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ABSTRACT 
 

   The Niger Inner Delta (NID), a wetland that was selected as an International Important Wetland 

under the Ramsar Convention (on February 1st, 2004) still can be considered a hotspot of 

biodiversity in the Sahel. The Niger River as the main source of water for the NID is also used for 

urban life and irrigation. Therefore, the sustainable use of water to ensure the environmental flow 

in the NID is under discussion. Owing to climate change and population increase over the past 

three decades with a very large expansion of irrigated land upstream, the inhabitants have witnessed 

that their ecosystem is under threat (Cisse, 2009), and a significant reduction of its resources has 

occurred.  

   The main objective of this study is to develop different models to forecast efficiently the water-

level in the Niger Inner Delta, based on the climate condition and the changing river flow. 

   We evaluate the performance of different models established with empirical (Artificial Neural 

Network and Regressions) or Conceptual Variable Source Area (Water Balance Method WBM) 

approaches. The results of evaluation and validation based on determination coefficient (R2), Root 

Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) show that all the models have 

good results however the Lavenberg-Marqardt Artificial Neural Network (ANN) with 15 hidden 

layers has the best fitting for the validation and the Bayesian Regularization ANN with 80 in testing 

periods.  

   Therefore, although the WBM using Variable Source Area concept doesn’t fit as well as the other 

models, it has the merit to estimate and forecast the wet area surrounding the water body of the 

delta and the monthly outflow (𝑄𝑜𝑢𝑡) from the NID.  
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1.1. MOTIVATION AND OBJECTIVE 

   Water is a necessity for sustaining life and development of society, it is essential for agricultural 

production and food security. According to FAO Water Council, 2015 (FAO, 2015). It is the 

lifeblood of ecosystems, including forests, lakes and wetlands, on which the food and nutritional 

security of present and future generations depends on.  

   Since early 1970’s when the Sahel region faced its first major drought of the century, the Niger 

Inner Delta (NID) critical Water-Level is under stress. This situation has been aggravated when the 

second drought occurred in 1980’s, in addition to the construction of the first biggest hydro-power 

dam upstream in Selingue. Also, to mitigate the food insecurity in the country after the severe 

drought and the rapid population growth, the Malian government and its partners decided to 

accelerate the rhythm of the irrigation development projects meanly for paddy which continues 

today. All these factors lead to create a critical situation for the human and ecosystems in the 

surrounding area of the delta. 

    In 2000 the concept of Integrated Water Resources Management (IWRM) was introduced by the 

Global Water Partnership (GWP) (Agarwal, et al., 2000) as a process which promotes the 

coordinated development and management of water, land and related resources , in order to 

maximize the resultant economic and social welfare in an equitable manner without compromising 

the sustainability of vital ecosystems. Recently, a new approach emerged from FAO in support of 

food security and sustainable agriculture which is the Water-Energy-Food-Ecosystem NEXUS 

(WEF NEXUS). WEF NEXUS is a means to understand and manage “the complex interaction 

between water, energy, food and ecosystem” (FAO, 2014). The NID is one of the wetlands in the 

world facing a drastic challenge about climate change and a sustainable water resources 

management and it appear important to propose an accurate forecasting hydrologic model.  
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   Since early times, one of the main functions of Science has been to predict future events from the 

knowledge acquired from the observation of past events. (Moyal, 1949), in the realm of 

determinism, a philosophical idea that has deeply influenced scientific thought, such predictions 

are made possible by inferring cause-effect relations between events from observed regularities. 

These strictly deterministic causal relations are then synthesized into “laws of nature”, which are 

utilized to make predictions. Hydrologic Model is a simplification of real-world system (e.g. 

surface water, soil water, wetland, groundwater, estuary) that aids in understanding, predicting and 

managing water resources (Wikipedia). The history of hydrological modelling ranges from the 

Rational Method by Mulvany Thomas J. in 1851 (Mulvany, 1851) to recent distributed physically 

and statistical-meaningful models (Rosenberg, et al., 2011), (Yu, et al., 2017), (Rezaeianzadeh, et 

al., 2014), (Özgür , 2007), (Khan, et al., 2006)…..  

   Several hydrological models have been developed previously for the NID (Orange, et al., 2002), 

(Zwarts, et al., 2005), (Mahe, et al., 2009), (Kuper, et al., 2003). In recent years, with the 

development of Machine Learning, the attractiveness of Artificial Neural Network (ANN) for flood 

forecasting becomes more and more important. The use of ANNs has some advantages: first it can 

represent any arbitrary non-linear function given sufficient complexity of the trained network, 

secondly, ANNs can find relationship between different input samples and if, necessary, can group 

samples in analogous fashion to cluster analysis and most importantly ANNs are able to generalize 

a relationship from small subsets of data whilst remaining relatively robust in the presence of noisy 

or missing input, and can adapt or learn in response to changing environments (Dawson, et al., 

2009).  
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   The main objective of this thesis is to develop different models to forecast efficiently the Water-

Level in the Niger Inner Delta, based on the climate condition and the changing river flow. Two 

differents types of models will be consider:  

• Empirical Models (or Metric model), these are observation-oriented models which take 

only the information from the existing data without considering the features and processes 

of hydrological system and hence these models are also called data driven models. We will 

use the Artificial Neural Network method with three (03) different algorithms (Levenberg-

Marquardt, Bayesian Regression and Scaled Conjugate Gradient) and a statistically based 

regression methods using Gaussian Process.  

• Physically based model, which is the mathematically idealized representation of the real 

phenomenon, like the Water Balance Model using Variable Source Area (VSA) approach. 

Unlike the Empirical Models, VSA describe the transport of water inside the catchment and 

allow also to evaluate the wet area surrounding the water body. 
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1.2. OVERVIEW OF THE THESIS  

   The goal of this thesis is to provide solutions to one of the challenges associated to the 

conservation of the ecosystem in the Niger Inner Delta (NID), which is highly vulnerable to the 

climate change and availability of water resources. The specific challenge that were addressed in 

this work is to develop, compare and propose an accurate hydrological model for the NID’s Water-

Level forecasting with the least data available like the incoming water flow from upstream, the 

rainfall and the air temperatures. The thesis is organized as follows: 

   In chapter 2 reviews the previous work upon which our research draws. At its lowest abstraction, 

our work is an instance of Conceptual/Physical and Statistical/stochastic modelling apply to 

forecast the water level in the Niger Inner Delta. We will start from the historical evolution of 

physical based hydrological modelling to the recent use of Machine Learning for 

Statistical/stochastic approaches.  

   In Chapter 3 we describe the study area and the data sources, from the background of the Niger 

River and its potential in the Republic of Mali to the natural resources, climate, geology and 

hydrogeology of the Niger Inner Delta. 

   In Chapter 4 concerns the methodology, we begin by presenting a functional overview Artificial 

Neural Network, The Gaussian Process Regression concepts apply in Hydrological modelling and 

the alternative Water Balance Model using the concept of Variable Source Area. 

   In Chapter 5 the results of different hydrological models presented in chapter 4 will be given and 

these results will be discussed according to differents statistical indexes (criterions) in Chapter 6 

with the evaluation of the models for forecasting with the unused dataset (2011-2015) for the 

models’ calibration. 
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   The benchmark of the hydrological modelling goes back to early 17th century in Great Britain 

with Edmond HALLEY (1686). Halley. published two papers in 1687 and 1691 which were 

concerned with the estimation of evaporation and the relation of evaporation to the hydrological 

cycle. Halley appears to have been the first to add an estimation of the evaporation part of the 

hydrological cycle unlike the previous procedure of comparing only rainfall and runoff (Halley, 

1686). 

   As in the case of Edmond Halley, John Dalton (1766-1840) cited by (Dooge, 1974), is 

remembered in History of Science for accomplishments unconnected with the theory or practice of 

hydrology. Dalton by his estimates of rain (P) and Dew (D) on the one hand and river discharge 

(Q) and evaporation (E) on the other, obtained a tentative water balance for England and Wales. 

Such a water balance may be expressed in the form (𝑃 + 𝐷) – (𝑄) − (𝐸)  = 𝑆 + 𝐵 . Where S is 

the change of water storage and B is a residual lack of balance which arises from errors in the 

estimation. 

   In February 1851, Thomas John Mulvany presented a paper to the Institution of Civil Engineering 

of Ireland entitled ‘On the Use of Self registering Rain and Flood Gauges in Making Observations 

of the Relation of Rainfall and Flood Discharges in a given Catchment’ (Mulvany, 1851). This 

paper contains a clear formulation of the concept of time of concentration and of the method of 

estimating the peak discharges which came to be known as the Rational Method. The main 

contribution of Mulvany to the concept of hydrological cycle is to go beyond the water balance 

based. 

   According to Horton's (1933) when rainfall intensity exceeds infiltration or storage capacity 

resulting in overland flow all over the basin (Horton, 1933). This is the classical version and is 

thought to have considerable relevance in areas of low vegetation cover and high rainfall intensity. 
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Also, he found that there is a close relation between total infiltration and water-losses, or water 

utilized directly or indirectly by vegetation, and total infiltration appears to be the best available 

basis of estimating “the effective rainfall” in relation to vegetation. 

   Rosenberg et al (2011) developed and applied a hybrid approach by combining physically based 

predictors variable with statistically based prediction methods to forecast seasonal streamflow in 

California’s three (03) hydrologic regions (Rosenberg, et al., 2011).. The hybrid forecasts are 

shown to attain the skill comparable to those based on observed data when a select number of 

predictor variables are employed, and superior skill when a full set of simulated data are considered.  

   YU et al. evaluated the Autoregressive Integrated Moving Average (ARIMA) for water level 

forecasting in the middle reach of the Yangtze River (Yu, et al., 2017). The ARIMA model 

accuracy decreases as the forecasting period is extended. ARIMA is a simple way and it can provide 

an effective way only for short term water level forecasting. 

   Khan et al. used the neural network support vector machine (SVM) to predict the water level of 

the lake in Erie North America (Khan, et al., 2006). The result shown that the SVM is somehow 

competitive with the multilayer perceptron (MLP) and the conventional multiplicative 

autoregressive (SAR) with less parameters. However, the SVM learn the physics of the system, not 

only from the historical data but also from its own knowledge that is learned from the recent time; 

this may give some distorted image of the physics of the system.  

   LEE et al. used the Variable Source Area concept of the rainfall-runoff process (Lee, et al., 1976). 

This model depicts the generation of surface runoff and can be incorporated in a rainfall-direct 

runoff model and provide a workable compromise between the distributed models and lumped 

models. This model needs at least 5 routing parameters to be estimate and depend on the mean 
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slope, the distribution of drainage area, the geomorphology characteristics and watershed 

conditions. Its implementation may be difficult where there is lack of such data. 

   (Wolock, 1993) simulated the Variable-Source-Area concept of streamflow generation with the 

watershed model TOPMODEL. TOPMODEL requires the specification of soils and topographic 

parameters, watershed latitude and time series of precipitation and air temperature. The advantage 

of TOPMODEL is that in addition to streamflow, estimates overland and subsurface flow and the 

spatial pattern of the depth to the water table in the watershed. 

   (Zadeh, et al., 2010). used Artificial Neural Network (ANN) models to predict daily flows from 

Khosrow Shirin (Iran) Two activation functions: logistic sigmoid and tangent sigmoid. The 

Levenberg Marquardt (LM) algorithm was used to train the models and as result the tangent 

sigmoid has the best fitting in validation with R2=0.89 and RMSE=1.7m3/s. Therefore, this study 

doesn’t considered others training algorithm like Conjugate Gradient, Cascade correlation etc for 

error minimization and training optimization except LM. 

   (Govindaraju, 2000) under the American Society of Civil Engineering (ASCE) task Committee 

on Application of Artificial Neural Networks in Hydrology published two series of paper on the 

role of ANN in Hydrology. The two series concern the preliminary concepts (Govindaraju, 2000) 

and the application in hydrology. These papers show the strengths and limitations of ANN and 

bring out the similarities they have with other modelling approaches, such as the physical models.  

   (Özgür , 2007) made a comparison between different Artificial Neural Network (ANN) 

algorithms ( Levenberg_Marqardt, Conjugate Gradient, Cascade Correlation ) to forecast the daily 

streamflow of the North Platte River in United States. The result indicate that the 

Levenberg_Marqardt algorithm gave the best result. 
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   (Ogilvie, et al., 2015) presented a semi-automated method exploiting 526 MODIS (Moderate 

Resolution Imaging Spectroradiometers) 8-days 500m images to study the spatial and temporal 

dynamics of annual flood across the Niger Inner Delta over the period 2000-2011. They found that 

the flooded area varied between 10 300 km2 and 20 000 km2, resulting in evaporation losses ranging 

between 12 km3 and 21 km3. 

   (Ibrahim, et al., 2017) used the water balance analysis for spatio-temporal dynamics of the 

flooded area and water losses over the Niger Inner Delta (NID). He found that (i)the flooded area 

varied between 25,000 km2 in wet period and 2,000 km2 in dry period, (ii) the precipitation’s 

contributions to the NID water budget represents 12,8% of the total inflow.   
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3.1. STUDY AREA 

 

3.1.1. Background of Republic of Mali, Niger River and the Inner Delta in Mali  

   The Republic of Mali is a landlocked country in West Africa; it is the eighth-largest country in 

Africa, with an area of 1,241,190 km² and a population of approximately 17.8 million (INSTAT, 

2015). According to the UNDP report (2015), 50.6% of the population lives below the income 

poverty line ($1.25/day), and 10.8% lives in near-multidimensional poverty (Programme, 2015). 

With 80% of its population engaged in agricultural activities, this sector is the cornerstone of Mali’s 

economy and shows great potential to drive economic growth. Over 31% of the population is 

exposed to food insecurity (INSTAT-MALI, 2016); however, only 7% of 43.7 million hectares of 

arable land is currently cultivated. Potential irrigable lands that are currently developed correspond 

to 2.2 million hectares or 14% of the total (Adama, 2008). 

   Approximately half of Africa’s total wetland area comprises floodplains. These include famous 

large-scale examples, such as the Niger Inner Delta (NID) in Mali, the Okavango Delta in 

Botswana, the Sudd of the Upper Nile in Sudan and the Kafue Flats in Zambia, that cover several 

thousand square kilometers (Lemly, et al., 2000). 

   In the 1960s, the independent countries of the Niger Basin decided to coordinate their efforts in 

order to manage the natural resources of the basin, among which water is the first. The Commission 

of the Niger River was renamed the Niger Basin Authority (NBA) November 21, 1980. The 

member Countries are: Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Guinea, Mali, Niger, 

Nigeria and Chad. 
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3.1.2. Climate Conditions 

   The land-locked territory of Mali is very close to the Tropic of Cancer and it has tropical climate. 

It has distinct summer and winter months with three main seasons. The rainy season from June to 

October, the winter season between October and February, which is follow by an extremely hot 

and dry climate until June.  

   In central part of the territory where Niger Inner Delta is located, the average temperatures 

ranging between 24° and 32° Celsius. and mostly receives rainfall between June and August. 

Annual rainfall measures around 300 mm. The period of the 1960s remains rather rainy, however, 

a large rainfall deficit occurred in the 1970s and the 1980s, corresponding to the two greats drought 

period (la grande secheresse) in the Sahelian countries. For the more recent periods, there has been 

a statistical increase since the 1990s, although the level remains below the average for several years.  

3.1.3. The Niger River and its Hydrological Potential in Mali 

   The Niger is the main river in western Africa, extending about 4,185 km (2,600 mi) with 1,700 

kilometers (1,060 miles) in Mali (fig. 2). Its source driven by rainfall is located hundreds of 

kilometers upstream in southeastern Guinea highland. The total catchment area of the Niger River 

is 2,117 700 km² (817,600 sq.mi). The water discharge of Niger River fluctuates significantly, the 

reasons of this fluctuation are natural as well as man-made. 

   The Upper Niger has four dams, and three dams are currently considered for construction. The 

Sélingué dam on the Sankarani River is used for hydro-power since 1982 with a total volume of 

2.1667 km3, an effective volume of 1.9287 km3 and a design flood discharge of 3600 m3/s. The 

Sotuba dam, which is in operation since 1929, is another, very small hydropower plant, located 

directly downstream from Bamako. Because of the limited storage volume of the Sotuba dam, this 
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reservoir does not have a significant hydrological impact on the Niger river flow. The Markala dam, 

which opened in 1947, is a diversion dam just downstream of Ségou with a storage volume of 0.17 

km3. This dam is used to irrigate the area of the Office du Niger. There are two diversion dams on 

the Bani (tributary of Niger River), Talo construct in 2007 and Djenné under construction. Talo 

dam have a storage volume of 0.18 km3. In addition to the existing dams, three major dams are 

considered for construction; the Fomi dam in Republic of guinea, the Taoussa Dam in downstream 

of Niger Inner Delta in Mali and Kandadji Dam in republic of Niger.  

   To characterize the hydrological regime of the Niger River, Koulikoro station, located about 200 

km upstream from the Markala dam, was selected. This station allows to characterize the hydrology 

of the Niger River with an acceptable level of precision because it has been operating since 1907 

with continues series of data since its establishment. 

   From 1907 to 1982 the data recorded in the Koulikoro station represent the natural flow of the 

Niger River before the construction and exploitation of Sélingué dam in 1982. The dam is located 

on the Sankarani River, a tributary of the Niger river, about 200 km upstream of Koulikoro. Since 

Sankarani River contributes significantly to water supplies in the Niger River, the dam of Sélingué 

regulate the flow of the Niger River and provide water to the Office du Niger and other irrigation 

systems downstream. 

   Before Sélingué dam construction, the highest monthly flow recorded is 7 586 m³/s in 1928 and 

after the dam construction, the highest monthly flow was recorded 2001 with a value of 5 500 m³ 

/s. This dam is the only hydraulic structure currently used to regulate the river flow downstream. 

Figure 1 describes the annual average flow variation (hydraulicity) of the Niger River in Mali since 

1906 and the conditions before and after the construction of Sélingué dam. 
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3.1.4. The Niger river Inner Delta (NID) 

   All over the world the floodplains constitute the centers of bio-diversities and attract also many 

people, the NID forms no exception. Beyond the town of Ségou, the Niger River forms a vast 

inland delta, it’s about 350 km long and 100 km wide with a surface area of 41,800 km² and 

constitutes the second largest delta in Africa after Okavango Delta in Botswana (Zwarts, et al., 

2005). According to Gallais (1967), the NID is defined by the maximum extension of floodwaters 

and peripheral lakes (Gallais, 1967): 

• To the east and south by the slope of Bandiagara plateau, 

• To the west by the dead delta, an area of ancients’ deposits above the current delta, 

• To the north by a series of dunes oriented east to west   

   The NID forms several lakes after joins with its main tributary, the Bani, at Mopti; the watershed 

area of this Inner Delta covers 130,000 km² (Ibrahim, et al., 2017) as shown in fig 2. The major 

characteristic of the NID is the large variability of natural conditions between seasons and between 

years. This variability is due to the changes of flood level and the seasonal and annual variation of 

rainfall and climate conditions. 

   On 1st February 2004, to mark World Wetlands Day, Mali Authorities officially announced the 

designation of the entire NID as a Ramsar site after the Ramsar Convention Secretariat meeting in 

Gland, Switzerland, 23 January 2004.The NID then formed the third biggest Ramsar site in the 

world with an area of  4,119,500 ha (Ramsar, 2004).  
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3.1.4.1.Hydrology of the NID 

 

   The Niger river Inner Delta is one of the sub basins of the Upper Niger Basin; the water flowing 

into the NID can be observed at the Mopti hydrologic station located exactly at the meeting point 

between the mains rivers coming from the Bani catchment area and the overs sub basins of the 

Upper Niger. The total catchment area of the Bani (129,000 km2) is nearly as larger as the rest of 

the Upper Niger basin upstream of the NID (147,000 km2). The flow at Mopti station results in a 

gradual decrease of discharge mainly due to water withdrawal for agriculture, dams, reservoirs, the 

climate conditions and the recharge of aquifers (groundwater). The river loses a part of its potential 

flow between Segou, at 900 km from its source, and Tombouctou, at 1500 km, due to evaporation 

caused by the hot climate and several irrigated areas like Office du Niger (Zwarts, et al., 2005), 

(Kassambara, et al., 2018). The water supply by the Bani tributary does not compensate for the 

losses and the situation is becoming worst by the construction of two dams and the extension of 

irrigated areas. 

3.1.4.2.Geology and Hydrogeology of the NID 

 

   The Inner Delta comprises four distinct morphologic regions: the upper delta, the central delta, 

the lakes district, and the lower delta. In the NID, Quaternary and recent deposits mask the 

substratum and in particular the Eocene to Pliocene Continental Terminal. These recent deposits 

are either alluvial or dunelike Holocene ergs, with groundwater aquifers linked to the waterways 

(Andersen, et al., 2005). The Continental Terminal is a continuous stratum aquifer composed of 

clay-like sandstone, sand, and clays, with good water quality. Underneath the Continental Terminal 

and the Eocene and Cretaceous layers of these sedimentary basins lies the Continental Shale Band 

aquifer. 
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3.1.4.3.Populations and Natural Resources of the NID 

 

   In 1905 the population of NID was estimated to 83,500 inhabitants (Gallais, 1967) and the last 

General Census of the Population and the Habitat of Mali in 2009 estimated its population to 

1,100,650 inhabitants RGPH,2009 (INSTAT-MALI, 2016). In one century the NID population 

grew by a factor of 13. 

   Jean Gallais,1967conducted an Ethnological and Geographical study in the NID. According to 

this study, for centuries, the natural resources of the Inner Delta were nearly divided among the 

people according to a traditional management system call “Dina” in which the area was divided 

into grazing territories as illustrated photo 1 &4. The “Jowro” ruled the entire Dina territory and 

each sub-area were manage by a “Master of Water” and a “Master of Land”. The Master of Water 

managed the access to the fishing ground and the Master of Land did the same to the flood-plains 

when dry. In practice, the two masters managed the same area but in different seasons. The Fulani 

herders came with their cattle to graze in the flood-plain during the dry period, where the Bozo and 

Somono has been fishing some months earlier. The farmers (Marka, Bambara, Sonrhai…) planted 

rice in the rainy season just before the flood covered the area and harvest some months later during 

receding water (Zwarts, et al., 2005). After the independence of Mali from French colonial rule in 

1960, the government started to build its own administration with technical services. This new 

control system weakened the traditional way of management and created/strengthened tensions 

among the growing populations as illustrated on photo 2. A recent research conducted by a Malian 

Socio-anthropologist Modibo Galy Cisse (Cisse, 2009), show clearly the increasing of tensions 

among villages and communities mainly due to the scarcity of natural resources. Also, some 

political analysts like International Crisis Group, 2016 (Int. Crisis Group, 2016).  connect the recent 

rising of the fundamental jihadist group in the delta region even threatening the sovereignty of the 
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nation to this scarcity of resources This situation is exactly related to the concept written in 1833 

by the British economist William Forster LIyod (LLoyd , 1833) later widely known due to an article 

written by the American ecologist and philosopher Garrett Hardin in 1968 (Garrett, 1968) as “the 

tragedy of the commons”  . Hardin’s article has come to symbolize the degradation of the 

environment and the rising of conflicts to be expected whenever many individuals use a scarce 

resource in common without taking care about the interest of others. 
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Photo 3: Transport boat in the Delta                  Photo 4: Livestock breeding (Source IRD) 

 (Warburton-Lee, et al.)) 

 

 

Photo 1:The Niger Inner Delta at the dawn 

of the French Colonial rule 

 

Photo 2: Disarmament of the Fulani by 

French army officer after one of the 

uprising again their secular way of land 

management of the NID (Dina) 

(Fortier, 1915) 

https://www.google.fr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwi35aL6gvveAhUGdt4KHRycCWUQjRx6BAgBEAU&url=https://www.alamyimages.fr/photo-image-mali-delta-interieur-du-niger-un-bateau-charge-bien-sur-le-fleuve-niger-entre-mopti-et-tombouctou-17234943.html&psig=AOvVaw0uNaQoKZ3SvURIwoV3Of23&ust=1543629718679485
https://www.google.fr/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwjGz6a1g_veAhWTFYgKHQ8oCmMQjRx6BAgBEAU&url=http://projet.oss-online.org/LCD/index.php/component/tags/tag/45-delta-interieur-du-fleuve-niger&psig=AOvVaw1IA8pB5oKYkkvpYM039TFq&ust=1543629842458205
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3.2. DATA SOURCES AND DESCRIPTION 

 

   The conclusion that this study presents are based on the measurements from 1960 to 2015 of the 

Niger river flows at Mopti Hydrometric Station, the Water-Level at Akka Station located in the 

middle of the NID and the climate data from the Meteorological Station of Mopti (see table 1). The 

large area of the Niger Delta has only few hydro-meteorological stations and the spatial coverage 

is coarse, for some of them there are many missing data or not accessible easily; also, the 

hydrogeological historical data series were not available. 

   The structure and limitations of these data strongly influence the choice of the methods used. 

This section, which describes the data, is a necessary prelude to the methodology below. 

   After the data collection, we proceed to it preparation; this step is very important to create a 

successful model particularly in the case of this study where some of the data were collected 

manually by operators in-situ with many missing or mistake. Once the data is collected, its 

condition was assessed, including looking for the trends, outliers, exceptions, incorrect, 

inconsistent. 

 

3.2.1. The hydrometric data  

 

   The hydrometric data are from two gauges station, one located in the entrance of the NID at 

Mopti (14°30’N, 04°12’W) for the Inflow (𝑄𝑖𝑛) the second in the middle of the NID at Akka 

(15°24’N,04°14’W) for the Water-Level (𝐻𝑚𝑎𝑥). The Mopti gauge station was installed in 1943 

by the agriculture company Office du Niger and Akka gauge station in 1955 (Marieu, et al., 1998). 

The observations are made daily by the Malian Government Hydraulique Board and recorded in 

SIGMA the national global computerized Database for hydrology survey. 
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   From the fig 3, the distribution of the flow observed in the Mopti station from 1960 to 2015 is 

emphasized. We observed a high variability throughout the year, with a very low flow observed 

during the dry season (from February to June) and a medium flow in January and July. The high 

flow started in August and ended in December. In January, February, March, June and December, 

the flow has varied among the positive quartile; and the other months among the negative quartile. 

   The Water Level (WL)of the NID are driven mainly by the Inflow from the Upper Niger Basin 

(observed in Mopti) and the evapotranspiration due to extreme temperature. The amount of rainfall 

in the watershed is very small with an annual average ranging between 250 and 350 mm. With a 

gauge datum in Akka of 258.36 m+ above sea level, we observed a significant variation of Water 

Level (see fig 4). The maximum WL varied from 264.38 m+ in 1960’s to 262.23 m+ in 2010’s with 

a depletion in the beginning of 1980’s due to the century drought in the Sahelian region. 

 

3.2.2. The Meteorological Data  

 

   Meteorological data in terms of precipitation and air temperature are required inputs to the 

models. The data are retrieved from the Malian Meteorological Service (precipitation) and the 

website of Atmospheric Science Data Center of NASA (air temperature).(Kusterer, et al.) 

3.2.2.1.Reference evapotranspiration  

 

  The reference evapotranspiration (ET0) is acquired input to the models in term of monthly 

averages. The Blaney Criddle equation is used to compute ET0 (see eq.1) because it is a simplistic 

method when only air temperature datasets are available. When sufficient meteorological data are 

available The Penman-Monteith equation is usually preferred.  
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𝐸𝑇0 = 𝑝(0.457 𝑇𝑚𝑒𝑎𝑛 + 8.128)  ( 1 ) 

 Where: 

𝐸𝑇0is the monthly reference evapotranspiration [mm/day]  

𝑇𝑚𝑒𝑎𝑛 is the mean daily air temperature [°C] given as  𝑇𝑚𝑒𝑎𝑛 = (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2 

𝑝 is the mean daily percentage of annual daytime hours. 

3.2.2.2.Precipitation  

 

   Throughout the large area of the Niger inner Delta, we got the precipitation from only one 

gauging station, from which the dataset covers the period of our study (1960 to 2015). The fig 5 

show that from 1960 to 2015 the rainfall has the higher distribution in June, July and August; it 

varies among the positive quartile in May, June, September and October and among the negative 

quartile in July and quiet equal variation in August. 
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Table 1: Data types and sources 

 Station Source Date Data type 

1 Mopti DNH 

1
9
6
0
-2

0
1
5
 

Water Flow 

2 Mopti DNH Water-Level 

3 Mopti DNM Rainfall 

4 Akka ASDC/NASA Air Temperature., 

Note: DNH: Malian National Hydraulic Board, DNM: Malian National Meteorology Board, NASA: Atmospheric 

Science Data Center of NASA 
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Fig. 1 : Hydraulicity of the Niger river before and after Sélingué dam construction. 
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Fig. 2 : Location of the Niger Inner Delta (NID) within the Niger River Basin and the hydro-

Meteorological stations  (Ibrahim, et al., 2017). 
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Fig. 3: Box Plots of Niger River flow Distribution at Mopti Station (1960 to 2015) 
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Fig. 4: Water Level of the NID observed in Akka Station from 1960 to 2015. 
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Fig. 5 : Box Plots of Rainfall Distribution within the Rainy Saison from 1960 to 2015  

(Mopti Station) 
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   The most common methods for Niger river flow and Water Level forecasting are physical, 

conceptual and/or statistical rainfall-runoff methods (Ibrahim, et al., 2017), (Rezaeianzadeh, et al., 

2014). In recent years Artificial Intelligence (AI) as a modern approach for data series analysis has 

received a great deal of attention for hydrology modeling, including Artificial Neural Network 

(ANN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) ( (Rezaeianzadeh, et al., 2014), 

(Risley, et al., 2005), (Dawson, et al., 2001), (Xiong, et al., 2004), (MohammadKalteh, 2013), 

(Dawson, et al., 2009), (Khan, et al., 2006)). For the NID Water-Level forecasting, we have 

implemented three (03) different models based on empirical and stochastic approaches: Artificial 

Neural Network Backpropagation, the Gaussian Process Regression and Water Balance using the 

concept of Variable Source Area.  
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4.1. ARTIFICIAL NEURAL NETWORK  

 

   Artificial neural networks (ANN) are statistical learning models, inspired by biological neural 

networks (central nervous systems, such as the brain), that are used in machine learning. These 

networks are represented as system of interconnected “neurons”, which send messages to each 

other. The connections within the network can be systematically adjusted based on inputs and 

outputs, making them ideal for supervised learning. The summary of biological and artificial neural 

networks process is given below, also some correspondence in table 2. 

Biological neural networks process:  

   The biological neural circuit is a population of neurons interconnected by synapses to carry out 

a specific function (see fig 6) when activated. neural circuits interconnect to one another to form 

large scale brain networks. The connections between the neurons in the brain are much complex 

than those of artificial neurons. The basic kinds of connections between neurons are synapses, 

chemical and electric synapses. One principle by which neurons work is neural summation – 

potentials at the postsynaptic membrane will sum up in the cell body. If the depolarization of the 

neuron at the axon goes above threshold an action potential will occur that travels down the axon 

to the terminal endings to transmit a signal to other neurons.  

Artificial neural networks process:  

   The Artificial Neural Network (ANN) is made up of neurons connected to each other (see  

Fig. fig 7); at the same time, each connection of our neural network is associated with a weight that 

dictates the importance of this relationship in the neuron when multiplied by the input value (Torres, 

2018). Each neuron has an activation function (see eq.2) that defines the output of the neuron. 

https://en.wikipedia.org/wiki/Summation_(neurophysiology)
https://en.wikipedia.org/wiki/Postsynaptic_potential
https://en.wikipedia.org/wiki/Chemical_synapse
https://en.wikipedia.org/wiki/Depolarization
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Training the neural network required learning the values of parameters (weights 𝑤𝑖𝑗 and biases 𝑏𝑗) 

iteratively adapting the connection weight, until the connection defines an input-output function 

that approximates the relationship between the input and output patterns of a given training data 

(refer to eq 3-9). 

   The work flow for the general neural network design process has seven (07) primary steps for 

more details refers to (Beale, et al., 2018): 

1. Collect data 

2.  Create the network 

3. Configure the network 

4. Initialize the weight and biases 

5. Train the network 

6. Validate the network (post training analysis) 

7. Use the network 

   Step 1 might happen outside the framework of neural Network toolbox software, but this step is 

critical to the success of the design process. 
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Fig.. 6: Biological neuron 
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Fig. 7: Multilayer Neural Network Architecture 

Artificial Neural Network 

Artificial Neuron 

https://www.google.fr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiW09jrqIbfAhXSdN4KHRZzBgIQjRx6BAgBEAU&url=https://www.kdnuggets.com/2016/10/artificial-intelligence-deep-learning-neural-networks-explained.html&psig=AOvVaw3ck5HFR1l_911tmmb1n5QB&ust=1544017254814476
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Table 2: Similarity between the biological and artificial networks 

 

Biological Neural Networks Artificial Neural Networks 

Stimulus Input data 

Receptors (dendrites) Input Layer 

Neural Net Processing Layer(s) 

Neuron (cell body) Processing Element 

Effectors (Axon) Output Layer 

Response (synaptic Terminals) Output data and an entry 
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The mathematical process of ANN 

   ANN is a non-linear black box statistical/stochastic approach (MohammadKalteh, 2013); the 

main objective is to find the optimum architecture of an ANN that can model the relationship 

between input and output variables. In this study we use the MATLAB Neural Network tool® to 

train the different models. For each of the following ANN algorithms, the monthly rainfall, 

evapotranspiration and the river discharge at Mopti station were designated as predictors and the 

water level at Akka station as the predicted. 

   The most commonly used ANN structure is the feed-forward multilayer perceptron (MLP). It is 

a network formed by simple neurons called perceptron. The perceptron computes a single output 

from multiple real-valued inputs by forming combinations of linear relationships according to input 

weights and even nonlinear transfer functions (Rezaeianzadeh, et al., 2014). 

Mathematically, the Multilayer Perceptron (MLP) can be express as: 

𝑦(𝑘) = 𝑓( ∑ 𝑤(𝑘)
𝑖

𝑛
𝑖=1 ℎ(𝑘)

𝑖 + 𝑏(𝑘−1))    (1) 

Where 𝒚 is the compute value of the maximum monthly water-level (𝐻max); 𝑤𝑖 the ith connection 

weight; ℎ𝑖 is the input values in each layer 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 𝑘1: 𝐸𝑇0_𝑜𝑏𝑠, 𝑅𝑎𝑖𝑛𝑂𝑏𝑠, 𝑄max _𝑜𝑏𝑠; 

 𝑏 the neuron bias, 𝑘 the number of layer and 𝑓 the activation function. Let’s consider the target 

value of water level as 𝑦𝑡𝑎𝑟𝑔𝑒𝑡. 

The Multilayer neural network could have 𝐿 hidden layers and compute as following: 
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➢ The forward Pass: 

Layer pre-activation for 𝑘 > 0 (ℎ0(𝑥) = 𝑥) 

𝑎𝑘(𝑥) = 𝑏(𝑘) + 𝑤(𝑘)ℎ(𝑘−1)(𝑥)  (2) 

Hidden layer activation (𝑘 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝐿) 

𝑦(𝑘)(𝑥) = 𝑓(𝑎(𝑘)(𝑥))  (3) 

Output layer activation (𝑘 = 𝐿 + 1) 

𝑦(𝐿+1)(𝑥) = 𝑔(𝑎(𝐿+1)(𝑥))  (4) 

Where 𝑔 is the output layer activation function. 

Calculating the error using squared error function 

𝐸 = ∑
1

2
(𝑦𝑡𝑎𝑟𝑔𝑒𝑡  − 𝑦(𝐿+1)  )2  (5) 

➢ The back-forward Pass: 

   The goal with backpropagation is to update each of the weights 𝑤𝑘, in the network so that they 

cause the actual output to be closer the target output, thereby minimizing the error for each output 

neuron and the network. For the details about the procedure refer to Marquardt & al 1963 

(Marquardt, 1963). An exemple of script used in MATLAB ® to train the neural network in this 

study is shown in appendix 6. 

   Previous studies indicated that the Levenberg-Marquardt algorithm produces reasonable results 

for most ANN applications (Özgür , 2007), (Rezaeianzadeh, et al., 2014). For the present study we 

considered three algorithms available in MATLAB®: Levenberg-Marquardt (LM), Bayesian 

Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms. 
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4.1.1. Levenberg-Marquardt Algorithm (LM) 

 

   Levenberg-Marquardt (LM) is the most popular alternative to Gauss-Newton method for finding 

the minimum of the function 𝐹(𝑥) that is a sum of: 

𝐹(𝑥) =
1

2
∑ [𝑓𝑖(𝑥)]2𝑚

𝑖=1               (6) 

   Let the Jacobian of 𝑓𝑖(𝑥) be denoted 𝐽𝑖(𝑥), then the LM method searches in the direction given 

by the solution 𝑝 of the equation 

(𝐽𝑘
𝑇𝐽𝑘 + λ𝑘𝐼)𝑝𝑘 = −𝐽𝑘

𝑇𝑓𝑘           (7) 

Where λ𝑘 are nonnegative scalars and 𝐼 is the identity matrix. (Marquardt, 1963). 

4.1.2. Bayesian Regularization Algorithm (BR) 

 

   This algorithm uses David MacKay’s Bayesian techniques to optimize regularization which 

requires the computation of the Hessian matrix (MacKay, 1992). Typically, training aims to reduce 

the sum of squared errors 𝐸𝐷 and the regularization adds an additional term 𝐸𝑊 (Foresee, et al., 

1997). The objective term becomes: 

𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑤           (8) 

where 𝛽 and 𝛼 are the objective function parameters. 

4.1.3. Scaled Conjugate Gradient Algorithm (SCG) 

 

   The Scaled Conjugate Gradient (SCG) method, as most of the feedforward neural networks, is 

based on the gradient descent algorithm well known in optimization theory It chooses the search 

direction and the step size carefully by using information from the second order approximation. 

This algorithm is too complex to explain in few lines for more details see (Moller, 1993). 
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4.2. GAUSSIAN PROCESS REGRESSION (GPR) MODEL WITH MATLAB 

REGRESSION LEARNER  

 

   Gaussian process regression (GPR) models are kermel-based probabilistic models (Rasmussen, 

et al., 2006). A linear regression model is described as follow: 

   Consider a training dataset with 𝑛 observations  𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1,2, … . , 𝑛}  where 𝑥𝑖  is the 

input variable and 𝑦𝑖  the target. The principal goal is the estimation of output value 𝑦∗ 

corresponding to the new (test) input 𝑥∗. In the Gaussian Process Regression, it assumed that the 

observations are noisy as  

𝑦𝑖 = f(𝑥𝑖) + 𝜀             ( 9) 

Where 𝑓(𝑥𝑖) is a regression function approximated by Gaussian Process with the corresponding 

mean 𝑚(𝑥) that is often null and the covariance (or kernel) function 𝑘(𝑥𝑖, 𝑥𝑗). Also, ε the noise 

that follow the Gaussian distribution ~𝑁(0, 𝜎2). Thus, the form of the GPR model is as follow: 

𝑓(𝑥𝑖)~𝐺𝑃 (𝑚(𝑥𝑖), 𝑘(𝑥𝑖 , 𝑥𝑗))    (10) 

𝑚(𝑥𝑖) = 𝐸(𝑓(𝑥𝑖))                  (11) 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝐸 ((𝑓(𝑥𝑖) − 𝑚(𝑥𝑖)) (𝑓(𝑥𝑗) − 𝑚(𝑥𝑗)))        (12) 

𝑘 =

[
 
 
 
 
 
𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) … 𝑐𝑜𝑣(𝑥1, 𝑥𝑛)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) … 𝑐𝑜𝑣(𝑥2, 𝑥𝑛)

⋮ ⋮ … ⋮

𝑐𝑜𝑣(𝑥𝑛, 𝑥1) 𝑐𝑜𝑣(𝑥𝑛, 𝑥2) … 𝑐𝑜𝑣(𝑥𝑛, 𝑥𝑛)]
 
 
 
 
 

   (13) 

   Considering the properties of Gaussian distribution, the marginal of 𝑦 can be defined as: 
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𝑝(𝑦|𝑋) = 𝑁(𝑦|𝑓, 𝜎2𝐼)  (14) 

Where, 𝑋 is the input dataset, 𝑦 is the set of target values and 𝑓 = [𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥𝑛)] is the 

value of the stochastic function 𝑓 calculated for each input variable. There is a joint distribution 

between outputs 𝑦 and 𝑓∗ as below : 

[
𝑦
𝑓∗

] ~𝑁 (0, [
𝑘(𝑥, 𝑥) + 𝜎2𝐼 𝐾(𝑥, 𝑥∗

𝐾(𝑥∗, 𝑥) 𝐾(𝑥∗, 𝑥∗)
])  ( 15) 

Where 𝑥∗, 𝑓∗, and I are the test dataset, testing outputs and identity matrix respectively. In addition, 

𝑘(𝑥, 𝑥), 𝑘(𝑥, 𝑥∗), 𝑘(𝑥∗, 𝑥) and 𝑘(𝑥∗, 𝑥∗) are covariance matrices. 

The GPR model was fit using Matern 5/2 kernel (covariance) function defined as:  

𝐾𝑀(𝑥𝑖 − 𝑥𝑗) = 𝜎𝑓 (1 +
√5(𝑥𝑖−𝑥𝑗)

𝜎𝑙
+

5(𝑥𝑖−𝑥𝑗)
2

3𝜎𝑙
2

)𝑒𝑥𝑝 (−
√5(𝑥𝑖−𝑥𝑗)

𝜎𝑙
) (16) 

   It is expected that the points with similar predictor values 𝑥𝑖 , naturally have close response 

(target) values 𝑦𝑖. In other words, it determines how the response at one point 𝑥𝑖 is affected by 

responses at other points 𝑥𝑗, 𝑖 ≠  𝑗, 𝑖 =  1, 2, . . . , 𝑛. Where 𝜎𝑙 is the characteristic length scale, and 

𝜎𝑓 is the signal standard deviation. 

   To improve the GPR Regression model we optimized the hyperparameters automatically by 

using MATLAB® fitrgp function. This optimization involved the estimation of the following model 

parameters from the data:  

• Covariance function 𝑘(𝑥𝑖, 𝑥𝑗|𝜃) parameterized in terms of kernel parameters in vector 𝜃 

(see (Simonoff, 1998)) 

• Noise variance, 𝜎2 

• Coefficient vector of fixed basis functions, 𝛽 
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4.3. WATER BALANCE MODEL USING VARIABLE SOURCE AREA CONCEPT 

 

Runoff may occur in a uniform basin in at least four major ways: 

   (a) Rainfall intensity exceeds infiltration or storage capacity resulting in overland flow all over 

the basin. This is the classical version of Horton's (1933) (Horton, 1933) model and is thought to 

have considerable relevance in areas of low vegetation cover and high rainfall intensity. However, 

in humid temperate areas with a vegetation cover, the measured infiltration capacities of soils are 

generally high in comparison with normal rainfall intensities. In this case the Horton model of basin 

response is not applicable. 

   (b) Rainfall intensity exceeds infiltration or storage capacity on a variable area of near-saturated 

soils. This is the basis for Betson's (1964) (Betson, 1964) partial area conceptual model in which it 

is recognized that the spatially variable nature of infiltration capacities and differences in moisture 

status at the soil surface, caused by downslope flow of water, will result in some parts of the basin 

being far more likely to produce infiltration excess overland flow than others. Engman & Rogowski 

(1974) (Engman, et al., 1974) have produced a relatively simple physically based model founded 

on this concept. 

   (c) Rain falling on stream channels and completely saturated soils. Where the latter are adjacent 

to stream channels (as is common) this source of overland flow contributes directly to the storm 

hydrograph (Dunne, et al., 1970). The zone of soil saturation may extend completely from bedrock 

or may build up above a relatively impermeable layer within the soil. 

   (d) Downslope lateral flow of saturated or unsaturated soil water. Most of this flow will be within 

the soil ('subsurface storm flow'), but it may locally exceed the soil storage capacity and return to 
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flow over the surface at much higher velocities (Dunne, et al., 1970). Subsurface flow velocities 

are commonly too slow to contribute appreciably to the peak of the storm hydrographs although in 

volume terms subsurface flow may dominate the overall response of the basin in providing the 

hydrograph tail and low flows. In small humid temperate basins mechanisms (b) and (c) appear to 

be the critical sources of storm flow, with subsurface flow making a highly significant contribution 

in setting up the soil water conditions prior to further storm rainfall. These processes and their 

characteristics are thought to explain the observed nonlinearity of runoff in response to rainfall, 

and any simple physically based hydrograph model must reflect 

   this general conceptual knowledge of the mechanisms involved. A choice is available between 

an infiltration rate approach to the prediction of overland flow, as in the model of (Engman, et al., 

1974), and a soil storage based approach in which the infiltration rate is essentially considered to 

be non-limiting such that the prediction of overland flow occurs when storage capacity is exceeded. 

The latter approach has been adopted here both because it would appear to be more physically 

realistic in British basins and because it has operational advantages with respect to moisture 

accounting. 

   The water depth in the NID may be obtained using the Water Balance Model (WBM) with 

Variable Source Area (VSA) (eq. 18). The concept of Variable Source Area was introduced for the 

first time by (Hewlett, et al., 1967). (Rezaeianzadeh, et al., 2014) are also known for the 

contribution to the fundamental concept of the VSA. The VSA develop when the soil profile 

becomes saturated from below after the water table rises to the land surface.  

𝐻𝑖+1 = 𝑀𝑎𝑥(𝐻𝑖 + (𝑄𝑖+1 − 𝑄𝑜𝑢𝑡)
𝐷

𝐴1
+ (𝑅𝑖+1 − 𝐸𝑇0𝑖+1

𝐷)
(𝐴1+𝐴2)

𝐴1
, 𝛾 )     (17) 

The outflow 𝑄𝑜𝑢𝑡 is given by: 
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𝑄𝑜𝑢𝑡 = 𝛽𝑀𝑎𝑥(𝐻𝑖, 0)𝛼      (18) 

The wet soil area is given as: 

𝐴2 = 𝛿√𝐴1            (19) 

   Time, monthly maximum inflow from Mopti station upstream (𝑄𝑖), monthly rainfall (𝑅) the daily 

potential Evapotranspiration (𝐸𝑇0), the number of days for each month (𝐷), and water surface (𝐴1) 

data were fed into the spreadsheet. To estimate the maximum water level (𝐻𝑖) at various time steps 

using the eq.18-20 based on the parameters 𝛼, 𝛽, 𝛾 and 𝛿. The Generalized Reduced Gradient 

(GRG) nonlinear solving method was used to identify the parameters in Excel Solver. 
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4.4. EVALUATION AND VALIDATION 

 

   To validate and evaluate the models, Correlation Coefficient (r), squared R (R2), Root Mean 

Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were used. 

   The choice of a model can not only be relied on the indexes above, therefore Akaike Information 

Criterion (AIC) and Schwarz Criterion or Bayesian Information Criterion (BIC) were used to select 

the model based on the Sum Squared Error and number of parameters. The descriptions of each 

index are given bellow.  

 

4.4.1. Root Mean Squared Error (RMSE) 

 

   The Root Mean Squared Error (RMSE) is a measure of how well the model performed. It does 

this by measuring the differences between predicted values and the observed (or actual) values and 

represent the quadratic mean of these differences. The RMSE serves to aggregate the magnitude of 

the errors in predictions for various times into a single measure or predictive power.  The RMSE is 

computed as shown below in eq. 21: 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

𝑛
         (20) 

Where 𝑌𝑖
𝑜𝑏𝑠 is the ith observation monthly WL (𝐻max 𝑖), 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated value of monthly 

WL( 𝐻max 𝑖
𝑠𝑖𝑚 ) , 𝑌𝑚𝑒𝑎𝑛 is the mean of observed monthly WL( 𝐻max 𝑖

𝑜𝑏𝑠 ), and n is the total number of 

observations. 

4.4.2. The Nash-Sutcliffe Efficiency 

 

   The Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that determines the relative 
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magnitude of the residual variance (“noise”) compared with the measured data variance 

(“information”). The NSE indicates how well the plots of observed versus simulated data fit 

(Moriasi, et al., 2007).  

The NSE is computed as shown below in eq. 22: 

𝑁𝑆𝐸 = 1 − [
∑ (𝒀𝒊

𝒐𝒃𝒔−𝒀𝒊
𝒔𝒊𝒎)

𝟐𝒏
𝒊=𝟏

∑ (𝒀𝒊
𝒐𝒃𝒔−𝒀𝒎𝒆𝒂𝒏)

𝟐𝒏
𝒊=𝟏

]           (21) 

Where 𝑌𝑖
𝑜𝑏𝑠 is the ith observation monthly WL (𝐻max 𝑖), 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated value of monthly 

WL( 𝐻max 𝑖
𝑠𝑖𝑚 ) , 𝑌𝑚𝑒𝑎𝑛 is the mean of observed monthly WL( 𝐻max 𝑖

𝑜𝑏𝑠 ), and n is the total number of 

observations. 

4.4.3. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)  

 

   In 1969 Hirotugu AKAIKE introduced an estimator of the relative quality of statistical models 

for a given set of data call Akaike Information Criterion (AIC) (Akaike, 1969) AIC is founded on 

information theory. When a statistical model is used to represent the process that generated the 

data, the representation will almost never be exact; some information will be lost by using the 

model to represent the process (Akaike, 1974).. The less information a model loses, higher is the 

quality of that model. AIC deals with the trade-off between the goodness of fit of the model and 

the simplicity of that model.  

   When the sample size is small, there is a substantial probability that AIC will overfit. To adress 

such potential overfitting, the corrected AIC (AICc) were developed by Hurvich and Tsai, 1989 

(Hurvich, et al., 1995) : AICc is AIC with correction for small sample sizes. 

   In 1978 Gideon SCHWARZ presented an alternative approach to Akaike Information Criterion 

(Schwarz, 1978) call Bayesian Information Criterion (BIC) or Schwarz Information Criterion.  



Chapter 4: Methodology 

 

46 

 

 

Akaike Information Criterion: 

𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑜𝑔(𝑆𝑆𝐸
𝑛⁄ ) + 2 ∗ 𝑝         ( 22)  

 

Akaike Information Criterion corrected: 

𝐴𝐼𝐶𝑐 = 𝑛 ∗ 𝑙𝑜𝑔(𝑆𝑆𝐸
𝑛⁄ ) + (𝑛 + 𝑝)/(1 −

𝑝+2

𝑛
)   ( 23) 

 

Bayesian Information Criterion (BIC): 

𝐵𝐼𝐶 = 𝑛 ∗ 𝑙𝑜𝑔(𝑆𝑆𝐸
𝑛⁄ ) + 𝑝 ∗ log (𝑛)         ( 24) 

Where: 

SSE: Sum of Squared Errors for the training set; 

n: Number of training cases; 

p: Number of parameters (weights and biases). 
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   The performance of the types of model is shown in this section, the empirical models and the 

theorical models. The empirical models are based on the a-posteriori knowledge (i.e measurement) 

which concern the Artificial Neural Networks and Regression models, the theorical models deal 

with the fundamental principles of physical phenomena which are the Water Balance Model using 

Variable Source Area (WBM-VSA).   

   The monthly data from 1960 to 2010 (612 datasets) were used for the model training and 

validations, and the monthly data from 2011 to 2015 (60 datasets) for testing. The plot of simulated 

versus observed Water-Level for validation are shown in Appendix 1-5. 

5.1. ARTIFICIAL NEURAL NETWORK  

 

   Comparison between the three multilayer neural network learning algorithms has been tested to 

learn the correspondence between simulations and measurements water-level (𝐻𝑚𝑎𝑥).  

   During the training process it’s very important to choose the best feature of hidden layer and 

there is still a continuing debate on the selection strategies, one area of agreement suggesting that 

the number of hidden neurons (layers) should be directly relate to the number of inputs and outputs 

(Curry, et al., 2006). Several researchers proposed many approaches to fix the number of hidden 

neurons in neural network  (Sheela, et al., 2013), (Tamura , et al., 1997) .The approaches can be 

classified into constructive and pruning approaches. The constructive approach starts with 

undersized network and then adds additional hidden neurons. The pruning approach starts with 

oversized network and then prunes the less relevant neuron and weights to find the smallest size. 

The problems of proper number of hidden neurons are to be fixed (Li, et al., 1995). The constructive 

approach has been chosen to find the best hidden layer for each algorithm the result is shown in 

table 3 and fig 8. 
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   The performances of the learning algorithms are evaluated by comparing the number of epochs 

which is the number of iterations through forward pass and backward pass for all the batch size 

(data set) and the Root Mean Squared Error (refer to Table table 3). The result show that during 

training process, Bayesian Regularization (BR) algorithm has the best performance with the 

smallest RMSE =37.32 cm which is reached at the epochs 359  with 80 hidden layers, follow by 

Levenberg-Marquardt (LM) algorithms RMSE =37.45 cm reached at epochs 13 with 40 hidden 

layers and the Scaled Conjugate Gradient (SCG) has a RMSE= 48.61 cm and required 50 epochs 

with 20 hidden layers. 

   At this point we can say that the BR algorithm gives more accurate results and as we used 

constructive approach, the trend of the error follows smoothly the increase of the number of hidden 

neurons compare to LM and SCG algorithm (see fig 8). but we must consider the fact that LM 

algorithm although less accurate than BR, was the fastest during training process. The choice of a 

best model cannot be relied only on this index; therefore, AIC and BIC indexes are been used for 

all the models developed, refer to the point 4.4.3 for more informations. 

   The architecture of the Feed-Forward Neural Network Architecture for Bayesian Regularization 

with 80 hidden layers is shown in fig 16 below as example. The parameters (weights and biases) 

and the model algorithm are shown in Appendix 7. 

   For validation we used the same input data as for training process (i.e. from 1960 to 2010) and 

we choose for each algorithm the model given the smallest RMSE based on the number of hidden 

neurons. The objective of this study is not to evaluate the speed of training based on the epochs 

(iterations) therefore we didn’t consider this parameter.  
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   Figures 9-11 show the scatter plots of the observed monthly water-level versus the simulated 

monthly water-level for the validation. We can see from these plots that Levenberg-Marqardt 

algorithm with 40 hidden layers (LM_40) and Bayesian Regularization algorithm with 80 hidden 

layers (BR_80) have the same coefficient R2 but only this criterium and RMSE are not enough to 

judge a model, therefore more discussion with others criterium has been considered (see point 6.1). 
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5.2. GAUSSIAN PROCESS REGRESSION (GPR) MODEL WITH MATLAB 

REGRESSION LEARNER 

 

   For the NID Water Level prediction with Gaussian Process Regression, the Matern 5/2 was 

chosen as the appropriate kernel function which present the best RMSE over three functions 

(Rational quadratic, exponential, squared exponential) after training with MATLAB® Regression 

Learner; for more details see the eq. 10 to 17. The related parameters for the Matern 5/2 Kernel 

Regression were acquired and the models were optimized using MATLAB® Regression 

optimization function to enhance the prediction quality. The optimization required 30 iterations (or 

number of function evaluations with differents parameters) to reach the feasible point (see fig 12 

and 13Fig. ). The estimated objective function value reach was 7.8116 which represents the loss. 

The values of differents parameters are shown in table 4. 

   To validate the GPR Regression optimized model we use the data from 1960 to 2010. The scatter 

plot of the simulated versus observed monthly maximum water-level 𝐻𝑚𝑎𝑥 at Akka with the GPR 

Regression matern 5/2 function is shown in fig 14. 
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5.3. WATER BALANCE MODEL USING VARIABLE SOURCE AREA CONCEPT 

 

   The model developed here is an amalgam of Variable Source Area ideas with the water balance 

concept.  

   Monthly conceptual water balance model aims to simulate the selected hydrological processes 

usually by conceptualizing the catchment as an assemblage of interconnected storage through 

which water passes from inputs as rainfall and discharges from upstream catchments recorded at 

Mopti station to outputs as streamflow at the catchment outlet; the controlling equations satisfy the 

water balance requirement. However, the processes occurring in the watershed like infiltration and 

the influence of groundwater etc. were difficult to use because of lack of data, then we decided to 

use the Variable Source Area concept in attempting to model the response of the basin (see eq. 18-

20).   

   The model used monthly maximum inflow from Mopti station upstream (𝑄𝑖), monthly rainfall 

(𝑅) the daily potential Evapotranspiration (𝐸𝑇0), Number of day for each month (𝐷), pond water 

surface (𝐴1) and the wet area surrounding the water body surface (𝐴2),  to estimate the maximum 

water level (𝐻𝑖) at various time steps 

   To calibrate the model, the Generalized Reduced Gradient (GRG) nonlinear solving method was 

used to identify the parameters in Excel® Solver. We assumed that the maximum value of water 

body surface (𝐴1) is 15,900 km2 according to (Zwarts, et al., 2005) corresponding to the maximum 

water-level (504 cm) recorded at Akka station since 1960.The values of the model calibrated 

coefficients are shown in Table table 4. 

• For the outflow 𝑄𝑜𝑢𝑡= 228.73𝑀𝑎𝑥(𝐻𝑖, 0)1.28 , 

• the wet area surrounding the water body: 𝐴2 = 59.19√𝐴1 (1) 
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• And finally, the Water-Level at time step (t+1): 

 𝐻𝑖+1 =𝑀𝑎𝑥(𝐻𝑖 + (𝑄𝑖+1 − 𝑄𝑜𝑢𝑡)
𝐷

𝐴1
+ (𝑅𝑖+1 − 𝐸𝑇0𝑖+1

𝐷)
(𝐴1+𝐴2)

𝐴1
, 0.32 ) 

   Scatter plot of Observed versus Simulated WL Water Balance Model (WBM) is shown in fig 15 

with R2=0.8943. 
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Table 3: Performance of ANN algorithms during training process with different hidden layers 

Hidden 

layers 

Levenberg-Marquardt Bayesian 

Regularization 

Scaled Conjugate 

Gradient 

 RMSE Best Epoch RMSE Best Epoch RMSE Best Epoch 

1 59.82 18 59.72 9 61.10 27 

2 56.40 38 48.55 69 57.87 24 

3 48.04 36 46.58 60 60.93 29 

5 48.37 9 45.21 76 52.56 34 

10 46.15 15 40.50 303 51.51 25 

15 39.44 28 39.90 665 56.72 25 

20 45.31 6 39.91 127 48.61* 50 

40 37.45* 13 37.61 296 51.10 44 

80 38.10 8 37.32* 359 52.77 55 

*: Minimal Root Mean Squared Error 
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Table 4: GPR Regression Matern 5/2 training parameters after optimization 

Parameters Symbols Value 

 characteristic length scale 𝜎𝑙 2.5609 

Signal standard deviation 𝜎𝑓 443.1169 

Noise variance 𝜎 42,64 

Coefficient β 𝛽 93.12 

estimated objective function value 𝜀 7.8116 
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Table 5: Calibration parameters for Water Balance Model using Variable Source Area 

Parameters Symbols Value Equations 

Coefficient for Outflow  𝑄𝑜𝑢𝑡 

𝛼 1.29 Qout = βMax(Hi, 0)α 

𝛽 228.73 

Coefficient for surrounding wet 

area  𝐴2 

𝛿 59.19 
A2 = δ√A1 

Water-Level at time step (t+1) 

𝐻𝑖+1 

γ 0.32 

𝐻𝑖+1 = Max(Hi + (Qi+1 − Qout)
D

A1

+ (Ri+1 − ET0i+1
D)

(A1 + A2)

A1
, γ) 
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Fig. 8: Root Mean Squared Error by number of hidden neurons and algorithm 
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Fig. 9: Scatter plot of Observed versus Simulated WL Levenberg-Marquardt with 40 hidden 

layers (ANN ML) 
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Fig.10: Scatter plot of Observed versus Simulated WL Bayesian Regularization with 80 hidden 

layers (ANN BR) 
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Fig.11: Scatter plot of Observed versus Simulated WL Scaled Conjugated Gradient with 20 

hidden layers (ANN SCG) 
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Fig. 12: Min objective vs Number of functions evaluation 
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Fig. 13:: Objective function model after optimization 
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Fig. 14: Scatter plot of Observed versus Simulated WL Gaussian Process Regression (GPR) 

 

 

 

y = 0.9803x

R² = 0.9427

0

100

200

300

400

500

600

0 100 200 300 400 500 600

H
m

a
x_

S
im

 (
cm

)

Hmax_Obs(cm)

(d)Hmax_MatReg_GPR



Chapter 5: Results 

 

64 

 

 

Fig. 15: Scatter plot of Observed versus Simulated WL Water Balance Model (WBM). 
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6.1. MODELS PERFORMANCE COMPARISON AFTER CALIBRATION 

 

   There is no single criterion which will play the role of a panacea in statistical model selection 

problems. Instead to use only the traditional criterion like RMSE, NSE and R2, the Akaike 

Information Criterion (AIC), the Akaike Information Criterion corrected (AICc) and Bayesian 

Information Criterion (BIC) approaches were also used to evaluate each model (see 4.4.3.Error! 

Reference source not found.) ; these statistical criterions take account both the Sum Squared Error 

(SSE) and the number of parameters (p) used for the model calibration (see eq. 23-25).    The use 

of the Akaike Information Criterion corrected (AICc) for model selection is firmly based on a 

fundamental theory. When the number of parameters (𝑝) is large relative to sample size (𝑛) and 

should be used unless  𝑛 𝑝⁄ > 40 for the model with the largest value of 𝑝 (Hurvich, et al., 1995). 

In this study we found that ANN LM_1, ANN BR_1, ANN BR_2, ANN SCG_1, GPR and WBM 

satisfied this condition. Therefore, the value of AIC for these models have been compute with the 

alternative formula (AICc). 

   By comparing only, the minimal values of each type of algorithm the results show clearly that 

the Levenberg-Marquardt has the minimal values for AIC (3297.65 with 15 hidden layers) and BIC 

(3411.42 with 3 hidden layers). Therefore, the RMSE for Bayesian Regularization (80 hidden 

layers) has the minimal value and slightly inferior to Levenberg -Marqardt’ s RMSE with 

respectively 37.32 cm and 37.45 cm. The values of each criterion are shown in Appendix 8 and fig. 

17-19 below.  

   From WBM we estimate during calibration process (data from 1960 to 2010) the monthly 

average  variation of water body area (𝐴1 = 1,866~15,964 𝑘𝑚2 ) and wet area surrounding the 

water body ( 𝐴2 = 2,573~7,525 𝑘𝑚2  ) for a total flooded area size (A =
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4,438~23,480 𝑘𝑚2 ) .The inflow fluctuated much more than the outflow due to the presence of 

several lakes in the delta; the monthly outflow varied significantly over a year 𝑄𝑜𝑢𝑡 =

54 ~ 1,859 𝑚3 𝑠⁄  . The plot of comparison between the monthly measured incoming discharge 

Qinobs and simulated outgoing discharge Qoutsim is shown in fig 21. 

6.2. MODELS COMPARISON FOR PREDICTION 

 

   In order to compare the efficiency of each model for prediction, the dataset from 2011 to 2015 

were chosen. The reference evapotranspiration, the rainfall and the flow were chosen like input 

data to compute the maximum monthly water-Level (𝐻𝑚𝑎𝑥). The performance indexes from the 

results of the differents models (see table 6) indicate that the Artificial Neural Network with ANN 

Bayesian Regularization’s algorithm has the minimal value of RMSE =40.24 cm follow by the 

Gaussian Process Regression with RMSE=40.56 cm and ANN Levenberg-Marqardt with RMSE= 

42.89 cm, also these models simulated water-level are the most correlated to the observed data and 

the maximum Nash-Sutcliffe Efficiency (NSE) as seen in table 6. As illustration, the plots of 

monthly Water-Level (WL) predicted with different models during the testing period (2011-2015) 

with the observed values of WL at Akka Station is shown in fig 22. Although, the WBM doesn’t 

fit well as the other models for the water-level prediction for the validation period (see fig. 15), it 

allows to investigate some internal process occurring in the watershed. 

   The NID watershed behavior was evaluated with the Variable Source Area concept (Water 

Balance Model) in terms of variability of the inflow, the Rainfall-Runoff response and the change 

of wet soil surrounding the water body. The rainfall has few impacts on the delta, it represents only 

13% of the total monthly average incoming water flow. The scatter plot of the water depth and the 

ratio of the areas size ( 𝐴2/𝐴1) indicate that the water-level for the wet area to respond is 270 cm 

(2.7 m) as shown in fig 20.Fig.. 
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Table 6: Performance indexes of differents models during testing period (2011-2015) 

  Correl Coef ( r ) R2 NSE RMSE (cm) 

Hmax_LM_15 0.974 0.939 0.94 42.889 

Hmax_BR_80 0.975* 0.944* 0.95* 40.235* 

Hmax_SCG_3 0.961 0.934 0.91 45.426 

Hmax_Mat_GPR 0.970 0.942 0.91 40.556 

Hmax_WBM 0.964 0.904 0.84 50.801 
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Fig. 16: Feed-Forward Neural Network Architecture for Bayesian Regularization 

 with 80 hidden layers 
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Fig.17: Root Mean Squared Error for differents models after calibration 
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Fig. 18: Akaike Information Criterion for differents models after calibration 
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Fig.19: Bayesian Information Criterion for differents models after calibration 
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Fig.20: Relation of water depth H and area size ratio A2/A1 
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Fig.21: Comparison between the observed incoming discharge Qin(obs) and simulated outgoing discharge Qout(sim) 

from 1960 to 2010 
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Fig. 22: Water-Level (WL) predicted with different models versus WL observed at Akka Station (2011-2015) 
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6.1.  CONCLUSIONS 

 

   The accuracy of different models for forecasting the maximum monthly water level of the Niger 

River Inner Delta was investigated using different statistical/stochastic methods with the input data 

of maximum monthly water inflow discharge ( 𝑄𝑚𝑎𝑥 )in Mopti station, the monthly Rainfall ( 𝑅 ) 

and Reference Evapotranspiration ( 𝐸𝑇0.) From the results, the Artificial Neural Network (ANN) 

model with Bayesian Regularization algorithm has the minimal error to predict the water level of 

the Inner Niger Delta. However, the ANN Levenberg-Marqardt, the ANN Scaled Conjugate 

Gradient and the Gaussian Process Regression accuracies are close to ANN Bayesian 

Regularization.  

   Although, the ANN Bayesian Regularization gives the best fitting results, it doesn’t allow to 

estimate all the internal process occurred in the watershed in opposite to the physically-based Water 

Balance Model using Variable Source Area. From WBM the wet area surrounding the water body 

of the delta (𝐴2 = 5,900~9,381 𝑘𝑚2 ) and the monthly outflow (𝑄𝑜𝑢𝑡) were estimate. The inflow 

fluctuated much more than the outflow due to the presence of several lakes in the delta. 

   Owing the lack of climate data throughout the large area of the NID with 40,000 km2 (only one 

station), the WBM couldn’t compute accurately, therefore the ANN is a best alternative to 

overcome this issue. 

   After the major droughts in the 1970s and 1980s, rainfall in the Inner Delta region has improved 

over the last decade. This condition, however, remains fragile as it has been impacted by climate 
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change and the rapid expansion of dams’ construction and irrigation. The use of the new IT 

technology of Artificial Intelligence to develop an accurate hydrological model to forecast the 

seasonal and inter-annual Water-Level in the NID could be good tool for engineers and 

policymakers in order to make a balance between development project (irrigation, hydropower, 

etc..) and the sustainability of the NID wetland on which millions of people and wildlife depends.  
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6.2. SUMMARY 

 

   The aim of this graduation thesis Hydrological Modelling for the Conservation of the Niger Inner 

Delta in Mali is to test different approaches for forecasting the Water-Level of the Niger Inner 

Delta (NID). This delta is the third biggest wetland under RAMSAR convention and constitute a 

habitat for various biodiversity and a livehood for millions of people through fishery, farming, 

animal breeding etc.…. The traditional Water Balance Models for hydrological forecasting 

required many input data and some of those data are missing or difficult to get in the area of NID 

like groundwater, water withdrawal flows for agriculture and urban life, soils feature for infiltration 

etc... To overcome these issues, alternatives ways of hydrological modelling were investigated: 

Artificial Neural Network (ANN), Gaussian Process Regression (GPR) statistical model and Water 

Balance Model (WBM) using Variable Source Area concept. 

…In this study we were able to: 

1. Understand the context of the study area, not only in term of scientific prospective, but also 

in term of socio-economic situation through litterature reviews and our own experiences in-

situ; 

2. Collect and prepare the data from different sources (assessed its condition including looking 

for the trends, outliers, exceptions, incorrect, inconsistent) for the hydrological modelling. 

3. Develop and calibrate differents type of hydrology models from the most physical based 

Water Balance Model to the most stochastic Artificial Neural Network in order to forecast 

the Water-Level of the Niger Inner Delta.  

4. Compare and test the develop hydrological models based on differents evaluation criterions 

like RMSE, NSE, AIC, AICc and BIC.  
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   From the results: 

1. The ANN model with Bayesian Regularization algorithm has the minimal error to predict the 

water level of the Inner Niger Delta. However, the ANN Levenberg-Marqardt, the ANN 

Scaled Conjugate Gradient and the Gaussian Process Regression accuracies are close to ANN 

Bayesian Regularization.  

2. Although, the ANN Bayesian Regularization gives the best fitting results, it doesn’t allow to 

estimate all the internal process occurred in the watershed in opposite to the physically-based 

Water Balance Model using Variable Source Area. From WBM the wet area surrounding the 

water body of the delta (𝐴2 = 5,900~9,381 𝑘𝑚2 ) and the monthly outflow (𝑄𝑜𝑢𝑡) were 

estimate 

3. Owing the lack of climate data throughout the large area of the NID with 40,000 km2 (only 

one station), the WBM couldn’t forecast accurately its the Water-Level , therefore the ANN 

is a good alternative to overcome this issue. 

 

   The use of the new IT technology of Artificial Intelligence to develop an accurate hydrological 

model to forecast the seasonal and inter-annual Water-Level in the NID could be a good tool for 

engineers and policymakers in order to make a balance between development project (irrigation, 

hydropower, etc..) and the sustainability of the NID wetland on which millions of people and 

species depends. 
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Appendix 1: plots of Observed Maximum Water-Level (Hmax_Obs) VS Calculated Maximum Water-Level with Levenberd Marqardt 

(Hmax_LM) 
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Appendix 2:plots of  Observed Maximum Water-Level (Hmax_Obs) VS Calculated Maximum Water-Level with Bayesian 

Regularization (Hmax_BR) 
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Appendix 3: plots of  Observed Maximum Water-Level (Hmax_Obs) VS Calculated Maximum Water-Level with Scaled Conjugate 

Gradient (Hmax_SCG) 
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Appendix 4: plots of Observed Maximum Water-Level (Hmax_Obs) VS Calculated Maximum Water-Level with Gaussian Process 

Regression (Hmax_GPR) 
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Appendix 5: plots of  Observed Maximum Water-Level (Hmax_Obs) VS Calculated Maximum Water-Level with Water Balance Model 

using Variable Source Area(Hmax_WBM) 
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Appendix 6: Autoregression Problem with External Input with a NARX Neural Network Script 

for Bayesian Regularization feedforward  

 
% This script assumes these variables are defined: 
% 
%   NN_Input - input time series. 
%   NN_Target - feedback time series. 

  
X = tonndata(NN_Input,true,false); 
T = tonndata(NN_Target,true,false); 

  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = ' trainbr ';  % Bayesian Regularization backpropagation. 

  
% Create a Nonlinear Autoregressive Network with External Input 
inputDelays = 1:2; 
feedbackDelays = 1:2; 
hiddenLayerSize = 80; 
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 

  
% Choose Input and Feedback Pre/Post-Processing Functions 
% Settings for feedback input are automatically applied to feedback output 
% For a list of all processing functions type: help nnprocess 
% Customize input parameters at: net.inputs{i}.processParam 
% Customize output parameters at: net.outputs{i}.processParam 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

  
% Prepare the Data for Training and Simulation 
% The function PREPARETS prepares timeseries data for a particular network, 
% shifting time by the minimum amount to fill input states and layer 
% states. Using PREPARETS allows you to keep your original time series data 
% unchanged, while easily customizing it for networks with differing 
% numbers of delays, with open loop or closed loop feedback modes. 
[x,xi,ai,t] = preparets(net,X,{},T); 

  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivision 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'time';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 

  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 



Appendixes 

 

VII 

 

net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', ... 
    'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'}; 

  
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 

  
% Test the Network 
y = net(x,xi,ai); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 

  
% Recalculate Training, Validation and Test Performance 
trainTargets = gmultiply(t,tr.trainMask); 
valTargets = gmultiply(t,tr.valMask); 
testTargets = gmultiply(t,tr.testMask); 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 

  
% View the Network 
view(net) 

  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotresponse(t,y) 
%figure, ploterrcorr(e) 
%figure, plotinerrcorr(x,e) 

  
% Closed Loop Network 
% Use this network to do multi-step prediction. 
% The function CLOSELOOP replaces the feedback input with a direct 
% connection from the outout layer. 
netc = closeloop(net); 
netc.name = [net.name ' - Closed Loop']; 
view(netc) 
[xc,xic,aic,tc] = preparets(netc,X,{},T); 
yc = netc(xc,xic,aic); 
closedLoopPerformance = perform(net,tc,yc) 

  
% Multi-step Prediction 
% Sometimes it is useful to simulate a network in open-loop form for as 
% long as there is known output data, and then switch to closed-loop form 
% to perform multistep prediction while providing only the external input. 
% Here all but 5 timesteps of the input series and target series are used 
% to simulate the network in open-loop form, taking advantage of the higher 
% accuracy that providing the target series produces: 
numTimesteps = size(x,2); 
knownOutputTimesteps = 1:(numTimesteps-5); 
predictOutputTimesteps = (numTimesteps-4):numTimesteps; 
X1 = X(:,knownOutputTimesteps); 
T1 = T(:,knownOutputTimesteps); 
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[x1,xio,aio] = preparets(net,X1,{},T1); 
[y1,xfo,afo] = net(x1,xio,aio); 
% Next the the network and its final states will be converted to 
% closed-loop form to make five predictions with only the five inputs 
% provided. 
x2 = X(1,predictOutputTimesteps); 
[netc,xic,aic] = closeloop(net,xfo,afo); 
[y2,xfc,afc] = netc(x2,xic,aic); 
multiStepPerformance = perform(net,T(1,predictOutputTimesteps),y2) 
% Alternate predictions can be made for different values of x2, or further 
% predictions can be made by continuing simulation with additional external 
% inputs and the last closed-loop states xfc and afc. 

  
% Step-Ahead Prediction Network 
% For some applications it helps to get the prediction a timestep early. 
% The original network returns predicted y(t+1) at the same time it is 
% given y(t+1). For some applications such as decision making, it would 
% help to have predicted y(t+1) once y(t) is available, but before the 
% actual y(t+1) occurs. The network can be made to return its output a 
% timestep early by removing one delay so that its minimal tap delay is now 
% 0 instead of 1. The new network returns the same outputs as the original 
% network, but outputs are shifted left one timestep. 
nets = removedelay(net); 
nets.name = [net.name ' - Predict One Step Ahead']; 
view(nets) 
[xs,xis,ais,ts] = preparets(nets,X,{},T); 
ys = nets(xs,xis,ais); 
stepAheadPerformance = perform(nets,ts,ys) 

  
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x,xi,ai); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    x1 = cell2mat(x(1,:)); 
    x2 = cell2mat(x(2,:)); 
    xi1 = cell2mat(xi(1,:)); 
    xi2 = cell2mat(xi(2,:)); 
    y = myNeuralNetworkFunction(x1,x2,xi1,xi2); 
end 
if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
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Appendix 7: Parameters of the Bayesian Regularization Neural Networks with 80 hidden layers 

Weights  Biases 

IWi,j   LWi  b 

-0.0115 -0.0516 -0.0451  0.22205  -0.20438 

0.96608 -1.8754 -1.505  -2.2321  -2.760043 

0.01079 0.0486 0.04333  -0.2062  0.190028 

0.00384 0.0176 0.01824  -0.0717  0.0667605 

0.01103 0.04968 0.04396  -0.2116  0.1949755 

0.01103 0.04967 0.04396  -0.2116  0.1949295 

-0.0089 -0.0401 -0.0377  0.16624  -0.153744 

-0.0111 -0.05 -0.0441  0.21318  -0.196367 

-0.0115 -0.0519 -0.0452  0.22333  -0.205538 

-1.7861 -2.4364 2.00897  -1.1331  1.0332717 

0.01123 0.05059 0.04448  -0.2164  0.1992475 

0.01133 0.05103 0.04473  -0.2187  0.2013653 

-0.9837 0.94616 -0.7147  -1.7216  0.8395833 

-3.1889 0.83658 -1.5709  -0.7222  0.2396011 

-0.0109 -0.0493 -0.0437  0.2095  -0.193033 

-0.011 -0.0496 -0.0439  0.21149  -0.194838 

-0.2937 0.21215 -2.9537  -2.5355  -2.820479 

0.01095 0.04932 0.04375  -0.2098  0.1933394 

0.01107 0.04984 0.04406  -0.2125  0.1957331 

-0.0107 -0.0481 -0.043  0.20387  -0.187942 

-0.0085 -0.0384 -0.0365  0.15901  -0.147144 

0.01135 0.05113 0.04479  -0.2193  0.201862 

-0.0108 -0.0488 -0.0435  0.20722  -0.190973 

-0.0116 -0.0525 -0.0455  0.22648  -0.208381 

-0.012 -0.0544 -0.0465  0.23783  -0.218622 

-0.0111 -0.05 -0.0442  0.21341  -0.196577 

-0.0076 -0.0346 -0.0335  0.14243  -0.131974 

0.00999 0.04502 0.04108  -0.1888  0.1742405 

0.01084 0.04883 0.04347  -0.2074  0.1910902 

0.01094 0.04928 0.04373  -0.2096  0.1931331 

0.0104 0.04686 0.04226  -0.1976  0.1822416 

-0.0105 -0.0472 -0.0425  0.19922  -0.183724 

-0.9198 -0.2339 -1.7895  1.45315  -1.577963 

0.41175 -1.7875 1.41139  -0.895  -0.93071 

0.01096 0.04934 0.04377  -0.2099  0.1934361 

-0.0023 -0.0107 -0.0112  0.04351  -0.040533 

-0.0105 -0.0475 -0.0426  0.2006  -0.18498 

0.53119 -1.1518 -3.7332  1.70934  -3.886972 

-0.0106 -0.0478 -0.0429  0.20233  -0.186546 

-0.0015 -0.0069 -0.0073  0.02813  -0.026214 

1.42796 -0.2078 -1.6482  1.06555  -0.844971 

0.01022 0.04604 0.04174  -0.1936  0.178638 

-1.6486 0.45556 -0.5669  1.74352  -0.387602 
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Weights  Biases 

IWi,j   LWi  b 

-0.0047 -0.0216 -0.0221  0.08821  -0.082022 

0.01119 0.05041 0.04438  -0.2155  0.1984383 

0.01146 0.05162 0.04506  -0.2219  0.2042478 

-1.2812 -1.1742 2.0914  1.73024  1.0669447 

0.01003 0.04517 0.04118  -0.1895  0.1749125 

0.0095 0.04283 0.03962  -0.1786  0.1650325 

0.00178 0.00821 0.00867  -0.0334  0.0311334 

-1.2428 -2.586 -1.3165  1.85376  -2.947922 

-0.0113 -0.0511 -0.0448  0.21896  -0.201594 

-0.0105 -0.0473 -0.0426  0.19993  -0.184373 

-0.0085 -0.0384 -0.0364  0.15886  -0.147006 

0.01178 0.05317 0.04588  -0.2305  0.2119977 

-0.0106 -0.0477 -0.0428  0.20164  -0.185919 

0.00661 0.03004 0.02972  -0.1231  0.1141927 

-0.0105 -0.0474 -0.0426  0.20013  -0.184551 

0.00343 0.01574 0.01639  -0.0641  0.0596931 

0.01129 0.05085 0.04463  -0.2177  0.2004865 

-2.5443 0.36851 -1.5094  -1.5266  -1.53327 

0.01095 0.0493 0.04374  -0.2097  0.1932074 

-0.6543 -3.2171 -0.6493  -3.3582  -4.143373 

0.01119 0.0504 0.04438  -0.2154  0.1983663 

0.01115 0.0502 0.04426  -0.2144  0.1974326 

-1.2375 1.46881 0.29563  0.82524  0.6191186 

-0.0112 -0.0504 -0.0444  0.21519  -0.19818 

0.01154 0.05202 0.04527  -0.224  0.2061818 

0.00754 0.03419 0.03317  -0.1406  0.1303001 

0.01131 0.05094 0.04468  -0.2182  0.2009425 

0.01067 0.04805 0.04299  -0.2034  0.1875246 

0.01109 0.04994 0.04411  -0.213  0.1961799 

-0.0116 -0.0523 -0.0454  0.22541  -0.207418 

-0.0114 -0.0512 -0.0448  0.21952  -0.202093 

-0.0091 -0.0411 -0.0384  0.17092  -0.158007 

0.01171 0.05283 0.0457  -0.2285  0.2102399 

0.00803 0.03634 0.03487  -0.1499  0.1387735 

0.66008 0.78999 -1.2981  -0.952  0.1908142 

0.01157 0.05218 0.04536  -0.2249  0.2069867 

0.01003 0.04518 0.04119  -0.1896  0.1749618 
      -0.981773 
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Appendix 8: Models training performance indexes 

Hidden 

Layers 

Levenberg-Marqardt Bayesian Regularization 
Scaled Conjugate 

Gradient 
GPR WBM 

SSE n p SSE n p SSE n p SSE n p SSE n p 

1 1531459.62 428 6 1854811.11 520 6 1597675.72 428 6 1100155.73 612 5 2208531.62 610 4 

2 1361592.77 428 11 1225846.52 520 11 1433458.08 428 11       

3 987786.40 428 16 1128300.48 520 16 1588696.63 428 16       

5 1001434.75 428 26 1062629.94 520 26 1182222.11 428 26       

10 911378.72 428 51 852883.11 520 51 1135614.06 428 51       

15 665826.27 428 76 827958.21 520 76 1376715.62 428 76       

20 878556.95 428 101 828301.57 520 101 1011220.26 428 101       

40 600129.93 428 201 735619.62 520 201 1117642.89 428 201       

80 621370.89 428 401 724181.99 520 401 1191931.97 428 401       

 

  Levenberg-Marqardt Bayesian Regularization Scaled Conjugate Gradient 

H.L AIC_LM n/p BIC_LM RMSE_LM AIC_BR n/p BIC_BR RMSE_BR AIC_SCG n/p BIC_SCG RMSE_SCG 

1 3944.4 71 3538.5 59.8 4787.5 86 4290.8 59.7 3962.5 71 3556.6 61.1 

2 3473.8 38 3518.5 56.4 4582.6 47 4106.8 48.6 3495.9 38 3540.5 57.9 

3 3346.5 26 3411.4* 48.0 4026.8 32 4094.9 46.6 3549.9 26 3614.8 60.9 

5 3372.3 16 3477.9 48.4 4015.7 20 4126.3 45.2 3443.4 16 3548.9 52.6 

10 3382.0 8 3589.0 46.1 3951.3 10 4168.3 40.5 3476.2 8 3683.2 51.5 

15 3297.7* 5 3606.1 39.4 3985.9 6 4309.2 39.9 3608.6 5 3917.1 56.7 

20 3466.3 4 3876.3 45.3 4036.1 5 4465.8 39.9 3526.5 4 3936.5 48.6 

40 3503.2 2 4319.1 37.4 4174.4 2 5029.4 37.6 3769.3 2 4585.2 51.1 

80 3918.1 1 5545.8 38.1 4566.3 1 6272.0 37.3* 4196.9 1 5824.6 52.8 

 *Minimal value for each evaluation criterion    

             

 GPR WBM     

 AIC_GPR n/p BIC_GPR RMSE_GPR AIC_WBM n/p BIC_WBM RMSE_WBM     

 5210.6 122 4618.6 42.4 5618.7 152 5024.2 60.2     

                     

 


