to various electronic configu-

rations of d electrons that nearly degenerate is raised, which may numerically trap in one of

multiple local energy minima corresponding to meta-stable electronic configurations, instead

of a global minimum of the ground state. The changes due to the presence of the ligand field

of molecules further complicate theoretical analysis so that the DFT+U calculations may fail

to search a ground-state electronic configuration truly. To overcome this problem, I imple-

mented the constraint DFT+U approach that controls electronic configurations by introducing

Lagrange multipliers to the d electron density matrix. Thus, the total energies of all electronic

configurations allowed by a symmetric group were calculated self-consistently with the Lagrange

multipliers and then the ground electronic configuration was energetically determined. The pre-

dicted results demonstrate precisely the experimentally observed grand-states, i.e., 4A2g,
3E2g,

6A1g,
1A1g,

2E1g, and
3A2g for VCp2, CrCp2, MnCp2, FeCp2, CoCp2, and NiCp2, respectively,

while the stability between different electronic configurations is found to be very sensitive de-

pending on the Ueff values. Thus, an utility of constraint DFT+U method combined with

non-empirical Ueff values for analyzing properties of correlated systems was demonstrated.

Chapter five concludes the thesis that by using the proposed methodology opens a new

avenue toward reliable predictions of structures and physical properties in strongly correlated

metal complexes and gives suggestions for future calculations.
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Chapter 1

Introduction

1.1 Density functional theory for correlated systems

The state-of-the-art ab-initio calculations based on density functional theory (DFT) [1–3]

provide effective approaches to predict structural and electronic properties of condensed mat-

ters, for example, ground state electronic structures, crystal structures, phonon spectra, for-

mation energies, electronic band structures, ionization potentials, superconducting properties,

and exciting energy (by time-dependent DFT) in solid and molecules. In Kohn-Sham (KS)

equation in the DFT, a problem of many-body interacting electrons is replaced by an one-

particle non-interacting problem by using an effective potential. The effective potential can be

expressed by three contributions, i) an external potential term like an attractive potential from

nucleus, ii) Hartree term of classical interacting potential between electronics, and iii) exchange-

correlation potential. The exchange-correlation potential may be given by a universal functional

of the electron density [4], but the exact form is still unknown.

The exchange-correlation term contains all contributions that compensate the many-body

effect from the non-interacting kinetic energy, the classical Hartree potential, and many-body

approximations are proposed to the exchange-correlation potential in actual calculations. Most

generally employed approximations are constructed as expansions around the homogeneous

electron gas limit, i.e., local density approximation (LDA) and generalized gradient approxi-

mation (GGA). However, they often fail to obtain ground states, for example, band structures

(band gap), magnetic moments, lattice constants, and so on, where most of them have difficulty
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to demonstrate localizations of electrons. This problem arises from that these approximations

generally provide quite poor descriptions of the ground state natures of N -electron system.

Much interest in correlated materials has been rapidly increased in novel engineering applica-

tions because of their unique physical properties. Among them are transition-metal monoxides,

where TMs are Mn, Fe, Co, and Ni, that show Mott-type insulators [5, 6]. However, there is a

problem to treat these materials by the DFT calculations. The ground state is rock salt crystal

structure. The spin magnetic moments of TM atoms exhibit an anti-ferromagnetic (AFM)

II ordering, where the moments within the same (111) plane are parallel and they order an-

tiparallel along the [111] direction, below their respective Néel temperatures. [7] The AFM II

magnetic ordering is stabilized by super-exchange interaction via the oxygen atoms [8,9]. From

the most literatures, even though it has been shown that many structural, magnetic, electronic

properties may be described by the LDA- or GGA [7, 7, 10–20], the properties of band gap

or photoemission spectra can not be described quantitatively or not at all within mean-field

approximations [21]. In CoO and FeO, while insulating electronic structures were observed in

experiments, the LDA (and GGA) calculations show a metallic state, where the partially occu-

pied triplet t2g state in minority channel electronic subshell results in a gapless state, in contrast

to experiments. Even in MnO and NiO, whose minority t2g orbital are empty or fully occupied,

the LDA/GGA analysis underestimates the band gap compared to experimental values. These

failures arise from an insufficient description of localize character of the TM-3d electrons in

the LDA/GGA. The other examples includes in metal complexes: e.g., oxidized products, rare-

earth (RE) compounds, organometallic molecules and so on [22–26]. Thus, for these reasons,

an established method to capture the ground state properties for correlated materials has been

strongly desired.

Efforts to go beyond the LDA (and GGA) have widely attempted so as to include the many-

body effects, by using not only model Hamiltonians but also the DFT frameworks. The model

Hamiltonian approach, which may be a simplest way to treat correlated materials, describes

the localized electron behavior by using parameters characterizing electronic structures. For

example, Hubbard model, which is one of the most used models, is based on two parameters

for on-site Coulomb correlation and hopping terms [27–34]. In the DFT framework, several

methods to introduce the many-body effects have been developed in the last decades. Dynam-

ical mean field theory (DMFT) and reduced density matrix functional theory (RDMFT) are
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known well as notable approaches to improve the description of correlated electron systems sig-

nificantly. Hybrid functional method, in which the exchange-correlation function is combined

by the exchange-correlation function of the DFT and the exchange term in Hartree-Fock (HF)

approximation, is nowadays employed in organometallic molecule systems. Whereas, they have

very huge computational costs extremely compared to the standard DFT calculations. Thus,

an efficient approach must be required to extend to large systems consisting of a large number

of atoms.

In complex systems, DFT+U method is one of the solutions, which has been practically used

and comes very popular in the ab-initio calculation community. The total energy functional

is formulated based on the DFT complemented with the Hubbard model [35–39]. Because of

the simplicity of its expression, distinctive advantages are offered; for example, low computa-

tional costs, easy derivation of energy derivatives for atomic forces and stresses in structural

optimizations, and second derivatives for atomic force constants or elastic constants. Moreover,

since the DFT+U method introduces Hubbard-model parameters to represent screened on-site

Coulomb (U) and exchange (J) interactions, rather clear and simple understandings of physical

meaning in role of these parameters are given as a benefit.

3



1.2. Problems in density functional theory for correlated systems

1.2 Problems in density functional theory for correlated

systems

Despite that the DFT provides a critical role to understand the electronic structures, most

calculations approximated within the DFT has a serious problem. This section provides a

critical imperfection of mean-field-based DFT, which is recognized as a popular failure: a

derivative discontinuity [40–55]. This quantity may be corrected by the DFT+U method (this

is indeed a primary target in this study) although the standard LDA and GGA functionals lose

it mathematically.

Firstly, the a definition of fundamental energy gap, Egap, is overviewed from both experi-

ments and DFT calculations. A central quantity of the Egap, is exactly defined by a difference

between first ionization energy (IE) and electron affinity (A) as,

Egap = IE− A, (1.1)

where IE and A correspond to the energies where an electron puts from vacuum level to energy

levels of highest occupied (HO) and lowest unoccupied (LU) orbitals, respectively, as shown in

Fig. 1.1 (a). However, the DFT solving eigenstates of a single particle moving in an effective

potential gives an energy gap that differs from the fundamental gap of Eq. (1.1). For a given

N -electron system, the gap must be computed by considering the Kohn-Sham (KS) system of

both N and (N + 1) electrons, and be expressed in terms of the KS eigenvalues as follow:

Egap = εN+1(N + 1)− εN(N), (1.2)

where the εM(j) indicates the j-th KS-orbital energy of the M -particle system.

In the KS system with the N electrons, Ewald term diverges due to charge neutrality

breakdown because when an electron is added into the system, the energy gap is alternatively

expressed

Egap =
[
εN(N + 1)− εN(N)

]
+
[
εN+1(N + 1)− εN(N + 1)

]
(1.3)

= ∆ks +∆xc (1.4)

4



Chapter 1. Introduction

IE A

En
er

gy

Vacuum level

Egap

�KS

�
xc

"N(N+1)

"N(N)

"N+1
(N)

"N+1
(N+1)

"N(N�1)

"N+1
(N�1)

N – electron (N＋1) – electron

‥
‥

‥
‥

‥
‥

"HO

"HO�1

"LU

Vacuum level

(a) Experiment (b) Density functional theory

Figure 1.1: Schematics of energies of the highest occupied (HO), εHO, and the lowest unoccupied
(LU), εLU, orbital states in experiment, compared to those of one-electron Kohn-Sham orbitals,
εM(i), for N - and (N + 1)-electron systems in density functional theory. The εM(i) denotes j-th
eigenstates for M -electron system and yellow circles are electrons. The fundamental gap can
be expressed using difference between the first ionization energy (IE) and the electron affinity
(A) or summ of ∆ks and ∆xc; Egap = IE− A = ∆ks +∆xc.
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where N -electrons of non-interacting KS system eigenstates ∆ks are used but there is a cor-

rection term. [40–42, 56]. In the DFT (and even in Hartree-Fock approximation), when an

additional electron is put in the LU orbital, εLU, i.e., into (N + 1)-electron system, all eigen-

states of the one-electron orbitals (KS-orbitals) are shifted toward relatively higher in energy

compared these in the N -electron system (see Fig. 1 (b)). This energy shift from the εN(N+1)

to the εN+1(N + 1) is the ∆xc, which never knows from the N -electron KS problem. Most of

approximation functions in the DFT, such as LDA and GGA, is approximately assumed to zero

(∆xc ≈ 0), thus,

Egap ≈ ∆ks. (1.5)

However, the ∆xc is sometimes sizable in correlated systems [44, 57–60]. This fact is known as

a ”derivative discontinuity” problem in the computational field of correlated materials.

According to Perdew and coauthors [40], in a grand canonical ensemble that allows the

number of electrons, N , to be fractional as well as an integer, the continuous behavior of the

total energy with respect to the N is expressed using a fractional weight of ω as

E(N0 + ω) = (1− ω)E(N0) + ωE(N0 + 1). (1.6)

The N0 denotes an integer and 0 ≤ ω ≤ 1. The curve itself is continuous while its derivative

∂E/∂N has discontinuities at integers of N , resulting in a series of straight line segments

interpolating the energies corresponding to those of closed systems with integers of N , as

shown in Fig. 1.2 (a) (red line).

Janak’s theorem [61] gives an i-th eigenstate from the total energy derivative with respect

to the weight of occupation ni as

∂E

∂ni

= εi. (1.7)

A further consideration of an eigenstate of HO orbital, εHO, for N - and (N+1)-electron systems

give IE and A as

∂EN

∂nHO

= εNHO = −IE, (1.8)
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∂EN+1

∂nHO

= εN+1
HO = −A, (1.9)

respectively (thanks to ionization potential (IP) theory [62]). Figure 1.2 (b) shows the depen-

dence of εHO on the N . Based on the Eq. (1.1) and the IP theorem, the fundamental gap is the

difference of εN0+1
HO and εN0

HO, corresponding to a magnitude of the step (∆) in Fig. 1.2 (b) [63,64].

Thus, a definition of the fundamental gap must be concluded as a ”discontinuity” (step, ∆) of

the slope of εHO which, equals to the total energy ”derivative”, at N0.

In the fundamental gap given by Eq. (1.4), note that the ∆ks must be obtained from a

non-interacting kinetic energy term and ∆xc from exchange-correlation term in the Kohn-Sham

Hamiltonian, respectively, while a classical Hertree potential and an external potential do not

contribute to the derivative discontinuity behaviors. Thus, this ∆xc, being missed by the

LDA and GGA, should be what to be corrected precisely. As described previously, the total

energy of the standard (approximate) DFT calculation is parabola as a function of the N

because a variable n(r) varies analytically and continuously, while exact total energy should

be a piecewise-linear with an integer variable N . Hence, the DFT+U method is expected to

recover the quadratic curve of approximate DFT to fit the exact one. In other words, the

DFT+U method plays a role to reintroduce the derivative discontinuity into the mean-field

Kohn-Sham potential: approximately ∆xc ≈ Ueff . Importantly, this additional term is expected

to contribute to not only the fundamental gap but also ground state electronic structures and

other physical properties.

1.3 DFT+U method for correlation correction

The DFT+U method, which is required to solve the derivative discontinuity problem, is one

of powerful and conventional tools suitable for calculations of large systems without expensive

computational costs [29, 37, 38, 65–67]. Further, it has been used to successfully calculate elec-

tronic structures, magnetic and optical properties that agree with experiments. For example,

Yang et al. [68] have demonstrated that in bulk fcc Ni Coulomb correlations treated within the

+U method (U=1.9 eV, J=1.2 eV) push degenerate d states away from the Fermi level, and

that this behavior stabilizes the magnetic anisotropy along the [111] direction in agreement

with experiments, [69, 70] but contrary to U = 0 calculations. The +U method was also suc-
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cessfully applied [71] to explain the experimentally observed magnetic switching phenomenon

at the BaTiO3–Fe interface: The trend of the polarization versus the +U parameters was used

to clarify the magneto-electricity mechanism at the interface. The +U approach has been es-

sential in the other areas, including studies of the band gap and phase stability in polymorphic

TiO2 [72] the structural and optical properties of diluted magnetic semiconductors, [73] and

the ground state electronic configuration in organometallic molecules. [74]

However, because a magnitude of the correlation correction for a given model is generally

unknown, in the most studies using the +U method, typically the values of on-site Coulomb

and exchange interaction parameters are empirically determined. One may often regard the U

and J as adjustable parameters. This analysis plays a crucial role to understand a tendency

of physical or chemical properties, but still reliable values are not clear. Also, one may set

their magnitudes to match experimental observations, for example, band gaps and magnetic

moments, but, in this case, it is impossible to predict a novel discovery of physical phenomena

in advance of the experimental studies. Alternatively, the U and J values of a bulk state

are employed for systems that are characterized by reduced symmetry, low dimensionality, or

symmetry such as nanoparticle, cluster, molecule, alloys, surfaces or interfaces [75–82]. It has

been reported that the value of Hubbard U and J for an atom in bulk solid is several times

smaller than that for a free atom [83], and the parameters at metals or insulator surfaces

are different from their bulk values because of a competition of surface electronic state and

effective band narrowing [84]. Thus, this assumption must be unsatisfactory and may mislead

conclusions.

Over the years, a number of researchers has pointed out an importance of a choice of the on-

site +U parameter for reproducing experimental observations, but the optimal value depend

on which exchange-correlation functional is used [85] and the calculated material properties

are very sensitive to the values of the on-site Coulomb and exchange terms even in the ground

state. From the viewpoint of theoretical material design by using DFT+U method, importantly,

the optimal and reliable +U parameters are necessary to obtain true ground state where the

electron correlation described by mean-field approximation is replaced by the Hubbard model.

More recently, determination of the parameters from ab-initio calculations has been at-

tempted and various non-empirical method for calculations of these values of both ”bare” and

”screened” versions have been developed. Table 1.3 summarizes previous theoretically calcu-
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lated effective on-site Coulomb parameters, Ueff = U − J . For Mn in MnO, Anisimov and

co-workers [36] obtained Ueff = 6.04 eV by a constrained LDA approach using an orthonormal-

ized LMTO basis set, whereas Pickett et al. [86] extracted a value of 3.6 eV using a LCAO

basis. The parameters have also been calculated within the constrained random phase approx-

imation (cRPA). [87–89] For PAW or Wannnier (MLWF) basis sets, Ueff values are of relatively

similar magnitude (around 4 eV) for FeO, but differ more significantly in other systems, partic-

ularly NiO. [87–89] In 2005, Cococcioni and de Gironcoli [90,91] proposed a minimally extended

methodology from the limited LDA scheme based on linear response theory and the constrained

DFT method implemented using plane wave pseudopotentials; a major accomplishment was

that the derived parameter excludes energy contributions of one electron kinetic term. Their

calculated values are also listed in Table 1.3. However, these calculated values vary over a wide

ranges of values even for the same ionic state in a given material.

Comparison of absolute values of Ueff is not meaningful since theoretically determined pa-

rameters can significantly depend on the computational setup, e.g., basis sets and projection

operators. [92] Unfortunately, this implies that choosing “good” parameters for a specific com-

putational method is problematic. Nevertheless, there is no prescription to select a proper

value in calculations. In this respect, systematical investigations of the Ueff values in different

computational methods are strongly desired.
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Table 1.1: Literature’s values of the effective on-site Coulomb interaction, Ueff = U − J (in
eV), for TM atom (TM = Mn, Fe, Co, Ni) of transition-metal monoxides. The first and second
columns give the basis sets and method used to calculate Ueff , respectively.

Basis set Method MnO FeO CoO NiO Ref.

LMTOa Constrained LDA 6.04 5.91 6.88 7.05 [36]

LCAOb Constrained LDA 3.6 4.6 5.0 5.1 [86]

PAWc cRPA 4.0 4.0 3.3 6.4 [87]

3.9 4.0 3.4 6.0 [88]

MLWFd cRPA 5.6 4.8 6.3 5.6 [89]

PWe Linear response 5.25 4.3 6.1 5.77 [90,91]

UHF-MOf g - 3.7 - - [93]

a LMTO: Linear muffin-tin orbital.
b LCAO: Linear combination of atomic orbitals.
c PAW: Projected augmented wave.
d MLWF: Maximally localized Wannier function.
e PW: Plane wave.
f UHF-MO: Un-restricted Hartree-Fock molecular orbitals.
g The Ueff is determined from a relationship between the parameters and Coulomb and ex-
change integrals.
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1.4 Purpose and contents of thesis

On the basis of previous introductions, here, a methodology to derive the effective on-site

Coulomb interaction has been developed using full-potential linearized augmented plane wave

method. The linear response approach is employed to achieve the derivation of the Ueff . Then,

this methodology is applied to prototypical correlated materials of transition-metal monoxides,

TMO, and organometallic metallocene molecules, TMCp2, to solve following issues; (i) getting a

reliable Hubbard Ueff and extracting an essential ingredient to choose the proper correction, and

(ii) analyzing an effect of on-site correlated interaction to electronic configuration in d-orbital

electrons for organometallic complex.

This dissertation is organized as follow. In Chapter 2, details of theory for calculations of the

on-site +U parameters and computational theory are presented. After introduced the DFT+U

method, the calculation procedures to obtain the effective +U values, Ueff = U − J in this

study, from linear response approach is presented. In this, all-electron full-potential linearized

augmented plane wave method based on the constraint DFT, in which Lagrange multiplier

method is introduced to control the d-electron density matrix, is used. An application of the

present method to transition-metal monoxides is devoted in Chapter 3, where an intrinsic origin

of the discrepancy among calculated Ueff values from different methodologies is considered. In

Chapter 4, this method is further applied to analysis of ground-state electronic structures

of correlated organometallic metallocenes, where the various electronic configurations of d-

electrons are energetically degenerated. The conclusion of the thesis is given in Chapter 5.
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Theory and computational method

2.1 Density functional theory

2.1.1 Background of density functional theory

In quantum mechanics, motions of electrons having two characters of particle and wave

simultaneously, are basically formulated by Schrödinger equation [94] as,

HΨ(ri, t) = EΨ(ri, t), (2.1)

where Hamiltonian H consists of kinetic and potential operators for electrons and nuclei. The

Ψ(ri, t) is many-body wave function of all particles, denoted as index i, at position ri at time

t, and E is eigenvalues of many-body systems corresponding to orbital energies. For analysis

of behaviors of electrons and nuclei that interact in their electrostatic Coulomb interaction,

it is impossible to solve the Eq. (2.1) except for hydrogen atom where only one electron and

one proton interact each other. To solve the Schrödinger equation of Eq. (2.1) for many-

body system, several approaches have been established and one of the most famous approaches

is Born-Oppenheimer approximation which assumes that the movement of nuclei is too slow

compared to that of electrons [95]. As a result, the Hamiltonian of Schrödinger equation
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becomes

H =
N∑
i=1

(
−1

2
∇2

i

)
+

1

2

∑
j ̸=i

1

|ri − rj|
−

N∑
i=1

∑
σ

Zα

|ri −Rα|
. (2.2)

The first term is sum of the kinetic operators for all electrons in the system, the second one is

sum of the Coulomb repulsive potential of electron-electron, and the third, sum of the electron-

nucleus Coulomb interaction, respectively. The ri is the position of i-th electron from the α-th

nucleus (Zα) at position Rα.

Many numerical methods for solving the Schrödinger equation under the Born-Oppenheimer

approximation have been developed so far. Among them are density functional theory (DFT),

developed by Hohenberg and Kohn in 1964 [1], which states ground state properties can be

obtained from the ground state electron charge densities. It importantly has an advantage: the

degree of freedom is significantly reduced to only 3 from 3N dimensions.

2.1.2 The Hohenberg-Kohn theorem

The DFT was developed semiclasically by Tohmas and Fermi in 1920’s [96,97]. In the model

proposed by them, total energy for electrons is given by a functional of the charge density of

”uniform” electrons. In 1964, Hohenberg and Kohn succeeded to formulate the total energy as

a function of the charge density for a given ”external” potential for N -electron system. [1] This

is known as the Hohenberg-Kohn theorem. This theorem states:

1. The ground state total energy, E, (for a non-spin-polarized system) is given exactly as a

function of the ground state charge density, n(r), as

E = E[n]. (2.3)

2. The true ground state charge density minimized the E[n] (variational principle), and other

ground state properties are also functionals of the ground state charge density.

For a spin-polarized system, the total energy and the other properties at ground state are given

by functional of spin densities. Generally, the spin densities are expressed as four-component
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spinors, but more simply like in collinear magnetic system, the total energy of spin-up and

-down densities, n↑ and n↓, may be given by

E = E[n↑, n↓]. (2.4)

According to this theorem, the total energy of the considered system is

E[n] = T [n] + EH[n] + Vext[n] + (non-classical term), (2.5)

where the first term, T [n], is the kinetic energy of the interacting electrons, the second one,

EH [n], is Hartree energy which counts the Coulomb interaction of electron charge density

including the contribution from itself, and the third one, Vext[n], is external potential given by

Vext[n] =

∫
n(r)vext(r)dr. (2.6)

However, the Hohenberg-Kohn theorem could not provide an exact form of the total energy

functional, particularly, the kinetic term of interacting electrons. Therefore, the utility of the

DFT would depend on the discovery of sufficient and accurate approximations. This problem

was solved by Kohn and Sham one year after Hohenberg and Kohn proposed their theorem.

2.1.3 The Kohn-Sham equation

Kohn and Sham, in 1965, had succeeded to solve the remaining problem in Hohenberg-

Kohn theorem, i.e., kinetic energy of interacting electrons. [2, 3] They replaced this kinetic

contributions of interacting electrons with those of non-interacting ones by assuming a system,

where the electrons move freely but feel an effective potential. Even in this bold assumption,

the non-interacting kinetic term includes the most part of exact T [n] in Eq. (2.5) and can be

calculated acculately.

To strictly formulated total energy, which has unknown part, Exc[n], is expressed by

E[n] = Ts[n] + EH[n] + Vext[n] + Exc[n]. (2.7)

15
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The Ts[n] denotes the kinetic energy under the non-interacting assumption,

Ts[n(r)] =
N∑
i=1

⟨
ψi(r)

∣∣∣∣−1

2
∇2

i

∣∣∣∣ψi(r)

⟩
(2.8)

which is diagonalized by a single particle wave functions, ψi(r). The Ts is a functional of density

and satisfies Pauli principle, so the density is obtained from

n(r) =
N∑
i=1

|ψi(r)|2 . (2.9)

The Vext[n] given in Eq. (2.6) is an external potential that is usually introduced as an attractive

interaction of electron-nucleus. The Hartree component of the electron-electron interaction,

EH[n], is given by

EH[n] =
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (2.10)

The unknown part, Exc[n], corresponds to the exchange-correlation energy to correct to the

interacting system.

As a result, by replacing the external potential Vext[n] in Eq. (2.6) to the potential from

nuclei, vnucl(r), the total energy is finally written as

E[n] = Ts[n] +
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
n(r)vnucl(r)dr+ Exc[n]. (2.11)

From the variational princple under a constraint condition to conserve the electrons as a con-

stant N ,

N =

∫
n(r)dr, (2.12)

the one-electron equation is derived as follow:

[
−1

2
∇2

i + Veff(r)

]
ψi(r) = εiψi(r). (2.13)
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The effective potential, Veff(r), is

Veff(r) = vnucl(r) +

∫
n(r′)

|r− r′|
dr+ µxc(r). (2.14)

The Eq. (2.13) and (2.14) are well-known the Kohn-Sham equations in which the final solution of

energy eigenvalues, εi, and one-particle wave function, ψi(r), are determined by self-consistent

field using the charge density, n(r), of Eq. (2.9). Thus, a problem of finding the ground state

of many-body Schrödinger equation (Eq. (2.1) and (2.2)) turns to solving the Kohn-Sham

one-particle problem.

The exchange-correlation potential is given by

µxc(r) =
δExc[n(r)]

δn(r)
, (2.15)

and the functional Exc[n] should include a non-classical contribution of the kinetic energy and

the Coulomb repulsion, in other words, include quantum many-body effects. In principle, this

is expressed from Eq. (2.11) as

Exc[n] = F [n]− Ts[n]−
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ −

∫
n(r)vnucl(r)dr

′, (2.16)

here the Kohn-Sham total energy functional E[n] is rewritten by universal functional F [n].

However, the exact form of the Exc[n] is still unknown, and approximated approaches are

necessary to perform numerical calculations on practical level.

2.1.4 Approximation for exchange-correlation functional

The most widely used approximation for the µxc is constructed on an assumption that the

charge density n(r) is slowly varying so that the µxc can be estimated locally by homogeneous

electron gas. This is called as local density approximation (LDA) and given by

Exc[n(r)] ≈
∫
εxc(n)n(r)dr, (2.17)
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2.1. Density functional theory

where the εxc is exchange-correlation energy density which is functional of the density at a

position r. The exchange-correlation potential in Eq. (2.14) is then expressed as

µxc(r) =
dεxc(n)n

dn

∣∣∣∣
n=n(r)

=

(
1 + n

δ

δn
ϵxc(n)

)∣∣∣∣
n=n(r)

. (2.18)

Several useful functionals for LDA have been proposed by, e.g., Hedin and Lundqvist [98], von

Barth and Hedin [99], and Gunnarsson and Lundqvist [100].

For a spin polarized system, this functional is rewritten by separating the majority (spin-up)

and minority (spin-down) states as,

Exc[n
↑(r), n↓(r)] =

∫ (
n↑(r) + n↓(r)

)
εxc[n

↑(r), n↓(r)]dr. (2.19)

The energy density εxc[n
↑(r), n↓(r)] is also derived by an assumption locally at each position, r,

by using the homogenous electron gas description with a spin polarization m(= n↑(r)−n↓(r)).

The exchange-correlation potential depends on the spin direction; e.g., for spin-up,

µ↑
xc(r) =

δExc[n↑(r), n↓(r)]

δn↑(r)
(2.20)

= εxc[n↑(r), n↓(r)] + n(r)
δεxc(n↑, n↓)

δn

∣∣∣∣
n↑=n↑(r),n↓=n↓(r)

(2.21)

and same way for the spin-down. Here, the n↑(r) + n↓(r) is simplified by n(r). Then, the

Kohn-Sham equation is rewritten as

[
−1

2
∇2

i + V σ
eff(r)

]
ψi,σ(r) = ϵi,σψi,σ(r), (2.22)

where the effective potential is rewritten using spin index σ as,

V σ
eff(r) = vnucl(r) +

∫
n(r′)

|r− r′|
dr′ + µσ

xc(r), (2.23)

with

nσ(r) =
N∑
i=1

|ψi,σ(r)|2. (2.24)

Generalized gradient approximation (GGA) provides better results than the LDA in pre-
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dictions of bond lengths, binding energies of molecules, and crystal lattice constants, especially

for the system where the electron density vary rapidly. In the GGA, in which spatial gradients

of the charge density, ∇n(r), are further introduced, the definition of the exchange-correlation

energy functional for the spin polarized case is form of

EGGA
xc [n↑(r), n↓(r)] =

∫ (
n↑(r) + n↓(r)

)
εxc[n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|]dr. (2.25)

There are most widely used GGA functionals proposed by Becke (B88) [101] and Perdew et

al. [102]. In this study, a highly parametrized functional reported by Perdew, Burke, and

Ernzerhof (PBE) [103] was employed. Note that although the GGA results are rather correct

compared to the LDA calculations typically, sometimes the GGA overcorrects the LDA, for

example, in ionic crystals. Furthermore, both the LDA and GGA give different predictions

from the experiments particularly for the localized and strongly correlated materials. Thus,

the DFT+U method which is one of approximations beyond the LDA and GGA are necessary.

The DFT+U method is described in section 2.3.
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2.2. Method of calculations

2.2 Method of calculations

2.2.1 Generalized eigenvalue problem

An one-electron wave function ψ(r) is expanded in terms of basis functions ϕ(r). For a

system with translational symmetry with reciprocal lattice vectors, Gj, the ψ(r) is expressed

using Bloch’s theorem as

ψk,b(r) =
∑
j

ckj,bϕkj
(r), (2.26)

where b is a band index and ckj ,b are expansion coefficients. For a simplicity, k+Gj = kj is

used. The number of basis functions ϕkj
(r) is truncated up to finite j, corresponding to that

within the cut-off energy, on practical level. To compute numerically, the set of basis function

{ϕkj ,b(r)} is necessary. The ckj ,b are determined from a secular equation by Rayleigh-Ritz

principle [104],

∑
j

[Hjj′(k)− εk,bSjj′(k)] c
j
k,b = 0. (2.27)

The matrix elements of the Hamiltonian, Hjj′(k), and overlap integral, Sjj′(k), are

Hσ
jj′(k) =

∫
Ω

ϕσ,∗
kj

[
−1

2
∇2 + V σ

eff

]
ϕσ
kj′
d3r, (2.28)

and

Sσ
jj′(k) =

∫
Ω

ϕσ,∗
kj
ϕσ
kj′
d3r. (2.29)

The integrations are carried out over the volume of the unit cell, Ω. Employing a plne wave

basis set offers significant advantages: e.g., orthogonality and diagonality in momentum. The

DFT-based electronic structure methods are classified according to the representation that are

for the density, potential, and KS-orbital. The choice of basis set has possibility to minimize

the computational and human (programming) costs of calculations, while maintaining sufficient

accuracy.

In the DFT, the coefficients ckj ,b and the charge density n(r) are determined separately:
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in this case, the solution of coefficients are repeatedly obtained by solving the Kohn-Sham

equation Eq. (2.13) (or Eq. (2.22) for spin-polarized system) for fixed charge density. When

the basis set is given, the Eq. (2.27) can be solved at each k-point in the irreducible wedge of

the Brillouin zone. Figure 2.1 shows a calculation flowchart, in which this process is known as

self-consistent field (SCF) calculations.

Set initial guess: n0(r), {R}

Determine Fermi energy, EF

Compute total energy, ETotal

Get atomic force, F{R}

Calculate properties

Move atom positions, {R}new

Structural optimization?

Calculate effective potential:

v
e↵

=

Z
n(r)

|r� r0|dr+
Z

n(r)v
ext

dr+
@E

xc

@r

Solve Kohn-Sham equation:
�1

2
r2 + ve↵

�
 i(r) = "i i(r)

Get eigenvalues and charge density:

Mix charge density
ni+1

in

= (1� ↵)ni
in

+ ↵ni
out

F{R} converged?

n(r) converged?

Start

Finish

No

Yes

NoYes

k-point loop

k-point loop

Yes

No

"k,b and n(r) =
EFX

i

| i(r)|2

Figure 2.1: DFT-based calculation flowchart for the self-consistent field, beginning from setting
initial charge density, n0(r) and atomic position {R}. When geometric structure optimization
is considered, the procedure in green color region is considered until atomic force is converged.

21



2.2. Method of calculations

2.2.2 Augmented plane wave (APW) method to linearized APW

method

In calculations based on the DFT, several approaches have been proposed, depending on

choices of potential term (i.e., Hamiltonian) and bases set of wave functions. The choices

may be of crucial importance to solve the Kohn-Sham equations with reducing computational

costs and highly precision. This section presents augmented plane wave method (APW) and

extension to linearized APW (LAPW) method.

In a condensed matter, the potential varies continuously but approximately it may be natu-

ral to divide two regions for a space: muffin-tin (MT) regions closes to a positive ion site (atomic

nucleus) and interstitial region for the other space. This is known as a MT approximation and

schematic of the potential is shown in Fig. 2.2 (a). The crystal potential, VMT(r), is defined in

two regions separately as

VMT(r) =

 V (rα) (rα < S : inside MT sphere)

VMTZ (rα > S : interstitial).
(2.30)

The local position vector rα is given as rα = r − Rα, where r is the position, and Rα is the

center of the MT sphere α with its sphere radius S (see Fig. 2.3).

When the rα is outside the MT sphere, the potential is assumed as a constant value that

corresponds to muffin-tin zero (MTZ). A solution of non-interacting electron gas in the con-

stant potential is mathematically described by simple plane wave, eik·r, which satisfies Bloch’s

condition. Inside the MT spheres, on the other hand, the solution of an eigenstate is expressed

by a product of radial and angular functions as

uℓ(rα;E)Yℓm(r̂), (2.31)

where Yℓm(r̂) is the spherical harmonics function of angular and magnetic quantum numbers ℓ

and m with an radial of the local vector, r̂α. The uℓ(rα;E) is the radial function that is derived

from the radial Schrödinger equation for the spherical potential Vs(r) in Eq. (2.30),

−1

2

d

dr

(
r2
duℓ
dr

)
+

[
ℓ(ℓ+ 1)

r2
+ Vs(r)

]
uℓ = Euℓ. (2.32)
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S

(a)

(b)

Figure 2.2: Schematics of the potential for (a) MT approximation and (b) full potential that
removes the MT shape approximation. The S indicate the size of the MT sphere.

23



2.2. Method of calculations

I

II

r

r↵
R↵

Figure 2.3: Local coordination of rα = r− Rα in the divided regions into (I) inside MT sphere
and into (II) interstitial. Blue square indicate the unit cell for a 3D-bulk system. Dotted
spheres are replaced by vacuum layer for a 2D-film system: slab model.

In 1937, using this approximation, Slater [105] developed an augmented plane wave (APW)

method. The concept of this method is that the plane wave inside the spheres are augmented by

a linear combination of the solution of Eq. (2.31). The one-electron wave function is constructed

using basis function ϕkn(r) with expansion coefficients ckn as

ψk,b(r) =
∑
n

cknϕkn(r). (2.33)

The summation is taken for reciprocal lattice vector Gn, where kn = k+Gn. The resulting

APW wave functions are

ϕAPW
kn

(r) =


1√
Ω
eikn·r (interstitial)∑

α

∞∑
ℓ=0

ℓ∑
m=−ℓ

Aα,n
ℓm uℓ(rα;E)Yℓm(r̂) (inside MT sphere).

(2.34)

The volume of the unit cell is denoted by Ω. It is not guaranteed by the dual representations

in Eq. (2.34) that they are contentious on the sphere boundary. Accordingly, it is necessary to

impose a constraint: defining the coefficient Aα,n
ℓm through the spherical harmonics expansion of

the plane wave.
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A plane wave can be expanded by Bessel function jℓ,

eikn·r = eikn·(rα+Rα) (2.35)

= eikn·R4π
∑
ℓm

iℓY ∗
ℓm(kn)jℓ(knrα)Yℓm(r̂α), (2.36)

where the two summations with respect to the ℓ and m are simplified into
∑

ℓm. Boundary

condition of contentious connection of Eq. (2.34) provides the coefficients Aα,n
ℓm using Bessel

function expansion of Eq. (2.36) as

Aα,n
ℓm =

1√
Ω
eikn·Rα4πiℓY ∗

ℓm(k̂n)
jℓ(knS)

uℓ(S;E)
. (2.37)

The Bessel function is approximately defined as

jℓ(x) ≈
1

x
sin x− ℓx

2
. (2.38)

Finally, the eigenvalues using APW basis functions are obtained from the Eq. (2.27).

If the energy parameter Eℓ were taken as a fixed parameter, this APW method would offer a

simple use of APW as a basis, resulting in a standard secular problem.Unfortunately, however,

this is problematic due to a non-workable scheme. The APW functions are solutions of the

Scrödinger equation inside MT spheres, but this is not achieved unless at the energy Eℓ. They

miss variational freedom to allow for changes in eigenstates when the band energy deviates

from this reference, Eℓ. Accordingly, the Eℓ must be equal to the corresponding band energy,

otherwise the eigenstates at a fixed k-point can not be obtained by a single diagonarization.

This non-linear problem due to the uℓ depending on the band energy reference demands a much

more computationally expensive procedures.

A further difficulty within the APW framework [106, 107] is that it is hard (but not im-

possible) to extend it beyond the warped MT approximation, which would be more real shape

(non-spherical) potential in interstitial rather than constant like MT approximation, but a

spherical potential inside the spheres. This is because, in this case, the optimal variational

choice of the Eℓ is no longer given by setting Eℓ to the band energy. Particularly, in general,

different eigenstates have different orbital characters inside sphere, e.g., dz2 v.s. dx2−y2 , and so

on. Whereas, in the non-spherical potential, these orbitals should experience different effective
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potentials, which differ from the spherical averaged potential being used to determine the radial

function uℓ.

For solving these difficulties, several modifications of the APW method had been proposed

prior to 1975, for example by Bross and co-workers [108,109], Köelling [110], and Marcus [111].

In order to overcome the problem in APW method as well as providing a flexible and accurate

band structure calculation method, Andersen [112, 113] proposed the linearized augmented

plane wave (LAPW) method. This is the method employed in this study. Additional variational

freedom being missed in the APW is included to the basis function inside the MT sphere so

that it is not necessary to set the Eℓ equal to the corresponding band energy. This is done by

introducing the derivative of basis function with respect to the energy. This extension from

APW can be regarded as a ”linearization.”

Because in the APW basis, the radial functions, uℓ, depend on the band energy, it can be

seen as functions of r and ε, thus, the uℓ can be expanded into a Taylor-series around a certain

Eℓ,

uℓ(r : ε) = uℓ(r : Eℓ) + u̇ℓ(r : Eℓ)(ε− Eℓ) + · · ·

= uℓ(r : Eℓ) + u̇ℓ(r : Eℓ)(ε− Eℓ) +O
[
(ε− Eℓ)

2
]
. (2.39)

The u̇ℓ is energy derivative of uℓ, u̇ℓ = ∂uℓ/∂ε, and O [(ε− Eℓ)
2] denotes errors that are

quadratic in the energy difference.

In contrast to the APW basis, the LAPW method has errors of order (ε−Eℓ)
2 in the wave

function, resulting in that of order (ε−Eℓ)
4 in calculated band energies due to the variational

principle. Owing to the high order of this errors, the LAPWs can construct a well-described

basis set over the broad regions, and all valence bands may typically be treated by a single

energy parameter sufficiently.

The basis functions of the LAPWmethod are formed on the same way of the APW functions

but with a different augmentation inside MT sphere region,

ϕLAPW
kn

(r) =


1√
Ω
eikn·r (interstitial)∑

α

∑
ℓm

[Aα,n
ℓm uℓ(rα;Eℓ) + Bα,n

ℓm u̇ℓ(rα;Eℓ)] i
ℓYℓm(r̂) (inside MT sphere),

(2.40)
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where an extra term of Bα,n
ℓm u̇ℓ(r;Eℓ) is introduced in radial part compared to APW. The

energy derivative functions of scalar relativistic radial functions u̇ℓ(r) are calculated from a

radial Schrödinger equation derived by taking the energy derivative of Eq. (2.32),

[
−1

2

d2

dr2
+

1

2

ℓ(ℓ+ 1)

r2
+ V (r)− Eℓ

]
ru̇ℓ(r) = ruℓ(r). (2.41)

In any cases, the radial uℓ(r) is required the normalization inside the MT sphere of darius S,

⟨uℓ|uℓ⟩S =

∫ S

0

u2ℓ(r)r
2dr = 1. (2.42)

Orthogonality of uℓ and u̇ℓ is easily obtained from the derivative of Eq. (2.42) with respect to

the energy,

⟨uℓ|u̇ℓ⟩S = ⟨u̇ℓ|uℓ⟩S = 0. (2.43)

Rewritting the radial part of Eq. (2.40) as

φn
ℓm = [Aα,n

ℓm uℓ(rα;Eℓ) +Bα,n
ℓm u̇ℓ(rα;Eℓ)] i

ℓYℓm(r̂), (2.44)

integrations in the α-th MT sphere, α, are summarized with φ̇n
ℓm as its energy derivative:

⟨φℓm|φℓ′m′⟩S = Eℓδℓℓ′δmm′ , (2.45)

⟨φℓm|φ̇ℓ′m′⟩S = 0, (2.46)

⟨φ̇ℓm|φℓ′m′⟩S = 0, (2.47)

⟨φ̇ℓm|φ̇ℓ′m′⟩S = Nℓδℓℓ′δmm′ . (2.48)

The matrix elements of one-electron Hamiltonian, H, are

⟨φℓm|H|φℓ′m′⟩S = Eℓδℓℓ′δmm′ , (2.49)

⟨φℓm|H|φ̇ℓ′m′⟩S = δℓℓ′δmm′ , (2.50)

⟨φ̇ℓm|H|φℓ′m′⟩S = 0, (2.51)

⟨φ̇ℓm|H|φ̇ℓ′m′⟩S = EℓNℓδℓℓ′δmm′ , (2.52)
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where the ⟨|⟩ indicates a integral of inside sphere and Nℓ is given by

Nℓ =

∫ S

0

[u̇ℓ(r;Eℓ)]
2 r2dr. (2.53)

The coefficients Aα,n
ℓm and Bα,n

ℓm in Eq. (2.40) is determined by requirements that not only

the value of the wave function but also their derivative with respect to the r are continuous on

the sphere boundaries. Using an identity of Eq. (2.36), they are written as

Aα,n
ℓm = 4πS2anℓ Y

∗
ℓm(k̂n), (2.54)

Bα,n
ℓm = 4πS2bnℓ Y

∗
ℓm(k̂n), (2.55)

where

anℓ = knj
′
ℓ(knS)u̇ℓ(S;Eℓ)− jℓ(knS)u̇

′
ℓ(S;Eℓ), (2.56)

bnℓ = knj
′
ℓ(knS)uℓ(S;Eℓ)− jℓ(knS)u

′
ℓ(S;Eℓ). (2.57)

The u′ℓ is derivative function with respect to the r, u′ℓ = ∂uℓ/∂r.

To end, introducing the one-particle wave function, ψk,b(r), in Eq. (2.33) expanded using

the LAPW basis set ϕLAPW
kn

of Eq. (2.40) into one-electron equation

Hψk,b(r) = Eψk,b(r), (2.58)

the secular equation is given in matrix representation,

HC = SCE. (2.59)

The Hermitian matrix elements of the Hamiltonian and overlap integral are

{H}nn′ = ⟨ϕLAPW
kn

|H|ϕLAPW
kn′ ⟩

= (kn · kn′)U (kn − kn′)

+
4πS2

Ω

∑
ℓ

(2ℓ+ 1)Pℓ(kn · kn′) (Eℓsℓ,nn′ + γℓ,nn′) , (2.60)
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{s}nn′ = ⟨ϕLAPW
kn

|ϕLAPW
kn′ ⟩

= U (kn − kn′) +
4πS2

Ω

∑
ℓ

(2ℓ+ 1)Pℓ(kn · kn′)sℓ,nn′ . (2.61)

Here, U(G), sℓ,nn′ , and γℓ,nn′ are defined as

U(G) = δG − 4πS2

Ω

jℓ(GS)

G
, (2.62)

sℓ,nn′ = anℓ a
n′

ℓ + bnℓ b
n′

ℓ Nℓ, (2.63)

γℓ,nn′ = u̇ℓu
′
ℓ{kjj′ℓ,njℓ,n′ + jℓ,nkn′j′ℓ,n} − {u̇ℓu′ℓjℓ,njℓ,n′ + u̇ℓuℓknj

′
ℓ,nkn′j′ℓ,n′}, (2.64)

with the simplification of jℓ,n = jℓ(knS), respectively.

Numerical difficulties, i.e., non-linear secular equation problem, in the APW method are

overcome by constructing the LAPW basis set, in which a set of energy parameters equal to

corresponding band energies is no longer necessary and the eigenstates are computed from

a single diagonarization of Hamiltonian matrix. Because the LAPW basis is introduced a

greater flexibility than tha APW method inside spheres, i.e., freedom of two radial functions

in LAPWs while only one in APWs, it is expected that the LAPW method can be extended to

treat potentials that beyond non-spherical ones. This method is overviewed in next subsection.

2.2.3 Full-potential method and slab calculations

The accuracy of the different shape approximations depends strongly on the system con-

sidered. The approach which divides into two spaces of inside MT spheres and the others,

i.e., interstitial region, is quite good for close-packed metals. However, it may be difficult to

justify its validity for crystals with open structures such as semiconductors and perovskites,

reduced symmetry solids such as surfaces and interfaces, or the localized electrons in the oxides

and molecules. The full-potential LAPW (FLAPW) method that removes the remaining the

MT shape approximation (Fig. 2.2 (b)) is expected to be ideally suited for treating electronic

structures of low symmetry and strongly correlated systems.

The FLAPW method is based on the fact that the potential of interstitial region, Vint(r), is
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given by the expansion of multipole moment, qℓm, as [114]

Vint(r) =
∑
ℓm

4π

2ℓ+ 1
qℓm

Yℓm(r)

rℓ+1
, (2.65)

where

qℓm =

∫
S

Y ∗
ℓm(r)r

ℓn(r)d3r, (2.66)

and on the Dirichlet problem for a sphere.

The potential for the interstitial region depends on only the charge density through the

qℓm in Eq. (2.65), then what we need to get this potential is only the Fourier expansion of the

smooth interstitial charge density which is of convergent very well and the multipole moments

of the charge density in the MT spheres. According to Weinert [115], because of the fact

that the multipole moments do not define a charge density uniquely, true charges in the MT

spheres can be replaced with a pseudo-charge density of the same multipole moments, but

importantly, the Fourier representation of this pseudo-charge requires to converge rapidly. The

pseudo-charge density provides the Coulomb potential everywhere in the interstitial and on

the spheres, then, the potential inside the spheres is determined from solving the Dirichlet

boundary-value problem using the real charge density in this region. This approach is known

as a pseudo-charge method proposed by Weinert in 1981 [115].

In this subsection, the charge density that corresponds to a solution of Poisson’s equation

solved by Weinert’s method and the potential constructed by the obtained charges are sum-

marized. Since this method will be applied to isolated organometallic molecules within the

slab model in Chapter 4, the FLAPW formulations extended to two dimensional (2D) film

calculations [116–118] is focused.

The solution of the charge density for the 2D slab model (see Fig. 2.3) is given by

n(r) =



∑
n

Gmax∑
s

nPW
kn,s

cos(knz)Φs(r) (interstitial)∑
ν

nMT
ν (rα)Kν,α(r̂α)− 2Zαδ(rα) (inside MT sphere)

Gmax∑
s

ns(z)Φs(r) (vacuum).

(2.67)

30



Chapter 2. Theory and computational method

Here, a 2D pane-wave star function used for the interstitial representation has the full 2D

symmetry of the film and is expressed as

Φs(r) =
1

nop

∑
R

eiR̂Gs·(r−tR), (2.68)

where Gs is a 2D star representative reciprocal lattice vector and summed up to the cut-off

Gmax, R̂ are the rotational components of the space group operations, {R|tR}, tR is a non-

primitive 2D translation vector, and nop is the number of the space-group operations. Lattice

harmonics used for the sphere representation have a form of

Kν,α(r̂) =
∑
m

Cα
ν,mYℓνm(r̂), (2.69)

where coefficients Cα
ν,m are determined by requirements of non-invariant of the lattice har-

monics under the rotations corresponding to the site symmetry and being real functions and

orthonormal. The lattice harmonics can be rotated by appropriate rotation matrices,

D(R) = (−1)1PD(α, β, γ), (2.70)

where α, β, γ are the Euler angles and P is the determinant of R (1 or -1). The matrices of the

D(α, β, γ) are given by (see for example Ref. [119])

Dmm′(α, β, γ) = e−imαdmm′(β)e−im′γ, (2.71)

where

dmm′(β) =
∑
t

(−1)t
√

(ℓ+m)!(ℓ−m)!(ℓ+m′)!(ℓ−m′)!

(ℓ+m− t)!(ℓ−m′ + t)!t!(t+m′ −m)!

× cos2ℓ+m−m′−2t

(
β

2

)
sin2ℓ+m′−m

(
β

2

)
(2.72)

with a summation of t that requires non-negative restriction of the factorials in the denominator.

The rotations are applied to the real spherical harmonics and summation is carried out over
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the operators R in the local site symmetry,

C(M)
m =


∑
R

[
DmM(R) + (−1)MDmM̄(R)

]
(M ≥ 0)∑

R

i
[
DmM(R)− (−1)MDmM̄(R)

]
(M < 0).

(2.73)

The C(M) satisfy the Gramm-Schmidt orthonormalization. Finally, the coefficients except for

the zero-norm or linearly dependent values are discarded, then remaining C(M) result in the

Cν,m, where ν is a numbering of the survivors [120].

Since the pseudo-charge method is inspired by the fact that the potential outside the MT

spheres is not affected by the actual shape of the charge density inside spheres but only on

the multipole moments, the violently fluctuated charge inside the MT spheres can be replaced

by smoother charge (full pseudo-charge density) with no changes in the potential for the other

regions. The charge density expressed by a rapidly converged Fourier expansion of this smooth

pseudo charge can be resulted in

n(r) =
∑
G

nG(z)Φs(r), (2.74)

which may be extremely desired form in an aspect of fast convergence. Once the charge density

is obtained from the Poisson’s equation, the potential everywhere outside and on the MT spheres

are correctly given. Then, description of this potential is extended to the lattice harmonics

expansion on the sphere boundaries. This expansion for the potential inside spheres is found

from Green’s function method using the original charge density and obtained potential on the

sphere as a manner of the boundary condition problem. The Coulomb potential for interstitial

region is finally obtained as the expansion of [117,121]

VC(r) =
∑
G

Gmax∑
s

ṼG,s cos(knz)Φs(r) +
∑
s̸=0

ds cosh(Gsz)Φs(r). (2.75)

Finally, the total potential is given. By performing least-squares fits of the Coulomb po-

tential of Eq. (2.75) and exchange-correlation potential, a three dimensional (3D) or 2D star-

function expansion and a lattice harmonics expansion are obtained, respectively. As a result,
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the total potential is represented in an analogous manner to the total charge density as

V (r) =



∑
n

Gmax∑
s

V PW
kn,s

cos(knz)Φs(r) (interstitial)∑
ν

V MT
ν (rα)Kν,α(r̂α)− 2Zαδ(rα) (inside MT sphere)

Gmax∑
s

Vs(z)Φs(r) (vacuum).

(2.76)

2.3 +U method for correlation correction

2.3.1 The formulations for DFT+U method

While the LDA and GGA have achieved great successes for describing the electronic be-

haviors of s and p orbitals, they have found to be insufficient to predict correct electronic and

magnetic structures of localized electrons such as d and f orbitals. Particularly, the 3d and 4f

orbitals do not form large (strong) overlaps with the surrounding ligand orbitals and more local-

ized near the corresponding atoms. The orbital energies of 3d and 4f orbitals may suffer from

self-interaction error in the LDA and GGA calculations. As a result, this leads to problematic

situation, where the LDA and GGA incorrectly predict ground state, i.e., misunderstanding

band gaps, magnetic moments, lattice constants, and so on.

In order to improve this issue, the DFT+U methodology has been first proposed [36] whose

basis idea is in the Hubbard model [29–34]. In the Hubbard model, the electron-electron

repulsion on a certain atom (site) is quantified by so-called Hubbard on-site Coulomb parameter.

Further, Anderson model [66] has been proposed to study magnetic properties of impurity in

non-magnetic system based on the Hubbard model. Inspired by these successes, Anisimov

et al. [36] suggested an additional energy correction term, which is orbital dependent, to the

standard DFT energy functional. This originates the DFT+U functionals, in which a screened

Hartree-Fock type electron-electron interaction is introduced for localized 3d and 4f electrons.

So far, in solid state electronic structure community, several implementations for the DFT+U

method have been presented, for example, in linear muffin-tin orbitals [36], projector augmented-

wave [122], pseudopotential plane-wave [123], full-potential local orbital [124], and linear-

combination of pseudo-atomic-orbital [125] methods. In this study, the formulations imple-

mented into the FLAPW method [126] presented by Shick et al. was employed.
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2.3. +U method for correlation correction

Total energy functional of the DFT+U in variational form is taken as [67]

ETotal[n(r), n̂] = EDFT[n(r)] + Eee(n̂)− Edc(n̂). (2.77)

The first term is the usual total energy in the DFT, i.e., LDA or GGA, that is a function of

the total electron spin densities with spin index, σ (σ =↑ or ↓), as given in Eq. (2.24). Eee(n̂)

is an electron-electron interaction energy, and Edc(n̂) is ”double-counting” term that subtracts

the electron-electron interaction energy already included in the mean-field approximation.

According to the multiband Hubbard model for d (f) electrons, the Eee(n̂) is formed by

Eee(n̂) =
1

2

∑
m1,m2,m3,m4

∑
σ,σ′

nσ
m1m2

[⟨m1,m3|Vee|m2,m4⟩

−⟨m1,m3|Vee|m2,m4⟩δσσ′ ]nσ′

m3m4
, (2.78)

where the Vee is an effective on-site Coulomb interaction, and ⟨ | ⟩ takes over an angular

component. The nσ
m1m2

is density matrix for the d (f) orbital at an on-site. Matrix elements

of the electron-electron interaction in Eq. (2.78) is expressed in terms of complex spherical

harmonics,

⟨m1,m3|Vee|m2,m4⟩ =
∑
k

ak(m1,m2,m3,m4)F
(k), (2.79)

where k of 0 ≥ k ≥ 2ℓ, and

ak(m1,m2,m3,m4) =
4π

2k + 1

k∑
q=−k

⟨Yℓm1 |Ykq|Yℓm2⟩⟨Yℓm3 |Y ∗
kq|Yℓm4⟩. (2.80)

One can use the Gaunt coefficients

⟨Yℓm1 |Ykq|Yℓm2⟩ = (−1)m
[
(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

]1/2
×

 ℓ ℓ′ ℓ′′

0 0 0

 ℓ ℓ′ ℓ′′

−m m′ m′′

 . (2.81)
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The Slater integral F (k) [127–129] is given by

F (k) =

∫ ∞

0

r21r
2
2R

2
nℓ(r1)R

2
nℓ(r2)

rk<
rk+1
>

dr1dr2, (2.82)

where r> and r< indicate max{r1, r2} and min{r1, r2}, respectively. Here, Rnℓ(r) simplifies

the radial part of the LAPW basis in Eq. (2.40). Note that, in the Eee(n̂) of Eq. (2.78), if

m1 = m2 = m3 = m4 and σ = σ′ are satisfied, the self-interaction in the first term is exactly

canceled by the exchange interaction in the second term, which is one of the important natures

of the DFT+U method.

In the atomic limit, the double-counting energy term is expressed as

Edc(n̂) =
U

2
n(n− 1)− J

2

∑
σ

nσ(nσ − 1), (2.83)

where on-site Coulomb interaction U and exchange interaction J parameters may be given by

U =
1

(2ℓ+ 1)2

∑
m1,m3

⟨m1,m3|Vee|m1,m3⟩, (2.84)

J = U − 1

2ℓ(2ℓ+ 1)

∑
m1,m3

[⟨m1,m3|Vee|m1,m3⟩ − ⟨m1,m3|Vee|m1,m3⟩] . (2.85)

For the d electrons, only F (0), F (2), and F (4) of Slater integrals are needed to identify the

effective on-site U and J in Hartree-Fock-like atomic limit: simply one obtains the U and J

through the relations of

U = F (0), (2.86)

J =
F (2) + F (4)

14
, (2.87)

F (2)

F (4)
≈ 0.625. (2.88)

In Eq. (2.83), the nσ = Tr(n̂σ) = Tr(nσ
mm′), and n =

∑
σ n

σ is a total d (f) on-site occupation

numbers. In this study, a simplified scheme corresponding to a limit of J = 0 is adopted, or

alternatively, the J effects are mimicked redefining the on-site parameters as effective on-site

Coulomb interaction, Ueff = U − J [130].
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2.3. +U method for correlation correction

2.3.2 Implementation to (F)LAPW method

Using the wave function of Eq. (2.33), with the LAPW basis set given in Eq. (2.40), the

spin density is

nσ(r) =
∑
k,b

fk,b
∣∣ϕσ

k,b

∣∣2 , (2.89)

where fk,b is the occupations of the state. Matrix elements of density matrix is taken from the

projection of the wave function onto Yℓm subspace,

nσ
ℓm,ℓ′m′ =

∑
k,b

fk,b
∑

Gn′ ,Gn

cσ,∗Gn,b
cσGn′ ,b

×
∫

[a
∗,Gn′
ℓ′m uσℓ′(ri) + b

∗,Gn′
ℓ′m u̇σℓ′(ri)]

×[aGn
ℓm u

σ
ℓ (ri) + bGn

ℓm u̇
σ
ℓ (ri)]r

2dr. (2.90)

Since this expression indicate that the density matrix is not to be diagonal in ℓ, keeping only

ℓ′ = ℓ becomes the density matrix as

nσ
mm′ =

∑
k,b

fk,b
∑

Gn′ ,Gn

cσ,∗Gn′ ,bc
σ
Gn,b

[
aℓm,∗
Gn′ a

ℓm
Gn

+ bℓm,∗
Gn′ b

ℓm
Gn

⟨u̇ℓ|u̇ℓ⟩,
]

(2.91)

where radial part is integrated. Finally, Eq. (2.91) can be rewritten as

nσ
mm′ =

∑
k,b

fk,b

[
⟨uσℓ Yℓm|ϕσ

k,b⟩⟨ϕσ
k,b|uσℓ Yℓm′⟩+ 1

⟨u̇ℓ|u̇ℓ⟩
⟨u̇σℓ Yℓm|ϕσ

k,b⟩⟨ϕσ
k,b|u̇σℓ Yℓm′⟩

]
. (2.92)

From the minimization of the defined total energy (Eq. 2.77) with respect to ψ∗,σ
i using

Eq. (2.92) and orthogonality of wave functions [131],

δE

δψ∗,σ
i

−
δ
∑
ejfj⟨ϕσ

j |ϕσ
j ⟩

δψ∗,σ
i

= 0, (2.93)

the Kohn-Sham equation for the DFT+U method is formed as

[
−1

2
∇2 + Veff

]
ψσ
i (r) +

∑
mm′

V σ
mm′

δnσ
mm′

δψ∗,σ
i

= eσi ψ
σ
i (r). (2.94)

36



Chapter 2. Theory and computational method

The effective potential Veff is the LDA- or GGA-based one-particle potential, and V σ
mm′ which

acts only on Yℓm subspace of the d (f) electron is

V σ
mm′ =

∑
p,q

∑
σ′

(⟨m, p|Vee|m′, q⟩ − ⟨m, p|Vee|q,m′⟩δσσ′)nσ′

pq

−δmm′U

(
n− 1

2

)
+ δmm′J

(
nσ − 1

2

)
. (2.95)

Further consideration with Eq. (2.92) provides

δnσ
mm′

δψ∗,σ
i

= ⟨uσℓ Yℓm′|ψσ
i ⟩uσℓ Yℓm′ +

1

⟨u̇ℓ|u̇ℓ⟩
⟨u̇σℓ Yℓm|ψσ

i ⟩u̇σℓ Yℓm′ (2.96)

=

[
|uσℓ Yℓm′⟩⟨uσℓ Yℓm|+

1

⟨u̇ℓ|u̇ℓ⟩
|u̇σℓ Yℓm′⟩⟨u̇σℓ Yℓm|

]
ψσ
i (2.97)

where the P̂ σ
mm′ is regarded as a projection operator onto mm′ subspace.

2.3.3 Second variation procedure

The Kohn-Sham equation in Eq. (2.94) can be solved efficiently by adapting a second

variation approach [126]. First of all, one may introduce an auxiliary orthogonal basis set

{φk,b} which satisfies the standard DFT-based band Hamiltonian within the LDA/GGA,

[
−1

2
∇2 + V σ

eff

]
φσ
k,b(r) = eσk,bφ

σ
k,b(r). (2.98)

Note that the function φk seems to be DFT wave functions, but the charge density made by

them never goes into V σ
eff , thus, this function differs from the DFT eigenstates. In the second

variation method, a solution of the DFT+U at i-th state, ψi
k, can be expanded by auxiliary

functions, φk, as

|ψi
k⟩ =

∑
j

dij|φk,j⟩. (2.99)
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In term with the basis of Eq. (2.99), the Kohn-Sham equation is transformed from Eq. (2.94)

to the following:

∑
j

εjd
i
j|φj⟩+

∑
j

dij
∑
mm′

[V σ
mm′⟨uσℓ Yℓm|φj⟩u̇σℓ (r)Yℓm′(r)

+⟨u̇σℓ Yℓm|φj⟩u̇σℓ (r)Yℓm′(r)/⟨u̇ℓ|u̇ℓ⟩] = ei
∑
j

dij|φj⟩, (2.100)

Here, the second-variation Hamiltonian that satisfies a secular equation

∑
j

(HDFT+U)jj′ d
i
j′ = eid

i
j′ , (2.101)

is of form as

(HDFT+U)
σ
jj′ = εjδj′j +

∑
mm′

[⟨ψj′|uσℓ Yℓm′⟩V σ
mm′⟨uσℓ Yℓm′|ψj′⟩

+⟨ψj′ |u̇σℓ Yℓm′⟩V σ
mm′⟨u̇σℓ Yℓm′|ψj′⟩/⟨u̇σℓ |u̇σℓ ⟩]. (2.102)

The orthogonality relation ⟨ψi|ψj⟩ = δij is used.

A flowchart for solving the DFT+U-based Kohn-Sham equations by second variation pro-

cedure is shown in Fig. 2.4. The self-consistent solution of Eq. (2.94) is calculated as follows.

(i) To get an orthogonal and auxiliary basis set, the Eq. (2.98) for a given DFT effective

potential is solved.

(ii) By employing this basis set, one solves the Eq. (2.100) (and Eq. (2.101)) where the

DFT+U Hamiltonian is expressed by Eq. (2.102) to obtain the variational coefficients dij.

This dij is needed in Eq. (2.99) to constructs the solution of DFT+U.

(iii) The new DFT+U wave function is projected back to the LAPW basis set to calculate the

charge and spin densities up to achieving a self-consistent solution at the end.
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2.4 Linear response calculations using constraint density

functional theory

As it was explained in Chapter 1, several methods have been proposed to determine the

(effective) on-site Coulomb (and exchange) interaction [36, 86–88, 90, 91, 93, 132–134]. In this

thesis, a linear response approach, presented by Cociccioni and de Gironcoli [90, 135], is em-

ployed. This approach is minimally extended from the limited LDA scheme and accomplishes

that the derived parameter excludes energy contributions of one-electron kinetic term. In this

method, which was inspired originally by the linear response scheme studied by Pikett and

coworkers [86], the d-electron occupations are constrained to vary around the unconstrained

LDA- or GGA-result to calculate the Ueff value.

Firstly, the mean-field total energy as a function of the total d (f)-orbital occupancy at

localized site α, E[{nα
d}], is considered. Then, the second derivative of the total energy with re-

spect to the d-occupancy, ∂E2[{nα
d}]/∂ (nα

d )
2, is numerically calculated. However, this quantity

does not correspond to the Ueff because it includes a non-related one-electron kinetic contribu-

tion. [90,135,136] The kinetic energy contribution is not originated from the electron-electron in-

teraction, and it also includes a quadratic behavior of non perturbed sites, i.e., re-hybridization

of atomic orbitals and/or possible itinerant valence electrons. Strictly speaking, it is correctly

taken into account in LDA (GGA) and not a quantity to be corrected by the +U method.

Thus, including it into the on-site Ueff leads to a double counting error.

Accordingly, in this approach, the effective on-site Coulomb interaction Ueff is calculated

from the difference between the second derivatives of the total energies as

Ueff =
∂2E[{nα

d}]
∂ (nα

d )
2 − ∂2EKS[{nα

d}]
∂ (nα

d )
2 , (2.103)

where E[{nα
d}] and EKS[{nα

d}] are the self-consistent-field (SCF) and non-interacting (non-self-

consistent) Kohn-Sham (KS) total energiges. The second term subtracts the contributions

for the non-interacting Kohn-Sham problem from the SCF result because the derivative of

E[{nα
d}] includes a part that does not related to electron-electron interaction but attributing

tod a kinetic contribution. [90, 135,136]

The evaluation of the Ueff for the d electron is obtained in constraint DFT (CDFT) ap-
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Figure 2.4: Flowchart of the second variation method for DFT+U calculations.
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proach [74,137–139]. By adding a general constraint

nα
mm = Nα

mm, (2.104)

a total energy functional for the CDFT is formed as

ECDFT[n(r), n
α
mm] = EDFT[n(r)] +

∑
m

µα
mm (nα

mm −Nα
mm) , (2.105)

where a constraint field (Lagrange multiplier), µα
mm, that can be denoted as a field to constrain

the density matrix is introduced. The m is magnetic quantum number of −2 ∼ 2 for the d

orbital. The EDFT[n(r)] is the total energy functional in the DFT, nα
mm is a standard density

matrix of the d orbitals of an atom α, and Nα
mm is a desired occupation number that should be

constrained.

In order to derive the Ueff , the DFT total energy as a function of the d-orbital occupation

numbers at site α, E[{nα
d}] is constructed. Instead of calculating the E[{nα

d}], in the present

study, we calculate directly the energy difference with respect to a reference state, i.e., ground

state. By taking an advantage from Hellmann-Feynman theorem [140, 141], derivation of the

total energy E[{nα
d}] is obtained as

∂E[{nα
d}]

∂nα
d

= −µ, (2.106)

and, in the same way, the KS term is

∂EKS[{nα
d}]

∂nα
d

= −µKS. (2.107)

Further derivative gives

∂2E[{nα
d}]

∂nα
d

= − ∂µ

∂nα
d

, (2.108)

∂2EKS[{nα
d}]

∂nα
d

= −∂µ
KS

∂nα
d

. (2.109)
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In practice, the interaction and non-interaction density matrices,

χβα =
∂nβ

∂µα

, (2.110)

χKS
βα =

∂nβ

∂µKS
α

(2.111)

are introduced, where nβ is the occupation number at site β when constraint µα is applied at

site α. The derivatives are numerically computed; χKS, which does not include screening, is

obtained from the first iteration in the self-consistent calculation loop starting from the DFT

self-consistent charge density. Then the Ueff in Eq. (2.103) is estimated as

Uα
eff = −∂µα

∂nα
d

−
(
−∂µ

KS
α

∂nα
d

)
=

(
χ−1
KS − χ−1

)
αα
. (2.112)

The Uα
eff value at site α should be calculated by considering a large enough number of

neighbor atoms from the corresponding perturbed site to exclude artifacts arising from peri-

odic boundary condition and implicity in the calculations of the inverse of response function

matrices. [90, 135, 136] Practically, super-cells with increasing size, i.e., repeating the linear

response calculations for larger and lager unit- or super-cells, are introduced up to the Ueff

value reasonably converged. This means that, as shown in Fig. 2.5, the charge re-distribution

dominating the screening from more and more distant non-perturbed neighbors can be treated.

Further, it is useful to include any other overall charge behaviors, for example, that of precise

s and p states of the strongly correlated Hubbard site and the possible itinerant electrons in the

interstitial region, as well as that of the localized-orbital occupation numbers of non-perturbed

sites. [136] This can be easily done by introducing one more column and one more row in the

linear response matrices. In this context, the size of matrix of both χ and χKS are built with

(M +1)× (M +1) matrix, but not M ×M , in which M denotes the number of Hubbard atom

site under consideration in the employed unit- or super-cell. A schematic of this is shown in

Fig. 2.6. These additional degrees of freedom are determined by a requirement that a charge

neutrality preserves in whole the space: thus,
∑

α(∂nβ/∂µα) =
∑

β(∂nβ/∂µα) = 0. Note that,

from the viewpoint of mathematics, a simple strategy is needed to avoid ill-defined inversion

matrices of (M + 1) × (M + 1)-sized χ and χKS. Briefly, a same amount of γ is added to all

matrix elements to shift the null eigenvalue (see Ref. [136] for more detail).
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Chapter 2. Theory and computational method

Now, the variation principle is applied to the total energy in Eq. (2.105). To minimize the

ECDFT[n(r), n
α
mm] under the orthonormality ⟨ψi|ψj⟩ = δij, according to the general procedure,

another Lagrange multiplier, εi, is used to built a function

Ẽ = ECDFT[n(r), n
α
mm]−

N∑
i

εi (⟨ψi|ψj⟩ − δij) (2.113)

= EDFT[n(r)] +
∑
m

µα
mm(n

α
mm −Nα

mm)−
N∑
i

εi (⟨ψi|ψj⟩ − δij) . (2.114)

Then, eigencondition δẼ/δψ∗
i = 0 gives

δẼ

δψ∗
i

=
δEDFT[n]

δψ∗
i

+
δ

δψ∗
i

∑
m

µα
mm(n

α
mm −Nα

mm)−
δ

δψ∗
i

N∑
i

εi (⟨ψi|ψj⟩ − δij) (2.115)

= HDFTψi +
∑
m

µα
mm

δnα
mm

δψ∗
i

− εiψi = 0 (2.116)

Thus, the Kohn-Sham equations can be written in the form[
HDFT +

∑
m

µα
mmP̂

α
mm

]
ψi = εiψi, (2.117)

where the projection operator onto the mm subspace in the LAPW basis is given, in the same

way as Eq. (2.97), by

P̂α
mm = |uαℓ Yℓm⟩⟨uαℓ Yℓm|+

1

⟨u̇ℓ|u̇ℓ⟩
|u̇αℓ Yℓm⟩⟨u̇αℓ Yℓm|, (2.118)

and the density matrix nα
mm is

nα
mm =

∑
k,b

fk,b⟨ψk,b|P̂α
mm|ψk,b⟩. (2.119)

In practice, we specify a set of constrained fields µα
n along the direction of the eigenvectors of

nα
mm. Then, the µ

α
mms, which are rotated back from the µα

ns are introduced in Eq. (2.117), and

the corresponding nα
mms are determined self-consistently. The total energy is calculated using

Eq. (2.105) with Nα
mm = nα

mm. Figure 2.7 finally summarizes procedures to compute the Ueff in

the linear response calculations.
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2.4. Linear response calculations using constraint density functional theory

1×1×1 unit-cell 2×2×2 supercell 3×3×3 supercell

(a)

(b)

On-site

Figure 2.5: (a) On-site atom in periodic system. Blue circle shows an on-site atom, where d
electrons are localized, and gray circles show itinerant electron sites which is preferred by non-
metal atoms possessing s and p electrons. (b) Schematics of the supercells which eliminates
periodic boundary condition effects from on-site atom used in the calculations of the Ueff . Red
squares are considered unit cells in 1 × 1 × 1 (left panel), 2 × 2 × 2 (center), and 3 × 3 × 3
(right), respectively.
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Added row

Added column

Figure 2.6: Schematic of matrix elements for response matrices, χ(KS). The (M +1)× (M +1)
matrix is constructed by adding one more column (red square) and one more row (blue) for
efficient calculations considering effects from the non-Hubbard atom sites.
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Increase cell size
Determine Ueff at site α:

Calculate self-consistent charge density in DFT: n(r)

Ueff converged?

Yes

Get non-interacting response matrix:Get interacting response matrix:

No

Start

Finish

n(r)

��↵ =
@n�

@µ↵
�KS
�↵ =

@n�

@µ↵

U↵
e↵ =

�
��1
KS � ��1

�
↵↵

Figure 2.7: Flowchart for the linear response calculations of the Ueff . At blue colored step,
cDFT approach is adopted to get the response functions χ by applying constraint field to the
d-level occupancy.
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Chapter 2. Theory and computational method

2.5 Kohn-Sham-Dirac equation and scalar relativistic ap-

proximation

If the electrons are close to the nuclei and their motions are dominated by large kinetic

contributions, the relativistic effect should not be neglected. Basically, the electrons inside

MT spheres should be treated relativistically, while those in interstitial (and vacuum) regions

may be non-relativistically. The Kohn-Sham equation, in which the relativistic effects are not

considered, is extended to a single particle Dirac-equation, i.e., Kohn-Sham-Dirac equation, as

{cα · p+ (β − 1)mc2 + Veff(r)}ψi = εψi. (2.120)

The vector operator α is 4 × 4 matrix whose components are written using the Pauli-spin

matrices, σr, as

α =

 0 σr

σr 0

 , (2.121)

where the standard Pauli matrices’ representations are

σx =

 0 1

1 0

 , σy =

 0 i

−i 0

 , σz =

 1 0

0 −1

 . (2.122)

The p is the momentum operator, p = −ih̄∇, and the β matrix is represented with (n × n)

unit matrix In as

β =

I2 0

0 −I2

 . (2.123)

Quantities of m and c are electron mass and the speed of light, respectively. In the relativistic

Dirac equations, the quantum numbers of ℓ,m, and s are no longer the ”good” quantum

numbers due to the effect of spin-orbit coupling (SOC), instead, these values are replaced by

the quantum numbers of κ and µ. The κ and µ are respective eigenvalues of the operator of K,

K = β (σ · ℓ) , (2.124)
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2.5. Kohn-Sham-Dirac equation and scalar relativistic approximation

and that of total angular momentum j (and jz): j is sum of ℓ and s,

j = ℓ+ s. (2.125)

In the κµ space, eigenstates inside the MT spheres, ψi, in a central-force potential in Eq. (2.120)

are four component wave functions and of the form of

ψi(r) = ψκ,µ(r) =

 gκ(r)χκµ

−ifκ(r)σrχκµ

 , (2.126)

where gκ(r) and fκ(r) are called as large and small components, respectively. Functions of spin

angular, χκµ, are eigenfunctions of j, jz, K, and S2 with eigenvalues of j, µ, κ, and s = 1/2,

respectively, and can be expanded into a sum of product of spherical harmonics and Pauli

spinors with the Clebsh-Gordan coefficients as their expansion coefficients. The large and

small components satisfy the following set of radial equations:

f ′
κ(r) =

1

c
(Veff − E)gκ(r) +

(
κ− 1

r

)
fκ(r), (2.127)

g′κ(r) =

(
κ+ 1

r

)
gκ(r) + 2Mcfκ(r), (2.128)

with the relativistic mass M = m+(E−Veff(r))/(2c
2). In these equations, the prime indicates

the differentiation with respect to radial r, i.e., f ′
κ = ∂fκ/∂r, g

′
κ = ∂gκ/∂r, and the energy E

is defined as E = mc2. Solving Eq. (2.128) for fκ(r) and substituting it into Eq. (2.127), we

obtain

− 1

2M

[
g′′κ +

2

r
g′κ −

ℓ(ℓ+ 1)

r2
gκ

]
− V ′gκ

4M2c2
− κ+ 1

r

V ′gκ
4M2c2

= Egκ. (2.129)

Second term including (dV/dr)(dg/dr) in left-hand side is known as the Darwin term, and third

term is the SOC term, which depends on the sign of κ number: the κ is given as

κ =

 ℓ for j = ℓ+ 1/2

−(ℓ+ 1) for j = ℓ− 1/2.
(2.130)

When these two terms can be ignored, the Eq. (2.129) seems to be a radial Schrödinger equa-

tion. One may get the gκ from the Eq. (2.129) keeping the spin quantum number as a good
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Chapter 2. Theory and computational method

quantum number, but typically it is difficult to solve with highly precision. Moreover, the small

component fκ may be of importance in calculations for core-state charge density as well. In

1977, Kölling and Harmon overcame this difficulty so as to introduce relativistic effects into

practical band structure calculations [142].

In scalar-relativistic approximation (SRA) that was established by Kölling and Harmon [142],

the effect of the SOC can be treated as a perturbation after the relativistic spin-polarized based

bands and wave functions are obtained. Thus, this approach can be regarded as reduction of

the Dirac equation, in which the SOC is initially omitted while other relativistic effects are

included, the second variation procedure. The advantage in this approach is that the spin

quantum number can be still kept as a ”good” quantum number.

To derive the SRA solution, a new function ϕκ(r) is defined

ϕκ(r) =
1

2Mc
g′κ, (2.131)

then the fκ(r) is given as

fκ(r) = ϕκ +
κ+ 1

2Mcr
gκ. (2.132)

Using Eq. (2.131) and (2.132), we can rewrite Eq. (2.127) and (2.128)

g′κ = 2Mcϕκ, (2.133)

ϕ′
κ = −2

r
ϕκ +

[
ℓ(ℓ+ 1)

2Mcr2
+

1

c
(V − E) +

κ+ 1

2Mc2r
M ′

]
gκ, (2.134)

where an identity κ(κ + 1) = ℓ(ℓ + 1) is used. The term (κ + 1)M ′/2Mc2r is identified as the

SOC which is dropped in the RSA because it is the only one term being coupling with both

spin-up and -down. Note that the M ′ denotes M ′ = ∂M/∂r.

Now, the wave functions of Eq. (2.126) can be rewritten as

ψi(r) = ψκ,µ(r) ≈

 gℓχκµ

−ifℓ
(
ϕℓ +

κ+1
2Mcr

)
σrχκµ

 , (2.135)

where the Eq. (2.132) is used to replace the small component radial function fℓ. The κ numbers

are combined with appropriate Clebsh-Gordan coefficients to get a familiar non-relativistic
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2.5. Kohn-Sham-Dirac equation and scalar relativistic approximation

quantum-number-based wave function

ψℓms(r) =

 gℓYℓmχs

i
2Mc

σr
(
−g′ℓ + 1

r
gℓσ · L

)
Yℓmχs

 , (2.136)

with the usual spin-up and down spinors, χs. What we can see from obtained wave function

of Eq. (2.136) is that the large component is formed by pure spin function while the small

component has some mixture of spins. Because the gℓ includes most of the relativistic cor-

rections, neglecting the small component may give a simple solution, however, particularly in

the atomic calculation, the small component contribution is necessary for well-description of

the core charge density. In this context, these calculations are approached using the second

variation method.

Now new functions defined by

Pℓ = rgℓ, (2.137)

Qℓ = rcϕℓ (2.138)

can rewrite Eq. (2.133) and (2.134) as

P ′
ℓ = 2McQℓ +

1

r
Pℓ (2.139)

Q′
ℓ = −1

r
Qℓ +

[
ℓ(ℓ+ 1)

2Mr2

]
Pℓ. (2.140)

By this transformation, the wave function reformulated from Eq. (2.136) to

ψℓms(r) =
1

r

 PℓYℓmχs

−ir · σr
(
−Qℓ +

Pℓ

2Mcr
σ · L

)
Yℓmχs

 (2.141)

is determined by following the procedures of the second variation method [142].

The Hamiltonian including the relativistic SOC contribution whose eigenfunctions are de-

termined by the second variation technique is

H = H0 +HSO, (2.142)
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Chapter 2. Theory and computational method

where H0 is standard Hamiltonian within the non-relativistic LDA or GGA and HSO is the

SOC term defined by

HSO =
∑
i

ξ(ri)σ · L, (2.143)

ξ(ri) =
h̄

(2Mc)2
1

ri

dV (ri)

dri
. (2.144)

Figure 2.9 shows a calculation flowchart of the second variation method for treating the

SOC, which may follow similar procedure to the one described in the DFT+U section (see

section 2.4). Before entering the second variation-based SCF loop, spin quantization axis can

be rotated by angles of θ and ϕ by Euler angle (see Fig. 2.8) using 2× 2 rotation matrix U ,

U = U(θ, ϕ) =

 cos θ
2

sin θ
2

− sin θ
2

cos θ
2

 ei
ϕ
2 0

0 ei
ϕ
2

 . (2.145)

The term σ · L in Eq. (2.143) can be expressed as

σ · L = σ(θ, ϕ) · L (2.146)

= U(θ, ϕ)σ · LU †(θ, ϕ). (2.147)

The relativistic Kohn-Sham-Dirac equations for single-particle electron states can be solved

by following steps:

(i) Scalar-relativistic one-electron wave functions, φRSA, are determined from conventional

Kohn-Sham equation,

HDFTφ
RSA = εφRSA, (2.148)

where the SOC effect is not considered.

(ii) By assuming second variation wave function, ψ, with variation coefficients, {dj},

ψ =
∑
j

djφ
RSA, (2.149)
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2.5. Kohn-Sham-Dirac equation and scalar relativistic approximation

the matrix elements of full-relativistic Hamiltonian including HSO are calculated:

{H}j′j = ε⟨φRSA
j′ |φRSA

j ⟩+ ⟨φRSA
j′ |HSO|φRSA

j ⟩ (2.150)

= εδj′j + ⟨φRSA
j′ |HSO|φRSA

j ⟩. (2.151)

The latter term is derived as

⟨φRSA
j′ |HSO|φRSA

j ⟩ =
∑
ℓ′ℓ

∑
m′m

iℓ−ℓ′⟨Y σ′

ℓm′χσ′|ℓ · s|Y σ
ℓmχ

σ⟩Dσ′σ
ℓ,m′m,j′j, (2.152)

where

Dσ′σ
ℓ,m′m,j′j = δℓ′ℓ

[(
Aσ′

ℓ′m′,j′

)∗
Aσ

ℓm,j

∫
ξ(r)uσ

′

ℓ′ u
σ
ℓ r

2dr

+
(
Aσ′

ℓ′m′,j′

)∗
Bσ

ℓm,j

∫
ξ(r)uσ

′

ℓ′ u̇
σ
ℓ r

2dr

+
(
Bσ′

ℓ′m′,j′

)∗
Aσ

ℓm,j

∫
ξ(r)u̇σ

′

ℓ′ u
σ
ℓ r

2dr

+
(
Bσ′

ℓ′m′,j′

)∗
Bσ

ℓm,j

∫
ξ(r)u̇σ

′

ℓ′ u̇
σ
ℓ r

2dr

]
(2.153)

.

(iii) Relativistic Hamiltonian is diagonalized to get the eigenvalues e from

∑
j

{H}j′jdj = edj, (2.154)

and the eigenfunctions ψ is again projected back to Eq. (2.149), and continue these cycles

(i) ∼ (iii) to achieve a self-consistent solution.
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(a) Magnetic easy axis (b) Spin space rotation

Figure 2.8: (a) Schematic of spin quantization axis where magnetic moment lies along (θ, ϕ)-
direction in polar coordination. (b) Cartesian coordination can be rotated by angles of θ and
ϕ using rotation matrix U in Eq. (2.145) from XY Z space to X ′Y ′Z ′ space.
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Figure 2.9: Flowchart of the second variation method for treating the SOC within the scalar
relativistic approximation.
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Chapter 3

Application to transition-metal

monoxide, TMO

3.1 Introduction

For the transition-metal monoxides, TMOs, of Mott-type insulators, the DFT calculations

within the LDA or GGA arise a problematic issue, for example, unphysical metallic feature in

FeO and CoO, and underestimating band gaps even in MnO and NiO showing insulators. It

is thus suggested that a proper treatment of correlation effects by the DFT+U that go beyond

the LDA and GGA functionals is needed to demonstrate experimentally observed insulating

properties. In the last decades, a number of researchers have attempted to derive the Ueff for

the DFT+U theoretically, but widely scattered values were reported even for the same ionic

state as summarized in Table 1.3. However, since the optimal Ueff values can extremely depend

on the computational details such as potentials, basis sets, and projection operators, comparing

the Ueff in absolute values may not be of significance.

In this chapter, a relationship between the Ueff and basis set have been focused to study.

In this context, liner response based Ueff calculations were performed for different sizes of

MT spheres of the TM ions, RMT . This systematical investigation is inspired by the fact

that the implemented LAPW basis set is defined by the size of the MT sphere radius: the

coefficients Aℓm and Bℓm in the radial part of the LAPW basis in Eq. (2.40) are determined

by boundary conditions of the wave function on the MT sphere of radius RMT . Varying the
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3.2. Calculation model

RMT may translate a change in the basis set, and more strictly, that of density matrix. Our

results find that the Ueff values depend strongly on the RMT size in all systems by more than

2 ∼ 3 eV. However, despite this large variation, essentially identical valence band structures

are obtained, and we find an approximate scaling of Ueff with regard to RMT . Thus, although

simple transferability of the Ueff value among different calculations methods is not allowed, we

propose guidelines for estimating the optimal Ueff .

3.2 Calculation model

A model of the rock-salt structure with the rhombohedral lattice vectors, as shown in

Fig. 3.1, is employed. The lattice constants are fixed to match to experimentally observed

values, 4.435, 4.334, 4.261, and 4.195 Å for MnO, FeO, CoO, and NiO, respectively [143–146],

and an antiferromagnetic spin alignment along the [111] direction, called as the AFM II, is

assumed. All calculations were carried out by all-electron FLAPWmethod and the GGA is used

for exchange-correlation term. The LAPW basis functions with cutoff of |k+G| ≤ 3.9 a.u.−1

are used, and angular momentum expansion inside MT sphere is truncated to ℓ = 8 (TM) and 6

(O) for the wave functions, charge and spin densities, and potentials. For the oxygen atom, the

MT radius sets 1.4 aB, while that of TM atoms was varied from 2.0 aB up to touching spheres

of nearest neighbor atom, i.e., 2.2, 2.4, 2.5, 2.6, and 2.7 aB. The k-point mesh of 8× 8× 8 in

the first Brillouin zone is used.

56



Chapter 3. Application to transition-metal monoxide, TMO

TMO

Figure 3.1: Geometric structure of a transition-metal monoxide with an anti-ferromagnetic
alignment along [111] direction, AFM II type. Large (blue and green) and small (gray) circles
indicate transition metal (TM=Mn, Fe, Co, and Ni), where the arrows at the TM atoms
represent magnetic moment directions. Dashed (red) arrows represent the unit vector of a
rhombohedral unit cell.
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3.3. Calculation of effective on-site Coulomb interactions

3.3 Calculation of effective on-site Coulomb interactions

We start by considering the effect of the Ueff on the band structure. Figure 3.2 shows

the calculated bands and partial density of states (DOS) of the 3d bands for MnO for two

Ueff values previously derived (c.f. Table 1.3), 3.6 and 6.04 eV (as well as GGA, Ueff = 0),

and RMT = 2.2 aB. In the GGA, there are sharp peaks due to the Mn-3d states around the

Fermi energy. Introducing Ueff opens the gap and pushes the Mn d states away from the gap.

Not surprisingly, the choice of Ueff affects both the valence and conduction bands significantly,

suggesting an issue of non-transferability of Ueff values.

We now proceed to calculate Ueff . Figure 3.3 shows the occupation numbers of 3d orbitals,

nd, of the TM atoms as a function of applied constraint field, µ for RMT varying from 2.0 to 2.7

aB. In all the systems, the occupation number increases as RMT increases. When a negative

(or positive) constraint field is applied, the occupation number at the constrained TM atoms

linearly increases (decreases) relative to the µ = 0 case (left panels in Fig. 3.3). Since the total

occupation number in the unit cell is conserved, the occupation numbers at the unconstrained

(µ = 0) nearest-neighbor site exhibit the opposite tendency (right panels).

The response functions of Eqs. (2.110) and (2.111), corresponding to the gradient of oc-

cupation number nβ with respect to the applied constraint field µα at site α, were calculated

numerically for each site β, and then Ueff was evaluated from Eq. (2.112). Because the KS

term does not include self-consistent screening and can be thought of in terms of perturba-

tion theory effect on the occupation numbers, nd, due to the applied constraint fields, we find

that the curves for nd are parallel to each other for different RMT (see solid line in Fig. 3.3),

and thus results in constant χKS. On the other hand, the interacting χscf is calculated self-

consistently, with the screened response obtained by treating of interactions of electrons, nuclei,

and exchange-correlation within GGA level. Since the self-consistent cycle is beyond the frame-

work of linear response, the variation of nd with regard to µ is consequently affected by the size

of the MT sphere differently.

As mentioned above, Eqs. (2.110) and (2.111) require the inverse of the density response

matrices, which in turn will depend on the size of the supercells. Figure 3.4 summarizes the

behavior of Ueff as a function of number of atoms per cell (size of the supercell). For MnO with

RMT = 2.0 aB, for example, Ueff has a values of 5.8 eV for a 1 × 1 × 1 supercell (4 atoms per
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cell), while for 2× 2× 2 (32 atoms) and 3× 3× 3 supercells (108 atoms) it is converged to 10.1

eV. For all the systems the converged Ueff values decrease when the sphere radius increases.

These changes can be quite large, such as in the case of MnO (left top panel in Fig. 3.4) where

there is a 3 eV difference in Ueff for radii of 2.0 and 2.7 aB. Similar behavior is seen for FeO

and NiO; the results of CoO will be discussed later.

Although the calculated Ueff varies significantly with MT radius, the band structures and

local 3d-DOS are essentially identical as shown in Figs. 3.5, 3.6 and 3.7, but differ significantly

from the GGA results. In MnO, the localized d states, whose t2g and eg orbitals are fully

occupied by five electrons in parallel, locate at 4.5 and 5.5 eV below the Fermi energy in

the valence states, as shown in Fig. 3.5. Even though the GGA calculations show a metallic

character in FeO due to the partially occupied triplet t2g in the minority spin state by one

electron resulting in metallic, the calculations using derived Ueffs open the band gap over 4 eV.

which leads to in the insulator (see Fig.3.6). For the NiO in Fig. 3.7, fully occupied minority t2g

state constitutes the Fermi surface in the GGA, but this energy position becomes lower when the

+U calculations, then the Fermi states are composed by O-2p states (not shown in figure). For

the all systems, that consistently derived values of Ueff(RMT ) do in fact result in the same band

structures and properties argues strongly for the validity of the underlying constraint DFT

approach and demonstrates that different (converged) DFT computational methods should

agree even when the absolute values of Ueff differ greatly. (As already demonstrated in Fig. 3.2,

we have confirmed that in all cases using Ueff values obtained for one RMT in calculations with

a different choice of radius leads to significant changes in the calculated bands.)

Supplementally, we also performed to band structure calculations in which the applied value

of Ueff is not a determined one for a employed RMT For example, the electronic structures for

MnO which are calculated by setting the RMT of 2.7 aB and the Ueff of 7.1 eV, although the

derived Ueff for 2.7 aB of MT sphere is indeed 10.1 eV. It is confirmed that obtained ground

state bands totally differ from each other: the large peak of d-states are relatively shifted in

lower energy, by about 1 eV (this is very big difference), and their dispersions become rather

less. This tendency is contradictory to the results shown in Fig. 3.5. Same situation is taken

account in other models.
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Figure 3.2: (a) Band structures and (b) partial 3d density of states for MnO, where MT sphere
size of 2.2 aB is used for Mn. Red and blue solid lines correspond to the previously reported
values of Ueff , i.e., 3.6 and 6.0 eV, respectively (see Table 1.3). The GGA calculation (Ueff=0 eV)
is also shown in gray line in (a) and filled area in (b). The Fermi energy is set to an eigenvalue
at valence top states.
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Figure 3.3: Variations of the occupation numbers of 3d orbitals, nd, as a function of constraint
field, µ, for (a) MnO, (b) FeO, (c) CoO, and (d) NiO. Left panels for each are at on-site where
set of µ is applied to and we are interested in, and right ones are at unconstrained first-neighbor
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Figure 3.5: GGA+U band structures and partial 3d densities of states for different TM sphere
radii using the scaled Ueff values for MnO. Black, red, blue, green, and purple solid lines are
RMT of 2.0, 2.2, 2.4, 2.6, and 2.7 aB for Mn atom, respectively. The GGA (Ueff = 0 eV)
calculations are also shown in gray line (left panel) and filled space (right). The energy zero is
set to the top of the valence band.
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Figure 3.6: GGA+U band structures and partial 3d densities of states for different TM sphere
radii using the scaled Ueff values for FeO. Black, red, blue, and green solid lines are RMT of
2.0, 2.2, 2.4, and 2.6 aB for Fe atom, respectively. The gray shows GGA calculations as same
manner in Fig. 3.5.
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Figure 3.7: GGA+U band structures and partial 3d densities of states for different TM sphere
radii using the scaled Ueff values for NiO. Black, red, blue, and green solid lines are RMT of
2.0, 2.2, 2.4, and 2.5 aB for Ni atom, respectively. The gray shows GGA calculations as same
manner in Fig. 3.5.
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3.4 Electronic structure

Based on our results, we propose guidelines to estimate suitably scaled values of Ueff for dif-

ferent MT sphere size, which will also be applicable to other computational methods. Figure 3.8

shows the determined Ueff(RMT ) as a function of occupation number, nd(RMT ) determined in

the standard U = 0 GGA calculations. We find a simple linear relationship between Ueff and

nd: Ueff is negatively proportional to increasing nd as shown by the regression lines in the figure.

We have confirmed for a number of cases that using Ueff values estimated from the calculated

d-electron occupation number at the GGA level produces the same band structure and gives

the same physics.

Of the different TMOs considered, CoO presents some particular issues which we now dis-

cuss. In Fig. 3.4, we were unable to obtain a value for the RMT = 2.0 aB 2× 2× 2 (32 atom)

supercell because our calculations did not yield a stationary solution for this antiferromagnetic

alignment. However, an appropriate value could be obtained from the scaling behavior and

is represented by the opened square and dashed line in Fig. 3.4. Rather unexpectedly, the

behavior for RMT = 2.6 aB with regard to cell size differs from the others and has a value of

Ueff = 6.3 eV. This value is smaller than expected from other trends, and in fact leads to a

calculated band structure that differs from the others, the green line in left bottom panel of

Fig. 3.3, which shows a shift of the 3d states. Similarly, in Fig. 3.8, only the RMT = 2.6 aB

point is off the regression line for CoO. Analysis of the calculations suggest that this observed

behavior for this case is due to numerical issues related to the fact that for this RMT , the Co

and O spheres are almost touching (∼ 0.026 aB); increasing various cutoffs should correct this

problem. (Since as a practical matter touching spheres in FLAPW calculations is not good

practice, this problem generally will not arise.) However, if we simply use the scaled value as

indicated by the open square in Fig. 3.8 appropriate for RMT = 2.6 aB of 7.0 eV, the valence

band structure (not shown) is identical to those for the other values of Ueff(RMT ).

Although the valence band structures for different values of Ueff(RMT ) are essentially the

same, there are differences in the conduction bands (Figs. 3.5, 3.6, 3.7 and 3.9). Using MnO

as an example, we finally provide a possible argue to this problem that is related to a nature

of anti-bonding wave function. The Mn 3d states just below the Fermi energy hybridize with

O-2p orbitals in the GGA calculation (Fig. 3.10 (a)). In contrast, for GGA+U , the O-2p pre-
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dominates at the Fermi level (Fig. 3.10 (b)). Figure 3.11 shows a schematic energy diagram of

the hybridization between Mn and O in the GGA and GGA+U calculations. For the majority

valence (occupied) states, the introduction of the +U correction pushes the Mn-3d orbitals

down to lower energy relative to the O-2p, hybridizing to form bonding orbitals, rather than

antibonding states in GGA calculation. Both with and without +U , antibonding states are

formed by Mn-3d states in the minority conduction (unoccupied) bands. The wave functions of

the antibonding state, which possesses a node, are more compact spatially (Fig. 3.12 (b)) com-

pared to those of bonding states (Fig. 3.12 (a)). Figure 3.13 shows calculated radial probability

of the wave function for the different TM atoms (TM = Mn, Fe, Co, and Ni) as a function of

radial. Since the radial wave function for the latter TM atoms in the periodic table is rather

more localized, the Ni (or Mn) has few (more) radial probability at the tail, resulting in small

(large) change in the charge density when the MT sphere size increased. Thus, the weight of

an antibonding states varies slower with respect to sphere size than that of the bonding states,

as shown in Fig. 3.12 (c); this is one reason behind the decrease in magnitude of the observed

slopes (coefficient a of Ueff = and+b) in Fig. 3.8 going from Mn to Ni. A consequence is that for

the conduction bands, changing RMT does not appreciably change the d wave function weight

that U is acting on, so these size of the matrix elements determined by mainly by the value of

Ueff alone. As a result, as found in all the systems considered, the conduction bands are shifted

toward lower states in energy as RMT increases and Ueff decreases as shown in Figs. 3.5, 3.6,

3.7 and 3.9.
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Figure 3.9: GGA+U band structures and partial 3d densities of states for different TM sphere
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Figure 3.10: Calculated DOS for MnO by (a) GGA and (b) GGA+U when RMT of Mn atom
is 2.2 bohr. Left panel shows Mn–3d orbital, where splits into eg (red) and t2g (blue) states in
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3.5 Concluding remarks

The on-site Coulomb effective Ueff is determined by all-electron FLAPW method based on

constraint DFT approach from linear response approach for varying radius of MT sphere in

prototypical correlated monoxides, TMO (TM = Mn, Fe, Co, and Ni). Although the significant

dependence of Ueff value on the RMT size were confirmed, importantly, an identical valence

band structure was produced in all systems with an approximate scaling of Ueff . Furthermore,

a simple linear relationship between the determined Ueff and the nd calculated by the standard

GGA is found and a straightforward estimation of the Ueff from the linear relationship was

demonstrated where the electronic structure was identical. Our results implies that a simple

transferability of the Ueff values among different calculation methods is not allowed, but the

relationship associating scale of the Ueff with occupations nd (or MT sphere size RMT ) gives a

guideline for the most suitable parameter.
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Chapter 4

Application to organometallic

metallocene molecule, TMCp2

4.1 Introduction

Since the rectifier elements and transistors that are composed by organic molecules had

been predicted by Aviram et al. in 1974 [147], there has been a growing interest in studies

and developments of novel applications because of their advantages compared to that in the

Si-based devices, for example, size minimization, light weight, mechanical flexibility, and long-

time spin relaxation/lifetime [148–153], in which an effort now extends to treat an extreme

limit of a single molecule [154]. In organometallic molecules composed of metal elements such

as transition metals and rare-earth metals, there is two freedoms of spins and electron charges,

which can be controlled on experimental level as demonstrated by spin-polarization scanning

tunneling microscopy (SP-STM) and atomic force microscopy (AFM) experimentally. [155–159]

Metallocene (TMCp2) discovered in 1950’s [160–163] is one of the attractive molecules with a

variety of electronic and magnetic properties that can be tuned by substitutions of the composed

transition-metals, redox cycles and so on. [164, 165] Further examples: metallocene molecular

wire [166] and magnetoresistive element [165], are shown in Fig. 4.1.

For organometallic molecules where the electronic configurations of d (f) electrons are an

essential aspect, the complexity of the orbital degeneracy and the changes due to the presence

of the ligand field of molecules complicate the theoretical analysis of even the ground state,
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with the consequence that ab-initio calculations based on the DFT often fail to obtain the

experimentally observed ground state electronic configuration. To get straight to the point, this

difficulty is intrinsically related to the fact that the various electronic configurations belonging

to different irreducible representations are all compatible with the symmetry of the charge (and

spin) density (completely symmetric representation), i.e., the symmetry of the charge density

is not sufficient to distinguish among the electronic configurations.

The d-orbital electronic configurations (or multiplet structures) are given by group the-

ory that identifies symmetries of orbital (wave function) and are described using irreducible

representation (term symbol) as

2S+1LJ . (4.1)

Two kinds of multiplicities are indicated: (2S+1) multiplicity for spin freedom with total spin

angular momentum, S =
∑N

i si, and (2L+1) multiplicity for orbital freedom with total orbital

angular momentum, L =
∑N

i ℓi, in N -electron system. J is total angular momentum and its

multiplicity is shown by J = L+S, L+S−1, · · · , |L−S|. There are patterns of (2L+1) times

(2S + 1) multiplicities for N -electron system in free atom or ion totally. One can predict the

ground state electronic configuration from (2L+1)(2S+1) candidates from the Hund’s rule in

which the S and L of the open shell follow three rules:

1. For a given electronic configuration, the term with maximum spin multiplicity S has the

lowest energy.

2. For a given multiplicity, the term with the largest orbital multiplicity L has the lower

energy.

3. For a given term, in an atom, if outermost subshell is half-filled or less than half-filled,

the term with the lowest value of the J lies lowest in energy, and if outermost subshell is

more than half-filled, the term with the highest value of J lies lowest in energy.

According to these rules, for example, electronic configurations of d2 system in free atom whose

candidates are 10C2 patterns are shown from the term in lower energy level in Fig. 4.2 (a).

In the metal complex systems, where the symmetry of environment surrounding d-orbital is

reduced by ligand fields, the many-body eigenstates of electronic configurations are described
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Figure 4.1: (a) One-dimensional molecular wire consisting of metallocenes. Local magnetic
moments in respective molecules are interacted to neighboring ones like ferromagnetic (FM) or
anti-ferromagnetic (AFM) coupling as shown in upper or lower panels, respectively. (b) Mag-
netoresistive element which is composed by two metallocene molecules connecting Au(001)
surfaces. Resistance becomes higher when local magnetic moment coupling is AFM-like, while
it becomes lower when magnetic moments coupling is FM-like. Blue and green arrows indicate
local magnetic moment orienting different directions. Circles in different colors correspond-
ing to red, gray, white, orange, and yellow indicate Transition-metal, C, H, S, and Au atoms,
respectively.
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using irreducible representation within corresponding space group,

2S+1Γ. (4.2)

This is similar to the one in free atom or ion system that are under spherical symmetry, but

only difference is the orbtal function L in Eq. (4.1) is replaced by whole of eigenstates Γ.

Figure 4.2 (b) shows the d-orbital splitting due to the ligand field with the irreducible

representation in Oh symmetry. The d-orbital of has five-folds degeneracy in free atom split

out into two states that correspond to doublet degenerate eg (dx2−y2 , dz2) orbital and triplet t2g

(dxy, dxz, dyz) orbital. Furthermore, if a metal atom is surrounded by D5d symmetry, complexity

of splitting arises and d-orbital is separated into three states: a singlet of a1g (dz2) and doublets

of e2g (dx2−y2 , dxy) and e1g (dxz, dyz).

For Kohn-Sham-based DFT calculations, in principle, the variational principle finds a global

minimum of the total energy from arbitrary set of initial charge density in the effective poten-

tial by self-consistent-field procedures (see Fig. 4.3 (a)). However, in numerical strategy, an

critical issue may be appeared. Organometallic molecules have various meta-stable structure

of different electronic configurations at nearly degenerate with ground state energetically. This

fact means that the total energies of ground state is competitive with that of meta-stable ones,

thus the final SCF-calculated solution must depend on how initial charge density is set numer-

ically. Figure 4.3 (b) shows schematics of competitive total energies as a function of electronic

configuration. If noe put initial charge distribution on the parabola function whose minimum

is configuration B so that variational principle procedure satisfies that total energy becomes

lower and lower by every SCF-iteration. As a result, calculations may be trapped in one of

the multiple local minima corresponding to the various electronic configurations. Thus, search-

ing from the ground state electronic configuration of correlated system using DFT remains a

significant challenge as well as the importance of correlation effects.

In order to overcome such difficulties, constraint DFT provides a powerful tool for exploring

the low energy electronic configurations compatible with a given ligand symmetry. In this

chapter, the constraint DFT was applied to the prototypical organometallic molecules, TMCp2,

[160–163,167] for the 3d transition metals (TM) from V to Ni. Here it was demonstrated that

this approach – combined with non-empirical values of U – is capable of obtaining agreement
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with experiments for the correlated organometallic molecules with their high degree of electronic

complexity.

Before going to sections of calculated results, previous studies are overviewed. In the past

decades, numerous studies have been done for analyzing ground state electronic configura-

tions experimentally. [168–171] Photoelectron spectroscopy measurements of FeCp2 in the gas

phase reveal a S=1 spin multiplet corresponding to orbital occupations of the 1A1g state

(d2z2 , d
4
x2−y2,xy). [168, 169] For VCp2, CrCp2, MnCp2, CoCp2, and NiCp2 in gas phases, 4A2g

(d1z2 , d
2
x2−y2,xy),

3E2g (d1z2 , d
3
x2−y2,xy),

6A1g (d1z2 , d
2
x2−y2,xy, d

2
xz,yz),

2E1g (d2z2 , d
4
x2−y2,xy, d

1
xz,yz) and

3A2g (d2z2 , d
4
x2−y2,xy, d

2
xz,yz) were systematically observed, [168, 169] where the spin multiplicity

S decreases from VCp2 (S = 4) to FeCp2 (1), except for MnCp2 (6), and then it increases in

CoCp2 (2) and NiCp2 (3). A high spin state 6A1g of MnCp2 was further identified by elec-

tron spectroscopy and nuclear magnetic resonance measurements. [170,171] However, the DFT

ground states are still a matter of debate due to the complexity and difficulty of incorporat-

ing correlation effects. For example, for MnCp2, +U calculations predict the low-spin 2E2g

state [172] while hybrid functional B3LYP calculations predict the high-spin 6A1g state. [173]

Further, both calculations for CrCp2 (
3A1g) disagree with the (3E2g) state found by experiment.
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Figure 4.2: (a) Examples of the electronic configurations for free atom with d2 electron system
in which there are 10C2 patterns. Candidates are listed in order of lower energy by satisfying
Hund’s rule. Red arrows indicate the electrons with spin channel and the S and L are total spin
and orbital angular momenta. (b) d-orbital splitting due to the ligand field of Oh symmetry,
where five-fold degenerate d orbital split out into doublet eg and triplet t2g orbitals. Further
orbital splitting into e∗1g(dxz,yz), e2g(dx2−y2,xy), and a1g(dz2) is occurred due to a ligand field of
D5d symmetry. Red and blue circles indicate transition-metal atom and atoms of ligand field,
respectively.
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Figure 4.3: (a) Profile of total energy as a function of electronic configuration in Kohn-Sham-
based DFT. A given initial state of charge density represented by opened circles, in principle,
will lead to ground state (global minimum) represented by closed circle by self-consistent-field
(SCF) procedure. (b) Profile of total energy for organometallic molecule systems, in which
plural local minima are energetically degenerate.
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4.2. Calculation model and molecular orbital

4.2 Calculation model and molecular orbital

The atomic structure of the TMCp2 molecules, with the two 5-fold cyclopentadienyl rings,

Cp2, is shown in Fig. 4.4. Both eclipsed and staggered conformations exist; here we focus on the

latter, which has been the reported structure in a number of experiments. [168–171] The metal

atom, at the center of the molecule between the two Cp rings, sits at a site of D5d symmetry

such that the d orbitals are split into three states. Figure 4.5 (a) gives a schematic energy level

diagram allowed by group theory in the D5d point group: a singlet dz2 and two doublets dxz,yz,

dx2−y2,xy. The dxz,yz state may be further pushed up in energy due to the hybridization with

the Cp2 e1g orbital, while the dx2−y2,xy state goes down due to the hybridization with the e2g

orbital, as illustrated in Figs. 4.5 (b) and (c), respectively. The dz2 state shown in Fig. 4.5 (d),

with no direct overlap to the molecular orbitals, may have the lowest energy of the d states.

To model the isolated TMCp2, a slab with infinite vacuum on both side of the slab (along

the Cp ring plane normal) far from 2.7 bohr was adopted, with a large in-plane lattice constant

of 18 bohr, as shown in Fig. 4.6. For molecular structure, the geometric positions given in

Fig. 4.7 and parameters in Table 4.1 are initially used so that the C and H atoms form their

own equilateral pentagons with the TM atom sitting at origin, then atomic positions were fully

optimized. Final atomic positions are summarized in Table 4.2. Calculations were carried out

by using the film-FLAPW [117,118] method based on the GGA [103] with +U [126]. A cut-off

of |k+G| ≤ 3.6 a.u.−1 was used to expand the wave functions. The muffin-tin radii and lattice

harmonic expansions for the charge and spin densities were 2.2 a.u., ℓ = 8; 1.1 a.u., ℓ = 6; and

0.8 a.u., ℓ = 4 for the TM, C, and H atoms, respectively.
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X
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Figure 4.4: Side and top views of structure of a metallocene where large (red), middle (gray),
and small (white) circles indicate transition-metal, carbon, and hydrogen atoms, respectively.
Labeled atomic numbers correspond to the ones in Table 4.2. In D5d symmetry, the top and
bottom ligand Cp rings are rotated relatively by 36 degree (◦).
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(a)
MCp2 Cp2M

(D5d symmetry)

𝑒1𝑔
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(c) 𝑒2𝑔
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(d) 𝑎45(b) 𝑒1𝑔∗

𝑑𝑥𝑧
(𝑑+,)	

Figure 4.5: (a) Schematic of the energy diagrams of the crystal-field splitting of trantision-metal
(TM) d orbitals for D5d symmetry, the molecular orbitals in the two cycropentadienyl rings Cp2,
and the hybridized orbitals in the TNCp2. (b), (c), and (d) Schematics of the molecular e∗1g
(antibonding TM dxz,yz–Cp2 e1g), e2g (bonding TM dx2−y2,xy–Cp2 e2g), and a1g (TM dz2) states
in TMCp2.

84



Chapter 4. Application to organometallic metallocene molecule, TMCp2
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Figure 4.6: Isolated single TMCp2 molecule in the slab model with vacuum regions of both
sides separated by 2.7 bohr and large lattice constant of 18 bohr in xy plane.
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(a) Side view
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Figure 4.7: Geometric structure for TMCp2 from (a) side and (b) top views where black, red,
and blue circles indicate TM, top and bottom ligand Cp rings (C5H5), respectively. Parameters,
h,R, and R′ are given from Table 4.1 for TMCp2 with TM of V, Cr, Mn, Fe, Co, and Ni.
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Table 4.1: Geometric parameters, h,R, and R′, for TMCp2 in the unit of angstrom (Å). Defi-
nitions of variables are shown in Fig. 4.7.

VCp2 CrCp2 MnCp2 FeCp2 CoCp2 NiCp2

h 1.967 1.897 2.083 1.685 1.776 1.868

R 1.215 1.214 1.216 1.219 1.216 1.216

R′ 2.301 2.300 2.302 2.304 2.301 2.301
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Table 4.2: Cartesian atomic position after fully optimization in the unit of Å. The labeled
atoms, Ci and Hi (i = 1 ∼ 10), correspond to the ones shown in Fig. 4.5.

VCp2 CrCp2 MnCp2
X Y Z X Y Z X Y Z

TM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C1 1.212 -0.194 1.959 1.120 -0.108 1.972 1.213 -0.180 1.777
C2 0.194 -1.212 1.959 0.108 -1.120 1.972 0.180 -1.213 1.777
C3 1.093 0.557 -1.960 1.179 0.486 -1.799 1.102 0.545 -1.840
C4 -0.557 -1.093 -1.960 0.486 -1.179 -1.799 -0.545 -1.102 -1.840
C5 0.865 -0.865 -1.962 0.953 -0.953 -1.681 0.867 -0.867 -1.881
C6 0.557 1.093 1.960 0.486 1.179 1.799 0.545 1.102 1.840
C7 -1.093 -0.557 1.960 -1.179 -0.005 1.799 -1.102 -0.545 1.840
C8 -0.194 1.212 -1.959 -0.108 1.120 -1.972 -0.180 1.213 -1.777
C9 -1.212 0.194 -1.959 -1.120 0.108 -1.972 -1.213 0.180 -1.777
C10 -0.865 0.865 1.962 -0.953 0.953 1.681 -0.867 0.867 1.881

H1 2.276 -0.361 1.964 2.178 -0.285 2.067 2.279 -0.343 1.799
H2 0.361 -2.276 1.964 0.285 -2.178 2.067 0.343 -2.279 1.799
H3 2.054 1.044 -1.964 2.129 0.991 -1.761 2.069 1.022 -1.863
H4 -1.044 -2.054 -1.964 -0.991 -2.129 -1.761 -1.022 -2.069 -1.863
H5 1.627 -1.627 -1.963 1.710 -1.710 -1.571 1.630 -1.630 -1.908
H6 1.044 2.054 1.964 0.991 2.129 1.761 1.022 2.069 1.863
H7 -2.054 -1.044 1.964 -2.129 -0.991 1.761 -2.069 -1.022 1.863
H8 -0.361 2.276 -1.964 -0.285 2.178 -2.067 -0.343 2.279 -1.799
H9 -2.276 0.361 -1.964 -2.178 -0.285 -2.067 -2.279 0.343 -1.799
H10 -1.627 1.627 1.963 -1.710 1.710 1.571 -1.630 1.630 1.908

FeCp2 CoCp2 NiCp2
X Y Z X Y Z X Y Z

TM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C1 1.214 -0.193 1.684 1.228 -0.177 1.697 1.211 -0.193 1.873
C2 0.193 -1.214 1.684 0.177 -1.228 1.697 0.193 -1.211 1.873
C3 1.094 0.560 -1.685 1.087 0.588 -1.736 1.092 0.559 -1.874
C4 -0.560 -1.094 -1.685 -0.588 -1.087 -1.736 -0.559 -1.092 -1.874
C5 0.868 -0.868 -1.685 0.850 -0.850 -1.691 0.866 -0.866 -1.875
C6 0.560 1.094 1.685 0.588 1.087 1.736 0.559 1.092 1.874
C7 -1.094 -0.560 1.685 -1.087 -0.588 1.736 -1.092 -0.559 1.874
C8 -0.193 1.214 -1.684 -0.177 1.228 -1.697 -0.193 1.211 -1.873
C9 -1.214 0.193 -1.684 -1.228 0.177 -1.697 -1.211 -0.193 -1.873
C10 -0.868 0.868 1.685 -0.850 0.850 1.691 -0.866 0.866 1.875

H1 2.278 -0.360 1.681 2.291 0.358 1.682 2.275 -0.360 1.862
H2 0.360 -2.278 1.681 0.358 -2.291 1.682 0.360 -2.275 1.862
H3 2.055 1.045 -1.682 2.058 1.058 -1.736 2.053 1.043 -1.862
H4 -1.045 -2.055 -1.682 -1.058 -2.058 -1.736 -1.043 -2.053 -1.862
H5 1.629 -1.629 -1.681 1.611 -1.611 -1.674 1.626 -1.626 -1.862
H6 1.045 2.055 1.682 1.058 2.058 1.736 1.043 2.053 1.862
H7 -2.055 -1.045 1.682 -2.058 -1.058 1.736 -2.053 -1.043 1.862
H8 -0.360 2.278 -1.681 -0.358 1.762 -1.682 -0.360 2.275 -1.862
H9 -2.278 0.360 -1.681 -2.291 0.358 -1.682 -2.275 0.360 -1.862
H10 -1.629 1.629 1.681 -1.611 1.611 1.674 -1.626 1.626 1.862
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Chapter 4. Application to organometallic metallocene molecule, TMCp2

4.3 Electronic configurations in GGA

In the constraint DFT approach, the total energies of all electronic configurations that are

allowed by a symmetric group were calculated self-consistently with the Lagrange multipliers so

as to energetically determine the ground state electronic configuration. A part of the candidates

of electronic configurations are;

• VCp2

– 4A2g ((dz2)
1, (dx2−y2(xy))

2, (dxz(yz))
0)

– 2E2g ((dz2)
2, (dx2−y2(xy))

1, (dxz(yz))
0)

• CrCp2

– 1E1g ((dz2)
2, (dx2−y2(xy))

2, (dxz(yz))
0)

– 1A1g ((dz2)
0, (dx2−y2(xy))

4, (dxz(yz))
0)

– 3A1g ((dz2)
2, (dx2−y2(xy))

2, (dxz(yz))
0)

– 3E2g ((dz2)
1, (dx2−y2(xy))

3, (dxz(yz))
0)

– 5E2g ((dz2)
1, (dx2−y2(xy))

2, (dxz(yz))
1)

• MnCp2

– 2A2g ((dz2)
1, (dx2−y2(xy))

4, (dxz(yz))
0)

– 3E2g ((dz2)
2, (dx2−y2(xy))

3, (dxz(yz))
0)

– 6A1g ((dz2)
1, (dx2−y2(xy))

2, (dxz(yz))
2)

• FeCp2

– 1A1g ((dz2)
2, (dx2−y2(xy))

4, (dxz(yz))
1)

– 5A1g ((dz2)
2, (dx2−y2(xy))

2, (dxz(yz))
2)

• CoCp2

– 2E1g ((dz2)
2, (dx2−y2(xy))

4, (dxz(yz))
1)

– 4A2g ((dz2)
1, (dx2−y2(xy))

4, (dxz(yz))
2)
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4.3. Electronic configurations in GGA

• NiCp2

– 1E2g ((dz2)
2, (dx2−y2(xy))

4, (dxz(yz))
2)

– 3A2g ((dz2)
2, (dx2−y2(xy))

4, (dxz(yz))
2)

At first, the FeCp2 is focused. The calculated results show that the dx2−y2,xy and dz2 states

are fully occupied with respective electron occupations over 0.7 (electrons) in Table 4.3, and a

large energy gap of 2.8 eV appears between the highest occupied molecular orbital (HOMO)

and lowest unoccupied molecular orbital (LUMO), forming a closed shell with 1A1g symmetry.

Figure 4.8 shows calculated electron charge density distributions of HOMO and LUMO states,

where hybridizations of the Fe dx2−y2,xy – Cp2 e2g and Fe dxz,yz – Cp2 e1g can be confirmed.

This is consistent with the molecular-orbital energy diagram presented in Fig. 4.5 (a). No

stationary solutions of the other electronic configurations were observed in the constraint DFT

calculations, even for large constraint field µn up to 10 eV. Thus, it is expected that the

electronic configuration of the 1A1g state is energetically the most stable as expected from the

”18-electron rule” describing stable metal complexes.

HOMO LUMO

X Y

Z

X Y

Z

Figure 4.8: Calculated charge density distributions for (left) HOMO and (right) LUMO for the
FeCp2 of 1A1g.
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4.3. Electronic configurations in GGA

X
Y

Z

C1 C6 C10
Δz

Figure 4.9: The Jahn-Teller distorted molecular structure for the CoCp2 of 2E1g. Difference of
z position, ∆z is defined by ∆z = z(C6(7))− z(C10) = 0.045 Å.

For the CoCp2 and NiCp2, since the number of electrons is larger than that of the FeCp2,

the doublet dxz,yz is occupied by a single electron for CoCp2 and by two electrons for NiCp2

(see Table 4.3), leading to 2E1g and 3A2g ground states, respectively. In both molecules, no

stationary solutions of the other electronic configurations exist in the GGA. Calculations con-

firmed that for the 2E1g state of the CoCp2, the degeneracy in the doublet dxz,yz occupied by a

single electron is removed. In terms of atomic position in Table 4.1, one can see that the D5d

symmetric molecular structure is distorted: for example, z-position of C6(7) differs from that

of C10 by ∆CoCp2 = z(C6(7))− z(C10) = 0.045 Å (see Fig. 4.9) which is forty-five times greater

than ∆FeCp2 = z(C6(7))−z(C1(2)) = 0.001 Å in FeCp2. This distortion is induced by Jahn-Teller

effect and then the symmetry of D5d is degraded to C2h. The predicted ground states of CoCp2

and NiCp2 agree with experiments [171,174,175].

For MnCp2, where the number of electrons is smaller than in FeCp2, a low-spin 2E2g state

is found as a solution of standard DFT scheme. Interestingly, addtional two different electronic

configurations are obtained by extended constraint DFT approach. By an introduction of

constraint field of -2.72 eV to minority dxz,yz orbital (µ↓
xz,yz = −2.72 eV), 6A1g state, in which

all of d5 electrons occupied in parallel resulting in high-spin state, is obtained. Contrary, when

positive constraint field is applied to dz2-orbital in majority-spin states, µ↑
z2 = 1.36 eV, a low-

spin 2A1g structure is confirmed. The d-electron occupancies in each electronic configuration

are listed in Table 4.3. The constraint DFT calculations, secondary, reduced applied constraint

field so as to get a solution that corresponds to the standard unconstraint DFT equation.
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Chapter 4. Application to organometallic metallocene molecule, TMCp2

Figure 4.10 (a) shows relative total energy difference as a function of applied constraint field, µ.

If a strength of µ↓
xz,yz is reduced to zero, finally unconstrained solution of 6A1g is produced: this

result is regarded as a significance because the constraint DFT calculations achieve additional

stationary electronic configuration to the conventional DFT method. In the same manner, the

d↑z2 is dwindled to get 2A1g at µ = 0, but if µ of less than 0.82 eV, 2A1g moves into 2E2g state: in

other words, solution of the 2A1g without constraining d electrons can not be achieved. Finally,

the calculated total energy indicates the ground state is 2E2g, and the metastable of the 6A1g

state with higher energy by 0.77 eV. This result is in contrast to the previous +U calculations

where the 2E2g state was predicted. [172]

For CrCp2, standard GGA-based DFT calculations give stationary solution for 3E2g without

any constraint fields to d-orbital electrons. By performing the constraint DFT calculations

based on the procedures presented in previous paragraph for MnCp2, another
3A1g state is

provided using µ↓
x2−y2 = 2.72 eV, and then this configuration is preserved if the µ↓

x2−y2 decreased

to 0.0 eV finally. Note that total energy at zero point of µ is evaluated after full relaxation

in molecular structure. Low-spin 1E1g never be stabilized by a set of µ at zero-point (see

Fig. 4.10 (b)). Fully optimized molecular structure is visualized in Fig. 4.11. The ligand two

Cp2 rings are tilted a few degrees while remaining parallel to each other. This distortion which

is induced by Jahn-Teller effect makes a degeneracy of doublet d2g orbital be solved, thus the

3E2g state result in a ground state with the total energy of 3E2g state lower than the 3A1g one

by 0.32 eV.

In VCp2, the ground state is predicted to be 4A2g in GGA. No other stationary solutions

were found, even for large constraint fields. This results is not surprising since the singlet dz2

and the doublet dx2−y2,xy in the majority spin states are fully occupied, which stabilizes the

high spin state.

Finally, Fig. 4.12 summarizes the energy positions of d orbital in the ground-state elec-

tronic configurations for studied TMCp2 (TM=V, Cr, Mn, Fe, Co, and Ni) in GGA. Ta-

ble 4.4 compares the ground states obtained in our calculations with previous studies: theo-

retical results by GGA+U [172] and hybrid functional (B3LYP) [173] calculations, and experi-

ments [171,174,175]. With the electronic configuration of FeCp2 which satisfies the 18-electron

rule [176] as a reference, spin multiplicity (2S + 1) of Eq. (4.2) simply increases due to one

and two more electrons for later TM atoms, i.e., Co and Ni, while it decreases due to one,
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Figure 4.10: The total-energy difference, ∆E, with respect to the applied constraint field, µ,
for (a) MnCp2 and (b) CrCp2. For (a) MnCp2, closed squares, triangles, and diamonds indicate
the solution for 2E2g,
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The plots at µ = 0 correspond to a solution without any constraint fields.
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Figure 4.11: The Jahn-Teller distorted molecular structure for the CrCp2 of 3E2g.

tow, and three less electrons for earlier TMs, i.e., Mn, Cr, and V, respectively. This tendency

mostly agrees with the experiments, but only MnCp2 seems to be still questionable, unfortu-

nately. The hybrid B3LYP calculations which is well-known as a powerful technique for treating

organometallic molecules predicted the high-spin 6A1g, in agreement with experiments, whereas

DFT-based results including present and GGA+U [172] calculations obtained low-spin ground

state 2E2g. Furthermore, in CrCp2, even though the spin multiplicity 2S+1 = 3 is identical, the

configuration of occupied electrons (3E2g) disagrees with previous calculations (3A1g) [172,173].

Table 4.4: Ground state electronic configurations in the present constraint DFT calculations for
both GGA and GGA+U, compared to previous GGA+U (Ueff of 3.0 eV) and hybrid functional
(B3LYP), and experiments for TMCp2 (TM=V, Cr, Mn, Fe, Co, Ni). The Ueff (in eV) in the
parentheses of the third column are determined from constraint DFT calculations based on the
linear response theory.

Present calculations Previous calculations
Experiments [168–171]

GGA GGA+U (Ueff) GGA+U [172] B3LYP [173]

V 4A2g
4A2g (2.3) 4A1g

a 4A1g
a 4A2g

Cr 3E2g
3E2g (2.3) 3A1g

3A1g
3E2g

Mn 2E2g
6A1g (2.4) 2E2g

6A1g
6A1g

Fe 1A1g
1A1g (2.5) 1A1g

1A1g
1A1g

Co 2E1g
2E1g (2.6) 2E1g

2E1g
2E1g

Ni 3A2g
3A2g (2.4) 3A2g

3A2g
3A2g

a Electronic configuration in Refs. [172,173] is identical to that of 4A2g.
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Figure 4.12: Energy diagram of the d orbitals in (a) VCp2 (
4A2g), (b) CrCp2 (
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4.4 Electronic configurations in extended GGA+U

As mentioned in the introduction, the correlation effects are of importance when considering

the electronic configurations of organometallic molecules. For all models, GGA+U calculations

are performed to investigate the stability of different electronic configurations, in which the

value of effective on-site Coulomb Ueff varies from zero (GGA) to 8 eV. The Ueff values are

obtained based on the procedures discussed in the previous chapter.

Interestingly, for MnCp2 the electron correlations (+U) affects the stability of electronic

configurations of the 2E2g and
6A1g. Fig. 4.13 (a) shows the relative total energy, ∆E, between

them with respect to the varying Ueff , where the molecular structures were fully optimized at

each Ueff . It can be easily seen that the stability between them is found to be very sensitive

depending on the Ueff . When Ueff increases, ∆E for the 6A1g configuration monotonically

decreases, and this state becomes stable for Ueff greater than ∼ 2 eV, where the total energies

of the 6A1g and 2E2g states are nearly degenerate. In order to get the non-empirical Ueff ,

linear response calculations based on the constraint DFT was performed: a change of the Mn

d-electron occupations with respect to the constraint field µ is shown in Fig. 4.14 (c). Then

calculations using response functions of KS and SCF terms give the ULRT
eff of 2.4 eV. In that

case, present constraint DFT+U calculations provides a ground state of the 6A1g (Fig. 4.13 (a)),

reproducing experiments [168–171]. Importantly, starting the self-consistent calculations with

no constraints naturally yields the 2E2g solution: thus, in this case constraint DFT must be

essential in the search for the true ground state.

Note that the 2E2g state could in principle be stabilized by the Jahn-Teller effect, i.e., a

lifting of the degeneracy of the doublet dx2−y2,xy in the minority spin states. However, the 6A1g

state — with fully occupied majority-spin states and empty minority — is still favorable due to

the large exchange splitting arising from the electron correlation (+U) effects. Thus, the high

spin electronic configuration with S = 5/2 µB is preferable, as expected by the Hund’s first

rule. As shown in Fig. 4.15 (a), the charge density difference, ∆ρ = ρMnCp2 − (ρCp2 + ρMn), of

the 6A1g state shows small changes of the d orbitals around Mn site but almost no changes in

the molecular orbitals in the ligand Cp2.

In CrCp2, as shown in Fig. 4.13 (b), the energy difference ∆E for the 3A1g state decreases

as Ueff increases and becomes stable when the Ueff is over 4 eV. For ULRT
eff (=2.3 eV), the ground
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Figure 4.13: Total energy differences among the electronic configurations, ∆E, as a function of
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and 6A1g states, respectively, and diamond (blue), triangle (red), and square (green) in (b), the
3E2g,

3A1g, and
5E1g states, respectively. Ueff = 0 eV correspond to the GGA results.
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Figure 4.14: d-orbital occupation numbers with respect to the applied constraint field µ for
(a) VCp2, (b) CrCp2, (c) MnCp2, (d) FeCp2, (e) CoCp2, and (f) NiCp2. Red and blue solid
lines are Kohn-Sham (KS) and self-consistent-field (SCF) calculations.
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4.4. Electronic configurations in extended GGA+U

Figure 4.15: Charge density difference, ∆ρ = ρMCp2 − (ρCp2 + ρM), for (a)
6A1g MnCp2 and (b)

3E2g CrCp2 for GGA+U with ULRT
eff . The blue and red regions indicate positive (accumulation)

and negative (depletion) differences, respectively.

state is the 3E2g state and the electronic configuration does not change due to electron correla-

tion effects. As seen in Fig. 4.15 (b), the charge density difference has significant hybridization

between the Cr dx2−y2,xy and Cp2 e2g orbitals. In this system, the single occupation of the dou-

blet dx2−y2,xy causes a Jahn-Teller distortion that leads to the 3E2g ground state. In contrast,

the 3A1g state predicted by previous GGA+U [172] and B3LYP [173] calculations corresponds

to the metastable state in the present constraint DFT calculations.

It is also demonstrated that the ULRT
eff values for VCp2, FeCp2, CoCp2, and NiCp2 are also

obtained from linear response calculations: the values are almost the same for all molecules,

varying between 2.3 and 2.6 eV. For FeCp2, there is no change in the ground state in the

GGA+U compared to the GGA, still ground state corresponds to 1A1g state. The same situation

can be seen even in VCp2, CoCp2, and NiCp2.

To conclude, the ground-state electronic configurations finally obtained by the GGA+U are

listed in Table 4.4, in which the values of non-empirical Ueff are adopted, and the energy diagram

of the d orbital is shown in Fig. 4.16. From the dependence of stability on the Ueff , it is clarified

that the calculated ground states are very sensitive to the Ueff and to Jahn-Teller splittings.
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Chapter 4. Application to organometallic metallocene molecule, TMCp2

The spin multiplicity of S(= 2s + 1) has a maximum of S = 6 at MnCp2 due to high-spin

A1g configuration induced by large exchange-splitting, while the S continuously decreases from

VCp2 (S = 4) to FeCp2 (1), and then increases to NiCp2 (3) in GGA calculations. As a result,

predicted ground states are found to be in agreement with experiments in all of models. Thus,

an utility of constraint DFT including electron correlations via non-empirical Ueff determined

from linear response for predicting the properties of correlated systems was demonstrated.

Table 4.5: Calculated energy gap between HOMO and LUMO for the TMCp2 by both of
GGA and GGA+U methods in the unit of eV for obtained electronic configuration (E.C.)
in TMCp2. ∆E is given by difference between gap of GGA+U and that of GGA, ∆E =
Egap(GGA + U)− Egap(GGA).

E.C.
Egap

∆E
GGA GGA+U

VCp2
4A2g 1.90 3.20 1.30

CrCp2
3E2g 0.68 1.49 0.81

MnCp2
2E2g 0.58 1.98 1.40
6A1g 0.71 1.82 1.11

FeCp2
1A1g 2.71 2.82 0.11

CoCp2
2E1g 0.40 0.94 0.54

NiCp2
3A2g 1.10 1.61 0.51
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Figure 4.16: Energy diagram of the d orbitals in (a) VCp2 (
4A2g), (b) CrCp2 (

3E2g), (c) MnCp2

(6A1g), (d) FeCp2 (1A1g), (e) CoCp2 (2E1g), and (f) NiCp2 (3A2g), calculated using GGA+U
with the ULRT

eff values in Table 4.4. Notation is the same as in Fig. 4.12.
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4.5 Magnetic anisotropy

The present constraint DFT calculations have been performed for systematical investigation

of magnetic anisotropy in TMCp2. Magnetic anisotropy energy, EMA, is defined by the total

energy difference between magnetizations orienting along the parallel (x-axis) and perpendicular

(z-axis) directions to the Cp plane,

EMA = ETotal(x)− ETotal(z), (4.3)

where the total energies ETotal are calculated with self-consistently incorporated the SOC fol-

lowing second variation procedures.

Firstly, the GGA-based EMA for the ground state of 4A2g (for VCp2),
3E2g (CrCp2),

2E2g

(MnCp2),
1A2g (FeCp2),

2E1g (CoCp2), and
3A2g (NiCp2), are presented by red color bars in

Fig. 4.17. The magnetization of the CoCp2 energetically favors to lie along the perpendicular

direction to the Cp plane with EMA = 0.46 meV/molecule and for the NiCp2, the parallel

direction with -1.35 meV/molecule. Almost no preference in the magnetic easy direction for the

VCp2, CrCp2, MnCp2, and FeCp2 is observed, where the EMA is less than∼ 0.03 meV/molecule.

In order to clarify the role of the HOMO and LUMO states on the magnetic anisotropy

for the CoCp2 and NiCp2, the energy contributions from the SOC interaction to the EMA are

evaluated based on the second-order perturbation theory [177]. The E2nd
MA may be given as

E2nd
MA ≈ ∆E↑↑ +∆E↑↓, (4.4)

where

∆E↑↑ = E↑↑(x)− E↑↑(z) (4.5)

= ξ(r)2
∑
o↑,u↑

∣∣∣⟨o↑|L̂z|u↑⟩
∣∣∣2 − ∣∣∣⟨o↑|L̂x|u↑⟩

∣∣∣2
ε↑u − ε↑o

(4.6)

∆E↑↓ = E↑↓(x)− E↑↓(z) (4.7)

= ξ(r)2
∑
o↑,u↑

∣∣∣⟨o↑|L̂x|u↓⟩
∣∣∣2 − ∣∣∣⟨o↑|L̂z|u↓⟩

∣∣∣2
ε↓u − ε↑o

(4.8)
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Figure 4.17: Calculated magnetic anisotropy energy, EMA, of the TMCp2 (TM=V, Cr, Mn,
Fe, Co, and Ni), where positive and negative energies indicate that the magnetic easy axis lies
along the perpendicular and parallel directions to the Cp ring plane, respectively. Red and blue
bars correspond to the GGA and GGA+U calculations.

and ξ(r) is the SOC constant, assumed to the calculated values of 38.3 and 47.9 meV for Co

and Ni, respectively. The ∆E↑↑, which corresponds to the SOC between the occupied (o↑) and

unoccupied (u↑) states in the majority-spin states, indicates that the same (different) magnetic

quantum number, m, gives a positive (negative) contribution to the E2nd
MA through the L̂z (L̂x)

operator. For the ∆E↑↓, i.e., the SOC between the occupied majority-spin (o↑) and unoccupied

minority-spin (u↓) states, the same (different) m gives a negative (positive) contribution to the

E2nd
MA.

In the CoCp2, as pointed in Fig. 4.12 (e), the Jahn-Teller distortion breaks the degeneracy

of the doublet dxz,yz in the majority-spin states and introduces small energy gap between the

occupied (HOMO) and unoccupied (LUMO) states by ∆ = 0.404 eV (see Fig.4.18 (a) for a

given ∆). This gives a large positive contribution to the E2nd
MA, 0.91 meV, in which the small

energy splitting between the occupied and unoccupied states increases the E2nd
MA significantly

through the denominator of the first term in Eq. (4.6). On the other hand, the SOC between the

occupied majority-spin and two unoccupied minority-spin dxz,yz states (the spin-flip SOC term)

gives negative contributions through the second term in Eq. (4.8), by -0.473 and -0.311 meV
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Chapter 4. Application to organometallic metallocene molecule, TMCp2

for the lowest (LUMO+1) and second lowest (LUMO+2) unoccupied minority-spin states,

respectively. Here, note that the energy of HOMO state is separated from LUMO+1 and

LUMO+2 by ∆1 = 0.776 and ∆2 = 1.180 eV, respectively. Further, the SOC with the other

occupied dz2 , dx2−y2,xy states gives very small contributions to the E2nd
MA compared to that in

the dxz,yz states mentioned above, since the energy separation with respect to the unoccupied

states is more than 2 eV. Thus, the perpendicular magnetic anisotropy arises mainly from the

SOC between the HOMO and LUMO states in the majority-spin dxz,yz states.

In contrast, for the NiCp2 in Fig. 4.18 (b), the HOMO and LUMO states consist of the

majority and minority-spin states with the dxz,yz orbital character, and both states separate

energetically by 1.097 eV each other. The second-order perturbation theory results in the E2nd
MA

of -1.05 meV, which comes from the second term in Eq. (4.8) and thus gives always a negative

contribution to the E2nd
MA.

The calculations were also performed using the DFT+U framework, in which the Ueff de-

termined by the linear response theory were employed. The magnetic anisotropy energies are

shown by blue bars in Fig. 4.17. In the CoCp2 and NiCp2, since the energy gaps between the

HOMO and LUMO were increased by the correlation effects (+U), as shown in Fig. 4.16 (e) and

(f), the denominators in Eqs. (4.6) and (4.8) become greater than that in the GGA, resulting

in the small contributions of the SOC interactions from the corresponding orbitals. Thus, the

magnitudes of the EMA also become small values. Similar situation is expected in the VCp2

system. The sign of the EMA in the CrCp2 was flipped from positive (perpendicular magneti-

zation with respect to the Cp rings) to negative (in-plane magnetization) values, and MnCp2

has the EMA of zero due to the spherical symmetric ground state of the 6A1g state as well as

the FeCp2 case.
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Figure 4.18: Energy diagram around the HOMO and LUMO states for (a) CoCp2 and
(b) NiCp2. The m is magnetic quantum number. Blue arrows indicate occupied electrons
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4.6 Concluding remarks

In this chapter, an application of developed linear response calculations for estimating the

Ueff values to organometallic molecule, metallocenes, are presented. Because an additional

difficulty intrinsically related to various electron configurations of d electrons that nearly de-

generate is raised, calculations using non-empirical +U method combined with the constraint

DFT approach were performed to search for the ground-state electronic configuraitons.

As a result, this calculations clarified that ground states are very sensitive to the Ueff

values and Jahn-Teller splitting. However, predicted ground states are found to be agree with

experimental observations: the ground states for TMCp2, in which TM is V, Cr, Mn, Fe, Co,

and Ni, are 4A2g,
3E2g,

6A1g,
1A1g,

2E1g, and
3A2g, respectively. These results imply that the

utility of combined linear response Ueff calculations and the constraint DFT was demonstrated

to determine the properties of correlated systems.

Further, the FLAPW calculations were performed to systematical investigation of the mag-

netism, i.e., magnetic anisotropy. The magnetization of the CoCp2 energetically favors highly

orienting along the perpendicular direction to the Cp plane due to the Jahn-Teller splitting in

the dxz,yz orbitals, and for the NiCp2 it lies along the parallel direction, where the HOMO and

LUMO states are found to play a key role to determine the magnetic anisotropy. The others

shows almost no preference for the magnetic easy axis.
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Conclusion

In this thesis, a methodology to obtain the effective on-site Coulomb interaction, Ueff = U−

J , from the linear response approach has been developed and applied to prototypical correlated

materials such as transition-metal monoxides and organometallic metallocene molecules by

means of FLAPW calculation method.

In Chapter three, the Ueff values for TM atoms in TMO (TMs are Mn, Fe, Co, and Ni)

were evaluated from the change in the occupation numbers at the d electrons with respect to

an applied constraint field and the variation of the Ueff by changing the MT sphere radius was

examined. The calculated results show that the obtained Ueff decreases as the MT sphere radius

increases, in which there is a large variation in the 2∼3 eV. However, an identical band structure

in valence state can be reproduced in all systems with approximately scaling of calculated Ueff ,

which are proportional to the occupation numbers of the localized d electrons. These results

emphasize that the simple transferability of the Ueff among different calculation methods is not

accepted to describe the ground state electronic structure that is internally consistent.

In Chapter four, this method was applied to the analysis of ground state electronic structure

in organometallic metallocenes, TMCp2, where TM is V, Cr, Mn, Fe, Co, and Ni. In this system,

an additional difficulty is raised; various electronic configurations of d electrons are nearly

degenerate. In order to search the ground state, a set of the constraint fields were introduced

to the d-electron density matrix to calculate the total energies of all electronic configurations

allowed by a symmetric group. Since the FeCp2 satisfies the ”18-electron rule” describing

stable metal complexes, no other stationary solutions of other electronic configurations were
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Chapter 5. Conclusion

observed in the constraint DFT calculations, resulting in the ground state of 1A1g. Even in

the VCp2, CoCp2, and NiCp2, no stationary solutions were found even for large constraint

fields; the electronic configurations of 4A2g,
2E1g, and

3A2g states were predicted as the ground

states, respectively. Interestingly, for MnCp2, the low-spin 2E2g and high-spin 6A1g states are

energetically degenerate at determined Ueff of 2.4 eV, while the latter configuration was more

stable due to the large exchange-splitting arising from electron correlation (+U). In the CrCp2

the constraint DFT calculations suggested Jahn-Teller effect stabilizes the 3E2g as the ground

state, while the other two solutions, corresponding to 3A1g and 5E1g states, were obtained.

The predicted ground state electronic configurations were consistent with experimental studies

while the stability between different electronic configurations is found to be very sensitive to

Ueff values.

In this dissertation, non-empirical methodology for obtaining the Ueff and the systematical

investigations of Ueff , MT sphere radius, and electronic configurations have been studied by

means of first-principles FLAPW method. In conclusion, it is important to emphasize that

by using the methodology that is proposed in this dissertation opens a new avenue toward

reliable prediction of structures and physical properties in strongly correlated systems and

gives suggestions for future calculations.
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Joint International Conference on Electronic Properties of Two-Dimensional Systems and
Modulated Semiconductor Structures (EP2DS-21/MSS-17), Mo-PE-78, Sendai, Japan,
July 2015.

9. ⃝Kenji Nawa:
”Effective on-site Coulomb interaction and electron configurations in transition-metal
complexes: A revisit from constraint DFT”
Condensed Matter Theory Group Seminar, University of York, York, United Kingdom,
November 2015.
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10. ⃝Yushi Ikeura, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito:
”Magnetocrystalline anisotropy in rare-earth metal monolayers”
The 18th Asian Workshop on First-Principles Electronic Structure Calculations, 54,
Kashiwa, Japan, November 2015.

11. ⃝Shohei Takeda, Kenji Nawa, Kohji Nakamura, Kazuhiro Sano, Toru Akiyama, Tomonori
Ito:
”Spin-polarized carrier tuning in transition metal dichalogenides by electric and magnetic
fields”
The 18th Asian Workshop on First-Principles Electronic Structure Calculations, 44,
Kashiwa, Japan, November 2015.

12. ⃝Takahiro Ito, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito, Teruo Ono:
”Spin Hall conductivity in Pt-based superlattice structures”
The 18th Asian Workshop on First-Principles Electronic Structure Calculations, 58,
Kashiwa, Japan, November 2015.

13. ⃝Kento Yamamoto, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito Teruo
Ono:
”Role of interface structures in magnetocrystalline anisotropy of Co/Pt(111) thin films”
The 18th Asian Workshop on First-Principles Electronic Structure Calculations, 52,
Kashiwa, Japan, November 2015.

14. ⃝Shohei Takeda, Kenji Nawa, Kohji Nakamura, Kazuhiro Sano, Toru Akiyama, Tomonori
Ito:
”Spin-polarized carriers of transition metal dichalcogenides tuned by electric and mag-
netic fields”
Symposium on Nanotechnology and Nanoscience (Division E), 27, Mie University, Tsu,
Japan, November 2015.

15. ⃝Takahiro Ito, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito:
”Intrinsic spin Hall conductivity in Pt-based noble metal superlattices: first principles
study”
Symposium on Nanotechnology and Nanoscience (Division E), 28, Mie University, Tsu,
Japan, November 2015.

16. ⃝Kento Yamamoto, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito:
”Magnetocrystalline anisotropy of Co/Pt(111) thin films: role of interface structures”
Symposium on Nanotechnology and Nanoscience (Division E), 31, Mie University, Tsu,
Japan, November 2015.

17. ⃝Kenji Nawa, Yushi Ikeura, Kohji Nakamura, Toru Akiyama, Tomonori Ito, Tamio
Oguchi, Michael Weinert:
”Magnetocrystalline anisotropy in rare-earth metal ultra-thin films”
2016 Joint MMM-Intermag Conference, HI-15, San Diego, United States of America,
January 2016.

18. ⃝Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito, Michael Weinert:
”Effective on-site Coulomb interaction and electron configurations in transition-metal
complexes from constraint density functional theory”
APS March Meeting 2016, B20.015, Baltimore, United States of America, March 2016.

19. ⃝Takahiro Ito, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito, Teruo Ono:
”Role of atomic-layer alignment in intrinsic spin Hall conductivity of Pt-based superlat-
tices”
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The 18th International Conference on Crystal Growth and Epitaxy, ThP-T05-5, Nagoya,
Japan, August 2016.

20. ⃝Kento Yamamoto, Kenji Nawa, Kohji Nakamura, Toru Akiyama, Tomonori Ito, Teruo
Ono:
”Dzyaloshinskii-Moriya interaction at metallic bilayer interfaces”
The 18th International Conference on Crystal Growth and Epitaxy, ThP-T05-3, Nagoya,
Japan, August 2016.

21. ⃝Kenji Nawa, Toru Akiyama, Tomonori Ito, Kohji Nakamura:
”Electronic structures and magnetism in 5d transition-metal phthalocyanines”
6th Spin-Polarized Scanning Tunneling Microscopy International Conference, Chiba, Japan,
August 2016.

22. Kohji Nakamura, ⃝Kenji Nawa:
”Role of spin-orbit coupling in electric field effect on magnetocrystalline anisotropy of
metal thin films”
The 2nd ImPACT International Symposium on Spintronics Memory, Circuit and Storage,
35, Tsukuba, Japan, September 2016.

23. ⃝Kenji Nawa, Toru Akiyama, Tomonori Ito, Tamio Oguchi, Michael Weinert, Kohji
Nakamura:
”Interfacial magnetic anisotropy in rare-earth metal ultra-thin films”
61th Annual Conference on Magnetism and Magnetic Materials, AI-05, New Orleans,
United States of America, October–November 2016.

24. ⃝Takahiro Ito, Kenji Nawa, Abdul-Muizz Tri Pradipto, Toru Akiyama, Tomonori Ito,
Teruo Ono, Kohji Nakamura:
”Role of atomic-layer alignments to intrinsic spin Hall conductivity in Pt-based superlat-
tices film”
61th Annual Conference on Magnetism and Magnetic Materials, CR-08, New Orleans,
United States of America, October–November 2016.

25. ⃝Kento Yamamoto, Kenji Nawa, Abdul-Muizz Tri Pradipto, Toru Akiyama, Tomonori
Ito, Teruo Ono, Kohji Nakamura:
”Interfacial Dzyaloshinskii-Moriya interaction and orbital magnetic moments of metallic
multilayer films”
61th Annual Conference on Magnetism and Magnetic Materials, FR-04, New Orleans,
United States of America, October–November 2016.

26. ⃝Kohei Nozaki, Kenji Nawa, Abdul-Muizz Tri Pradipto, Toru Akiyama, Tomonori Ito,
Kohji Nakamura:
”Atomic-layer alignment tuning for magnetism in Au-Fe multilayer thin-film on MgO(001)”
Symposium on Nanotechnology and Nanoscience (Division E), 09, Tsu, Japan, November
2016.

27. ⃝Takahiro Nomura, Kenji Nawa, Abdul-Muizz Tri Pradipto, Toru Akiyama, Tomonori
Ito, Kohji Nakamura:
”Systematic investigation of magnetocrystalline anisotropy in 3d, 4d, and 5d transition-
metal thin-films”
Symposium on Nanotechnology and Nanoscience (Division E), 10, Tsu, Japan, November
2016.

28. ⃝Kenji Nawa, Kohji Nakamura:
”First principles calculations for effective on-site Coulomb interaction in transition metal
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oxides and rare-earth metals”
Colloquium 2016, Oguhi Laboratory, ISIR, Osaka University, Suita, Japan, December
2016 (Seminar).

29. Arsham Ghasemi, Demie Kepaptsoglou, Kenji Nawa, Susannah Speller, Pedro Galindo,
Quentin Ramasse, Kohji Nakamura, Thorsten Hesjedal, Vlado Lazarov:
”Van der Waals interfaces: TI/superconductor and semiconductor”
Psi-k workshop on Atomic scale materials microscopy: theory meets experiment, C7,
York, United Kingdom, June 2017.

30. Keisuke Mobayashi, Kenji Nawa, Abdul-Muizz Tri Pradipto, Toru Akiyama, Tomonori
Ito, Tamio Oguchi, Kohji Nakamura:
”On-site Coulomb interaction of transition-metal monoxide thin films from linear response
theory”
Junjiro Kanamori Memorial International Symposium –New Horizon of Magnetism–, P88,
Hongo, Japan, September 2017.

31. ⃝Kenji Nawa, Toru Akiyama, Tomonori Ito, Tamio Oguchi, Michael Weinert, Kohji
Nakamura:
”Electronic structures and magnetism in organometallic molecules of 3d, 4d, and 5d
transition-metal phthalocyanines”
Psi-k CECAM Resarch Conference AB-INITIO SPIN-ORBITRONICS, P-12, Montesil-
vano, Italy, September 2017.

Domestic Conferences, Meetings, and Seminars

1. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳:
”遷移金属メタロセン分子の多重項構造の第一原理計算”
三重大学-大阪大学ジョイント研究会「第一理計算による物質設計」, 津, 2013年 9月.

2. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳:
”遷移金属メタロセン分子の多重項構造の第一原理計算”
日本物理学会 2013年秋季大会, 27pPSA-42, 徳島, 2013年 9月.

3. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳:
”遷移金属メタロセン分子の多重項構造の第一原理計算”
日本物理学会第 69回年次大会, 28pPSA-34, 湘南, 2014年 3月.

4. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳, 山田豊和:
”電子配置制御による有機金属分子設計と磁性”
新学術領域研究分子アーキテクトニクス第 3回領域会議, A03-10, 天童, 2014年 6月.

5. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳:
”遷移金属メタロセン分子の電子配置と磁気異方性”
日本物理学会 2014年秋季大会, 9pPSA-97, 春日井, 2014年 9月.

6. ⃝池浦雄志, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”希土類金属長薄膜の電子構造と磁性”
日本物理学会 2014年秋季大会, 7pPSA-79, 春日井, 2014年 9月.

7. ⃝竹田昌平, 名和憲嗣, 中村浩次, 佐野和博, 秋山亨, 伊藤智徳:
”外部電場下におけるMoS2薄膜の電子構造とキャリア分布”
日本物理学会 2014年秋季大会, 9aPS-61, 春日井, 2014年 9月.
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8. ⃝名和憲嗣:
”全電子フルポテンシャル線形化補強平面波法による強相関電子系の有効オンサイトクー
ロン相互作用パラメータの導出”
第 2回三重大学–大阪大学ジョイント研究会「第一原理計算による物質設計」, 近江八幡,
2014年 10月.

9. ⃝中村浩次, 名和憲嗣, 北岡幸恵:
”有機金属錯体の基底状態解析：拘束密度汎関数理論による d軌道電子配置に関する再考”
元素戦略CREST合同研究会「物性理論と量子化学の接点∼相対論の視点を中心として」,
神戸, 2014年 12月.

10. ⃝名和憲嗣, 北岡幸恵, 中村浩次, 秋山亨, 伊藤智徳:
”有機金属分子における強相関効果と電子配置”
千葉大学テニュアトラック教員主催セミナー「単一分子が秘める新たな可能性∼持続可
能社会実現へのキーマテリアル探索∼」, 千葉, 2015年 3月.

11. ⃝北岡幸恵, 名和憲嗣, 中村浩次:
”Feフタロシアニン分子における基底状態の電子構造と遷移”
千葉大学テニュアトラック教員主催セミナー「単一分子が秘める新たな可能性∼持続可
能社会実現へのキーマテリアル探索∼」, 千葉, 2015年 3月.

12. ⃝名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”FLAPW法による有効オンサイトクーロン相互作用の第一原理計算と磁性材料の電子構
造”
日本物理学会第 70回年次大会, 21aPS-80, 高田馬場, 2015年 3月.

13. ⃝池浦雄志, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”希土類金属超薄膜における結晶磁気異方性の第一原理計算”
日本物理学会第 70回年次大会, 21aPS-80, 高田馬場, 2015年 3月.

14. ⃝竹田昌平, 名和憲嗣, 中村浩次, 佐野和博, 秋山亨, 伊藤智徳:
”WSe2薄膜におけるバレー構造の害ば効果に関する第一原理計算”
日本物理学会第 70回年次大会, 21aPS-80, 高田馬場, 2015年 3月.

15. ⃝名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”有機金属分子メタロセン及びフタロシアニンの基底電子配置探索”
第 76回応用物理学会秋季学術講演会, 15p-2N-17, 名古屋, 2015年 9月.

16. ⃝名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”遷移金属酸化物における有効オンサイトクーロン相互作用：拘束密度汎関数理論による
再考”
日本物理学会 2015年秋季大会, 19pCM-7, 吹田, 2015年 9月.

17. ⃝池浦雄志, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳:
”希土類金属長薄膜における結晶磁気異方性の理論的予測”
日本物理学会 2015年秋季大会, 19aCG-10, 吹田, 2015年 9月.

18. ⃝竹田昌平, 名和憲嗣, 中村浩次, 佐野和博, 秋山亨, 伊藤智徳:
”希土類金属長薄膜における結晶磁気異方性の理論的予測”
日本物理学会 2015年秋季大会, 17pAH-5, 吹田, 2015年 9月.

19. ⃝伊藤貴博, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”金属薄膜におけるスピンホール効果の第一原理計算”
日本物理学会 2015年秋季大会, 16pPSA-20, 吹田, 2015年 9月.
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20. ⃝山本拳土, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”Co/Pt(111)における界面構造と結晶磁気異方性”
日本物理学会 2015年秋季大会, 16pPSA-10, 吹田, 2015年 9月.

21. ⃝名和憲嗣, 池浦雄志, 中村浩次, 秋山亨, 伊藤智徳, 小口多美夫:
”希土類金属超薄膜の結晶磁気異方性と基板効果”
科研費特別推進研究「スピンオービトロニクス」平成 27年度報告会, 2-1, 小樽, 2016年 2
月.

22. ⃝伊藤貴博, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”非対称構造を有する金属多層膜のスピンホール効果”
科研費特別推進研究「スピンオービトロニクス」平成 27年度報告会, 1-1, 小樽, 2016年 2
月.

23. ⃝山本拳土, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”2層膜における界面ジャロシンスキー・守谷相互力の第一原理計算”
科研費特別推進研究「スピンオービトロニクス」平成 27年度報告会, 3-3, 小樽, 2016年 2
月.

24. ⃝名和憲嗣, 池浦雄志, 中村浩次, 秋山亨, 伊藤智徳, 小口多美夫:
”希土類金属超薄膜における結晶磁気異方性の第一原理計算”
第 63回応用物理学会春季学術講演会, 22a-W241-4, 大岡山, 2016年 3月.

25. ⃝伊藤貴博, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”非対称構造を有する金属多層膜のスピンホール効果”
日本物理学会第 71回年次大会, 19pPSB-29, 仙台, 2016年 3月.

26. ⃝山本拳土, 名和憲嗣, 中村浩次, 秋山亨, 伊藤智徳, 小野輝男:
”2層膜における界面ジャロシンスキー・守谷相互作用の第一原理計算”
日本物理学会第 71回年次大会, 19pPSB-18, 仙台, 2016年 3月.

27. ⃝名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”希土類金属を活用した磁性制御と材料設計”
物質・デバイス領域研究拠点展開研究B「次世代スピントロニクス材料の設計と開発」研
究会, 仙台, 2016年 8月.

28. Kohji Nakamura, ⃝Kenji Nawa, Toru Akiyama, Tomonori Ito:
”Electric field effect on magnetocrystalline anisotropy, exchange stiffness, and Dzyaloshinskii-
Moriya interaction in magnetic metal thin films”
第 40回日本磁気学会学術講演会, 06aA-12, 金沢, 2016年 9月.

29. ⃝名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”希土類金属における有効オンサイトクーロン相互作用の第一原理計算”
日本物理学会 2016年秋季大会, 13pAP-12, 金沢, 2016年 9月.

30. ⃝Abdul-Muizz Tri Pradipto, Kenji Nawa, Toru Akiyama, Tomonori Ito, Teruo Ono,
Kohji Nakamura:
”Atomic layer thickness-dependence of electric field-induced modification to the magnetic
and transport properties of Fe(001) films”
日本物理学会 2016年秋季大会, 13PSA-41, 金沢, 2016年 9月.

31. ⃝伊藤貴博, 名和憲嗣, Abdul-Muizz Tri Pradipto, 秋山亨, 伊藤智徳, 小野輝男, 中村浩
次:
”金属超格子膜のスピンホール効果に対する原子層配列の役割”
日本物理学会 2016年秋季大会, 13pPSA-23, 金沢, 2016年 9月.
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32. ⃝山本拳土, 名和憲嗣, Abdul-Muizz Tri Pradipto, 秋山亨, 伊藤智徳, 小野輝男, 中村浩
次:
”3d/5d金属に二層膜における界面ジャロシンスキー・守谷相互作用力と軌道磁気モーメ
ント”
日本物理学会 2016年秋季大会, 15aAP-2, 金沢, 2016年 9月.

33. ⃝野崎航平, 名和憲嗣, Abdul-Muizz Tri Pradipto, 秋山亨, 伊藤智徳, 小野輝男, 小口多美
夫, 中村浩次:
”Fe基遷移金属薄膜/MgOにおける原子層配列と磁気的性質の第一原理計算”
日本物理学会 2016年秋季大会, 13pPSA-6, 金沢, 2016年 9月.

34. ⃝野村昂宏, 名和憲嗣, Abdul-Muizz Tri Pradipto, 秋山亨, 伊藤智徳, 小野輝男, 中村浩
次:
”3d/4d/5d金属超薄膜における結晶磁気異方性と電界効果の第一原理計算”
日本物理学会 2016年秋季大会, 15aAP-2, 金沢, 2016年 9月.

35. ⃝名和憲嗣:
”Interfacial magnetocrystalline anisotropy in ultra-thin films of rare-earth metals”
環境エネルギー応用を目指した計算マテリアルデザイン研究会, 南紀勝浦, 2016年 11月.

36. ⃝名和憲嗣, 中村浩次:
”希土類金属の電子構造と磁性に関する第一原理計算”
物質・デバイス領域研究拠点展開研究 B 第 2回「次世代スピントロニクス材料の設計と
開発」研究会, 吹田, 2016年 12月.

37. ⃝名和憲嗣, 中村浩次:
”強相関電子系材料の理論的設計に向けた有効オンサイトクーロン相互作用の第一原理計
算”
ナノテクイニシャティブ研究会「マテリアルズ・インフォマティクス・ネットワーク」,
神戸, 2017年 1月.

38. ⃝伊藤貴博, Abdul-Muizz Tri Pradipto, 名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”金属多層膜のスピンホール効果に関する原子層配列の役割”
スピンオービトロニクス特別推進研究会, 2-4, 小樽, 2017年 2月.

39. ⃝山本拳土, Abdul-Muizz Tri Pradipto, 名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”3d/5d金属薄膜における界面ジャロシンスキー・守谷相互作用の第一原理計算”
スピンオービトロニクス特別推進研究会, 2-5, 小樽, 2017年 2月.

40. ⃝野崎航平, Abdul-Muizz Tri Pradipto, 名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”遷移金属多層膜の磁気的性質と原子層配列の関係”
スピンオービトロニクス特別推進研究会, 2-6, 小樽, 2017年 2月.

41. ⃝野村昂宏, Abdul-Muizz Tri Pradipto, 名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”Fe/MgO界面磁気異方性に対する超薄膜挿入の効果”
スピンオービトロニクス特別推進研究会, 2-7, 小樽, 2017年 2月.

42. ⃝名和憲嗣, 秋山亨, 伊藤智徳, 中村浩次:
”希土類金属における有効オンサイトクーロン相互作用の第一原理的導出と電子構造”
日本物理学会第 72回年次大会, 18aC41-11, 豊中, 2017年 3月.

43. ⃝名和憲嗣:
”次世代スピントロニクス材料の設計と第一原理計算手法の開発”
卓越型リサーチセンターキックオフシンポジウム「研究の探化と地域連携の創生」, 津,
2017年 5月.

127



44. ⃝名和憲嗣, 中村浩次, 小口多美夫:
”次世代スピンエレクトロニクスに向けた有機金属錯体材料の設計：第一原理計算による
アプローチ”
第 5回アラアンス若手研究交流会 ～共同研究の輪を広げる～, P-26, 横浜, 2017年 8月.

128



　




