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Abstract

The S-transformation T and the linear mod 1 transformation T, are transfor-
mations on [0,1) defined by Ts(t) = St —|5t| and T o(t) = ft+a—|Bt+a] (B> 1,
0 < a < 1). We consider how fast the distribution of Tg([O, 1)) and nga([(), 1)) ap-
proaches to its invariant distribution, and give explicit rate of convergence to invariant
density function using 8 or 8 and «. The proof is proceeded by counting the number
of same kind of lines which appear in the graph of Tg([(), 1)) or Tg}a([O, 1)). The
base of proof is to show that the ratio of two numbers counted above (or ratio of two
numbers obtained from the numbers counted above) approaches to 377 as k — oo.
In the appendix we give numerical evaluations of approximate density functions as
an application of our theorems.

Key words: beta transformation, linear mod 1 transformation, invariant density func-
tion, convergence of distribution, rate of convergence, ergodic theory.

81. Definitions and results

The [-transformation 73 and the linear mod 1 transformation 73, are transformations
on [0,1) defined by Ts(t) = ft — [5t] , 8> 1, and Tp4(t) = ft+a— |ft+al, 0 <a <1,
where |z ] is the largest integer not exceeding z. These transformations frequently appear
in the ergodic theory. The T and T}, are also written such as T3(t) = St mod 1 and
Tsa(t) = ft + a mod 1. We assume § # || and f+ o # | + «f for T and Tp,
respectively. In the graph of T3([0,1)) there appear two kinds of lines; one is the line which
extends from 0 to 1 and another is the line which extends from 0 to Tjs(1). We call the
former full_Branch (f-B in short) which is denoted by F and the latter low_Branch (I_B)
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which is denoted by L;. The subscript 1 in L; stands for 1 in T = Tg. In the graph
of T ,([0,1)) there appears one more kind of line called high_Branch (h_-B) which extends
from T}3,,(0) to 1 and is denoted by Hj.

1 1
H
F JF /F /¥ /F
L; L,
0 0
0 Branches of T 1 0 Branches of Tg o 1

In the graph of T5([0,1)) there are many Fs and L;’s, i = 1,2,--- , k. Here L; is the line
which extends from 0 to T4(1). The number of lines Fs and L;’s in the graph of T5([0, 1))
are denoted by #F and #L; respectively. An invariant density function hg of T} is given
by Parry [2] such as

he(x) = 1po,1)(2) + 5l (@) + 32 L1200 (@) + -+ FFlp ey (@) + -

allowing multiplication by a constant. (1j)(x) = 1if 2 € [a,b), = 0 otherwise.)

Analogously in the graph of T’ia([O, 1)) we can define F, L;, H; and #F, #L,, #H,
respectively. Of course H; is the line which extends from 7' é7a(0) to 1. An invariant density
function hg, of Tj, is also given by Parry [3]:

hgo(r) = 1) (7) + D272, % <1[0,T/g’a(1))($) - 1[0,Ti,a(o))(517)>

allowing multiplication by a constant.
Then we have the following two theorems:

Theorem A(T}p).
Assume || > 3.
(1) For F and Ly, Ly, - - -, Ly, appearing in T5([0,1)), we have

o 1 1—-A (18] -1\ nd A —
=B I-A <2LBJ—1) a4

In particular, limy_, <%) = %

(2) For a density function fi, of T§([0,1)) given by

L I L
filw) = T () + (Z};) Loz (%) + <7;iF2 ) Lozzy(@) +--- + (%) L7 (),

2[p] -1
B8] 1)
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we have
| fr — hgll = 0221 |fr(z) — hg(x)] < C <%) - where
— 1 1 1 218] — 1 . _ 8] -1
=T -ni-Ai-5 TEm-r ™ P ap—n

In particular, limy_, || fx — hg|| = 0.

Theorem B (7;,,).
Let Fy = |+ a — 1, and assume Fj > 5.
(0) #L; = #H; ,i=1,2,--- ,k, in the graph of T} ([0, 1)).
(1) For F and Ly, Ly, - - -, Ly, appearing in Tj ,([0,1)), we have

#L; 1 ( 2F — 1 )’“
‘(#F+Zf1#Lz> B3I <} (Fo — 1)(Fy — 2) where

- 2(Fo + 1) (F0—2>H1—Aj . 2F, — 1

C. = _ d A= .
I R —12(F—2)\2FR 1) 1-a ™ (Fo — )(Fp —2)

. . #L; _ 1
In particular, limy_, o <—#F+Zf:1 #LZ-) =3

(2) For a density function f;, of T} ([0,1)) given by

. k L,
fi(x) = L () + Z (#F +§’“ #L-) (1[0,Ti,a(1))($) - 1[07T[§1a(0))($))
j=1 7 Lj

=1
we have -
~ ~ 2F, — 1 -
— hga h
||fk B, ”<C<<F0—1)(F0—2)) where
~ 2(F0+1) ) 1 1 1 ~ Fy—2
C= = ~ + and B = )

In particular, limy_. ka — hgal = 0.
Numerical evaluations of || f - hg|| and || fi - ha.e|| will be given in the appendix.

§2. Convergence of the distribution of T}([0,1))

In the following we will omit proofs which are elementary and/or straightforward in order
to make this paper short.
2.1 The rule of generating f B F and [_B L; in the p-transformation is as follows:

(1) If we apply the next T to F (i.e., in T3(F), intuitively), we have | 5| Fs and one L;.
(ii) If we apply the next T to L; ( i.e., in Ts(L;), intuitively), we have |37%(1)] Fs and

one L.

Let us put
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Fo=|B] and L;=|BTY1)], i=1,2,3,---.
Remember that L; is the number of Fs contained in T3(L;). It is clear that
0<L;<Fy for ¢=1,2,3,---.
The next proposition follows immediately from the rule.

Proposition 1A (Tj).
Suppose that in TB’“_I([O, 1)) the number of f Bs and [_Bs are

#F =qo, #L1 = q1, #Lo=q, -+, #Li—1 = qr—1.
Then in the next T5([0,1)) we have
#F = qoFo + Zf:ll ¢iL; and #Li = qo, #Lo = q1, #Ls = q2, -+, #Li = qu—1.

For the numbers #F and #L; of TB’“([O, 1)), k=1,2,3,---, let us define

_#
-0}

Tk

and put

Tirj = TiTi—1""Tj.

Applying the proposition above repeatedly to k = 1,2,3,---, we obtain

Corollary of Proposition 1A(7}).
If

#F ##Ly c#Ly c #Lg L =1 i i Tk S TR 1TR—2TR-3 1 TRl
for T57'([0,1)), then for T4([0,1)) it holds that
#E Ly #FLo c #Lg oo #Lgg  # Ly
= (Fo + Zf:_ll kawkfiLi) Sl T2 I T2 Th—1p1
= Lo mp TR k1 TR R—1Th—2 1 TRt Tk
In particular for 75([0,1))

E—1 -1
T = (Fo + ZrklbkiLz) , and

=1

#L
AT k>k—(j—1)5

j=1,2,--k

2.2 We prepare here several lemmas for the proof of Theorem A (73). In order to evaluate
r, we define new variables 7 and r,, k = 0,1,2, .-, recursively. Indeed let
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Fo=Fy,' and 1y = (Fo+ Y o, féFo)_l,
and for £k =1,2,3,---, define

-1

1 .
= <F0 +30, fk—1|>k—iLi) and 1, = <F0 + 30 Peoisk—iLi + D ekl fBFo)

(Notations r,. ; and 7 ; are defined analogously to 7;;.)

>j
Lemma 1A (Tj).

(a)[k<rk+1§fk,k:0,1,2,--~

(b)yro>m 279> 27 2Tp1 >+ and rg <1 <ry < <rp <y <

Proof. (a) Since ;' —7y' = 0and ry' — 7yt = >0 7iFy > 0, we have ry < r < 7.

Then it is easy to show 7’,;}1 — 7t > 0and rt — 7’,;}1 > 0 under the assumption that

r<Tiy1 <7 ,1=0,1,2,--- k-1

(b) It is obvious that 7o > 7. Since ry* — ;' = 7o(Fy — L;) > 0, we have r, < r,.
Then it is easy to show Fk’l — f,;_ll > 0 and [,;_11 — f,;l > 0 under the assumption that
To>T1>2Tg > 2T randrg <ry <ry <---<rp ;. 0O

Lemma 2A (Tj).

(a> Tk— 1ok—i — e 1pk— z—TOIZJ 1( tk—j)? i:1727"'7k7 k:1727

b) it =7t < g { (S A e - f,:_l»)wé =8, k=12

_ Nk
(c) Fk—fkﬁlio <_of_m> , k=0,1,2,---

Proof. (a) As an example we show the case k =5, 1 = 3:
TaT3Ty — 1yrary = (Ta — 13)TsTy + 14 (Ts — 13)T2 + 1473(T2 — 1)
<7 {(ra— 1) + (P —ry) + (2 = 15)}  (by Lemma 1A).
(b) From the definition of r, and 7y,

1 1 k k+1 1
T — T S (Zl V(Trisk—i = Thoiohe )F0> To  1=Fo

7o
< (Fre1 — ) Fo + 7o { (Foe1 — 1) + (Th—z — 7o) } Fo + -+

+fg_1 {(fk_1 — Ek—l) + (’Fk_g — fk—2) + -+ (’I"o — Ty }Fo + 7 7k+1 1= L x Fy (by (a))

T

= (Sh Bt s — )L+ o+ 7 o+ 7)) + R

k k
SFOl—lfo (Zz 17”6 1(Tk i T ))+F0r i _10
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Since Ty — 1 = T Tri(rily — T lts ) < F2(rt — 7t,) and FyFp = 1, we finally have

| 7o ko oie1/,.—1  ——1 _k—1
Ty T =1 {<Z¢:1 o (T rk—i)) + 7o } :

(c) Let us write the r.h.s.of (b) by Si. Since Sy can be rewritten such as

Sk = =ty — 7)ot {(rply — Tty + o+ (g - o )RR+ E R

the S, satisfies the relation

_ _To -1 _ =1 = _ 1
Sk = 17% (rp2y — 75 1) + T0Sk—1 where Sy = e

Then applying (b) to f,;_ll — F,;_ll we have

Sp < - Sko1 + 7o Sk-1 = (7()?:?0) Sk-1,

1—7g

which yields the inequality

Now we obtain

It is known (Renyi [4]) that [ satisfies
Proposition 2A(Tj).
The ( is expressed using Fj and L; such as

B=Fo+gli+glotgls+ -+ gl +-.

This proposition is easily verified if we apply substitution
Fo=|BT9(1)] =B —T}(1) and L; = |BTH(1)] = BT5(1) — T5(1)
to the r.h.s. ( — then all terms except 3 are canceled).
Lemma 3A(Tj3).
(a) ' < B <ry', thatis, r, <

(b) Thsk—(j-1) — 57 = (ZZ;E(W_Z- -

Proof. (a) Recalling 0 < L; < Fy and noticing 7, ' = Fy < 3, we see 8 < r;'. Then
it is easy to show 77,;1 < [ and flzl > [ under the assumption that r; < % < 7; for
i=0,1,2,--- k—1.

(b) All terms cancel out in the r.h.s. except those of Lh.s. O

)%(kaiflbkf(jfl))> + (Pr—j-1) — %)%

=

2.3 Now we can complete the proof of Theorem A (T}).
Proof of Theorem A (7j). (1) From Lemma 1A (a), Lemma 3A (a) and Lemma 2A (c)
it holds that
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. k-1 k-1
| < 7 i 7ig _ 1 2|8] -1
el < e — i < 7 (RER) = g (Fn)
Hence from Corollary of Proposition 1A, Lemma 3A (b) and r; < 7 (by Lemma 1A),

% < 7y (by Lemma 3A (a)) we have

#L; i1
#F] o 5% = |Pkok—(-1) — 5]’ <7 ] Z |Tk i E|

k—1—1
—j—1j—1 2|8]-1 —j—1x~J—1 gk—1—i
L_BJ(L—ﬂJ 1>7"0 i=0 (_LBJ(L—BJA)) = T3 _LBJ 570 2imo A

_ 1 -1 k—j 1 A] 1—AJF —1 Ak—1
= B A = =y A (AT 1A

_ 149 (18)-1 V7 gk _ 2|81
- LBJ(LBJ 1) 1-A <2L6J—1> A (A= LBJ(LBJ—I))’

IN

Moreover the condition

Al <1 e 28 -1< (B(18] -1 & [B)> -3B8] +1>0

implies [3] > 2£/5 = 2.6180- - -
(2) It is clear that f is a density function of T5([0,1)). Using Proposition 2A, we have
k i oo
filw) = ha(e) = Ly ((25) = &) Torsan (@) = St arlormm (@),
and so by (1) of this theorem
|fk:(35) - hﬁ(@‘ < A Zf:l Ci+ Zi‘lkﬂ g%

Since 11— <132 , the Cj satisfies
A 1 18]-1 ]71: i—1 _ 1 1 _ 18]—1
C; < F—D A ( 28] 1) =D(B") (D= prerpnra and B =q5575).

Then it holds that
k—1 g 00 _
| fu(x) = hg(x)| < AF'D Y00 BY + —wlm Zn:OW < AMIDE + Lﬁjk(LlﬁJ—l)

k—1 1 E_1 : 1 _ 1 (2[B]-1) _
<A D5+ A T (since 5] < T8 <LBJ—1> =A)

_ Ak—1 1 11 2|18]-1
=A (LBJ(LﬁJ—l) AT B T LﬁJ(LﬂJ—1)2>' -

§3. Convergence of the distribution of T} ,([0,1))
The proof of Theorem B (7j,) is almost the same as that of Theorem A (73), and so
in the following we imitate the proof of Theorem A. In the proof we sometimes use the

symbol T" instead of T}, for brevity.

3.1 The rule of generating f B ¥, [_.B L; and h_B H; in the linear mod 1 transformation is

as follows:

(i) If we apply the next T, to F ( i.e., in T o(F), intuitively), we have |+ o] — 1 F's,
one L; and one H;.
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(i) If we apply the next T o to L; (i.e., in T4 (L), intuitively), we have | 875 ,(1)+-a] -1
Fs, one L;;; and one H;. (There may be a case that no F, L;;; and H; appear, and,
instead, only a line(branch) which starts from a and ends at T3t (1) = 874 (1) + o < 1
appears. In this case, since the contribution of Tj,(L;) to the density function f; is
represented such as

1[a,Tg'f;(1))(x) = Ljon(z) + 1[0,T§:}(1))(x) — 11 (2),

we consider that T ,(L;) consists of one L; 1, one H; and minus-one F.)

(iii) If we apply the next T, to H; ( ie., in T ,(H;), intuitively), we have |5+ a| —
|8T4,(0) + a] — 1 Fs, one Ly and one Hyyy. (Similarly to (ii), there may be a case that
no F, L; and H;,; appear, and, instead, only a line(branch) which starts from TELI(O)
and ends at Tj (1) satisfying |37} ,(0) + ] = |8 + o] appears. In this case, since the

contribution of T} ,(H;) to the density function f is represented such as

Liri ()1, 0 0) (@) = Lziti o)1) + 10,75.00) (%) = 11y (@),

we consider that T, (H;) consists of one Lj, one H;;; and minus-one F.)

Let us put
Fo=|f+a]—1 and

Li= T ,(1)+a] -1, i=1,2.3,--,

Hi=|f+a] —|fT;,0)+a] -1, i=1,2,3,---.

Remember that L; and H; are the number of Fs contained in T3 ,(L;) and 75 ,(H;) re-
spectively. It is clear that

—1§LZ§F0 and —1§H1§F0 for 221,2,3,
The next lemma is obvious from the rule:

Lemma 0B (73,,).
In the graph of T} ([0, 1)) it holds that #L; = #H; i=1,2,--- k.

The next proposition follows immediately from Lemma 0B and the rule above:

Proposition 1B(7}3,).
Suppose that in Tﬁk,;l([o, 1)) the number of f Bs, I_Bs and h_Bs are

#F =mo, #L1 = #H1 = q1, #Llo =#Ho = qa, -+, #Lp—1 = #Hp1 = g1
Then in the next 775 ,([0,1)) we have
#F = moFy + 2,0 ai(Li + Hy),
#Li=#Hi=m+q + @+ +q-1 and
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#Li:#HiZQi—ly 222,3,,]{}

For the numbers #F and #L;(= #H,), i =1,2,--- |k, of Tﬂk’a([(), 1)), let us define

_ #L,
O = & )
#F + > i #Li

= 172a3)"' )
and put
Oixj = 040i—1""0j.

Applying the proposition above repeatedly to k =1,2,3,---, we obtain

Corollary of Proposition 1B(73,,).
If

(#F + S8 #L ) #L: #  #Lg #L
=1:0p-1:0,10k2: Op_10p_20k_3: " : Op—1p1
for T .1([0,1)), then for T% ,([0,1)) it holds that
<#F+Zf:1 #Li) DMLy Ly #La e HLe . #L

k—1 k—1 k—1
= {(0 =S orren-i)Fo + S oncrmniLi+ H)) + (1+ S35 ok 1on-i) |
cl:iog 10k 102 I Op_1p2 I Op—1p1
=1: 0 :0p0Ok_1: OpOKL_10k_2 " : Okp2 : Okp1-

In particular for 75 ,([0,1)),

-1
O = { ((1 - 25;11 Ok—1pk—i)Fo + Zf;ll Op—1pk—i(Li + Hl)) +(1+ Zf;ll a'k,_lbk_i)}

k—1 -1
= ((Fg + 1) + Z Uk—le—i(Li + Hl — F() + 1)) s

and

#L;
4F + 30 #L;

= O'k[>k—(j—1)> j = 1,2, - k.

In the following we frequently use the value L; + H; — Fy + 1 appeared in o, and so we
give here a new symbol I'; to L; + H; — Fy + 1, that is, for =1,2,3,-- -,

FzELZ+HZ—F0+1, and
I'; satisfies —Fy—1<T; < Fy—+1.

3.2 We prepare here several lemmas for the proof of Theorem B (T} ,,). In order to evaluate
oy, we define new variables 7, 0 and o, k =1,2,3,---, recursively. Indeed let
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o9 = (F() — 1)_1 s and then
o ={(Fo+ 1)+ XX, 0)(F+ 1)}, or={(Fo+1) = XX o0(F+ 1)},
and for k =2,3,4,---,

o, ={(Fo+ 1)+ X0 Gporppils + 300, Go(Fo + 1)} where

Ok—1pk—i = Op—1pk—i if 11 >0, and =o; ., , if T; <0,
T ={(Fo+ 1) + 30 Grimnaili — 300, 03 (Fy + 1)} where
Oh—1ok—i = Op_1pp—; I I3 >0, and = 0p_1pp— if T <O.

Note: Below we frequently use the notation ¢4_10p; and 6 10k, k= 2,3,4,---
Lemma 1B (7;,).

(a) o, <ok <0p, k=1,2,3,---.

(b) If Fy > 5, then

002012022 20201 2> and g, <gy <+ <0, <gpy <o

Proof. (a) It is easily seen that o, < oy < ;. Then it is elementary to show o' > o, ! >

6,;1 under the assumption that o, < 0; <0o; ,7=1,2,--- ,k — 1. In fact
ot =0t = (Grotohi — Otk i + 3o, 05(Fo+1) >0 and
ot =0t = S (Ohetkei — Oretoki) T+ Do To(Fy + 1) > 0.
(b) We first show 69 > 1: Since 6, = (Fy + 1) (1 — 1‘1—20) == (Fy+ 1)?8:3, we
have

ol zo e R+ )RS >F -1 © (F+1)(Fy—3) > (Fo—1)(Fy—2) & Fy > 5.
Next we show 01 > 72 and g; < g,:

o, — o, =61 +6o(Fp+ 1)
<1f Iy > 0) = glFl +60(F0 + 1) > 0,
(lf Fl < 0) - 5’1F1 + 5’0(F0 + 1) Z 5'0F1 + 5’0(F0 + 1) Z 0,

gt =gy =0o(Fo+1) — ol
(ifI'y >0) =a9(Fo+ 1) — a1y > ao(Fo + 1) — aol'y > 0,
(lf I'h < 0) = 5'0(F0 + 1) +Q1(—F1) > 0.
Finally we show 031 > 0 and 0,_; < g, under the assumption that
0g>0,2>2022 >0 22>20,1 and o0y <0y <---<0; 9 <05 g

~

o, =t = Zf;f(akfllﬂcfi — G(k-1)-10(-1)-i) L + G111 + 04 H(Fp + 1)
> G101t + 05 H(Fo+ 1)
(if o1 > 0) = 04y Dr + 05 (Fy + 1) >0,
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(if Tp1 <0) = Gp1p1 iy o0 H(Fo+1) > 60 Ty + 65 HFy + 1) >0,

ol —at = Zf:_f(é-(k—l)—lb(k—l)—i — Gpoiph—i) i +05 H(Fy + 1) — Gp_1p1
> 66 " (Fo+1) — Gpo1elis

(if Ty > 0) =0 H(Fo+ 1) — Gpo1pa Dy > 60 H(Fo+1) — 68 Ty >0,

(ifTp 1 <0) =6 (Fo+1)+0,_1p0,(~Tk1)>0. O

Lemma 2B (7;,,).
Assume Fy > 5.

(8) Ghotohoi— Oprpni < 04 > i1 (Oh—j — a4 ;)
(St ot et - o) v 2b =5 k=
" 2 \k-1

2 ((R+ 1) +a0) L k=123,

i=1,2- k-1 k=23

(b) o' =o' < (Fo+1)

(¢) o —a, <2(Fo+1)

Proof. (a) This is the same as that of Lemma 2A.

(b) From the definition of g, and &y,
oy =0y = <Zf 1 (Gro1mkmi — Or ke z)Fi) +2(Fy + 1)ag 3272, 00

< (Zlfj_l(&k—wk—z’ - Qk71>k7i>(F0 + 1)) +2(Fp +1)o g . 5o

— =1
< (Fo+1) [(Gk-1— gg—1) + 00{(Fk—1 — gj_1) + (Oh—2 — g)_2)} +
(by (a))

=(F+1) (Zk_‘ Go N Ghi — o)A+ G0+ 53+ -+ 1)) +2(Fy + 1) 125

65 2 {(Oh-1— 1) + (Fho2 — Tp_s) + -+ (51 — 1) }] +2(Fp + )5k =%
1
1

< (Fo+1) (Zk Xz k—i—Qk—i)) +25§}
{(zf’ o oo - 07 + 20k
< (Fo+1)2 o {(Zf 1156 Yo, 51;11')> +25§_2}-
(c) Let us write the r.h.s.of (b) by S. Since Sy can be rewritten such as

Si = (Pt )1 (ot =07t )) +oo(Fot )12 { (Sh o0 o — i) + 20677

the S, satisfies the relation

Sk = (F() + 1) (O’kll 6_k_jl> + 6OSk_1, k= 273, LR where Sl = 2(F0 + ]')lfo‘

Then applying (b) to g,;ll — 6,;11 we have

’)&q,k:2&~g

Si < ((Fo + 1) %

which yields the inequality
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Now we obtain

k-1
5) O

ok — 0 = 0, 0k(ay "t — 05 ") < G2k < 2(Fp + 1)L

Proposition 2B(7}3,).
The f is expressed using Fy, L; and H; such as

B=(Fo+1)+32 5 (Li+ H — Fy+1)

<F0+1)+Zz lﬁl

This proposition is easily verified if we replace Fy, L; and H; in the r.h.s. by definitions,
then

rhs = =[f+a]+ 32 #(1BT'(1) +a — [BT(0) + o))
= (B+a—T"1))+ 22, 5 (BT(1) + a = T™(1)) — (BT(0) + a — T(0)))
=B+a—-TY0)=4.
The next lemma is proved using the expression of 5 above.
Lemma 3B(7},).
(a) 55" < B, 5‘1 <B<gyt, thatis, 59> 5, g, <5<, k=123
(b) Oker—(j-1) <Z, o (ohi — %)%(Uk—i—mk—(j—l))) +(Ok-G-1) — F) T
Proof. (a) First let us see 6, < j3:
Bl =B—(F—1)=f—|f+a+2>2-a>0.
Next let us see 3 > ;' and o;' > 3: Because |FZ| < Fy + 1, we have
B-art =22 g it (Fo+ 1) 22,00 > —(Fo+ 1) 3%, 5+ (Fo+1) X272, 9 > 0,
o' = B=(Fo+1) 37,0 - Zzoolﬁlzr > (Fo+ 1) 00— (Fo+1) 35, 5 > 0.

Finally let us show 5,;1 < [ and gkl > [ under the assumption that o, < % < oy, for
i=1,2- k-1

B—oyt =20 1(@1 Gr-1on-i) s + 3075 i+ (Fo + 1) 3572, 66
>3 gl (Fo+1) 252,00 > —(Fo+ 1) 278, 5o + (Fo+1) 3275, 66 > 0,
G -B=0 (Chror—i — )T + (Fo + 1) 572,06 — 3o, il

> (Fo+1) 25700 — Xy gl = (Fo+ 1) 202,00 — (Fo+ 1) 3575, 5 > 0.
(b) All terms cancel out in the r.h.s. except those of Lh.s. O

3.3 Now we can complete the proof of Theorem B (T},,).
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Proof of Theorem B (T}3,). (0) This is Lemma 0B.
(1) We first note that the r.h.s. of Lemma 2B (c) is rewritten such as

k—1
2(Fo+1) 2Fp—1 : 2Fp—1
(Fo_l)g(FO_Q) <(F0_1;)(F0_2)> . (NOthe that (Fo_lfw < 1 for Fo > 5) Then from

Lemma 1B (a), Lemma 3B (a) and Lemma 2B (c) it holds that

k—1
1 _ 2(Fp+1) 2F—1 — 2(fp+1) k-1
ok — §| SO0k =0, < (Fo—l)g(F()fZ) ((Fo—lg)(Fof2)> = (Fo— 1)3 Fo— A

Hence from Corollary of Proposition 1B, Lemma 3B (b) and 0; < 4 (by Lemma 1B),
L < 5y (by Lemma 3B (a)) we have

B
sl Ll — —] 1 j—1
et — | = ooy — ml <7 i low-i — 3
L—Jl i1 ki = 200 50l fr—g LAY
S (Fo— 1)2 Fo— Z A == (F071)2(F0 2) A —A
_ M(* A )j 11-AJ Ak 1 2(Fy+1) Fo—2 7j—1 1A Akfl
— (Fo—1)2(F0-2) )] 1—A = Fo—1)2(Fo—2) \2Fp—1 — .

(2) A density function of T% ([0, 1)), say fx, is given by
~ k i 0
fo(@) = g {1[0,1>($) +2 i ((i—lﬁ)l[w(l))(%) + (%)1[7’1‘(0),1)(%)) }
= (1 - M) Lo.)(@) + grrsr i Simt (5 (o) () = Lo 7400y (#) + 1o,y ()

o0(®) + i (g ) (Lo an (@) = Lprion(@))

Using Corollary of Proposition 1B we have

k
fil) = hpal@) = E (orer-o-n = &) (Lo (@) = Loy (@)
= 21 77 (Lo (@) — Lozay (),
and so by (1) of this theorem
3 Tk— k A 9
| fre(z) — hﬁ,a(x” < AR Zi:l Ci + Zn:k-I—l gin

Smce A - = A, the C; satisfies

= 2(Fo+1) TR T T v A 2Rt 1 B -2
Cj < (F0_1)3(F0_2) (2130_1) -4 — DB (D= (Fo—l)g(Fo—Q)m’ b= 21&90_1)'

Hence it holds that
|fi(@) = hpalx)] < AAIDY ) B+ gt o0 gan (by § < 59)

A1 Fk—1 1
< DA™ + moymoy
because



T Bofn - 0 fLfE

k k—1
_k415~© = _ =k 1 _ (1 1) 1 =2 § 1 Ak—1
00" 2ne000 =05 aoi-1 (F0—1) (FO—Q) = Fo-D(F0—2) (21«90—114) < (Fo—l)(F0—2)A -

Concluding Remarks. In [1] Géra investigated the invariant density of the generalized
p-transformation 7 on [0,1]. The graph of 7([0,1]) consists of |#] full Branches(F's) and
one high Branch H; or one low_Branch L; depending on 7. (The Fs in 7([0, 1]) may be
a mixture of F = F* and F = F~ whose slopes are up and down respectively.) Let E;
denote H;y or Ly appearing in 7([0,1]). Then 7(E;) consists of several Fs, one or no Ej,
and one Hy or Ly which is denoted by Es. (Note that the 'up/down’ of the slope of E;
appearing in 7(E;) may be different from that of 7([0,1]). However when we treat the
distribution of 72([0, 1]), it is not necessary for us to know whether branches Fs, E;’s and
E, are ascending or descending.) Let us apply 7 to E; 1 generally. If E; ; is L; 1, then
7(E;_1) consists of several Fs and one H; or L; which is denoted by E;. If E;_; is H;_q,
then 7(E;_1) consists of several Fs, one E;, and one H; or L; which is denoted by E;.
There may be a case that no H; and L; appears and, instead, only a branch which extends,
for example, from 7(1) to 7/(1)(0 < 7(1) < 7(1) < 1) appears. In this case we consider
that there appear one Hy, one L; and minus-one F (cf. rules (ii) and (iii) of Section 3.1).
Fori=1,2,---, we define w(i) = 1 if E; is H;, and = 0 otherwise.

Now suppose 7%([0, 1]) contains #F full_Branches and #E;(= #H; or #L;),i = 1,2,--- | k,
high_ or low_Branches. Then we can show that

#E,; 1

lim = —. and

o 1 S W) FE P

a density function of 77([0, 1])

fe(@) = rrs e |Lon @) + i { (2952) 1 @) + (S2322) 10,00 (@) }

k

. #E;
-1 -1 w(i)
o.0(@) + ;( ) HF + 3, w()#E;

Lio i1y (@)

approaches to the invariant density function of 7 as k — oo. Details will be given subse-
quently.
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Appendix
1. Values of the r.hs. of |/ - _2po1 ) :
. Values of the r.his. of || fi - hgl] < C (LBJ(LBJ*U) (Theorem A (2)):
Bl k=1 2 3 4 5 6 8 10 k=16
3 20833 1.7361 1.4468 1.2056 1.0047 0.8372 0.5814 0.4038 0.1352
6 |0.1698 0.0623 0.0228 0.0084 0.0031 0.0011 0.0002 0.0000  0.0000
9 10.0639 0.0151 0.0036 0.0008 0.0002 0.0000 0.0000 0.0000  0.0000
12 | 0.0334 0.0058 0.0010 0.0002 0.0000  0.0000 0.0000  0.0000 0.0000
15 1 0.0205 0.0028 0.0004 0.0001 0.0000 0.0000  0.0000  0.0000 0.0000
18 | 0.0139 0.0016 0.0002 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000
21 0.0100 0.0010 0.0001 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000
24 | 0.0076 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
27 0.0059 0.0004 0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000

(0.0000 means < 0.0001)

2. Values of the r.hs. of || fi - hgal < C <%)k 1 (Theorem B (2), Fy

1B +a] —1):
| k=1 2 3 4 5 6 8 10 k=16
D 1.5833 1.1875 0.8906 0.6680 0.5010 0.3757 0.2113 0.1189 0.0212
6 0.5389 0.2964 0.1630 0.0897 0.0493 0.0271 0.0082 0.0025 0.0001
9 0.1268 0.0385 0.0117 0.0035 0.0011 0.0003 0.0000  0.0000  0.0000
12 1 0.0572 0.0120 0.0025 0.0005 0.0001 0.0000  0.0000  0.0000  0.0000
15 0.0326 0.0052 0.0008 0.0001  0.0000 0.0000  0.0000  0.0000 0.0000
18 0.0211 0.0027 0.0003  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
21 0.0147 0.0016 0.0002 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000
24 0.0109 0.0010 0.0001 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
27 0.0084 0.0007 0.0001 0.0000 0.0000 0.0000  0.0000  0.0000 0.0000

(0.0000 means < 0.0001)





