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Abstract. In our previous papers [2],[3], we obtain the values of some specific Hilbert-Eisenstein series
at cusps. In the present paper we address generalization of characters of Hilbert-Eisenstein series, and
give the values with moderating condition on characters which are not necessarily Hecke characters.

1. Introduction

In our previous papers [2],[3], we obtain the values of some specific Hilbert-Eisenstein series at cusps.
The result is useful in the study of the Shimura lifting maps [4],[6], or of quadratic forms [5]. In the
present paper, we consider the Hilbert-Eisenstein series of weight k associated with two characters ψ, ψ′

of larger groups than the ideal class group where the product ψψ
′
is a Hecke character with same parity

as k. We obtain their values at all the cusps, which may be also useful in the further study of the Shimura
lifting maps or of quadratic forms. The argument is parallel to [4]. We note that we make use of different
notations from the previous paper [4], and unify the notation with [6].

Let K be a totally real algebraic number field of degree g over Q, and let OK be the ring of algebraic
integers. We denote by dK and DK , the different of K and the discriminant respectively, and denote
by O×

K , the group of the units in K. For α ∈ K, α(1), · · · , α(g) denotes the conjugates of α in a fixed

order. If α(i) is positive for every i, then we call α totally positive, and denote it by α � 0. We denote
by N and tr, the norm map and the trace map of K over Q respectively, namely N(α) =

∏g
i=1 α

(i) and

tr(α) =
∑g

i=1 α
(i). Let µK denote the Möbius function on K and let ϕK denote the Euler function on K.

If P is a prime ideal, then vP denotes the P-adic valuation. If M is an integral ideal, then {M}P denotes

the P-part of M, namely, {M}P = PvP(M). For nonzero fractional ideals A,B, we denote by (A,B),

their greatest common divisor, precisely, (A,B) =
∏

P Pmin{vP(A),vP(B)}. Let N be an integral ideal of
K. We denote by CN, the class group modulo N in the narrow sense, and denote by C∗

N, the group of
characters of CN. An element of C∗

N is called a (classical) Hecke character. Let EN denotes the group
of totally positive units congruent to 1 modulo N, while EOK

denotes the group of all totally positive
units. For a = (a1, · · · , ag) ∈ {0, 1}g, we define sgna(α) by setting sgna(α) := sgn(α(1))a1 · · · sgn(α(g))ag

for α ∈ K, �= 0 where sgna(0) := 1. Let eψ = (e1, · · · , en) ∈ {0, 1}g be so that ψ(µ) = sgneψ (µ)
for µ ≡ 1 mod N, µ �= 0. The character ψ ∈ C∗

N is called even (resp. odd) if eψ = (0, · · · , 0) (resp.
eψ = (1, · · · , 1)). We note that eψ = eψ. The identity element of C∗

N is denoted by 1N, for which 1N(A)
is 1 or 0 according as an integral ideal A is coprime to N or not. Let IK be the function on the set of
fractional ideals defined by IK(A) is 1 or 0 according as A is integral or not.

We denote by fψ, the conductor of a character ψ, and denote by eψ, the ideal given by

eψ := fψ
∏

ψ(P)=0,P�fψ

P. (1)

For an integral ideal M, we denote by R(M, ψ), the set of all square free products of prime divisors of
M coprime to fψ, where OK is always in R(M, ψ). The primitive character associated with ψ ∈ C∗

N is

denoted by ψ̃. For any integral ideal M, we define ψM := ψ̃1M. Then ψM = ψ̃ for an integral ideal M
with M|fψ, and ψN = ψ. For ψ ∈ C∗

N, LK(s, ψ) denotes the Hecke L-function, that is,

LK(s, ψ) :=
∑
A

ψ(A)

N(A)s
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where A runs over the set of all the integral ideals.
Let Hg denote the product of g copies of the upper half plane H = {z ∈ C | �z > 0}, �z being the

imaginary part of z. For γ, δ ∈ K and for z = (z1, · · · , zg) ∈ H, N(γz+ δ) stands for
∏g

i=1(γ
(i)zi + δ(i)),

and tr(γz) stands for
∑g

i=1 γ
(i)zi. For a matrix

A =
(

α β
γ δ

)
∈ SL2(K), (2)

we put

Az = (α(1)z1+β(1)

γ(1)z1+δ(1)
, · · · , α(g)zg+β(g)

γ(g)zg+δ(g)
).

We define

Γ0(D
−1,ND) := {

(
α β
γ δ

)
∈ SL2(K) | α, δ ∈ OK , β ∈ D−1, γ ∈ ND}

for a fractional ideal D and for an integral ideal N.

2. Gauss sums

For a prime P of K, let KP be the P adic completion of K, and let OP be its maximal local ring. We
denote by JK , the idele group of K, and put UK :=

∏
P O×

P× (R+)g with R+ = {x ∈ R | x > 0}. For an
integral ideal N of K, let J(N) denote the subgroup of JK consisting of ideles whose P-th components are
in OP for P|N. Namely for j = (· · · , jP, · · · , j(1), · · · , j(g)) ∈ JK with jP ∈ (KP)× and (j(1), · · · , j(g)) ∈
(R×)g, j is in J(N) if and only if jP are in O×

P for all P|N. Let K×(N) denote the group of elements in

K× whose denominators and numerators are both coprime to N. Then the equality K×(N) = K ∩ J(N)
holds. We denote by K×

N, the subgroup consisting of totally positive elements multiplicatively congruent
to 1 modulo N. A homomorphism of the finite idele to CN by sending j = (jP) to an ideal class containing

fractional ideal
∏

P PvP(jp) is surjective. So the homomorphism of J(N) to CN is surjective and its kernel

is K×
NUK . Hence CN = J(N)/(K×

NUK). For a Hecke character φ ∈ G∗
N with eφ = (a1, · · · , ag) ∈ {±1}g,

it is idelically described as φJ(j) =
∏

P φP(jP) sgneφ(j) for j = (· · · , jP, · · · , j(1), · · · , j(g)) ∈ J(N)

where φP is defined by φP(jP) := φ(Pvp(jP)) and where sgneφ(j) :=
∏g

k=1 sgn(j
(k))ak which is called the

infinity-type of φJ . Let UN be the subgroup of UK consisting of ideles whose P-th components are in 1+
PvP(N)OP. There is the natural surjective homomorphism of J(N)/(K×

NUN) onto CN = J(N)/(K×
NUK)

with the kernel UK/UN isomorphic to the direct product (OK/N)×, indeed there is an isomorphism
of (OK/N)× onto U(N)/UN sending ξ + N to ξUN. Actually J(N)/(K×

NUN) and (OK/N)× × CN are
isomorphic to each other as groups. We fix local parameters 
P of OP, which fix the isomorphism
of U(N)/UN onto (OK/N)×. For a character χ of (OK/N)×, we define a character of J(N) as as
j �−→ (jP)P|N �−→ χ((jP)P|N (mod UN)), which we denote also by χ. Then the product ψ := χφ gives

a character of J(N)/(K×
NUN). As in the case of a Hecke character, eψ is defined, and indeed eψ is equal

to eφ because χ(ξ) = 1 for ξ multiplicatively congruent to 1 modulo N. We note that for ε ∈ O×
K , ψ(ε)

is not necessarily equal to 1 while the value is always 1 if it is a Hecke character. For an idele j ∈ J(N),
the idelic description of ψ is given by ψJ(j) = χ((jP)P|N)φJ(j)sgn

eφ(j) = χ((jP)P|N)φ(A)sgneφ(j) with

the ideal A corresponding to the finite idele of j, that is, A =
∏

P PvP(jP). Conversely for a non-zero

fractional ideal A, we put jA := (· · · , 
vP(A), · · · , 1 (g times)) ∈ JK . For ξ ∈ K× with ξjA ∈ J(N), we
denote sgneφ(ξ)ψJ(ξjA) by ψ(ξ · A), that is,

ψ(ξ · A) := χ(ξ
∏
P|N



vP(A)
P )φ((ξ)A). (3)

Obviously there holds an equality ψ(ξ · A)ψ(ξ′ · A′) = ψ(ξξ′ · AA′). We note that ψ(ξ) = ψ(ξ · OK) =
χ(ξ)φ((ξ)) for ξ ∈ K×(N), and ψ(A) = ψ(1 · A) for an ideal A. We define ψ(ξ · A) = 0 if the numerator
of ξA is not coprime to N, and so the values of ψ are roots of unity or 0.

We call ψ primitive if there is no integral ideal M strictly larger than N so that ψ|U(N)/UN
is via group

homomorphisms U(N)/UN � (OK/N)× −→ (OK/M)× −→ C×. In such a case we denote N by fψ, and
call it the conductor of ψ. When χ is trivial, this definition is compatible with that of a Hecke character.
For a primitive ψ, the Gauss sum of ψ is defined by

τK(ψ) := ψ(ρ · fψdK)
∑
ξ�0

ξ:OK/fψ

ψ(ξ)e(tr(ρξ))
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with ρ ∈ K, � 0, (ρfψdK , fψ) = OK where e(x) stands for exp(2π
√
−1x). The value τK(ψ) is determined

up to the choices of ρ. The standard argument shows that |τK(ψ)| = N(fψ)
1/2, and that τK(ψ)τK(ψ) =

ψ(N(fψ) − 1)N(fψ) = sgneψ (−1)χ(−1)N(fψ) = sgneψ (−1)ψ(−1)N(fψ). We note that τK(ψ) = ψ(dK) if
fψ = OK .

In the present paper, for an primitive ψ′ = χ′φ′ and an integral idealN ⊂ fψ′ , we consider a character ψ
of J(N)/(K×

NUN) in the form ψ = ψ′
N where ψ′

N := χ(φ′1N), χ being a character obtained by composing

the natural surjective map (OK/N)× onto (OK/fψ)
× with χ′. We denote by ψ̃, the associated primitive

character of ψ, which is ψ′ in the present case. The conductor fψ of ψ defined to be that of the associated
primitive character, and eψ is defined similarly as in (1). We define IK(ξ · A) to be 1 or 0 according as
ξA is integral or not.

Lemma 1. Let A be a fractional ideal. Let ψ be a character of J(N)/(K×
NUN) as in (3), which is not

necessarily primitive.
(i) Let µ ∈ A−1. Then

∑

δ0:N−1Ad−1
K /Ad−1

K ,�0

ψ(δ0 ·NA−1dK)e(tr(δ0µ))

= sgneψ (µ)τK(ψ̃)
∑

R|eψf−1
ψ

µK(R)
ϕK(N)

ϕK(fψR)
ψ̃(R)(ψRIK)(µ ·N−1fψRA). (4)

In the summation of the right hand side, at most one term survives. If there is a divisor R of eψf
−1
ψ

satisfying (µAN−1,OK) = f−1
ψ R−1, then the term associated with R survives.

(ii) Let µ ∈ A−1N−1. Then

∑

δ0:e
−1
ψ NAd−1

K /NAd−1
K ,�0

ψ(δ0 · eψN−1A−1dK)e(tr(δ0µ))

= sgneψ (µ)τK(ψ̃)
∑

R|eψf−1
ψ

µK(R)
ϕK(eψf

−1
ψ )

ϕK(R)
ψ̃(R)(ψRIK)(µ ·Ne−1

ψ fψRA). (5)

In the summation of the right hand side, at most one term survives. If there is R|eψf−1
ψ satisfying

(µNe−1
ψ fψRA,OK) = R−1, then the term associated with R survives.

Proof. (i) For ψ primitive, the equality (4) turns out to be

∑
ξ�0

ξ:Ad
−1
K

/fψAd
−1
K

ψ(ξ · A−1dK)e(tr(ξµ)) = sgneψ (µ)ψ(µ · Afψ)τK(ψ) (6)

for µ ∈ A−1f−1
ψ , �= 0. At first we prove (6). Let α ∈ Ad−1

K ,� 0 with (αA−1dK , fψdK) = OK . Then the left

hand side is equal to
∑

ξ�0
ξ:O/fψ

ψ(αξ · A−1dK)e(tr(αξµ)) = ψ(α · A−1dK)
∑

ξ�0
ξ:O/fψ

ψ(ξ)e(tr(ξ(αµ))). The

sum
∑

ξ�0
ξ:O/fψ

ψ(ξ)e(tr(ξ(αµ))) is equal to sgneψ (µ)ψ(αµ · fψdK)τK(ψ) from definition of the Gauss sum.

Hence the left hand side of (6) is ψ(α · A−1dK)sgneψ (µ)ψ(αµ · fψdK)τK(ψ), which is equal to the right
hand side.

Now we prove (4). Let us take α ∈ N−1,� 0 such that αN ⊂ OK and (αN,N) = OK . Let αµ = µ1+µ2

where all the prime divisors of the denominator of µ1 are divisors of fψ, and all the prime divisors of the

denominator of µ2 are divisors of eψf
−1
ψ . Then

∑

δ0:N−1Ad−1
K /Ad−1

K ,�0

ψ(δ0 ·NA−1dK)e(tr(δ0µ)) =
∑

δ0:Ad−1
K /NAd−1

K ,�0

ψ(αδ0 ·NA−1dK)e(tr(δ0αµ))

=ψ(α ·N)
∑

δ0:Ad−1
K /NAd−1

K ,�0

ψ(δ0 · A−1dK)e(tr(δ0µ1))e(tr(δ0µ2)),
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which is 0 unless µ1 ∈ A−1f−1
ψ and µ2 ∈ A−1R−1 for some R|eψf−1

ψ . In such a case the above is equal to

µK(R) ϕK(N)
ϕK(fψR)ψ(α ·N)

∑

δ0:Ad−1
K /fψAd−1

K ,�0

ψ̃(δ0 · A−1dK)e(tr(δ0µ1))

=µK(R) ϕK(N)
ϕK(fψR)ψ(α ·N)sgneψ (µ1)ψ̃(µ1 · Afψ)τK(ψ̃) (by (6))

=µK(R) ϕK(N)
ϕK(fψR) sgn

eψ (α−1µ1)ψ̃(R)ψ̃(α−1µ1 · AN−1fψR)τK(ψ̃). (7)

Here in the notation of (3), there holds an equality ψ(ξ · A) = sgneψ (ξξ′)ψ(ξ′ · A) if ξ
∏

P|N �
vP(A)
P and

ξ′
∏

P|N �
vP(A)
P are multiplicatively congruent to 1 modulo fψ. Hence we may replace sgneψ (α−1µ1)ψ̃(α

−1µ1·
AN−1fψR) by sgneψ (µ)ψ̃(µ ·AN−1fψR) in (7). The factor (ψRIK)(µ ·N−1AfψR) appearing in the right

hand side of (4) is equal to ψ̃(µ · AN−1fψR) if (µAN−1,OK) = f−1
ψ R−1 with R|eψf−1

ψ , and it is 0 if

otherwise. This shows (4).
(ii) In the summation of the left hand side of (5), we may assume that δ0 satisfies (δ0eψN

−1A−1dK ,N) =

OK . Such δ0 are written as products δ0 = δ1δ2 where δ1 are the representatives of f−1
ψ NAd−1

K mod-

ulo NAd−1
K with (δ0fψN

−1A−1dK ,N) = OK , and δ2 are the representatives of e−1
ψ fψ modulo OK with

(ρ2eψf
−1
ψ ,OK) = OK . We can take δ1 (resp. δ2) so that they are totally positive and that the differ-

ences of δ1’s (resp. δ2’s) are in eψf
−1
ψ NAd−1

K (resp. fψ). We write µ in the form µ = µ1 + µ2 with

µ1 ∈ A−1eψf
−1
ψ N−1 and µ2 ∈ A−1fψN

−1. Then the left hand side of (5) is equal to
∑
δ1,δ2

ψ(δ1δ2 · fψeψf−1
ψ N−1A−1dK)e(tr(δ1δ2µ1))e(tr(δ1δ2µ2)).

Since e(tr(δ1δ2µ2)) is independent of δ1, this is equal to

∑
δ2

{∑
δ1

ψ(δ1δ2 · eψN−1A−1dK)e(tr(δ1δ2µ1))

}
e(tr(δ1δ2µ2))

=
∑
δ2

sgneψ (µ1)ψ̃(µ1 · e−1
ψ fψNA)τK(ψ̃)e(tr(δ1δ2µ2)) (by (6))

= sgneψ (µ)ψ̃(eψf
−1
ψ )ψ̃(µ ·NA)τK(ψ̃)

∑
δ2

e(tr(δ1δ2µ2)).

The last summation is equal to µK(R)
ϕK(eψf−1

ψ )

ϕK(R) if (µ2Ae
−1
ψ N,OK) = R−1 (R|eψf−1

ψ ) or equivalently if

(µAe−1
ψ fψN,OK) = R−1. Thus for this R, the left hand side of (5) is equal to

µK(R)
ϕK(eψf

−1
ψ )

ϕK(R)
sgneψ (µ)τK(ψ̃)ψ̃(R)ψ̃(µ ·NAe−1

ψ fψR).

The similar argument of the last part of the proof of (i), shows our assertion. �

Let X be a function on the set {NM−1 | M|N, (M, fψ) = OK} of ideals. Then we define Λk(N, ψ) by

Λk(N, ψ)X :=µK(eψf
−1
ψ )ψ̃(eψf

−1
ψ )N(eψf

−1
ψ )−1N(Ne−1

ψ )−k

×
∑

M|N,(M,fψ)=OK

(
∏
P|M

(1−N(P)))ψ̃(M)X(NM−1). (8)

Proposition 1. Let N be an integral ideal and let ψ be a character of J(N)/(K×
NUN) as in (3). Let A

be a fractional ideal. Let Xµ(M) =
∑

δ0:M−1Ad−1
K /Ad−1

K ,�0 ψM(δ0 ·MA−1dK)e(tr(δ0µ)) for µ ∈ A−1 and

for an integral ideal M contained in fψ. Then

Λk(N, ψ)Xµ = N(Ne−1
ψ )−k+1τK(ψ̃)sgneψ (µ)(ψIK)(µ ·N−1eψA). (9)

Proof. Unless (µfψN
−1, fψ) = OK , the both sides of (9) are 0 and the equality holds. We assume that

(µfψN
−1, fψ) = OK . Put RN,ψ :=

∏
P|N PvP(N). Let M|RN,ψ and put R = f−1

ψ (µN−1M,OK)−1.
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Then by (4), X(NM−1) = µK(R)ϕK(NM−1)
ϕK(fψR) sgneψ (µ)ψ̃(R)ψ̃(µ · N−1MAfψR)τK(ψ̃). Let Y (NM−1) =

µK(R)
ϕK(RN,ψM−1)

ϕK(R) ψ̃(RN,ψM
−1). Then X(NM−1) is equal to the product of

ϕK(NR−1
N,ψ)

ϕK(fψ) sgneψ (µ)ψ̃(µ ·

N−1RN,ψAfψ)τK(ψ̃) and Y (NM−1), where the former is the constant onM. We must compute Λk(N, ψ)Y .
We note that R = µ−1RN,ψM

−1 ∩ OK . Then

Λk(N, ψ)Y =µK(eψf
−1
ψ )ψ̃(eψf

−1
ψ )N(e−1

ψ fψ)N(Ne−1
ψ )−k

∑
M|RN,ψ

∏
P|M

(1−N(P))

× ψ̃(M)µK(µ−1RN,ψM
−1 ∩ OK)

ϕK(RN,ψM−1)
ϕK(µ−1RN,ψM−1∩OK) ψ̃(RN,ψM

−1)

=µK(eψf
−1
ψ )N(e−1

ψ fψ)N(Ne−1
ψ )−k

∏
P|RN,ψ

Z(P),

where

Z(P) =

vP(RN,ψ)∑
i=max{vP(µ−1RN,ψ)−1,0}

∏
P|Pi

(1−N(P)) µK(Pmax{vP(µ−1RN,ψ)−i,0}) ϕK(PvP(RN,ψ)−i)

ϕK(Pmax{vP(µ−1RN,ψ)−i,0})
.

If vP(µ−1RN,ψ) ≤ 0, then

Z(P) = ϕK(PvP(RN,ψ)) + (1−N(P))

vP(RN,ψ)∑
i=1

ϕK(PvP(RN,ψ)−i) = 0.

If vP(µ−1RN,ψ) = 1, then

Z(P) =

vP(RN,ψ)∑
i=0

∏
P|Pi

(1−N(P)) µK(Pmax{1−i,0})ϕK(PvP(RN,ψ)−i)
ϕK(Pmax{1−i,0})

= −N(P)vP (RN,ψ).

If vP(µ−1RN,ψ) > 1, then

Z(P) = (1−N(P)){−ϕK(PvP(RN,ψ)+1−vP(µ−1RN,ψ))
ϕK(P) +

vP(RN,ψ)∑
i=vP(µ−1RN,ψ)

ϕK(PvP(RN,ψ)−i)} = 0.

Thus

Λk(N, ψ)Y =

{
N(RN,ψe

−1
ψ fψ)N(Ne−1

ψ )−k (vP(µ) = vP(RN,ψ)− 1 for P|RN,ψ),

0 (otherwise).

Then

Λk(N, ψ)Xµ =
ϕK(NR−1

N,ψ)

ϕK(fψ) sgneψ (µ)ψ̃(µN−1fψRN,ψA)τK(ψ̃)

×

{
N(RN,ψe

−1
ψ fψ)N(Ne−1

ψ )−k (vP(µ) = vP(RN,ψ)− 1 for P|RN,ψ)

0 (otherwise)

=N(Ne−1
ψ )−k+1τK(ψ̃)sgneψ (µ)ψ(µ ·N−1eψA).

�

3. Eisenstein series

Let k ∈ N. Let N,N′ be fixed integral ideals of K and let D be a fixed fractional ideal. Let A,B be
fractional ideals of K. Let γ0 ∈ ABD, δ0 ∈ N−1AB−1d−1

K . We define

Ek,A,D,B(z, γ0, δ0;N,N′) : = N(A)k
∑′

γ≡γ0(N′ABD)

δ≡δ0(AB−1d
−1
K

)

(γ,δ)/E
NN′

N(γz+ δ)−k|N(γz+ δ)|−s|s=0
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where γ ≡ γ0(N
′ABD) implies that γ ≡ γ0 modulo N′ABD and where

∑′
implies that the term

corresponding to (γ, δ) = (0, 0) is omitted in the summation. For a set S, ∆(x, S) is define to be 1 or 0
according as x ∈ S or not. Then we have the Fourier expansion

Ek,A,D,B(z, γ0, δ0;N,N′)

=∆(γ0,N
′ABD)N(A)k

∑

µ≡δ0(AB−1d
−1
K

)

µ/E
NN′

N(µ)−k|N(µ)|−s|s=0

+
(

(−2π
√
−1)k

(k−1)!

)g

D
1/2
K N(A)k−1N(B)

∑
0≺ν∈B2D

∑
ν/µ≡γ0(N′ABD)

µ:A−1B/E
NN′

e(tr(δ0µ))sgn(N(µ))N(µ)k−1e(tr(νz))

where there is the additional term

(−π
√
−1)gD

1/2
K N(B)

∑
µ≡γ0(N′ABD)

µ/E
NN′

sgn(N(µ))|N(µ)|−s|s=0

when k = 1, and where there is the additional term −π/(N(N′DdK)�z) when g = 1 and k = 2.
Let ψ, ψ′ be characters of J(N)/(K×

NUN), J(N′)/(K×
N′UN′) such as (3) respectively so that ψψ′ is a

Hecke character in C∗
NN′ with same parity as k. So if we put ψ := χφ and ψ′ := χ′φ′, then

χ(ξ) = χ′(ξ) (ξ ∈ K×((N,N′))). (10)

We assume that either ψ �= 1N or ψ′ �= 1N′ when g = 1 and k = 2. We assume that

(N,N′e−1
ψ′ ) = OK . (11)

Then we put

g̃ψ
′

k,ψ(z;D) = g̃ψ
′

k,ψN,N(z;D) :=
(

(k−1)!

(−2
√
−1π)k

)g

D
−1/2
K [EOK

: ENN′ ]−1τK(ψ̃)−1
∑

A∈CNN′

∑
γ0,δ0

ψ(δ0 ·NA−1dK)

× ψ′(γ0 · eψ′N′−1A−1D−1)Ek,A,D,OK
(z, γ0, δ0;N,N′) (12)

where in the second summation, γ0 runs over the set of totally positive representatives of e−1
ψ′ N′ADmodulo

N′AD with (γ0eψ′N′−1A−1D−1,N′) = OK , and δ0 runs over the set of totally positive representatives of

N−1Ad−1
K modulo Ad−1

K with (δ0NA−1dK ,N) = OK . Further let

Gψ′

k,ψ(z;D) = Gψ′

k,ψ(z;Ne−1
ψ N′e−1

ψ′ ;D) :=µK(eψf
−1
ψ )ψ̃(eψf

−1
ψ )N(eψf

−1
ψ )−1N(Ne−1

ψ )−k
∑

M|N,(M,fψ)=OK

(
∏
P|M

(1−N(P)))ψ̃(M)g̃ψ
′

k,ψNM−1 ,NM−1(z;D). (13)

4. Constant terms of Hilbert Eisenstein series

In this section we use the following result due to Hecke [1].

Lemma 2. Let M be a fractional ideal, and let E be a subgroup of finite index in the group of all units.
Let µ0 ∈ K and k ∈ Z. Then there holds the functional equations

∑′

µ≡µ0(M)

µ/E

N(µ)−k|N(µ)|−s|s=0 =
(

(−2
√
−1π)k

2·(k−1)!

)g

D
−1/2
K N(M)−1

∑′

µ:M−1d−1
K /E

e(tr(µ0µ))

× sgn(Nm(µ))k|N(µ)|k−1|N(µ)|−s|s=0,
∑′

µ≡µ0(M)

µ/E

sgn(N(µ))|N(µ)|−s|s=0

=(−
√
−1π−1)gD

−1/2
K N(M)−1

∑′

µ:M−1d−1
K /E

e(tr(µ0µ))N(µ)−1|N(µ)|−s|s=0

where
∑′

implies that the term corresponding to µ = 0 is omitted in the summation.
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Let A be as in (2) with α ∈ OK , γ ∈ DdK . If f(z) is a Hilbert modular form of weight k for
Γ0(D

−1d−1
K ,NN′DdK), then the value κ(α/γ, f) = κ(α, γ, f) of f(z) at the cusp α/γ is defined by

κ(α/γ, f) = κ(α, γ, f) := lim
z→

√
−1∞

N(γz+ δ)−kf(Az). (14)

We determine the value at each cusp, of the Hilbert-Eisenstein series (13) as well as the Fourier expansion
at the cusp

√
−1∞.

For a cusp α/γ ∈ K ∪ {∞}, we can take α ∈ OK , γ ∈ DdK so that

B := (α, γD−1d−1
K )

satisfies

(B,NN′) = OK . (15)

Since A ∈ SL2(K), we can take β ∈ D−1d−1
K , δ ∈ OK so that B−1 = (βDdK , δ) and that (β,NN′) =

(δ,NN′) = OK . Then the equality N(γz + δ)−kEk,N′A,D,OK
(Az, γ0, δ0;N,N′) = Ek,N′A,D,B(z, αγ0 +

γδ0, βγ0+ δδ0;N,N′) holds, and the constant term of the Fourier expansion of Ek,A,D,OK
(z, γ0, δ0;N,N′)

at α/γ, is equal to

N(A)k
∑

δ′:Ad−1
K /N′Ad−1

K

∆(αγ0 + γ(δ0 + δ′),N′ABD)
∑′

µ≡βγ0+δ(δ0+δ′)(N′AB−1d
−1
K

)

µ/E
NN′

N(µ)−k|N(µ)|−s|s=0

where there is the additional term

(−π
√
−1)gD

1/2
K N(N′−1B)

∑

δ′:Ad−1
K /N′Ad−1

K

∑′

µ≡αγ0+γ(δ0+δ′)(N′ABD)

µ/E
NN′

sgn(N(µ))|N(µ)|−s|s=0

when k = 1. The modular form g̃ψ
′

k,ψN,N(z;D) is a linear combination of Ek,A,D,OK
(z, γ0, δ0;N,N′)’s by

(12), and we obtain the following;

Lemma 3. Let A,α, β, γ, δ be as above. Assume the condition (15) holds. Let Cα/γ(N, k, ψN, ψ′) denote

the constant term of N(γz+ δ)−kg̃ψ
′

k,ψN,N(Az;D). Then Cα/γ(N, k, ψN, ψ′) is given by
(

(k−1)!

(−2
√
−1π)k

)g

D
−1/2
K [EOK

: ENN′ ]−1τK(ψ̃)−1
∑

A∈CNN′

∑

γ0:e
−1
ψ′ N′AD/N′AD,�0

δ0:N−1Ad
−1
K

/Ad
−1
K

,�0

ψ(δ0 ·NA−1dK)

× ψ′(γ0 · eψ′N′−1A−1D−1)N(A)k
∑

δ′:Ad−1
K /N′Ad−1

K

∆(αγ0 + γ(δ0 + δ′),N′ABD)

×
∑′

µ≡βγ0+δ(δ0+δ′)(N′AB−1d
−1
K

)

µ/E
NN′

N(µ)−k|N(µ)|−s|s=0

where in the second summation, γ0 and δ0 satisfy (γ0eψ′N′−1A−1D−1,N′) = OK , (δ0NA−1dK ,N) = OK

respectively. When k = 1, there is the additional term C1
α/γ(N, k, ψN, ψ′) with

C1
α/γ(N, k, ψN, ψ′)

:= 2−g[EOK
: ENN′ ]−1τK(ψ̃)−1N(N′−1B)

∑
A∈CNN′

∑

γ0:e
−1
ψ′ N′AD/N′AD,�0

δ0:N−1Ad
−1
K

/Ad
−1
K

,�0

ψ(δ0 ·NA−1dK)

× ψ′(γ0 · eψ′N′−1A−1D−1)
∑

δ′:Ad−1
K /N′Ad−1

K

∑′

µ≡αγ0+γ(δ0+δ′)(N′ABD)

µ/E
NN′

sgn(N(µ))|N(µ)|−s|s=0.

For γ ∈ OK , we put
M′

γ := N′e−1
ψ′ (γD

−1d−1
K ,N′)−1.

By the assumption (11), M′
γ is coprime to N if it is integral. The purpose of this section is to prove the

following;

―  21  ―

Hilbert-Eisenstein Series, III



8 Shigeaki Tsuyumine

Theorem 1. Let α ∈ OK , γ ∈ DdK ,B = (α, γD−1d−1
K ) with (B,NN′) = OK . Put Cα/γ(NM−1) :=

Cα/γ(NM−1, k, ψNM−1 , ψ′) for a divisor M of N with (M, fψ) = OK . Let Λk(N, ψ) be as in (8). If there is

no divisor Mγ of N with (Mγ , fψ) = OK and (γD−1d−1
K ,NM−1

γ N′) = NM−1
γ N′e−1

ψ′ M′−1
γ for M′

γ integral,

then Λk(N, ψ)Cα/γ = 0. Suppose otherwise. Let Mγ be the largest ideal satisfying (γD−1d−1
K ,NM−1

γ N′) =

NM−1
γ N′e−1

ψ′ M′−1
γ . Then

Λk(N, ψ)Cα/γ

=sgneψ (α)sgneψ′ (−γ)µK((eψf
−1
ψ ,MγN

′))ψ̃(α ·B−1MγM
′
γ(eψf

−1
ψ ,MγN

′)−1)

× ψ′(−γ ·D−1d−1
K B−1N−1Mγeψf

−1
ψ (eψf

−1
ψ ,MγN

′)−1N′−1eψ′M′
γ)N(B)kN(M−1

γ (eψf
−1
ψ ,MγN

′)fψf
−1

ψψ′)
k−1

×N(M′
γ)

−kN(fψf
−1

ψψ′)τK(ψ̃)−1τK(ψ̃ψ′)N(M−1
γ )

∏
P|Mγ

(1−N(P)) LK(1− k, ψ̃ψ
′
)

×
∏

P|eψ′ ,P�fψψ′

(1− ψ̃ψ′(P)N(P)−k)
∏

P|eψf−1
ψ ,P�MγN′

(1− ψ̃ψ
′
(P)N(P)k−1). (16)

If γ = 0, then Λk(N, ψ)Cα/γ is non-zero only when N′ = OK , and the value is obtained by replacing γ
in (16) by N(N). If α = 0, then then Λk(N, ψ)Cα/γ is non-zero only when fψ = OK , and the value is
obtained by replacing α in (16) by 1.

Several preparations are necessary to give the proof of Theorem 1.

Lemma 4. Unless (γD−1d−1
K ,NN′) = NN′e−1

ψ′ M′−1
γ for any M′

γ integral, then Cα/γ(N, k, ψN, ψ′) van-

ishes. Suppose the equality holds for some M′
γ integral. Then Cα/γ(N, k, ψN, ψ′) equals

2−g[EOK
: ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)N(B)kN((Ne−1

ψ′ ,OK))N(M′
γ)

−kψ(α ·B−1M′
γ)

× ψ′(−γ ·D−1d−1
K B−1N−1N′−1eψ′M′

γ)
∑

A∈CNN′

N(A)k−1
∑′

µ:(Ne−1

ψ′ ,OK)A−1/ENN′

×
∑

δ0:N−1Ad−1
K /(Ne−1

ψ′ ,OK)−1Ad−1
K ,�0

(ψψ′)(δ0NA−1dK)e(tr(δ0µ))sgn(N(µ))
k|N(µ)|k−1|N(µ)|−s|s=0.

Proof. Since (αB−1, γB−1D−1d−1
K ) = OK and since (γ0eψ′N′−1A−1D−1,N′) = (δ0NA−1dK ,N) = OK

in the equation for Cα/γ(N, k, ψN, ψ′) in Lemma 3, it is possible that ∆(αγ0 + γ(δ0 + δ′),N′ABD) �= 0

only when (γD−1d−1
K ,NN′) = NN′e−1

ψ′ M′−1
γ for M′

γ integral. This shows the first assertion of Lemma 4.

In particular if Cα/γ(N, k, ψN, ψ′) �= 0, then γD−1d−1
K ⊂ N and (α,N) = OK . When (γD−1d−1

K ,NN′) =

NN′e−1
ψ′ M′−1

γ for M′
γ integral, Cα/γ(N, k, ψN, ψ′) is equal to

2−g[EOK
: ENN′ ]−1τK(ψ̃)−1N((Ne−1

ψ′ M
′−1
γ ,OK))

∑
A∈CNN′

∑

γ0:e
−1
ψ′ N′M′−1

γ AD/N′AD,�0

δ0:N−1Ad
−1
K

/(Ne
−1
ψ′ M

′−1
γ ,OK )−1Ad

−1
K

,�0

∆(αγ0 + γδ0,N
′ABD)ψ(δ0 ·NA−1dK)(ψ′IK)(γ0 · eψ′N′−1A−1D−1)N(A)k−1N(B)

×
∑′

µ:(Ne−1

ψ′ M
′−1
γ ,OK)A−1B/ENN′

e(tr((βγ0 + δδ0)µ))sgn(N(µ))
k|N(µ)|k−1|N(µ)|−s|s=0,

which is obtained by Lemma 2 and by Lemma 1 (ii). The map
(

e−1
ψ′ N

′M′−1
γ AD/N′AD

N−1Ad−1
K /(Ne−1

ψ′ M
′−1
γ ,OK)−1Ad−1

K

)
−→

(
e−1
ψ′ N

′M′−1
γ ABD/N′ABD

N−1AB−1d−1
K /(Ne−1

ψ′ M
′−1
γ ,OK)−1AB−1d−1

K

)

obtained by multiplying by

(
α γ
β δ

)
, is bijective. Using this bijection, we have

Cα/γ(N, k, ψN, ψ′)
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=2−g[EOK
: ENN′ ]−1τK(ψ̃)−1N((Ne−1

ψ′ M
′−1
γ ,OK))

∑
A∈CNN′

∑

γ0:e
−1
ψ′ N′M′−1

γ ABD/N′ABD,�0

δ0:N−1AB−1d
−1
K

/(Ne
−1
ψ′ M

′−1
γ ,OK )−1AB−1d

−1
K

,�0

∆(γ0,N
′ABD)sgneψ (−βγ0 + αδ0)ψ((−βγ0+αδ0) ·NA−1dK)sgneψ′ (δγ0−γδ0)

× (ψ′IK)((δγ0−γδ0) · eψ′N′−1A−1D−1)N(B)N(A)k−1

×
∑′

µ:(Ne−1

ψ′ M
′−1
γ ,OK)A−1B/ENN′

e(tr(δ0µ))sgn(N(µ))
k|N(µ)|k−1|N(µ)|−s|s=0

replacing A by AB,

= 2−g[EOK
: ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)N(B)kN((Ne−1

ψ′ ,OK))N(M′
γ)

−1ψ(α ·B−1M′
γ)

× ψ′(−γ ·D−1d−1
K B−1N−1N′−1eψ′M′

γ)
∑

A∈CNN′

N(A)k−1
∑

δ0:N−1Ad−1
K /M′

γ(Ne−1

ψ′ ,OK)−1Ad−1
K ,�0

(ψψ′IK)(δ0NM′−1
γ A−1dK)

∑′

µ:M′−1
γ (Ne−1

ψ′ ,OK)A−1/ENN′

e(tr(δ0µ))sgn(N(µ))
k|N(µ)|k−1|N(µ)|−s|s=0

=2−g[EOK
: ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)N(B)kN((Ne−1

ψ′ ,OK))N(M′
γ)

−1ψ(α ·B−1M′
γ)

× ψ′(−γ ·D−1d−1
K B−1N−1N′−1eψ′M′

γ)
∑

A∈CNN′

N(A)k−1
∑′

µ:M′−1
γ (Ne−1

ψ′ ,OK)A−1/ENN′

∑

δ0:N−1M′
γAd−1

K /M′
γ(Ne−1

ψ′ ,OK)−1Ad−1
K ,�0

(ψψ′)(δ0NM′−1
γ A−1dK)e(tr(δ0µ))sgn(N(µ))

k|N(µ)|k−1|N(µ)|−s|s=0.

Replacing A by M′−1
γ A, we obtain the result of the lemma. �

Just replacing N by NM−1 in the lemma, we obtain the following;

Corollary. Let M be a divisor of N with (M, fψ) = OK . Unless (γD−1d−1
K ,NM−1N′) = NM−1N′e−1

ψ′ M′−1
γ

for M′
γ integral, then Cα/γ(NM−1, k, ψNM−1 , ψ′) vanishes. Suppose the equality. Then it equals

2−g[EOK : ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)N(B)kN((NM−1e−1
ψ′ ,OK))N(M′

γ)
−kψ(α ·B−1M′

γ)

× ψ′(−γ ·D−1d−1
K B−1N−1MN′−1eψ′M′

γ)
∑

A∈CNN′

N(A)k−1
∑′

µ:(NM−1e−1

ψ′ ,OK)A−1/ENN′

∑

δ0:N−1MAd−1
K

/(NM−1e−1

ψ′ ,OK)−1Ad−1
K

,�0

(ψNM−1ψ
′)(δ0NM−1A−1dK)e(tr(δ0µ))sgn(N(µ))k|N(µ)|k−1|N(µ)|−s|s=0.

Let Mγ be the largest ideal with Mγ |N, (Mγ , fψ) = OK satisfying (γD−1d−1
K ,NM−1

γ N′) =

NM−1
γ e−1

ψ′ N′M′−1
γ . Then Cα/γ(NM−1, k, ψNM−1 , ψ′) = 0 for M with Mγ �M. Suppose that M is a

divisor of NM−1
γ coprime to fψ satisfying (γD−1d−1

K ,NM−1
γ M−1N′) = NM−1

γ M−1e−1
ψ′ N′M′−1

γ . Then

(M,N′) = OK , from which there holds (NM−1
γ M−1e−1

ψ′ ,OK) = (NM−1
γ e−1

ψ′ ,OK). For such M, we have

Cα/γ(NM−1
γ M−1, k, ψNM−1

γ M−1 , ψ
′)

= 2−g[EOK
: ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)N(B)kN((NM−1

γ e−1
ψ′ ,OK))N(M′

γ)
−kψ(α ·B−1M′

γ)

× ψ′(−γ ·D−1d−1
K B−1N−1MγN

′−1eψ′M′
γ)

∑
A∈CNN′

N(A)k−1
∑′

µ:(NM−1
γ e−1

ψ′ ,OK)A−1/ENN′

∑

δ0:N−1MγMAd−1
K /(NM−1

γ e−1

ψ′ ,OK)−1Ad−1
K ,�0

ψNM−1
γ M−1(δ0NM−1

γ M−1A−1dK)ψ′(δ0NM−1
γ A−1dK)

× e(tr(δ0µ))sgn(N(µ))
k|N(µ)|k−1|N(µ)|−s|s=0.
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Then

Λk(N, ψ)Cα/γ =µK(eψf
−1
ψ )ψ̃(eψf

−1
ψ )N(eψf

−1
ψ )−1N(Ne−1

ψ )−kψ̃(Mγ)(
∏

P|Mγ

(1−N(P)))

∑

M|NM−1
γ ,(M,fψN′)=OK

(
∏
P|M
P�Mγ

(1−N(P)))ψ̃(M)Cα/γ(NM−1
γ M−1, k, ψNM−1

γ M−1 , ψ
′)

= 2−g[EOK
: ENN′ ]−1τK(ψ̃)−1sgneψ (α)sgneψ′ (−γ)µK(eψf

−1
ψ )ψ̃(eψf

−1
ψ )N(eψf

−1
ψ )−1

×N((NM−1
γ e−1

ψ′ ,OK))N(B)kN(Ne−1
ψ M′

γ)
−k(

∏
P|Mγ

(1−N(P))ψ̃(Mγ)ψ(αB
−1M′

γ))

× ψ′(−γD−1d−1
K B−1N−1MγN

′−1eψ′M′
γ)

∑
A∈CNN′

N(A)k−1

×
∑′

µ:(NM−1
γ e−1

ψ′ ,OK)A−1/ENN′

sgn(N(µ))kD(µ)|N(µ)|k−1|N(µ)|−s|s=0 (17)

with

D(µ) :=
∑

M|NM−1
γ ,(M,fψN′)=OK

(
∏
P|M
P�Mγ

(1−N(P)))ψ̃(M)
∑

δ0:N−1MγMAd−1
K

/(NM−1
γ e−1

ψ′ ,OK)−1Ad−1
K

,�0

ψ
NM−1

γ M−1(δ0NM−1
γ M−1A−1dK)ψ′(δ0NM−1

γ A−1dK)e(tr(δ0µ)).

Lemma 5. Let µ ∈ (NM−1
γ e−1

ψ′ ,OK)A−1. Then D(µ) is equal to

sgn(N(µ))kτK(ψ̃ψ′)N(NM−1
γ ∩ eψ′)N(fψψ′)

−1
∏

P|fψeψ′ ,P�fψψ′

(1−N(P)−1)

× µK(eψf
−1
ψ (eψf

−1
ψ ,MγN

′)−1)
∑

R∈R(fψeψ′ ,ψψ′)

µK(R)ϕK(R)−1(ψ̃ψ′)(eψf
−1
ψ (eψf

−1
ψ ,MγN

′)−1R)

× ((ψψ
′
)eψf−1

ψ (eψf−1
ψ ,MγN′)−1RIK)(µN−1Mγeψf

−1
ψ (eψf

−1
ψ ,MγN

′)−1RAfψψ′), (18)

where R( , ) is defined just after (1).

Proof. There holds

D(µ) =
∑

M|NM−1
γ ,(M,fψN′)=OK

(
∏

P|M,P�Mγ

(1−N(P)))(ψ̃ψ′)(M)×

∑

δ0:N−1MγMAd−1
K /(NM−1

γ e−1

ψ′ ,OK)−1Ad−1
K ,�0

(ψNM−1
γ M−1ψ

′)(δ0NM−1
γ M−1A−1dK)e(tr(δ0µ))

= sgn(N(µ))kτK(ψ̃ψ′)(ψ̃ψ′IK)(µN−1MγAfψψ′)
∑

M|NM−1
γ ,(M,fψN′)=OK

(
∏

P|M,P�Mγ

(1−N(P)))×

∑

R∈R(NM−1
γ M−1∩eψ′ ,ψψ′)

µK(R)
ϕK(NM−1

γ M−1 ∩ eψ′)

ϕK(fψψ′R)
×

{
1 (µN−1MγMA,OK) = f−1

ψψ′R
−1)

0 (otherwise)

by Lemma 1. Then

D(µ) = sgn(N(µ))kτK(ψ̃ψ′)(ψ̃ψ′IK)(µN−1MγAfψψ′)
∏

P|NM−1
γ ,P�fψN′

Z(P)

×
∑

R∈R(fψeψ′ ,ψψ′)

µK(R)
ϕK(eψ′ ∩

∏
P|fψeψ′ P

vP(NM−1
γ ))

ϕK(fψψ′R)
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×

{
1 (µA

∏
P|fψeψ′ P

−vP(NM−1
γ ),OK) = f−1

ψψ′R
−1)

0 (otherwise)

where

Z(P) =




vP(NM−1
γ )∑

i=vP(µ−1NM−1
γ )−1

(1−N(P))min{1,i}µK({R}P)
ϕK({NM−1

γ P−i}P)

ϕK({R}P) (P � Mγ),

vP(NM−1
γ )∑

i=vP(µ−1NM−1
γ )−1

µK({R}P)
ϕK({NM−1

γ P−i}P)

ϕK({R}P) (P|Mγ).

A simple calculation leads to the following;
(i) The case that P � Mγ and vP(µ−1NM−1

γ ) > 1 : Z(P) = 0.

(ii) The case that P � Mγ and vP(µ−1NM−1
γ ) = 1 : Z(P) = −N(P)vP(NM−1

γ ).

(iii) The case that P � Mγ and vP(µ−1NM−1
γ ) ≤ 0 : Z(P) = 0.

(iv) The case that P|Mγ and vP(µ−1NM−1
γ ) > 1 : Z(P) = 0.

(v) The case that P|Mγ and vP(µ−1NM−1
γ ) = 1 : Z(P) = 0.

(vi) The case that P|Mγ and vP(µ−1NM−1
γ ) ≤ 0 : Z(P) = N(P)vP(NM−1

γ ).

Then, putting RNM−1
γ ,ψ,N′ :=

∏
P|NM−1

γ ,P�fψN′ P
vP(R

NM
−1
γ ,ψ

)
with RNM−1

γ ,ψ =
∏

P|NM−1
γ

PvP(NM−1
γ ),

D(µ) = sgn(N(µ))kτK(ψ̃ψ′)
∑

R∈R(fψeψ′ ,ψψ′)

µK(R)
ϕK(NM−1

γ R−1
NM−1

γ ,ψ,N′ ∩ eψ′)

ϕK(fψψ′R)

× µK(eψf
−1
ψ (eψf

−1
ψ ,MγN

′)−1)N(RNM−1
γ ,ψ,N′)(ψ̃ψ′)(eψf

−1
ψ (eψf

−1
ψ ,MγN

′)−1R)

× ((ψψ
′
)eψf−1

ψ (eψf−1
ψ ,MγN′)−1RIK)(µN−1Mγeψf

−1
ψ (eψf

−1
ψ ,MγN

′)−1RAfψψ′),

which is equal to (18). �

Proof of Theorem 1. By Lemma 5 and by (17), we have

Λk(N, ψ)Cα/γ

=2−g[EOK
: ENN′ ]−1τK(ψ̃)−1τK(ψ̃ψ′)sgneψ (α)sgneψ′ (−γ)µK((eψf

−1
ψ ,MγN

′))

× ψ̃(α ·B−1e−1
ψ fψM

′
γMγ)ψ

′(−γ ·D−1d−1
K B−1N−1MγN

′−1eψ′M′
γ)N(B)kN(M′

γ)
−kN(fψψ′)

−k

×N(fψM
−1
γ )

∏
P|Mγ

(1−N(P))
∏

P|fψeψ′ ,P�fψψ′

(1−N(P)−1)N(M−1
γ fψ(eψf

−1
ψ ,MγN

′))k−1

× (ψ̃ψ′)(eψf
−1
ψ (eψf

−1
ψ ,MγN

′)−1)
∑

R∈R(fψeψ′ ,ψψ′)

µK(R)N(R)−k+1ϕK(R)−1(ψ̃ψ′)(R)

×
∑

A∈CNN′

∑′

µ:A−1/ENN′

((ψψ
′
)eψf−1

ψ (eψf−1
ψ ,MγN′)−1R)(µA)N(µA)|k−1−s|s=0

= τK(ψ̃)−1τK(ψ̃ψ′)sgneψ (α)sgneψ′ (−γ)µK((eψf
−1
ψ ,MγN

′))ψ̃(α ·B−1e−1
ψ fψM

′
γMγ)

× ψ′(−γ ·D−1d−1
K B−1N−1MγN

′−1eψ′M′
γ)N(B)kN(M′

γ)
−kN(fψM

−1
γ )kN(fψψ′)

−k

×
∏

P|Mγ

(1−N(P))
∏

P|fψeψ′ ,P�fψψ′

(1−N(P)−1)N((eψf
−1
ψ ,MγN

′))k−1

× (ψ̃ψ′)(eψf
−1
ψ (eψf

−1
ψ ,MγN

′)−1)
∑

R∈R(fψeψ′ ,ψψ′)

µK(R)N(R)−k+1ϕK(R)−1(ψ̃ψ′)(R)

× LK(1− k, (ψψ
′
)eψf−1

ψ (eψf−1
ψ ,MγN′)−1R).
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Here ∑

R∈R(fψeψ′ ,ψψ′)

µK(R)N(R)−k+1ϕK(R)−1(ψ̃ψ′)(R)LK(1− k, (ψψ
′
)
eψf−1

ψ
(eψf−1

ψ
,MγN′)−1R

)

=LK(1− k, ψ̃ψ
′
)

∏

P|eψf−1
ψ

,P�MγN′

(1− ψ̃ψ
′
(P)N(P)k−1)

∏
P|fψeψ′ ,P�f

ψψ′

N(P)(N(P)− 1)−1

×
∏

P|eψ′ ,P�f
ψψ′

(1− ψ̃ψ′(P)N(P)−k),

from which, the theorem follows. �

5. The case of weight 1

We compute the additional term which appears when k = 1. As in the preceding section, we put
B := (α, γD−1d−1

K ) for α ∈ OK , γ ∈ DdK , and assume the condition (15). From Lemma 3 and Lemma
2, we have for M|N with (M, fψ) = OK ,

C1
α/γ(NM−1, k, ψNM−1 , ψ′)

= (−
√
−1π−1)g2−g[EOK

: ENN′ ]−1τK(ψ̃)−1N(N′D)−1D
−1/2
K

∑
A∈CNN′

N(A)−1

×
∑′

µ:(γD−1d−1
K B−1,N′)−1A−1B−1D−1d−1

K /ENN′

∑

γ0:e
−1

ψ′ N
′AD/N′AD,�0

ψ′(γ0 · eψ′N′−1A−1D−1)e(tr(αγ0µ))

×N(µ)−1|N(µ)|−s|s=0

∑

δ0:N−1MAd−1
K /Ad−1

K ,�0

ψNM−1(δ0 ·NM−1A−1dK)e(tr(γδ0µ)). (19)

The purpose of this section is to prove the following;

Theorem 2. Let α ∈ OK , γ ∈ DdK ,B = (α, γD−1d−1
K ) with (B,NN′) = OK . Let C1

α/γ(NM−1) denote

C1
α/γ(NM−1, k, ψNM−1 , ψ′). Put

Lγ := γD−1d−1
K N−1eψN

′−1eψ′ f−1
ψ′ .

If there is no divisor R of eψ′ f−1
ψ′ so that the numerator of LγR

−1 is coprime to N and the denom-

inator is coprime to fψ′R, then Λ1(N, ψ)C1
α/γ vanishes. Suppose that such R exists. Let R̃γ be the

divisor of (N, eψ′ f−1
ψ′ ) satisfying vP(LγR̃

−1
γ ) = 0 for any prime divisor P of (N, eψ′ f−1

ψ′ ). Put L′
γ :=

(γD−1d−1
K N′−1,N−1) ∩ e−1

ψ′ fψ′ . Then Λ1(N, ψ)C1
α/γ is equal to

sgneψ′ (α)sgneψ (−γ)µK(R̃γ)N(B)ψ(B)ψ(−γ · γ−1((LγR̃
−1
γ ) ∩ OK))ψ̃′(α ·B−1)ψ̃′(R̃γ)

× ψ
′
R̃γ

((LγR̃
−1
γ ,OK)−1)ϕK(R̃−1

γ L′−1
γ )N((Lγ , R̃γ)L

′
γ)N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)

× LK(0, ψ̃ψ′)
∏

P|eψ,P�f
ψψ′

(1− ψ̃ψ′(P)N(P)−1)
∏

P|eψ′ f
−1

ψ′ L
′
γ

(1− ψ̃ψ′(P)). (20)

If γ = 0, then Λ1(N, ψ)C1
α/γ is non-zero only when N = OK , and the value is obtained by replacing γ

in (20) by N(N′). If α = 0, then then Λ1(N, ψ)C1
α/γ is non-zero only when fψ′ = OK , and the value is

obtained by replacing α in (20) by 1.

Proof. By (19) and by Proposition 1, we have

Λ1(N, ψ)C1
α/γ =(−

√
−1π−1)g2−g[EOK

: ENN′ ]−1N(N′D)−1D
−1/2
K

∑
A∈CNN′

N(A)−1

∑′

µ:(γD−1d−1
K B−1,N′)−1A−1B−1D−1d−1

K /ENN′

∑

γ0:e
−1

ψ′ N
′AD/N′AD,�0

ψ′(γ0 · eψ′N′−1A−1D−1)

× sgneψ (γµ)(ψIK)(γµ ·N−1eψA)e(tr(αγ0µ))N(µ)−1|N(µ)|−s|s=0

―  26  ―

Shigeaki Tsuyumine



Hilbert-Eisenstein Series, III 13

=(−
√
−1π−1)g2−g[EOK

: ENN′ ]−1N(N′D)−1D
−1/2
K sgneψ (γ)

∑
A∈CNN′

N(A)−1

∑′

µ:(γD−1d−1
K B−1N−1eψN′−1,OK)−1N′−1A−1B−1D−1d−1

K /ENN′

ψ(γµ ·N−1eψA)sgn
eψ (µ)N(µ)−1

× |N(µ)|−s|s=0

∑

γ0:e
−1

ψ′ N
′AD/N′AD,�0

ψ′(γ0 · eψ′N′−1A−1D−1)e(tr(αγ0µ)).

Since τK(ψ̃′) = sgneψ′ (−1)ψ′(−1)N(fψ′)τK(ψ̃′)−1 and since sgneψ (−1)sgneψ′ (−1) = (−1)g and χ(ξ) =
χ′(ξ) by (10), Lemma 1 leads to

Λ1(N, ψ)C1
α/γ

=(
√
−1π−1)g2−g[EOK

: ENN′ ]−1N(N′D)−1D
−1/2
K N(fψ′)τK(ψ̃′)−1ψ(−1)sgneψ (−γ)sgneψ′ (α)ϕK(eψ′ f−1

ψ′ )

×
∑

R|eψ′ f
−1

ψ′

µK(R)ϕK(R)−1
∑

A∈CNN′

∑′

µ:(αN′e−1

ψ′ fψ′R,γD−1d−1
K N−1eψ)−1A−1D−1d−1

K /ENN′

ψ(γµ ·N−1eψA)

× ψ̃′(R)ψ
′
R(αµ ·N′e−1

ψ′ fψ′ADdKR)N(µA)−1−s|s=0

=(
√
−1π−1)gN(N′D)−1D

−1/2
K N(fψ′)τK(ψ̃′)−1sgneψ (−γ)sgneψ′ (α)ϕK(eψ′ f−1

ψ′ )

×
∑

R|(eψ′ f
−1

ψ′ ,γD
−1d−1

K )

µK(R)ϕK(R)−1ψ(−γ · γ−1(α−1LγR
−1 ∩ OK))ψ̃′(R)

× ψ
′
R(α · (LγR

−1, (α))−1)N((αR,Lγ)N
′e−1
ψ′ fψ′DdK)LK(1, ψ̃ψ′)

∏
P|eψfψ′R

(1− ψ̃ψ′(P)N(P)−1)

= sgneψ (−γ)sgneψ′ (α)τK(ψ̃′)−1τK(ψ̃ψ′)ϕK(eψ′ f−1
ψ′ )N(N′D)−1d−1

K N(fψ′ f−1

ψψ
′)

∑

R|(eψ′ f
−1

ψ′ ,γD
−1d−1

K )

µK(R)

× ϕK(R)−1ψ(−γ · γ−1(α−1LγR
−1 ∩ OK))ψ̃′(R)ψ

′
R(α · α−1(α−1LγR

−1,OK)−1)

×N((αR,Lγ)N
′e−1
ψ′ fψ′DdK)LK(0, ψ̃ψ′)

∏
P|eψfψ′R

(1− ψ̃ψ′(P)N(P)−1),

where we use the functional equation of the L-function at the last equality.
Since B = (α, γD−1d−1

K ) is coprime to NN′, we have (αNe−1
ψ N′e−1

ψ′ fψ′R, γD−1d−1
K ) = (α, γD−1d−1

K )

×(Ne−1
ψ N′e−1

ψ′ fψ′R, γD−1d−1
K ) = B(R,Lγ)Ne−1

ψ N′e−1
ψ′ fψ′ for R dividing (eψ′ f−1

ψ′ , γD−1d−1
K ). Then

(α−1LγR
−1,OK) = α−1B(LγR

−1,OK) follows. Then

Λ1(N, ψ)C1
α/γ =N(B)ϕK(eψ′ f−1

ψ′ )N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)sgneψ (−γ)sgneψ′ (α)ψ(B)ψ̃′(α ·B−1)

×
∑

R|(eψ′ f
−1

ψ′ ,γD
−1d−1

K )

µK(R)ϕK(R)−1N((Lγ ,R)e−1
ψ′ fψ′)ψ(−γ · γ−1(LγR

−1 ∩ OK))ψ̃′(R)

× ψ
′
R((LγR

−1,OK)−1)LK(0, ψ̃ψ′)
∏

P|eψfψ′R

(1− ψ̃ψ′(P)N(P)−1).

In the summation, the term corresponding to R survives if the numerator of LγR
−1 is coprime to N and

the denominator is coprime to fψ′R. Suppose that such R exists. Then

R̃γ :=
∏

P|(N,eψ′ f
−1

ψ′ ), vP(Lγ)=1

P

is the largest such ideal, and R is written as the product of R̃γ and a divisor of L′
γeψ′ f−1

ψ′ where L′
γ :=

(γD−1d−1
K N′−1,N−1) ∩ e−1

ψ′ fψ′ . Then

Λ1(N, ψ)C1
α/γ
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=sgneψ (−γ)sgneψ′ (α)N(B)ϕK(eψ′ f−1
ψ′ )N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)ψ(B)ψ̃

′
(α ·B−1)

×
∑

R|L′
γeψ′ f

−1

ψ′

µK(R̃γR)ϕK(R̃γR)−1N((Lγ , R̃γR)e−1
ψ′ fψ′)ψ(−γ · γ−1(LγR̃

−1
γ R−1 ∩ OK))

× ψ̃′(R̃γR)ψ
′
R̃γR((LγR̃

−1
γ R−1,OK)−1)LK(0, ψ̃ψ′)

∏
P|eψfψ′R

(1− ψ̃ψ′(P)N(P)−1)

= sgneψ (−γ)sgneψ′ (α)N(B)N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)ψ(B)ψ̃

′
(α ·B−1)µK(R̃γ)ϕK(R̃γ)

−1ϕK(eψ′ f−1
ψ′ )

×N((Lγ , R̃γ)e
−1
ψ′ fψ′)ψ(−γ · γ−1(LγR̃

−1
γ ∩ OK))ψ̃′(R̃γ)ψ

′
R̃γ

((LγR̃
−1
γ ,OK)−1)LK(0, ψ̃ψ′)

×
∏

P|eψfψ′

(1− ψ̃ψ′(P)N(P)−1)
∑

R|eψ′ f
−1

ψ′ L
′
γ

µK(R)ϕK(R)−1N(R)ψ(R)ψ̃′(R)
∏
P|R

(1− ψ̃ψ′(P)N(P)−1)

= sgneψ (−γ)sgneψ′ (α)N(B)N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)ψ(B)ψ̃

′
(α ·B−1)µK(R̃γ)ϕK(R̃γ)

−1

× ϕK(eψ′ f−1
ψ′ )N((Lγ , R̃γ)e

−1
ψ′ fψ′)ψ(−γ · γ−1(LγR̃

−1
γ ∩ OK))ψ̃′(R̃γ)ψ

′
R̃γ

((LγR̃
−1
γ ,OK)−1)

× LK(0, ψ̃ψ′)
∏

P|eψfψ′

(1−ψ̃ψ′(P)N(P)−1)N(eψ′ f−1
ψ′ L

′
γ)ϕK(eψ′ f−1

ψ′ L
′
γ)

−1
∏

P|eψ′ f
−1

ψ′ L
′
γ

(1−ψ̃ψ′(P)),

which is equal to (20). �

6. Main Theorem

Let ψ, ψ′ be as in Section 3. We define

σψ′

k−1,ψ(ν;M) :=
∑

νM⊂A⊂OK

ψ(A)ψ′(ν ·MA−1)N(A)k−1 (21)

for a totally positive ν ∈ K and for a fractional idealM. We note that it is 0 if νM is not integral. If νM is

integral and if ψ = χφ, ψ′ = χ′φ′ are as in Section 3, then (21) is equal to χ′(ν
∏

P|N′ �
−vP(ν)
P )

∑
νM⊂A⊂OK

φ(A)φ′(νMA−1)N(A)k−1.

Main Theorem. Let k ∈ N and let N,N′ be integral ideals of K. Let ψ, ψ′ be characters of J(N)/(K×
NUN),

J(N′)/(K×
N′UN′) as in (3) with the conductors fψ, fψ′ respectively so that ψψ

′
is a Hecke character in

C∗
NN′ with same parity as k. Let ψ̃ denote the primitive character associated with ψ. Let eψ, eψ′ be as in

(1). We assume (N,N′e−1
ψ′ ) = OK . For a fixed fractional ideal D, let

Gψ′

k,ψ(z;D) =Gψ′

k,ψ(z;Ne−1
ψ N′e−1

ψ′ ;D)

:=µK(eψf
−1
ψ )ψ̃(eψf

−1
ψ )N(eψf

−1
ψ )−1N(Ne−1

ψ )−k

×
∑

M|N,(M,fψ)=OK


∏

P|M

(1−N(P))


 ψ̃(M)g̃ψ

′

k,ψNM−1 ,NM−1(z;D),

where we assume that ψ �= 1N or ψ′ �= 1N′ when g = 1 and k = 2. Then Gψ′

k,ψ(z;D) is a Hilbert modular

form for Γ0(D
−1d−1

K ,NN′DdK) of weight k with character ψψ′, whose Fourier expansion is given by





ψ
′
(Ne−1

ψ fψD)LK(1− k, ψψ
′
) (k > 1 or N � OK , and N′ = OK)

ψ(N′e−1
ψ′ fψ′D)LK(0, ψψ′) (k = 1,N = OK ,N′ � OK)

ψ
′
(D)LK(0, ψψ

′
) + ψ(D)LK(0, ψψ′) (k = 1,N = N′ = OK)

0 (otherwise)

+ 2g
∑

0≺ν∈D

σψ′

k−1,ψ(ν;N
−1eψN

′−1eψ′D−1) e(tr(νz)).
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Let α/γ be a cusp with α ∈ OK , γ ∈ DdK . We can take α, γ so that B := (α, γD−1d−1
K ) is coprime

to NN′. The value κ(α/γ,Gψ′

k,ψ(z;D)) of Gψ′

k,ψ(z;D) at the cusp α/γ defined in (14) is 0 if there are

not integral ideals Mγ ,M
′
γ with Mγ |N, (Mγ , fψ) = OK , M′

γ |N′e−1
ψ′ and with (γD−1d−1

K ,NM−1
γ N′) =

NM−1
γ N′e−1

ψ′ M′−1
γ . Suppose otherwise, and let Mγ be the largest such ideal. Then the value κ(α/γ,Gψ′

k,ψ(z;D))
is given by

sgneψ (α)sgneψ′ (−γ)µK((eψf
−1
ψ ,MγN

′))ψ̃(α ·B−1MγM
′
γ(eψf

−1
ψ ,MγN

′)−1)

× ψ′(−γ ·D−1d−1
K B−1N−1Mγeψf

−1
ψ (eψf

−1
ψ ,MγN

′)−1N′−1eψ′M′
γ)N(B)k

×N(M−1
γ (eψf

−1
ψ ,MγN

′)fψf
−1

ψψ′)
k−1N(M′

γ)
−kN(fψf

−1

ψψ′)τK(ψ̃)−1τK(ψ̃ψ′)N(M−1
γ )LK(1− k, ψ̃ψ

′
)

×
∏

P|Mγ

(1−N(P))
∏

P|eψ′ ,P�fψψ′

(1− ψ̃ψ′(P)N(P)−k)
∏

P|eψf−1
ψ ,P�MγN′

(1− ψ̃ψ
′
(P)N(P)k−1) (22)

where if γ = 0, then the value is non-zero only when N′ = OK and it is given by replacing γ in (22) by
N(N), and where if α = 0, the value is non-zero only when fψ = OK and it is given by replacing α in
(22) by 1.

When k = 1, the Eisenstein series may have an additional term. Let Lγ := γD−1d−1
K N−1eψN

′−1eψ′ f−1
ψ′

and L′
γ := (γD−1d−1

K N′−1,N−1)∩e−1
ψ′ fψ′ . If there is an integral divisor R of eψ′ f−1

ψ′ so that the numerator

of LγR
−1 is coprime to N and the denominator is coprime to fψ′R, then there is the additional term.

Let R̃γ be the divisor of (N, eψ′ f−1
ψ′ ) satisfying vP(LγR̃

−1
γ ) = 0 for any prime divisor P of (N, eψ′ f−1

ψ′ ).

Then κ(α/γ,Gψ′

k,ψ(z;D)) has the additional term

sgneψ (−γ)sgneψ′ (α)µK(R̃γ)ψ(−γ · γ−1((LγR̃
−1
γ ) ∩ OK))ψ̃′(α ·B−1)ψ̃′(R̃γ)ψ

′
R̃γ

((LγR̃
−1
γ ,OK)−1)

× ψ(B)N(B)ϕK(R̃−1
γ L′−1

γ )N((Lγ , R̃γ)L
′
γ)N(fψ′ f−1

ψψ
′)τK(ψ̃′)−1τK(ψ̃ψ′)LK(0, ψ̃ψ′)

×
∏

P|eψ,P�f
ψψ′

(1− ψ̃ψ′(P)N(P)−1)
∏

P|eψ′ f
−1

ψ′ L
′
γ

(1− ψ̃ψ′(P)) (23)

where if γ = 0, then the value is non-zero only when N = OK and it is given by replacing γ in (23) by
N(N′), and where if α = 0, the value is non-zero only when fψ′ = OK and it is given by replacing α in
(23) by 1.

Remark: Both ψ, ψ′ can be Hecke characters, and in such a case ψ(ξ ·A) = ψ(ξA) and ψ(ξ) = ψ((ξ))
for ξ ∈ K.

Proof. The values at cusps are investigated in Section 4 and Section 5. We compute the higher terms.
Then

g̃ψ
′

k,ψ(z;D) = g̃ψ
′

k,ψN,N(z;D)

=C + [EOK : ENN′ ]−1τ(ψ̃)−1
∑

0≺ν∈D

∑
A∈CNN′

N(A)k−1
∑

γ0:e
−1

ψ′ N′AD/N′AD,�0

ψ′(γ0 · eψ′N′−1A−1D−1)

×
∑

ν/µ≡γ0(N′AD)

µ:A−1/E
NN′

sgn(N(µ))N(µ)k−1e(tr(νz))
∑

δ0:N−1Ad−1
K

/Ad−1
K

,�0

ψ(δ0 ·NA−1dK)e(tr(δ0µ)),

where C is the constant term. Let X(NM−1) := g̃ψ
′

k,ψNM−1 ,NM−1(z;D) for M|N with (M, fψ) = OK , and

let Xµ(NM−1) :=
∑

δ0:N−1MAd−1
K /Ad−1

K ,�0 ψNM−1(δ0 ·NM−1A−1dK)e(tr(δ0µ)). Then

Λk(N, ψ)X

=C ′ + [EOK
: ENN′ ]−1τ(ψ̃)−1

∑
0≺ν∈D

∑
A∈CNN′

N(A)k−1
∑

γ0:e
−1

ψ′ N
′AD/N′AD,�0
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∑
ν/µ≡γ0(N′AD)

µ:A−1/E
NN′

ψ′(γ0 · eψ′N′−1A−1D−1)sgn(N(µ))N(µ)k−1e(tr(νz)) Λk(N, ψ)Xµ(NM−1)

=C ′ +N(Ne−1
ψ )−k+1[EOK

: ENN′ ]−1
∑

0≺ν∈D

∑
A∈CNN′

N(A)k−1
∑

γ0:e
−1

ψ′ N
′AD/N′AD,�0

ψ′(γ0 · eψ′N′−1A−1D−1)

∑
ν/µ≡γ0(N′AD)

µ:A−1/E
NN′

(ψIK)(µ ·N−1eψA)sgn
eψ (µ)sgn(N(µ))−1N(µ)k−1e(tr(νz))

=C ′ +N(Ne−1
ψ )−k+1[EOK

: ENN′ ]−1
∑

0≺ν∈D

∑
A∈CNN′∑

ν/µ∈e
−1
ψ′ N′AD

µ:A−1/E
NN′

(ψIK)(µ ·N−1eψA)ψ
′(ν/µ · eψ′N′−1A−1D−1)N(µA)k−1e(tr(νz))

=C ′ + 2gN(Ne−1
ψ )−k+1

∑
0≺ν∈D∑

νN′−1eψ′D−1⊂A⊂Neψ

ψ(N−1eψA)ψ
′(ν · eψ′N′−1A−1D−1)N(A)k−1e(tr(νz)) (by (10))

=C ′ + 2g
∑

0≺ν∈D

σψ′

k−1,ψ(ν;N
−1eψN

′−1eψ′D−1) e(tr(νz)).

�
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