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Chapter 1

Introduction

1.1 Background

Evaluations of surgical biopsy, postmortem tissue specimens for the diagnosis and

understanding of human disease are one of the critical components for biomedical studies.

Currently, these analyses are manually performed by specialists. In some cases, the

evaluation of the pathology images, however, requires many specialists (=pathologists)

to decide the category of the specific disease, or its subtype or grade. Central problems

in this process have

• the number and variability of disease tissue specimens,

• the inability to perform cross comparison analyses, and

• frequent lack of agreement between different pathologists.

In addition, precise and practical integration of definitive histopathological image-

based data with that of genetic, genomic, clinical data is critical for precision medicine.

Doing this will need rigorous and reproducible multidimensional characterizations of

surgical pathology samples. Therefore, the need for quantitative analysis methods for

classifications of disease types, subtypes and grading the stage of the disease progression

has been growing. For these goals, many recent developments in biomedical informatics

use computer vision techniques for computational pathology [1–5].

Moreover recently, the researches addressing both genomics and phenomics have been

proposed [6–9]. K. T. Zondervan produced consensus data and sample collection proto-

cols for endometriosis research and integrating phenomic with genomic data to identify

informative subtypes of endometriosis [6]. These research reports show progress to en-

hance understanding of the pathogenic mechanisms of the disease and discovery of novel,

targeted treatments.
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1.2 Previous Studies and Problems

Our research group is currently addressing the problem of recognizing and extracting

quantitative features from Glioma histopathological images by defining, counting, and

measuring morphological characteristics that can to serve as fundamental data elements

capable of distinguishing key disease types and subtypes. In the past papers, we fo-

cused on Glioma, which was one of the brain tumors, and proposed nuclei segmentation,

feature extraction, and disease stage classification methods for Glioma images [10, 11].

We also discussed which feature descriptors are significant for disease stage classification

in Glioma images [12]. However, we evaluated only two distinct type of classification

performance, i.e. Glioblastoma (GBM) or Low Grade Glioma (LGG). In fact, subtypes

of Glioma is not specified so far. However, disease stages of Glioma are determined by

a combination of genes. Therefore, even if the given tissue images belong to the same

grade, the patterns of gene expression are different among patients. Thus, the next step

of this study is to (i) analyze the relationships between patterns of genes expression

and the feature descriptors and (ii) to find out new subtypes of Glioma by using the

obtained knowledge. The final goal of our research, I specify subtypes of Glioma from

histopathological images for precision medicine by genes expressions level.

1.3 Objective

In this thesis, phenomics analyses were focused as the first step for the final goal of

our research. In particular, feature descriptors related to the region of nuclei that were

regarded as effective for evaluation of Glioma in the previous studies were utilized. This

work discusses about

• method of nuclei segmentation using custom-designed image processing,

• the heat-maps to estimate which Glioma images have been grouped based on their

pattern of the feature descriptors as subtypes, and

• a statistical test to confirm whether these feature descriptors had the capability to

distinguish the sub-types that were estimated.
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Chapter 2

Experimental Materials

2.1 Glioma of the Brain Tumor

This study deals with the histopathological images of Glioma, which is one of the

malignant tumors of the brain. Glioma begins in the gluey supportive cells (glial cells)

that support nerve cells. Generally, Glioma can be categorized into four grades based

on their disease stage. For example, Grade 1 has a slight illness, and Grade 4 is so

serious and has a poor prognosis. In particular, the average life expectancy of Grade 4

is approximately 18 months. Furthermore, it is quite difficult to remove all of them by

surgery because of infiltration growth. For that reason, effective treatment by each stage

of Glioma progression is required.

2.2 Obtained Histopathological Images

This study used Glioma images obtained from The Cancer Genome Atlas (TCGA) [13]

database as experimental materials (Figure 2.1). TCGA is co-managed by the National

Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI)

scientists and managers. TCGA researchers have analyzed over 30 human tumors and

provide publicly available data-sets to help improve diagnostic methods, treatment stan-

dards, and finally to prevent cancer [14].

Glioma images archived in TCGA database were categorized into 2 types, i.e. Lower-

Grade-Glioma (LGG) and Glioblastoma multiforme (GBM). LGG includes images of

Grades 1 and 2, GBM includes images of Grades 3 and 4. Figure 2.2 shows samples of

LGG and GBM images obtained from TCGA database. These images were stained by

Hematoxylin and Eosin (H&E) staining method. Generally, Hematoxylin makes nuclei

deep purple and Eosin does other tissues pale purple and red.

As seen in Figure 2.2, the grade of the disease progression seems to correlate with

some image features, such as nuclei properties of size, shapes, density, and typology. In

addition, these correlations are believed to result from the disease progression, including
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Figure 2.1: Official website of The Cancer Genome Atlas (TCGA).

changes in gene and protein expression. Therefore, these features in the images were

used for analysis in the study of biomedical informatics.
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(a) Lower-Grade-Glioma (LGG) (Size: 30001× 23980 pixels)

(b) Glioblastoma multiforme (GBM) (Size: 33958× 36141 pixels)

Figure 2.2: Samples of Glioma images obtained from TCGA database.
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Chapter 3

Experimental Methods

3.1 Construction of Image Data-set

In this study, two type data-sets, i.e. LGG and GBM, were constructed for ex-

periments. At first step, 100 Glioma histopathological images in each category were

downloaded from TCGA database. These images will be not good for processing because

these sizes are large (approximately 30000× 30000 pixels). Therefore, these images were

divided into patches whose sizes were 2000×2000 pixels. Subsequently, patches including

the sufficient number of nuclei were collected as shown in the Figure 3.1. In this study,

30 collected patches in each original images (total 6000 patches) were used as data-sets.

3.2 Nuclei Segmentation

After data-set construction, a nuclei segmentation mothod was applied to the given

images to extracted features from them. For nuclei segmentation, this study employed

CellProfiler [15, 16], which is an open source software developed by Broad Institute.

This software is a tool for exploring and visualizing multidimensional data that has been

extracted from biological images automatically. This software enables to measure the size,

shape, intensity, and texture of object (e.g. cells, colonies, and so on) in every image.

Figure 3.2 shows the pipeline of nuclei segmentation method and it mainly consists of

three steps as follows:

1. Pre-processing

2. Region Extraction

3. Nuclei Separation
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Figure 3.1: Criterion to collect patches for image data-set.

Figure 3.2: The pipeline for nuclei segmentation.
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3.2.1 Pre-processing

The first step consists of two modules, Color To Gray and Smooth. Figure 3.3 shows

the examples of images corresponding to each step. Color To Gray module converts the

image with multiple color channels to gray-scale. When the color image is converted to

gray-scale in this module, we can adjust the contribution of the colors relative to each

other. In this thesis, this module was set to contribute the red channels for H&E staining

images (Figure 3.3 (b)).

Smooth module smooths away the image to remove small artifacts, e.g. a bubble

on the cell nuclei in the image. In this module, Smooth Keeping Edges is applied as

a smoothing method to retain edges in the image while smoothing other features. This

image processing technique utilizes a bilateral filter that limits Gaussian smoothing across

an edge while applying smoothing perpendicular to an edge (Figure 3.3 (c)). Fuzzy

smoothing and adaptive thresholding techniques [17,18] were referenced to improve these

preliminary this step.

3.2.2 Region Extraction

After the above step, nuclei in the image were roughly segmented. This step consists

of four modules, Enhance Or Suppress Features, Apply Threshold, Image Math, and Mask

Image. In addition, the image was processed to two sub-pipelines independently in order

to produce a rough segmentation image. Figure 3.4 shows the examples of images in each

process.

Enhance Or Suppress Features module enhances or suppresses certain image features

(such as speckles, ring shapes, and neurites) by applying filters to the image. It produces

a gray-scale image in which objects can be identified using Identify module. In this

study, Enhance operation was selected to emphasize dark areas because the region of

nuclei was dark compared with other tissue areas. This operation utilizes morphological

reconstruction (the rolling-ball algorithm) to identify dark holes within brighter areas or

ring shapes. As a result, the image is inverted so that the dark holes turn into bright

peaks (Figure 3.4 (a)).

Apply Threshold module produces a binary image based on a threshold that can

be selected beforehand or calculated automatically. The threshold value is determined

based on the pixel intensities by threshold strategy and then, CellProfiler can select this

strategy, e.g. Global, Adaptive, Per Object, and so on. In this study, Adaptive was

applied and it partitions the image into tiles and calculate thresholds for each tile. In

addition, CellProfiler can select the threshold methods for binarizing, e.g. Otsu, MoG,

Kapur, and so on. Otsu was applied in this case and it calculates the threshold to separate

pixels (foreground and background) with discriminant analysis. After the threshold value
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(a) Input Image (b) Gray-scaled Image

(c) Smoothed Image

Figure 3.3: The examples of generated images by Pre-processing.
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(a) Enhanced & Inverted Image (b) Binarized Image

(c) Only Inverted Image (d) Superimposed Image

Figure 3.4: The examples of generated images by Region Extraction.
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has been determined, the image is set pixel intensities below the value to zero (black) and

above the value to one (white) by this module (Figure 3.4 (b)). These modules were used

in the first sub-pipeline to extract nuclei regions roughly from the image, but adjacent

nuclei are grouped as one nucleus.

In the second sub-pipeline, the inverted image is produced by using Image Math

module to separate the adjacent nuclei regions. This module can perform addition,

subtraction, multiplication, division, or averaging of two or more image intensities, as

well as inversion, log transform, or scaling by a constant for individual image intensities.

In this study, inversion was selected as the operation of this module and image intensities

was inverted(Figure 3.4 (c)).

After independent sub-pipelines processing, the rough segmented image was produced

by superimposing the binary image (Figure 3.4 (b)) and the inverted image (Figure 3.4

(c)) and then, Mask Image module is applied to superimpose them. Figure 3.4 (d) is an

example of superimposed image given by Mask Image module.

3.2.3 Nuclei Separation

The final step consists of two modules, Identify Primary Objects and Converts Object

To Image. The obtained image still had adjacent nuclei regions, therefore, nuclei should

be separated for accurate feature extraction. Therefore, Identify Primary Objects module

was applied to determine the boundary of them. This module identifies biological com-

ponents of interest in gray-scale images containing bright objects on a dark background.

When the objects have some peaks of brightness, this module counts each peak point

as an individual object and the object centers are defined as local intensity maximum

in the image. In Figure 3.5, an adjacent nucleus region has plural peaks, thus, adjacent

nuclei regions are separated into each nucleus based on the distribution of pixel values

by applying this module.

Finally, Converts Object To Image module colored each separated nucleus for recog-

nition. Figure 3.6 shows the result of nuclei segmented image. The effectiveness of this

procedure was confirmed for this task in literature [19].

3.3 Feature Descriptors

Feature descriptors for analyzing histopathological images are mainly categorized into

two types [20] as follows;

1. Object-Level Features, and

2. Spatial-Arrangement Features.
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Figure 3.5: Basic overview of pixel values in the nuclei regions.

Figure 3.6: Nuclei segmented image.
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These features has been discussed and confirmed their effectiveness for evaluation of

subtypes of Glioma in literature [21, 22].

3.3.1 Object-Level Features

Object-Level Features are directly related to the size and shape of each object, such

as a nucleus. These features were classified to the following types.

• Original Features are the total amount of pixels in the segmented nucleus. Num-

ber of nuclei and Area of a nucleus are utilized as the feature descriptors.

• Elliptical Features are generated from an approximated ellipse of each nucleus.

Subsequently, the Major and Minor Axis Length, Eccentricity, Orientation, Ellip-

tical Deviation, Extent and Aspect Ratio are calculated.

• Convex Hull Features are generated from convex hull of the mask of each nucleus

and calculate Convex Area, Convex Deficiency and Solidity.

• Bounding Box Features are calculated with the bounding box, which is defined

as the smallest rectangle that completely contains the object mask, where the sides

of the rectangle are aligned with the image axes. Extent and Aspect Ratio are

utilized as the feature descriptors.

• Boundary Features are related to the boundary of the object. Thus in this study,

these features are related to the perimeter of the nucleus.

The examples of outline figures are shown in Figure 3.7 and Table 3.1 shows all of the

extracted Object-Level Features.

3.3.2 Spatial-Arrangement Features

Spatial-Arrangement Features are feature descriptors with respect to the topograph-

ical positions of nuclei. To get these features, a nucleus is called a node and graphs

that connect the nodes are constructed [23–25]. For instance, B. Weyn used fractal and

syntactic structure analysis (SSA), and he took into account the spatial-arrangement

features [23]. Furthermore, he applied SSA to malignant mesothelioma images [24]. An-

other report shows a method to make perceptual boundaries of relatively homogeneous

dot patterns. Generally, Spatial-Arrangement Features do not depend on the shapes

of segmented nuclei, but their positions and distances among nodes. Such topological

features can be also valiant descriptors to express the Spatial-Arrangement of nodes.

In this study, the following types graph are utilized for analyses [26]. Feature de-

scriptors obtained from these graphs are extracted. Samples of an input image and the



CHAPTER 3. EXPERIMENTAL METHODS 14

Table 3.1: List of Object-Level Features.

Types Features

Original Number of nuclei, Area

Elliptical

Major Axis Length

Minor Axis Length

Eccentricity

Orientation

Elliptical Deviation

Extent

Aspect Ratio

Convex Hull

Convex Area

Convex Deficiency

Solidity

Bounding Box
Extent

Aspect Ratio

Boundary

Perimeter

Radii

Perimeter Curvature

Other Shape

Equivalent Diameter

Sphericity

Compactness

Inertia Shape
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(a) Original (b) Elliptical (c) Convex Hull

(d) Bounding Box (e) Boundary

Figure 3.7: Outline figures of Object-Level Features.

constructed graphs are shown in Figure 3.8. Incidentally, the circle marks indicate the

nodes located at gravity centers of each of the nuclei.

• Voronoi Tessellation (VT) is obtained from the input image and the perpendic-

ular bisectors of nodes are connected to each other. As shown in Figure 3.8 (b), the

obtained graph has many regions that are surrounded by perpendicular bisectors.

• Delaunay Triangulation (DT) is constructed by connecting the nodes of the

neighboring boundary region in Voronoi Tessellation. Therefore, these graphs are

expected to show the adjacency relationship of the Voronoi regions.

• Minimum Spanning Tree (MST) is obtained by connecting all of the nodes in

the graphs with the minimum edge length of Delaunay Triangulation.

All of the extracted Spatial-Arrangement Features are shown in Table 3.2 [26].

3.4 Cluster Analysis

In this study, the heat-map was used to estimate which images have been grouped

based on their patterns of the feature descriptors. Heat-map is often used for visualizing
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(a) Input Image (b) Voronoi Tessellation

(c) Delaunay Triangulation (d) Minimum Spanning Tree

Figure 3.8: Outline figures of Spatial-Arrangement Features.
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Table 3.2: List of Spatial-Arrangement Features.

Types Features

Voronoi Tessellation

Number of Nodes

Number of Edges

Edge Length

Cyclomatic Number

Number of k-Walks

Degree

Spectral Radius

Randic Index

Area

Area Disorder

Perimeter

Roundness Factor

Homogeneity

Delaunay Triangulation

Number of Nodes

Number of Edges

Edge Length

Cyclomatic Number

Number of Triangles

Number of k-Walks

Degree

Spectral Radius

Randic Index

Minimum Spanning Tree

Number of Nodes

Number of Edges

Edge Length

Degree

Spectral Radius

Randic Index



CHAPTER 3. EXPERIMENTAL METHODS 18

and interpreting based on the similarity of their gene expression pattern, as well as phe-

nomics data in the biomedical informatics [27–32]. This method is useful for identifying

genes or biological signatures associated with a particular condition.

Generally, a heat-map express the given data as a two-dimensional map shown as

Figure 3.9. In the map, the vertical axis means feature descriptors and the horizontal

axis is the given images. For instance, the top-left cell shows the normalized value of

Feature A about Image A. The color of the cell corresponds to the feature value - red

and blue mean high and low values, respectively.

In this study, Morpheus [33] was employed to visualize the feature descriptors ex-

tracted from the images. This software can visualize the given data-set as a heat-map

and have various functions, e.g. the cluster, create new annotations, search, filter, sort,

display charts, and more. In the cluster, it supports hierarchical and k-means cluster-

ing. In addition, there are multiple choices of the dissimilarity metrics, e.g. Euclidean,

Jaccard, and so on. In this study, hierarchical clustering with Euclidean distance was

selected. This is defined by

dij =

√√√√ K∑
k=1

(xik − xjk)2 (3.1)

where ~xi is the ith K-dimension feature vector defined as [xi1, xi2, ..., xiK ]. And then,

median feature values were picked up from each 30 collected patches because of dispersion

fall in each TCGA data. The result of the clustering shows the similarity between the

given data-set depending on these feature values.

And then, a tree-structure of the hierarchy are created as shown in Figure 3.10.

Therefore, the images can be grouped and estimate subtypes by analyzing the heat-map.

3.5 Statistical Test

To confirm whether these feature descriptors can distinguish the estimated subtypes,

this chapter discussed statistical significance of these features. In this study, Tukey’s

range test was employed to evaluate their statistical significance.

Tukey’s range test is a single-step multiple comparison procedure and statistical

test [34]. This method compares the means of every cohort to the means of every other

cohort. This is defined by

qT =
x̄1 − x̄2

s

√
1

n

(3.2)

where x̄1 and x̄2 are the two mean values for comparison, n is the sample size, and s is
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Figure 3.9: An example of heat-map.

Figure 3.10: An example of tree-structure of the hierarchy.
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standard deviation. This is defined by

s =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (3.3)

where xi is each sample value and x̄ is the mean value. Then, this qT value is compared

to a q value from the studentized range distribution. If the qT value is larger than the

critical q value obtained from the distribution, the two means are significantly different.

However, the sample sizes must be equal when using the studentized range approach.

Nevertheless, the sample sizes i.e. estimated subtypes sizes, are unequal in the case of

this study. In this case, the estimated standard deviation should be calculated for each

pairwise comparison, and it referred to as the Tukey–Kramer test formalized by Clyde

Kramer [35]. Therefore, Tukey-Kramer test was employed in this study. This is defined

by

qTK =
x̄1 − x̄2

s

√
1

n1

+
1

n2

(3.4)

where n1 and n2 mean the sizes of group 1 and 2, respectively. qTK value is also compared

to a q value from the studentized range distribution.

In this study, these algorithms were implemented by “R 3.5.1”, which was a software

for statistical analysis. The significance level was set to 0.01. If the obtained p value was

satisfied with the above criterion, thus it was regarded that the feature descriptor had

sufficient capability to distinguish the estimated subtypes.
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Chapter 4

Results and Discussion

4.1 Evaluation of Obtained Heat-map

In this thesis, 37 feature descriptors that selected from the previous research were

utilized [12]. In the previous research, 58 features were utilized for disease stage classi-

fication of Glioma. These were judged as effective features for evaluation of subtypes of

Glioma in literature [21,22]. Table 4.1 shows the list of utilized features.

Figure 4.1 shows the obtained heat-map. As you can see, this heat-map varied clearly

in color and it could be roughly divided into some groups. The result of a hierarchical

clustering is displayed as a heat-map as a dendrogram, which is a tree-structure of the

hierarchy. Some groups could categorize by analyzing these dendrograms. These dendro-

grams were analyzed following the advice by specialists who are research collaborators.

Thus, subtypes of Glioma were estimated to 18 groups, i.e. 10 GBM and 8 LGG sub-

types, depending on this dendrogram as shown in Figures 4.2 and 4.3. These subtypes

are estimated at the bottom of the heat-maps.

4.2 Statistical Significance of Subtypes

Tables 4.2 and 4.3 show the results of statistical tests about GBM and LGG. Fur-

thermore, the result of boxplots were shown in Appendix A (GBM) and B (LGG). As

a result of experiments, 24 features were significant statistically to distinguish estimated

LGG subtypes. On the other hand, there were no significant feature descriptor in the case

of GBM. Furthermore, 7 features were statistically significant between D1 and D2 but

most features were not. However, each subtype of GBM could be specified by combing

several features. When some features were taken together, all of the estimated subtypes

were divided into significantly each group.

Actually, in the previous research [12], Object-Level Features and Spatial-Arrangement

Features were used for classification of Glioma. The result of the previous research in-

dicates that Object-Level Features worked well compared to Spatial-Arrangement Fea-
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Table 4.1: The utilized features list.

Types Features

Original Area

Boundary
Radii

Perimeter Curvature

Convex Hull Convex Deficiency

Elliptical

Minor Axis Length

Eccentricity

Orientation

Other Shapes Sphericity

Voronoi Tessellation

Number of Nodes

Number of Edges

Randic Index

Cyclomatic Number

Number of k-Walks

Degree

Area

Perimeter

Roundness Factor

Delaunay Triangulation

Number of Nodes

Number of Edges

Edge Length

Cyclomatic Number

Number of Triangles

Number of k-Walks

Degree

Spectral Radius

Randic Index

Minimum Spanning Tree

Number of Nodes

Edge Length

Randic Index

Degree
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Figure 4.1: The obtained heat-map.
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Figure 4.2: The estimated subtypes of GBM.
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Figure 4.3: The estimated subtypes of LGG.
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tures for disease stage classification. However, the result of this thesis indicates that

most Spatial-Arrangement Features have meaningful information for subtypes clustering

but most Object-Level Features were not significant. It suggested that the feature types

have to change depending on the situations of classification, and Spatial-Arrangement

Features are important to proceed advance researches, e.g. subtypes clustering.
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Table 4.2: Statistical significance of GBM
Features
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A1 A2 ** ** ** ** - ** - - ** ** ** ** ** ** ** - - - ** ** - - - ** ** - - ** - ** ** ** ** ** ** - -

B1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** * - ** ** ** ** ** ** - ** ** ** ** ** ** - **

B2 ** - ** - - ** - ** ** ** ** ** ** ** ** - * - * ** - - * ** ** ** ** ** - ** ** ** ** ** ** - -

C1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** - ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** - **

C2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** - **

D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

A2 B1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** - ** ** ** ** ** ** - ** ** ** ** ** ** - **

B2 ** ** - ** - ** - ** ** ** ** ** ** ** ** - ** - ** - - - ** ** ** ** ** ** - ** ** ** ** ** ** - -

C1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** - ** - ** ** ** ** ** ** ** ** ** ** ** ** ** - **

C2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** - **

D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

B1 B2 ** ** ** ** - ** - - ** ** ** ** ** ** ** - - ** ** - - - - ** ** - * ** - ** ** ** ** ** ** - -

C1 ** - - - ** ** ** * ** ** ** ** ** ** ** - * - - ** * - - ** ** - ** ** ** ** ** ** ** ** ** - **

C2 ** - - - ** ** ** ** ** ** ** ** ** ** ** - ** - - - ** - ** ** ** - ** ** ** ** ** ** ** ** ** - **

D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D2 ** - ** * ** ** ** ** ** ** ** ** ** ** ** ** ** - ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

B2 C1 ** ** ** ** ** ** ** - ** ** ** ** ** ** ** - ** ** ** - ** - - ** ** - ** ** ** ** ** ** ** ** ** - **

C2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** * ** - ** ** ** - ** ** ** ** ** ** ** ** ** - **

D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

C1 C2 ** ** - ** - ** - - ** ** ** ** ** ** ** - ** - - ** - - - ** ** - ** ** - ** ** ** ** ** ** - -

D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

C2 D1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** * ** ** * ** ** ** ** ** ** ** ** ** * * **

D2 ** ** * * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** * ** ** ** ** ** ** ** ** ** ** ** ** ** * **

E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

D1 D2 - ** ** ** - - - - - - - - - - - - - ** ** ** - - - - - ** - - - - - - - - - - -

E1 ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** - ** - ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

D2 E1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E2 ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

E1 E2 ** ** ** * ** ** ** ** ** ** ** ** ** ** - ** ** - ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** - ** **

Signif. codes: 0 ‘**’ 0.01 ‘*’ 0.05 ‘-’ 1
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Table 4.3: Statistical significance of LGG
Features
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F1 F2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - - - ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** - **

G1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

G2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** **

H1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

H2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

I1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** **

I2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

F2 G1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

G2 ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

H1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

H2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

I1 ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

I2 ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** - - ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

G1 G2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** - ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** - ** **

H1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

H2 ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

I1 ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

I2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

G2 H1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

H2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** - * ** ** ** ** ** ** ** ** * ** **

I1 ** - - - ** ** ** ** ** ** ** ** ** ** ** ** ** - - - ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

I2 ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - * - ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

H1 H2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** - ** **

I1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

I2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

H2 I1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

I2 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

I1 I2 ** - ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** - ** - ** ** ** ** ** - ** ** ** ** ** ** ** ** ** ** **

Signif. codes: 0 ‘**’ 0.01 ‘*’ 0.05 ‘-’ 1
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Chapter 5

Concluding Remarks

5.1 Conclusion

The object of this thesis was to estimate which Glioma images have been grouped

based on their pattern of the feature descriptors related to the region of nuclei. Glioma

histopathological images for analyses were obtained from The Cancer Genome Atlas

(TCGA) [13] database. Significant feature descriptors for Glioma images were determined

and CellProfiler was employed to segment cell nuclei and extract features from the images.

The heat-map was produced by Morpheus [33] to estimate which Glioma images have

been grouped based on their pattern of the feature descriptors as subtypes.

As a result, Glioma could be categorized into 18 subtypes. In addition, the effec-

tiveness of these features were investigated by Tukey–Kramer test. When taken to-

gether, all of the estimated subtypes were significantly different between each group.

Furthermore, the result of this thesis indicates that most Spatial-Arrangement Features

have meaningful information for subtypes clustering but most Object-Level Features not.

Some Spatial-Arrangement Features were seen as being important to proceed advance

researches, e.g. subtypes clustering.

5.2 Further Works

The final goal of our research is to specify subtypes of Glioma from histopathological

images for precision medicine by genes expressions level. This thesis discussed about the

subtypes of Glioma and showed that Glioma could be categorized into 18 subtypes by

using cell nuclei features. The next work is to reduce dispersion in each TCGA data. In

this study, 30 collected patches in each original images (total 6000 patches) were used as

data-sets. Therefore, I will collect another 30 patches in each original images as data-set

and do experiments. The future task is to confirm the relationships between the subtypes

and the results of gene expression analysis.
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Furthermore, as another our approach for this reseach, I proposed a disease stage

classification method with Deep Learning for Glioma histopathological images [36]. In

particular, Deep Convolutional Neural Network (Deep CNN) was employed as a Deep

Learning model. By using the proposed method, I obtained a final average classification

accuracy of 96.5%. The next step of this approach is to discover not cell nuclei features

but other feature descriptors. this thesis just focused on feature descriptors related

to the region of nuclei, and it is hard to know whether these features are perfect for

histopathological image analysis or not. Other feature descriptors might be required

for more advanced analysis. By using Deep Learning method, feature descriptors are

extracted from the data (e.g. image, sound) without human intervention. Therefore,

other feature descriptors might be discovered by analyzing our Deep CNN configuration.

I hope these approaches will be of help in medical decision analysis of brain tumors.
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AppendixA

Results of Boxplot (GBM)

(1) Area (2) BF-PERIMETERCURVATURE

(3) BF-RADII (4) CH-CONVEXDEFICIENCY

Figure A.1: Boxplots of GBM (1)-(4).
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(5) DT-AVEEDGELENGTH (6) DT-CYCLONUM

(7) DT-DEGREE (8) DT-MAXEDGELENGTH

(9) DT-NUM3WALKS (10) DT-NUM4WALKS

Figure A.2: Boxplots of GBM (5)-(10).
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(11) DT-NUM5WALKS (12) DT-NUMEDGES

(13) DT-NUMNODES (14) DT-NUMTRIANGLES

(15) DT-RANDICINDEX (16) DT-SPECTRALRADIUS1

Figure A.3: Boxplots of GBM (11)-(16).
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(17) DT-SPECTRALRADIUS2 (18) EL-ECCENTRICITY

(19) EL-MINORLENGTH (20) EL-ORIENTATION

(21) MST-AVEEDGELENGTH (22) MST-DEGREE

Figure A.4: Boxplots of GBM (17)-(22).
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(23) MST-MAXEDGELENGTH (24) MST-NUMNODES

(25) MST-RANDICINDEX (26) OS-SPHERICITY

(27) VT-AVEROUNDFACTOR (28) VT-CYCLONUM

Figure A.5: Boxplots of GBM (23)-(28).
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(31) VT-NUM4WALKS (32) VT-NUM5WALKS

(33) VT-NUMEDGES (34) VT-NUMNODES

Figure A.6: Boxplots of GBM (29)-(34).
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(35) VT-RANDICINDEX (36) VT-VOROAREA

(37) VT-VOROPERIMETER

Figure A.7: Boxplots of GBM (35)-(37).
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AppendixB

Results of Boxplot (LGG)

(1) Area (2) BF-PERIMETERCURVATURE

(3) BF-RADII (4) CH-CONVEXDEFICIENCY

Figure B.1: Boxplots of LGG (1)-(4).
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Figure B.2: Boxplots of LGG (4)-(10).
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Figure B.3: Boxplots of LGG (11)-(16).
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Figure B.4: Boxplots of LGG (17)-(22).
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Figure B.5: Boxplots of LGG (23)-(28).
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Figure B.6: Boxplots of LGG (29)-(34).
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(35) VT-RANDICINDEX (36) VT-VOROAREA

(37) VT-VOROPERIMETER

Figure B.7: Boxplots of LGG (35)-(37).


