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ABSTRACT. In our previous papers [2],[3], we obtain the values of some specific Hilbert-Eisenstein series
at cusps. In the present paper we address generalization of characters of Hilbert-Eisenstein series, and
give the values with moderating condition on characters which are not necessarily Hecke characters.

1. INTRODUCTION

In our previous papers [2],[3], we obtain the values of some specific Hilbert-Eisenstein series at cusps.
The result is useful in the study of the Shimura lifting maps [4],[6], or of quadratic forms [5]. In the
present paper, we consider the Hilbert-Eisenstein series of weight k associated with two characters 1, v’
of larger groups than the ideal class group where the product dzﬂl is a Hecke character with same parity
as k. We obtain their values at all the cusps, which may be also useful in the further study of the Shimura
lifting maps or of quadratic forms. The argument is parallel to [4]. We note that we make use of different
notations from the previous paper [4], and unify the notation with [6].

Let K be a totally real algebraic number field of degree g over Q, and let Ok be the ring of algebraic
integers. We denote by 0x and Dy, the different of K and the discriminant respectively, and denote
by O, the group of the units in K. For o € K, a®, ... al9) denotes the conjugates of o in a fixed
order. If a(?) is positive for every i, then we call a totally positive, and denote it by o = 0. We denote
by N and tr, the norm map and the trace map of K over Q respectively, namely N(a) = []7_, a and
tr(a) = 327, a(. Let ux denote the Mobius function on K and let ¢ denote the Euler function on K.
If B is a prime ideal, then vy denotes the P-adic valuation. If M is an integral ideal, then {M}y denotes
the 9P-part of M, namely, {M}yp = P (M) For nonzero fractional ideals 2A, B, we denote by (2A,98),
their greatest common divisor, precisely, (%,%B) = [ sgpmin{vs (),v5(B)} | Let 91 be an integral ideal of
K. We denote by Cw, the class group modulo 91 in the narrow sense, and denote by C%;, the group of
characters of Cy. An element of Cf; is called a (classical) Hecke character. Let &y denotes the group
of totally positive units congruent to 1 modulo 0N, while £», denotes the group of all totally positive
units. For a = (a1, -+ ,a,) € {0,1}9, we define sgn®(a) by setting sgn®(a) := sgn(aM)? ... sgn(al9))?
for @« € K,# 0 where sgn®(0) := 1. Let ey = (e1,---,e,) € {0,1}9 be so that ¥(u) = sgn®(u)
for p = 1mod M, p # 0. The character ¢ € CF is called even (resp. odd) if ey, = (0,---,0) (resp.
ey = (1,---,1)). We note that ey, = e;. The identity element of Cg; is denoted by 1y, for which 1y (2)
islor0 according as an integral 1dea1 2 is coprime to 91 or not. Let Zx be the function on the set of
fractional ideals defined by Zx (%) is 1 or 0 according as 2 is integral or not.

We denote by fy, the conductor of a character ¢, and denote by ey, the ideal given by

ey 1= fy H XL (1)
P (P)=0,Btfy
For an integral ideal 9%, we denote by R(9M, 1), the set of all square free products of prime divisors of
M coprime to fy, where Ok is always in R(IM, ). The primitive character associated with ¢ € Cg; is
denoted by w For any integral ideal 9, we define oy := 1/)1931 Then Yo = 1/) for an integral ideal I
with 9M|fy, and Y, = 1. For ¢ € C%, Li(s,v) denotes the Hecke L-function, that is,
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where 2( runs over the set of all the integral ideals.

Let $9 denote the product of g copies of the upper half plane ) = {z € C | Sz > 0}, Sz being the
imaginary part of z. For 7,8 € K and for 3 = (21, ,24) € 9, N(v3 + 6) stands for [[7_, (v z; + 6@),
and tr(v3) stands for S°7_, v(Vz;. For a matrix

A=(97) eSLa(K), (2)
we put
(aMW48M a2 43
Az = (?‘;(1)24’_5(1) » T »Y(g)zz_t,_&(y) )
We define

To(® !, NMD) = {(g fg) € SLy(K) | 0,6 € Ok, B €D,y € ND}
for a fractional ideal ® and for an integral ideal 1.

2. GAUSS SUMS

For a prime P of K, let Ko be the P adic completion of K, and let Og be its maximal local ring. We
denote by Jx, the idele group of K, and put Uk := [[y (’)qx3 x (R1)9 with Rt = {z € R | x > 0}. For an
integral ideal M of K, let J() denote the subgroup of Jx consisting of ideles whose P-th components are
in Og for P|MN. Namely for j = (--- , gy, -+, 7P, -, j9) € Jg with jg € (Kp)* and (jV, .-+, @) €
(R¥)9, j is in J(M) if and only if jy are in Oy for all P|N. Let K (N) denote the group of elements in
K whose denominators and numerators are both coprime to 91. Then the equality K*(0N) = K NJ(N)
holds. We denote by K, the subgroup consisting of totally positive elements multiplicatively congruent
to 1 modulo 91. A homomorphism of the finite idele to Cyn by sending j = (jgz) to an ideal class containing
fractional ideal [ [y B U») is surjective. So the homomorphism of J(M) to Ciy is surjective and its kernel
is K Uk. Hence Cyy = J(M) /(K3 Uk ). For a Hecke character ¢ € G§; with ey = (a1,--- ,a4) € {£1}7,
it is idelically described as ¢;(j) = [[y dp(p)sgn® (j) for j = (- jp, - W 9) e g
where ¢ is defined by ¢ (jp) := (P U%)) and where sgn® (5) := [[{_, sgn(j¥))? which is called the
infinity-type of ¢ ;. Let Uy be the subgroup of Uy consisting of ideles whose 3-th components are in 1+
PBUr M Og. There is the natural surjective homomorphism of J(M) /(K Un) onto Coq = J(N) /(K5 Uk)
with the kernel Uy /Uy isomorphic to the direct product (O /91)*, indeed there is an isomorphism
of (Og/M)* onto U(M)/Un sending & + N to {Uxn. Actually J(N)/(K3Un) and (O /N)* x Cn are
isomorphic to each other as groups. We fix local parameters wyp of Oy, which fix the isomorphism
of UM)/Un onto (Ox/N)*. For a character x of (Ox/M)*, we define a character of J(N) as as
J > (p)pm — x((Jp)pm (mod Un)), which we denote also by x. Then the product 1 := x¢ gives
a character of J(M)/(Ky3Un). As in the case of a Hecke character, e, is defined, and indeed e, is equal
to ey because x(§) = 1 for & multiplicatively congruent to 1 modulo M. We note that for e € O, 1¥(¢)
is not necessarily equal to 1 while the value is always 1 if it is a Hecke character. For an idele j € J(N),
the idelic description of 1 is given by 1;(j) = X ((Jg )g )@ (7)sgn® () = x((jog)p;m) (A)sgn® () with
the ideal 2 corresponding to the finite idele of j, that is, ) = H‘B pvs ) Conversely for a non-zero
fractional ideal 2, we put jg := (--- ,@"® @) ... 1(gtimes)) € Jx . For £ € K* with &jy € J(MN), we
denote sgn® (€)1, (€ja) by ¥(€ - ), that is,

B(E-2) = x(¢ [T = o). (3)
BN
Obviously there holds an equality (£ - ) (& - ') = (£ - AA"). We note that (&) = (€ - Ok) =
X(&)p((§)) for € € K* (M), and (A) = (1 - A) for an ideal A. We define (£ - ) = 0 if the numerator
of €2l is not coprime to M, and so the values of ¥ are roots of unity or 0.

We call ¥ primitive if there is no integral ideal 90 strictly larger than 91 so that | ()., is via group
homomorphisms U(MN)/Un ~ (O /N)* — (Or /M)* — C*. In such a case we denote I by f, and
call it the conductor of 1b. When x is trivial, this definition is compatible with that of a Hecke character.
For a primitive 1, the Gauss sum of 1 is defined by

(V) = (p-fudk) D P(E)e(tr(pg))

£-0
&0k /Ty
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with p € K, = 0, (pfydk,fy) = Ok where e(z) stands for exp(2my/—1z). The value 7x (¢)) is determined
up to the choices of p. The standard argument shows that |7k (¢)| = N(fw)l/Q, and that 7 (V) 7k (V) =
w(N(féﬁ) — DN(fy) = sgn® (=1)x(=1)N(fy) = sgn® (=1)¢(=1)N(fy). We note that 7 (¢)) = ¢(0x) if
fy = Ok.

v In the present paper, for an primitive ¢’ = x’¢’ and an integral ideal M C fy, we consider a character
of J(M)/(KyxUn) in the form ¢ = ¢}, where ¢} := x(¢'1y), x being a character obtained by composing
the natural surjective map (Ox /M) onto (Ok /fy)™ with x’. We denote by ¢, the associated primitive
character of ¢, which is ¢ in the present case. The conductor f, of ¢ defined to be that of the associated
primitive character, and e, is defined similarly as in (1). We define Zx (€ - 2) to be 1 or 0 according as
&A is integral or not.

Lemma 1. Let 2 be a fractional ideal. Let 1) be a character of J(MN)/(Ky3Um) as in (3), which is not
necessarily primitive.
(i) Let p € A~L. Then

Z »(8o - MA M0 )e(tr(Sop))
So: 120 /A0t -0
— s (D) Y uK<m>%J<m><wmzK><u-m-lmm. (1)

Rleyf,*

In the summation of the right hand side, at most one term survives. If there is a divisor R of ed,f;l
satisfying (;ﬂl‘ﬁ*l, Ok) = f;lf)‘i_l, then the term associated with R survives.
(ii) Let p € A~IN~L. Then

Z w(50 . e¢m_191_10K)e(tr(6ou))
Sozey, 1AV L /NAV L', -0

= sen (1) () mg%l e <m>%&(m) (i) (1 M 9000, (5)

In the summation of the right hand side, at most one term survives. If there is 9%|e,/,f;1 satisfying
(,u‘ﬂe:blfw{)@l, Ox) =R"1L, then the term associated with R survives.

Proof. (i) For ¢ primitive, the equality (4) turns out to be

> B(E-A ok )e(tr(Ep)) = sgn® (n)eb(p - Afy)Tic (V) (6)

£-0
a0t /iy a0t
for p € Ql_lfll, # 0. At first we prove (6). Let o € 910;{1, = 0 with (710, fy0x) = Ok. Then the left
hand side is equal to Zs &0 P(af - A0 )e(tr(adn)) = Y(a - A 10g) Z{ o P(€)e(tr(£(ap))). The
B P : P

sum Zg &0 P(€)e(tr(é(ap))) is equal to sgn® (u)(ap - f,dx )T (1) from definition of the Gauss sum.
10/Ty

Hence the left hand side of (6) is ¥(a - A0k )sgn® (u)h(ap - fp0x )Tr (1), which is equal to the right
hand side.

Now we prove (4). Let us take v € 9171, = 0 such that a9 C Ok and (M, N) = Ok. Let ap = pg+p2
where all the prime divisors of the denominator of y; are divisors of f,, and all the prime divisors of the
denominator of s are divisors of ewflzl. Then

Z P(80 - NA Mg )e(tr(Sop)) = Z Pady - NA 1ok e(tr(Soa))

SoM—1A0 " /Aoy -0 So: A0 /MAV -0

=P(a-N) > (0 - A0 )e(tr(Sopn ) Je(tr(dopa)),

So: A0 /MAv -0
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which is 0 unless p; € Qlflfll and pp € AR for some %|e¢f;1. In such a case the above is equal to

R 2@ YT D0 A s e(tr(dopn)
So A0 /fp A0 =0
= () 250 (0 - Mysen® () D(per - Afy)7ic(9)  (by (6))
= () 25O sgn® (0 ) (R)db (- ANy Ry (D). (7)
Here in the notation of (3), there holds an equality ¥(¢ - ) = sgn® (££)¢(&' - A) if £ [[yy wgp(m)and

& Tl wg'” ) are multiplicatively congruent to 1 modulo f. Hence we may replace sgn® (o 1 )¢ (o= g -

AN"1§,R) by sgn® (1) (- AN, R) in (7). The factor (YT )(u - N1Af, M) appearing in the right
hand side of (4) is equal to ¢(u - AN"f,M) if (AN, Ok) = f, 'R with Rleyf, ", and it is 0 if
otherwise. This shows (4).

(ii) In the summation of the left hand side of (5), we may assume that &y satisfies (Spey, M 1A 0, N) =

Okg. Such §p are written as products dg = 102 where d; are the representatives of f;l‘ﬂﬁai}l mod-
ulo ‘JIQ[DI_(l with (6Of¢‘ﬂ_1m_1DK,’ﬁ) = Ok, and o are the representatives of e;lfw modulo O with
(pgewf;bl,OK) = Ok. We can take d; (resp. 02) so that they are totally positive and that the differ-
ences of d1’s (resp. d2’s) are in ewf,ll’ﬁmbf_{l (resp. fy). We write p in the form p = g1 + po with
w1 € Qlflewf;hﬁfl and p2 € A71§,M 1. Then the left hand side of (5) is equal to

Z (6102 - mewml‘ﬁ_lm_1DK)e(tr(61(52u1))e(tr(&lég,ug)).

61,02

Since e(tr(d1d2p2)) is independent of d1, this is equal to

Z {Z ’(/J((slég . ewm_lQl_le)e(tr(élégul))} e(tr(élégug))

d2 51
=3 s ()i (- ) TN i (D)e(tx(6182p12)  (by (6))
02

= sgn® ()i (ep Ty P - NA) TR (1) Y e(tr(8182p12)).

b2

-1
The last summation is equal to MK(%)% if (poAey "M, Ok) = R~ (Rleyf, ) or equivalently if

(,u?le;lfw‘ﬁ, Ok) = 9R"1. Thus for this R, the left hand side of (5) is equal to

msgnew (1)K (1;)1;(9%);(“ - MAe, 15,9,

The similar argument of the last part of the proof of (i), shows our assertion. O

px (R)

Let X be a function on the set {09~ | M|N, (M, ;) = Ok} of ideals. Then we define Ay (N, ) by
k(O )X = purc (efy ) (e, N (ewf, ) T N (e, )~
x > ( TI (= Nep)deomx o). (8)

mlm’(m)fw):OK m‘m
Proposition 1. Let M be an integral ideal and let 1 be a character of J(N)/(KyxUm) as in (3). Let A
be a fractional ideal. Let X, (M) = Zdo:m,lmgl/m;}o Pon (80 - MA 0 Ve(tr(dop)) for p € A" and

for an integral ideal M contained in §,. Then

AR, ) X, = NNy ") ™ e (§)sgn® (1) (U Tic) (1 - N ey ). 9)

Proof. Unless (ufyM~1,§,) = Ok, the both sides of (9) are 0 and the equality holds. We assume that
(ufy 1 fy) = Ok Put Rary = [Lpoe BV, Let MRy and put R = §,' (019N, O )"
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Then by (4), X(NM1) = e (%) 2L g () (R)0h(u - N MAJ,R)7ic (). Let Y (MM~) =

-1 .
UK (%)%w(mm HIM71). Then X (MIM~!) is equal to the product of %ngnew ()w(p -
N1 R Ay ) T (1) and Y (MM ~1), where the former is the constant on 9. We must compute Ay (9, 1)Y .

We note that R = ,u_li)‘{m,d,im_l N Ok. Then
Ak ()Y = e (eyfy Y (eufy, INGe, )N, ) ™F > T (-

M| R, PN
X (M) e (1 *1mmm*mom xRy M D) (R M)

WK(M_lmm M= lﬂOK)
= e (eufy IN(e, )N )™ [ 209

PR,y
where
v (R, ) . ‘ v Py )i
Z(‘B) _ Z H (1 N N(;B)) ‘LLK(;BmaX{U‘B(H D‘im,w)*z,o}) (‘Bﬁi)gflm(u*i%m,w))ﬂ,o})'
i=max{vyp (L™ 1Rmn, y)—1,0} P|P* .
If Uq;;(u_lmm,d,) < 0, then
vep (Ror, ) ‘
Z(R) = pr(PPO)) £ (1-N(B)) D (BT =0,
=1
If Um(u71%m7w) = ]., then
v (Ror, ) . ogp (Pton )=
Z(%) _ Z H (1 . N(m)) MK(&Bmax{l_z’O})SD(PKI{(&max{i;i,o})) _ _N(m)vP(mm,w.
=0 PP

If v (' Rm,p) > 1, then

v (R,
A @K(’B”‘ﬁ(mm,w)“*’”%(“_lm‘ﬂ,w)) 2 v (Ror,p)—1
) = (1 - NP~ i FOY ety =0,

i=vp (L1 R;, )

Thus

AL )Y = {N(mm’wllmmm%l)k (v (1) = v (R ) — 1 for P|Rov ),
0 (otherwise).

Then
. LPK(mm;l%w) ey o -1 7
Ae(M, ) X, = = royosen® () (UN fy R o A) 7 (1)

y N(Ro ey F)Ney, )™ (vp(p) = vy (Ron) — 1 for PR )
0 (otherwise)

= N(Rey ") i ()sgn® () - 0 ey ).

3. EISENSTEIN SERIES

Let k € N. Let 91,97 be fixed integral ideals of K and let D be a fixed fractional ideal. Let 2,8 be
fractional ideals of K. Let o € ABD, 5y € NIAB 0 . We define
/ k ! —k —s
B 2,0,3 (3,70, 60; 9, 9) : = N() > N(v3 +6)""IN(vs + 0)|*[s=0

=0 (N ABD)
s=sp(aB—lah
(4:8)/Eqyons
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where v = ~o(WABD) implies that v = vy modulo WABD and where >’ implies that the term
corresponding to (v,d) = (0,0) is omitted in the summation. For a set S, A(z,.S) is define to be 1 or 0
according as x € S or not. Then we have the Fourier expansion

Ey. 29,5 (3,70, 00; M, N')
=A(y, WABDN)F >~ N(p) FIN(1)| =0

n=dg(as—logh
#/Emm/

+ (S5 DN N D) Y S e(tr(dom))sen(N())N(p)*e(tr(v3))

0<vEB2D v/pu=rg(N'ABD)
AL B /€

where there is the additional term

(-mV=1)D°N(B) D sgn(N(u))IN (k)| ™[ s=0
p=vo (N ABD)
w/Eqqmr

when k = 1, and where there is the additional term —7/(N(9VD0x)3z) when g =1 and k = 2.
Let 1,1’ be characters of J(M)/(KgxUm), J(N')/(Kq Us) such as (3) respectively so that ¢4’ is a
Hecke character in Cj, with same parity as k. So if we put ¢ := x¢ and ¢ := x'¢’, then

x(€) =x'(¢) (€ € K*((M,9))). (10)
We assume that either ¢ # 1y or ¢’ # 1oy when g = 1 and k = 2. We assume that
(M, Ne,') = Ok. (11)

Then we put
! ! k-1 \9 H-1/2 _ e — _
g}ﬁw(é;@) = ﬁ,wmm(&@) = (%) D (€0 + Emo) T (1) 7 Z Z (S0 - MA o)
QleCmm/ Y0,00
X P (0 - e M TATD ™ Er o100, (370, F0; M, M) (12)
where in the second summation, 7o runs over the set of totally positive representatives of e;,l N'AD modulo

NAD with (ypeu W IATID L N') = Ok, and §, runs over the set of totally positive representatives of
N~ 12A0" modulo Ady" with (SoMA 10k, N) = Ok . Further let

Gy (3:D) = Gy, (3:Me ' e 1 D) = e (e iy (e fiy N ey, ) TIN(Oe ) ~F >
Dﬁ\‘ﬂ,(ﬂiﬂ,fw):OK

(IT - NPT, | o@D (13)
Blon

4. CONSTANT TERMS OF HILBERT EISENSTEIN SERIES

In this section we use the following result due to Hecke [1].

Lemma 2. Let I be a fractional ideal, and let € be a subgroup of finite index in the group of all units.
Let pg € K and k € Z. Then there holds the functional equations

/!

S NG TN emo = (SRERE) DN ST e(tr(on)

Hzﬁ?éﬂﬂ) u:ﬁ)ﬁ*lﬁ;(l/g
!/
x sgn(Nm () IN(u)[FHN() | lamo, D> sen(N ()N (1) ~*[s=0
W= (9N)
n/ €
=(—vV=Ir D PN YT e(tr(pom))N() T N()| =
,uzimflbgl/g

where Z/ implies that the term corresponding to = 0 is omitted in the summation.
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Let A be as in (2) with a € Og,y € Dog. If f(3) is a Hilbert modular form of weight &k for
Do(D 1o, MN'Dok), then the value r(a/v, f) = k(a,, ) of f(3) at the cusp /7 is defined by

w(0/7. f) = wlen. £) = lim Ny +0)7f(4y) (14)

We determine the value at each cusp, of the Hilbert-Eisenstein series (13) as well as the Fourier expansion
at the cusp v/—1o0.
For a cusp a/y € K U {00}, we can take o € Ok, € Dok so that
B = (0,70 "0y

satisfies

(B, NN) = Ok (15)
Since A € SLy(K), we can take 8 € D~ '0%', 6 € Ok so that B! = (8Dk,d) and that (3, NN') =
(6,MN') = Ok. Then the equality N(v3 + 6) " Ex v, 0,0, (43,70, 60; M, M) = Ej ovar0,3 (3, 070 +
~80, Byo + 0d0; 91, M) holds, and the constant term of the Fourier expansion of Ex 20,04 (3,70, 00; 91, M)

at a/7, is equal to
/

NRO* Y Ao +7(d + 8, WABD) > N() " IN()] ~[s=0
8 A0t /At w=Bv0+6(So+8 ) (M AB Loy
“/Sfﬁ‘n’

where there is the additional term

’
(—mV—1D!D NV i) Y > sgn(N (1)) IN (1) ™[ s=0
5/:Ql0;<1/‘ﬁ’910;<1 ,L;a70+w(<j%+6’)(m'm%2)
n/ Eqms

when k£ = 1. The modular form ﬁ;/}%m(g;@) is a linear combination of Ey 9.0 0, (3,70, 00; M, 9)’s by
(12), and we obtain the following;

Lemma 3. Let A, o, 3,7, be as above. Assume the condition (15) holds. Let Cy (M, k, by, ") denote
the constant term of N(v3 + 5)"“@75’;%;5{(145; D). Then Cq (N, k, Yo, ") is given by

_ g _ _ = _ o B
(%) Di*[€0y : Emov] i ()7 > > V(5o - NA Mog)
A€Chuy/ wg:e;}m/m@/m’mD,>0

n—1 -1 -1
So:tTlaa /A -0

X (70 - e MV TIATLDTHN(A)F > A(ayo + (8o + '), WABD)
80t /oAt
!/
X > N() ™FIN(p2)|~*[s=0
w=Bro+6(5g+s ) (R AB—Lot)
w/Eqonr
where in the second summation, vo and 0o satisfy (Yoew M IATID L N) = Ok, (GoNA 10k, N) = Ok
respectively. When k =1, there is the additional term C’i/,y (M, k, o, ') with

Cé/'y(m7 kv 7/’9% 11[},)
=279E0, : Eqov] T (V) TINOVTIB) Y > B(8o - MA o)

A€Chuo wo:e;}m'alg/m’91®,>o
_ —1 1
So:ot Tl /A T, -0

/

XY (0 - e W TIATIDTY > > sgn(N ()N (1) ~*[s=0-
8 Av /o AL Mzawoﬂéic‘)g;i;)/(m’m%@)

For v € Ok, we put
1 —1a—1 _
M = Mey (vD To!, o)L
By the assumption (11), im; is coprime to N if it is integral. The purpose of this section is to prove the
following;
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Theorem 1. Let a € O,y € Dok, B = (a,yD10%") with (B,NN') = Og. Put Ca/y(‘)’tfm_l) =
Co,/,y(‘ﬁim_l7 k, Yopom-1,¢") for a divisor M of M with (M, fy) = O. Let A, (M, ) be as in (8). If there is
no divisor M., of M with (M, f4) = Ok and (YO~ 10", NM1N) = mm;lm’e;}sﬁ’;l for O, integral,
then A, (M, )Co /o = 0. Suppose otherwise. Let M., be the largest ideal satisfying (7@’10;(1, msm;lm’) =
MM Ne ML, Then

Ak(mv w)ca/'y
= sgn® (a)sgn®’ (=) ((eufy, ", M, N')) (- B, M, (e, M, M) )

X (=7 - DT BTN epf,  (eyfy I N) TV ey M )N(B) NI (e, zmm’)mﬁ,)k—l

X N N (i) )7 () i ()N T (1= NOB) Lic(1 = b, wd)

B0,

_ B = _
< I a-dw@Ne™ I Q-wd (BN®. (16)
Bley P, Rleyf, " B, o
If v =0, then Ap(M,9)Cyy is non-zero only when W' = O, and the value is obtained by replacing ~

in (16) by N(N). If o = 0, then then Ap(M,Y)Cy s is non-zero only when fy = O, and the value is
obtained by replacing o in (16) by 1.

Several preparations are necessary to give the proof of Theorem 1.

Lemma 4. Unless (YD 0", M) = ‘ﬁ‘ﬁ'e;,lfmffl for any M, integral, then Cq )y (N, k, Y, V") van-
ishes. Suppose the equality holds for some M, integral. Then Co (N, k,bm, ") equals

29[, : Emav] i (§) " sn® (a)sen® (—7)N(B)N((Sey, O )N, )~ (o - B~ 10

X (—y - DT BT I e ) ST N0k 3
AeCopors p(MNe [ OR)AL/Eqa
X > (0" (BoMA™ 0 )e(tr(Jop) Jsgn (N (1)) *IN () [*~H N ()|~ |s=o-

60:9?—12[3;(1/(‘Jte;,l,ox)—lmaf(l,>0

Proof. Since (oz%_l,fy%_l’D_lD;(l) = Ok and since (e M IATIDTLN) = (§NMA 10k, M) = Ok
in the equation for Cy /. (M, k,¥x,9’) in Lemma 3, it is possible that A(avyo + v(do + '), WABD) # 0
only when (yD~ 10!, MN) = NN e;,lim;_l for M’ integral. This shows the first assertion of Lemma 4.
In particular if C,, /., (M, k, Yor, ¥’) # 0, then ¥D 103! € N and (a, M) = Ox. When (yD 1o, M) =
‘J’I‘ﬁ’e;,lfmffl for M’ integral, Cy ) (N, k, ¥, ") is equal to

2790+ Eqav | T (V) TIN((Mey, ML, Ok)) D >

1 -1
AeCpo LI i A/ AD, -0

— —1 —1 7—1 — —1
sp:—laa /(fﬁew/ miT 0 )T ae -0

A(ayo + 780, WABD)P(o - NA™ 0 ) (V"I ) (70 - e M ™1 ATDTHN(A)IN(B)
!

x > e(tr((Byo + 000)p))sgn(N (1)) N ()~ N ()| ~*|s=o,
M:(me;}zm’;l LOR)AIB/Eqonr

which is obtained by Lemma 2 and by Lemma 1 (ii). The map
ey VO 1AD /N'AD ey VM1 ABD /N'ABD
N A0/ (M, M, O )~ A0 - NHAB o/ (Ne, M, O ) 1 AB 1ot
obtained by multiplying by <g g), is bijective. Using this bijection, we have

Ca/"/(m7 ka ¢m7¢/)
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=270, : Emov | i ($) TIN((Mey T, Ok)) Y Z
A€Cyrons ~o: c;/ o/ ml” m%@/m’m%@ =0
So:m—las— 1°K /(e , Log)—las— Tam -0
A0, WABD)sgn® (— B0 + ado)b((—yo+ady) - MA 10k )sgn®’ (5’70—750)
X (W'Ir ) ((§70—700) - ey V1A 1D HN(B)N(2A)
I
x > e(tr (o) )sen(N ()" IN(1)[*~ N (k)| ~*|s=0

(mflzm T OR)AIB / Eqior
replacing 2 by A5,

=279[E0, + Emv] ' ic () s ()sn® (—7)N(B)FN((Ret, O )N(I,) (o - B0

X w/(i,}/ . z)fla%l%flmflmlflew/m Z N k 1 Z

A€Cpop So: 120 /oMy, (me LOr)~1A0 " =0
— r—1g—1 ! k-1 —s
(V' T ) (So MM, A M0 > e(tr(Sos))sgn(N (1) "IN (1) [*~H N (1) ~*|s=0

Ty s 1(918#/ SOR)A [ Eqanr

= 279[E0y ¢ Emov] i () sgn® (a)sgn® (—y)N(B)N(Ne !, O ) )N(OM,) (- B0

/

X (= - DT BTINTIN e ) Y N@)M! >
A€Cyroq/ #9311, l(mew, OR)AY/ Eqmr
> (") (oMM A0 ¢ et (Bo) Jsgn (N (1) N (1) *~ IN (1) |~ a=o-

So: M1 Av /M, (fne JOr)~1Ad -0
Replacing 2 by 9)?’;191, we obtain the result of the lemma. (]
Just replacing 90 by MM ™! in the lemma, we obtain the following;
Corollary. Let O be a divisor of M with (M, f,,) = Ox. Unless (vD ™10, MM ') = mm*lm’e;}zm;—l
for I, integral, then Ca/v(‘ﬁim_l, k,Yoqon—1,") vanishes. Suppose the equality. Then it equals

279 [Eoy : Eno] i (8)sgn® (@)sgn®’ (—7)N(B) N((RM ey}, O )N, ) G(ar- B0,

X (—y - Do BT et > N@)E 3
A€Cpoq/ u:(mmfle;},o,()mfl/smm,
> (Paom—19") (SN ™A™ 01 )e(tr(Jop1))sgn(N (1)) [N (1)~ N (1)~ [s=o-

Som—lamAo gt /(Mm—1e ! Ok) 1A, -0

e

Let 9, be the largest ideal with 9,9, (M,,f,) = Ok satisfying (7@‘10}1,5197(;19‘1’) =
‘)’Ifm,;le;,l‘ﬂ’im’;l. Then Cp (MM k, hpgp—1,¢') = 0 for M with M9, Suppose that M is a
divisor of ‘J‘(im;l coprime to fy, satisfying (7@‘10;(1,‘)“(9)?;1937_1‘)?’) 9“(9)?_1937_12;,1‘)“(’93?';1. Then
(M, M) = Ok, from which there holds (MM 1M~ 12;,1, Ok) = (M} ¢y ', Ok). For such 9, we have

Ca/,y (mmglmil, k, 1#91937;19314 ) 1/)/)
=279[0, + Eqov] ~Lrrc () sgn® (@)sen®’ (—y)N(B)N((MM Le ), O )N, (- B 19 )

!

<! (—y - D BT I m, M e mt) Y N 3
A€Co o0/ (MM e O A /Eqars
Z amzm;lszl(50(51937;1937_191_10K)¢/(5o‘ﬁ9ﬁ;12l‘10[()

So: 019, MAVLL /(MM Le T Ok )~ 1AV, -0

w/v

x e(tr(dou))sgn(N(u)) IN(M)Ik_llN(M)I_Sls:o



Shigeaki Tsuyumine

Then

Ak )Cayry = e (e (epfy N ey f ) N, ) R () ( T (1 - N(p))
P,

> ( TT (1N o (RO b, g 19156

NI L (M W) =0k FE

=279[E0, : Emav]7ic (§)sen® (@)sgu®’ (—)prc (eufy VP (euf HN(ey ;) !
x N((0E; e !, O ))N(B) N (e o)~ ( T (1 — N(B))o(m, )b (a3 100t
P,

X Y (—yD T BT R, M ey M) Y N
AECohrons
/

X > sgn(N (1)) D () IN(p)[* N ()|~ s=0 (17)
ﬂ:(mm;%;},okmfl/sm,

with

D) = 3 ( TI a-xNepy))dem) >

MMM L, (M, N ) =0k qﬁl’ﬂ?w 50;91*19)279;1910;(1/(9197:;1e;},oK)flma;{l,w

Pnan=1on1 (SN M ™A 0 )0 (SN, A 0 ¢ Ve (tr(Sope)).

Lemma 5. Let u € (‘ﬁi)ﬁ;le;,l,(’)x)ﬁ_l. Then D(u) is equal to
sgn(N() i (P IN ! New)NGg, )™ [T (=N
Plio e Bl

x s (egfiy ! (efy M, 9) ) > MK(”)@K(W)_I(ﬁl)’)(%f;l(%f;l,fmw‘ﬁ')_lm)
RER(fy eyr,1")

= - _ _ B
x ((y )ewwl(ewf;{zmwfn/)flmIK)(Um lsm’yewfwl(ewfwl»sm’ym,) liﬁﬂfaw,), (18)

where R( , ) is defined just after (1).

Proof. There holds

D(u) > ( II =N @) o)
MMM, (M, N)=0x B, PN,
> (Doran=ra %) (oMM M A~ ¢ Ye (e (Jo )
60:‘.71*197{7937%3}1/(0’193?;%;,1,(91()*12[0;(1,>0
= sgn(N (1)) i (V") (VP Tie) (9N Af5,.) > ( II a-Ne)))x
IMNMS L, (M, N )=0p  BID,PM,,
—1 —1 —1 _ g1 —1
3 (R o x (MM zmmmw,) {1(,m %mm,oK)_me )
SRR (R ey ) oK (F5,R) 0 (otherwise)

by Lemma 1. Then
D) =sgn(N(u) i (00 G0 Tie) (u M 05, ) [ Z(9)
PN Py NV

v -1
5 - prc(ey NTgjpe,, B OP)

MK(
b U /%
RER ey ) i (g R)

X
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— s (9’1971 _ =1 -1
% 1 (Umn‘mmew, ;’)3 ® OK) ww/m )
0 (otherwise)

where

vep (MM )

min{1,i ({mﬁmilmfi} )
. (- Tom-1) 1(1_N(m)) . },UK({m}‘ﬁ)@K pr({gi}qg) d (m'fgﬁv),
i=vy (p -
vy (M)

Z(P) =

ox ({MM P~ }yp)
i (p=1om-1)— 1 ({9{};43) - ‘F’K({m}‘ﬁ) * (smmv)
1=Up ¥

A simple calculation leads to the following;
(i) The case that B { M., and vqg(/fl‘ﬂfm;l) >1: Z(P) =

(ii) The case that 9 { M, and vm(u—lmzm;l) =1:Z(p) = —N(%)”m(mmgl).
(iii) The case that Pt M, and Uqg(,u_l‘ﬂim;l) <0:Z(p ) =

(iv) The case that |9, and vqg(;fl‘ﬁim;l) >1: Z(P)
(v) The case that B9, and vy (u™1NM, ') =1: Z(P) =
(vi) The case that PB|9, and vqg(u_lfﬂi)ﬁ;l) <0:Z(p )

. v (R, ) -1
Then, puttlng mmm;17w7m/ = Hm‘mm;17mﬁwm/ m ¥ R Wlth mmm;17w = H‘Dl‘ﬁim;l mvcﬁ (mm"{ ),
. Qi (MM IR/ Neyr)

D) =sen(N() @) Y () o
RER(fy ey, 0Y") - ww/

x o (eufy " (eufy fmw‘ﬁ')‘l)N(%mm;l,w,m/)(ivw’)(eml(%f;l, M) IR)
((77010 )ewfw ewf;79ﬁ7m/)71mIK)(ﬂm719ﬁ’yewml(ewml»m’ym,)ilmmf@p/)v

( )vn(‘ﬂ‘ﬁt;l).

which is equal to (18).

Proof of Theorem 1. By Lemma 5 and by (17), we have
Ar(M,9)Coyy
—279[E0y  Ema] i () i (B )sgn® (a)sgn®’ (=) (e, M, V))
X P B 00 )0 (—y - Do BT INTIN, Y L M N(B)N(NY,) N ()
NG [T =Ny [T =N ON@ ey fy,t, m,00)) 5!
Pl BlFp ey Btz

x (W)(ewml(ewf;17 m, )~ > i RN (93) 7 () ()

RER(Fy s ,01")

S e et oy o) RONGR)P g

AeCyomr A1/ Eqo
=71 () " i (P )sgn® () sgn® (—)puc (e f,t, M OV)) (v - B Ve My ML M)
X (= DT BTN, I ey O IN(B) NI ) TEN () N (55 ) T
X H (1 -N(B)) H (1= N(P)"HN((eyf, ', 2,90

Pl Blfe g Biig,

X () (epf,t (epfy,t, I, )7 > 1 (RIN(R) "ok (R) (') (R)
RER(fy ey T

—
X LK(l —k, (1/)¢ )%f;l(%f;l’mwm')_lm)'
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Here
ST aEINE) T ()T @O Lae (L= ks (65t 150
RER(fy ¢ s )
=Lx(l-koy) [ a-wd@N~H I N®®E) -
Pleyfy ' B, 0/ PBliy ey By
< T1  a-dw PN,
q3|°zp/ fmf@p/

from which, the theorem follows. O

5. THE CASE OF WEIGHT 1

We compute the additional term which appears when k£ = 1. As in the preceding section, we put

B = (a,yD 10" for a € O, v € Dok, and assume the condition (15). From Lemma 3 and Lemma
2, we have for MN with (M, §,) = Ok,

Cé/’y(mm_lv ka 77[10193?*1 ’ ’l/)/)
= (—v=Tr )20, + Emar] () TINOVD) LD ST NG

AeCyron/
!/
x > > U (0 - ey M TIATID e (tr(ayop))
p(v® =10 B, ) - 1A-IB-1D 10 /Eq 70:2;,191’219/91/919,>-0
X N() "L N()| == > Donan—1 (80 - MM 1A "o )e(tr (604 ). (19)

S0 M- 1MAd ! /Av -0
The purpose of this section is to prove the following;
Theorem 2. Let a € O,y € Dog, B = (o, YD 1oy with (B, NN') = Ok Let ij/,y(mzm—l) denote
Cl (MM b, Yon—1,¢). Put
Ly =D M ey M ey f)
If there is no divisor R of ewlf;} so that the numerator of £,R~" is coprime to M and the denom-
inator is coprime to fyuR, then Al(‘ﬁ,w)CiM vanishes. Suppose that such R exists. Let R, be the

divisor of (M, ewff;,l) satisfying vm()l.yg{;l) = 0 for any prime divisor P of (N, ewff;,l). Put £ =
(Y@ o hn e;,lfwl. Then A1 (M, 1/1)0;/'7 is equal to

sgn®’ (a)sgn® (=) (Ry)N(B)D(B)(—y -7 (€, 1) N Ox)P' (- B (R,)

X Ban, (S350, 0r) ™ )pre (R L N((L4, R) LN G f 2 )i ()~ e (07
< Le0.0¢) [ Q—e¢d@®N®)™ [ -de ). (20)
Bley, Bt 5 Pley i,/ L

If v =0, then Al(‘ﬂﬂ/J)CéM is non-zero only when N = Ok, and the value is obtained by replacing v
in (20) by N(N'). If a = 0, then then Al(‘ﬁ,l/})C;M is non-zero only when fy = Ok, and the value is
obtained by replacing o in (20) by 1.

Proof. By (19) and by Proposition 1, we have

A (O )Cy = (—V/=Tm )92 o, : Enae] INOVD) DR YT N

AeCyys
!/

> > ¥ (0 - ey W TIATIDT)

p(v® =10 B, ) - 1A-IB 1D 1o /Eq yo:e;}m/mz/mm@,w

x sgn® (yu) (W) (v - M Ley2)e(tr(ayop) )N (1)~ N ()] ~*[s=0
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= (—V=Tr )92 %o, : Eq) INOVD) 1D 2sgn () Y N~

AECo o/
/
> Gy N ey A)sgn® ()N (u) !
p(v® =10 BIN " Ley, MV O )~ 1OV 1A 1B 1D~ 10 1 /€ 0/
X IN(u)[~*]s=0 > U (Y0 - e N TIATID T He(tr(aop))-

'yo:e;,l‘J’l’Qk’D/‘)’t’Ql’D,>0

Since TK(’QW) = Sgnew’(—1)w/(_1)N(f¢,)TK(w/)—1 and since sgnew(—l)sgnew/(—l) _ (_1)9 and X(ﬁ) _
X' (€) by (10), Lemma 1 leads to

A Y)CL ),
= (V=T 9279 (€0, ¢ Emov] NOVD) D ANy )7 (47) ~ b(—1)sgn (—)sgn® (@) o (e )

< S k@)Y > Plyp- N ey 2A)

%\zw/f;} A€Cpo #:(am'e;}fw,mq@fla;{lmfle,b)flmfl@fla;(l/smm,
x 4 (R) P (o - M e i ADDRIN (1) ™=
= (V=TI )INOVD) ™ D PNy )7 (47) " 'sgn® (—)sgn () ()
X > iRk (R) (=7 -y Ha 18R N Ok))P (R)
R(eyr i,/ D 10E")

X Dol (£, (@) IN((@R, £)0ep o Dos) Lic(L, o0 [ (1 — e@ (BINER) )

q3|ewfw/m

= sgn® (=7)sgn ()i (V) i (WP )orc (e FOINOVD) R INGurf ) DD ()
R(eyrf, )/ 4D 10E")

X o (R) (=7 -y Ha T LR N O )P (R) (- a (LR, Ok) )
x N((a, £,)0 e fpDor)Lic(0,00)  [[ (1= (BNE)™),
PBleyfy R

where we use the functional equation of the L-function at the last equality.

Since B = (a,fy@_lbgl) is coprime to 9, we have (amglm’e;}m/m, 7@‘10;(1) = (a,fy’D_lD}_{l)
X(Ney, ' Wey ' fy R, 4D 10! = B(R, £,)Ne, ' Wey ' fyr for R dividing (eyf,', 7D 0%").  Then
(@718 R Ok) = a'B(L,]R 71, Ok) follows. Then

A1 (0 9)CL 1y =N(B) o (ewr Ty NG )7 (87) i (0 s (— s (@) (B) (- B )

x S e (R (R) TIN((Ly, R)ep )b (— - 7 (E,R871 N Ox))0 (R)
Rl (eyrfy D710
X Ty (8,81, 0,) VL (0,50) [ (1= ¢/ (BINE) ™).
‘B\twm/ff*

In the summation, the term corresponding to R survives if the numerator of EWER_l is coprime to 91 and
the denominator is coprime to §,/9R. Suppose that such R exists. Then

97%7 = H Pt

PI(Meyrf ), vp (L4)=1

is the largest such ideal, and R is written as the product of E)~%,Y and a divisor of Sgew/f;,l where £ :=
(YD 0L, M) Ney/fyr. Then

Ay (M, 9)CL ),
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= sgn® (—)sgn®s’ (a)N(B) e (eyr T INGor 2 ) (7)o (G0 (B)G (- B

x> (R Rk (RyR)TIN((E,, Ry R)ey fu ) (—y -7 1€, R 1R N O))
R eyf,)

X B (R R) P (S, R 1, 06) VL0, 60) [ (1= o@ (BINER) )

‘p‘ewfw/m

=sgn® (—)sen® ()N(B)N(fyrf )7 () rac () BBYD (o B e () o (Ry) o (eur )
X N((€, R )ep o)t (— -7 (SR N O ) (R )T, (8,951, Ox) ™) Lic (0, 90)
< T G—w@ BN > @)k ()N (R) [T (1 - v (BN

Plewfyr Rey ;,12; PR
= sgn® (—)sgn®’ (a)N(%)NWﬁ,>TK<$>*1TK<ﬁ>@<9s>ZJ<a Bk (R o (Ry) !
X @i (eg T IN((L4, R e ) (= - 718,951 N O (R, g, (8,5, 0k) ™)
x Lic(0,50) [ (—o@ (BINEB) IN(ewFp )en iz )™ [ A—dw'(R)),
Bley fyr Plew i, &,

which is equal to (20). O

6. MAIN THEOREM
Let 1,1’ be as in Section 3. We define

ol )= S p)y (v AN (21)
vIMCACO i

for a totally positive v € K and for a fractional ideal 9t. We note that it is 0 if ¥90 is not integral. If v91 is

integral and if ¢ = x¢, 9’ = x'¢’ are as in Section 3, then (21) is equal to x'(v Hq}m, wq}vm(y)) D MCACOK

P(A)¢' (VMA~)N(A) 1.

Main Theorem. Letk € N and let N, N be integral ideals of K. Let 1,1’ be characters of J(MN)/ (K5 Um),
JN)/(Ky, Usv) as in (3) with the conductors fy, fy respectively so that wﬂl is a Hecke character in

Chov with same parity as k. Let 1) denote the primitive character associated with . Let ey, ey be as in
1). We assume (M, We b)) = O. For a fized fractional ideal D, let
P

Gl (3:D) =G, (30, e D)
1= e (epfy W (epf, N (eyf ) TIN(e, ) 7

x Z ( H (1- N(‘W)) E(m)gjjﬁlwmm_hmm—l (3:9),

MM, (M, fy)=Or \B|M

where we assume that 1 # 1oy or ' # 1oy when g =1 and k = 2. Then Gf:w (3;9) is a Hilbert modular
form for FO(’)D_lDI_(l, NN Do) of weight k with character i, whose Fourier expansion is given by

0 (e D) Lic(1 — k, 00
P(Wey D) Lic (0,0

P (D)Lk(0,99) + P(D)Lic (0, P¢')
0

E>1orMC Ok, and N = Ok)
E=1,M= 0k, C Ok)
k=1,M=N = O0k)

otherwise)

+29 37 ol L ey ey DY) etr(vg)).
0<veD

—~ ~ —~
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Let a/v be a cusp with a € Ok, v € Dog. We can take o,y so that B := (a,’y@’lbl}l) is coprime

to MN'.  The value n(a/’y,GZ:w(g;’D)) of G;f;w(g;@) at the cusp o/ defined in (14) is 0 if there are
not integral ideals My, M., with M| N, (M, f) = Ok, M, [Me,) and with (yD~ o, NMIN) =
msm;lm’e;,lsm';l. Suppose otherwise, and let M., be the largest such ideal. Then the value k(a/7, G;f:w (3;9))
is given by

sgn® (a)sgn®’ (=) ((eyfy, ", MM N)) (- BTN, M (eyfy, ", M, ) ~1)
X (=7 - DT BTN ey f, (et I, DY) T ey I )N(B)*

N e O, )1, ) N () NG, e () e (B )N L (1 k)

« [Ta-N®2) [I a-dwmN®™ [ (0-ed@®N®~YH @22

B0, Bley, Bifgy Pleyf, B, o/

where if v = 0, then the value is non-zero only when N = Ok and it is given by replacing v in (22) by
N(M), and where if « = 0, the value is non-zero only when fy, = Ok and it is given by replacing « in
(22) by 1.

When k = 1, the Eisenstein series may have an additional term. Let £, := 7@*0}1%—1%%’—1%&;}
and £ := (Y@ ot ﬁe;,lfw/. If there is an integral divisor R of ewlf;,l so that the numerator
of Syfﬁ_l is coprime to N and the denominator is coprime to fy R, then there is the additional term.
Let Ry be the diwvisor of (M, ew/f;,l) satisfying vp(L4RJY) = 0 for any prime divisor B of (N, ewff;,l).
Then r(a /7, G;ﬁw(g; D)) has the additional term

sgn® (—7)sgn®’ (o) (R (—y -7~ (8, R N Ok )Y (o - B~ (R, ((€,551,0k) )

X BBIN(B)rc (R £ IN((2 ) LN Gurf )7 ()~ i (097 L (0, 0

« I a-vemNe ™ [ 0-dve) (23)

Blew, Ptz Rley f, L

where if v = 0, then the value is non-zero only when M = Ok and it is given by replacing v in (23) by
N®V), and where if a = 0, the value is non-zero only when fy = Ok and it is given by replacing o in
(23) by 1.

Remark: Both 1,1’ can be Hecke characters, and in such a case (£ -2A) = ¥ (&) and ¥ (&) = ¥((£))
for £ € K.

Proof. The values at cusps are investigated in Section 4 and Section 5. We compute the higher terms.
Then

Ty (3:D) = Gy (3 D)
=C+[Eox Emar] (@) YT > N > V(0 eV TIATTDTY

0<veD A€Chyyp/ wog}m/m@/m/m@,»o

x Y. sen(N(u)N(w) e(tr(v3)) > (b0 - NA™ 0k e (tr(dop)),

v/n=vo (N AD) So:— 120t /A0t -0
wAL/E

where C' is the constant term. Let X (MM ™) := fjllc/},/wmmzamim‘l(é; D) for M with (M, f,) = Ok, and
let X, (MM™) := 375 -romaro =t joro st 0 Yorm—1 (Jo - MM A0 )e(tr(dou)). Then

Ap(M, ) X
=C'+ (o Ene] ') Y DD N >

0<veD AcCyums oz, N'AD /N'AD, >0
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Yo 0 e TIRATID T )sgn(N(u))N(1)" e(tr(vs)) Ax(M, )X, (NN

v/p=vo (N AD)
;L:Ql*l/é‘mm/

:C/ _"_N(me;l)—k—‘rl[go}( :g{)’lm’]_l Z Z N(Q‘)k_l Z '(//(’YO . ew/m/—lm—lg—l)
0<veED AECy o yoze;}mmz/m/m@,w

D W) (- 9 ey A)sgn® (u)sgn(N(u) "' N(u)*e(tr(vs))
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