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Chapter 1

Introduction

1.1 Background

In the field of digital pathology, medical doctors (pathologists) usually make a final

decision (diagnosis) with plenty of given HE stained images. To do this, they first investi-

gate all nuclei in the tissue and extract features from them. However, it will provide much

burden to the pathologist. Because the size of the given images is large (approximately

several GB), and many nuclei have to be extracted from the given images for diagnosis.

The skill of nuclei extraction and their analysis heavily depends on a pathologist’s skills

and experiences. As a result, this work also will cause a non-quantitative result.

From this background, systems related to computer-aided-diagnosis (CAD) interest

actively as the solution to the above problem. In particular, thanks to deep learning-based

approaches and the era of Big Data, we can now suggest deep learning-based solutions

with input a lot of medical images as Big Data. Convolutional Neural Networks (CNNs),

which is one of the Deep Learning technique for computer vision, has been growing

quickly. Generally, CNNs automatically extract features, and enough training data leads

to high performance for classification or segmentation. The diagnosis with CNNs has

expected two main contributions. Firstly, pathologists’ work will reduce extremely. Sec-

ondly, the criteria will be quantitative. Besides, its technologies provide highly accurate

solutions to various medical image classification problems as classification or segmenta-

tion and many projects, e.g., [1][2][3][4].

However, in the pathological analysis, there are many scenarios where doctors have

to explain the detail of their diagnosis. In similar, constructed CNNs model is required

the diagnosis reason even if CNNs’ classification ability superior. CNNs architecture is

complex to realize high prediction performance, and the all process of feature extraction

and classification is automatic. In summary, CNNs middle layer is an almost black

box. For this reason, despite the success in automatically classifying disease stages, the

CNNs model cannot explain how the classification into each stage happened since feature

selection is not apparent. This problem is a big wall to introduce CNNs for medical sites.



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Pipeline of this Work

1.2 Research Objective

In this work, we aim to investigate how CNNs make a decision. As already mentioned

in Section 1.1, the training process of CNNs is automatic, so the evaluation criteria is a

black box. It is required to visualize the reason for CNNs classification for medical im-

ages. This paper mainly focused on the ralationship between cell nucleus’ shape features

(object-level-features)[5] and classification results.

In this study, two CNNs models were prepared for disease stages classification and

cell nucleus segmentation, respectively. In this thesis, Grad CAM++[6], a visualization

tool for CNNs classification, guessed the vital area of CNNs decision for histopatho-

logical images. Then the obtained important/unimportant mask images were obtained

by consulting both of nucleus mask image and heatmap. Finally, the significant differ-

ence between important/unimportant regions was discussed after Object-Level-Feature

extraction from these regions. Figure 1.1 shows the pipeline of this work.
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Chapter 2

Related Works

2.1 Convolutional Neural Networks

Currently, CNNs is one of the most popular technologies for classification or segmen-

tation. Its architecture mainly consists of a convolutional layer and a max-pooling layer.

Figure 2.1 shows the convolutional process, and this layer uses a filter to compress the

features. In CNNs, this layer gives the output as feature map to another convolutional

layer or pooling layer. Figure 2.2 explains the convolution process when the image whose

size is (N , H, W ,C) is used. In this case, output is (N , FN , C, OH, OW ) through the

(FN , C, FH, FW ) filter. Moreover, there are some other convolution parameters such

as padding size, stride size and so on. Padding is a process for adding some value on

each side of the input feature maps, affecting the output feature size. Stride size means

how many pixels are slid for filtering; for instance, the stride size of Figure 2.2 is 1.

On the other hand, the pooling layer is the operation that makes the given image

smaller, such as height and width. For example, Figure 2.3 shows the max-pooling of 2

× 2 filter with stride 2. Max pooling means selecting a max value in the region of 2 × 2

filter. Thus pooling layer has no parameter for the training and works for just compressing

input data. Through the learning, CNNs tune the parameter of the convolutional filter

mainly. Generally, the layer near the input layer extracts low-level features e.g., edge and

blob, and so on. In contrast, more deep layers extract high-level features, which means

more complex and abstract information.

In the last decade, CNNs study became a large scale due to large public image repos-

itories, such as ImageNet [7], and high-performance computer systems, such as GPUs.

Karen et al. suggested very deep convolutional neural networks with high accuracy for

ImageNet classification [8]. Their model’s characters were mainly depth, which has 16

to 19 layers and a smaller filter size than previous architectures. They are called VG-

GNet. Also, this architecture is more simple than other deep CNNs, like ResNet [9]

and Inception-vX [10], so that it is one of the most popular CNNs classification models.

On the other hand, [10] explored approaches to scale up GoogLeNet [11] to utilize the
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Figure 2.1: Convolution Process

Figure 2.2: The Data Size in Convolutional Process
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(a) First Max Pooling

(b) Second Max Pooling

Figure 2.3: Feature Map Generation by Pooling
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(a) General Block (b) Residual Block

Figure 2.4: Shortcut-Connection

added computation as efficiently. This model employed fewer parameters than VGGNet

by several updates, e.g., introducing the Batch Normalization [12] and Global average

pooling (GAP) [13]. However, deeper networks start degradation with increasing layers

too much, which is overfitting. In [9], residual learning addressed this problem. The

main key of this approach was shortcut-connection (Figure 2.4). Shortcut connection in-

tegrates the previous compressed weight on the output. If one of them were not needed,

its weight would be 0. For this reason, ResNet realized several deeper models, such as

ResNet 18, 34, 50, 101, and 152 (Values mean the number of layers). Therefore ResNet

are a significant breakthrough for CNNs classification.

2.2 Segmentation with CNNs

Image segmentation is one of computer vision techniques to detect objects and make

the given image easier for analysis. This thesis applied its technologies to cell nucleus seg-

mentation. Nucleus segmentation is essential for digital pathology because nuclei reflect

the current disease stage well. Also, according to Gurcan et al., the features related to

cell nuclei are generally useful for evaluating histopathology [5]. For this reason, recently

a lot of automatic segmentation methods have been proposed for histopathological image

processing, and segmentation techniques with CNNs are one of the hottest topics in this

field [14] [15] [16].

X 
X 

Weight Layer 

Weight Layer 

↓ 
H (x) F (x) + x 



CHAPTER 2. RELATED WORKS 7

Figure 2.5: Transposed Convolution

In the segmentation process with CNNs, an input image has reduced the size using

the convolutional layer and pooling layer. It is called downsampling, and feature maps

are generated through the downsampling. Then it needs to convert a feature map to a

high-resolution image to recover the “WHERE” information. Transposed convolution is

an approach for upsampling an image with learnable parameters. Figure 2.5 shows an

example of the transposed convolution process. When the output (4 × 4) is required from

the input (2 × 2), then the filter (16 × 4) are used. To do this, the convolutional filter (3

× 3) and input (2 × 2) are converted to (16 × 4) and (1 × 4) with transpose, respectively.

The output can be reshaped into (4 × 4) data after the convolutional calculation. U-

Net employs a transpose convolutional layer and skip-connection and suggested it for

biomedical images. The architectures of U-Net and U-Net++ are shown in Figure 2.6,

and the greatest characteristic of U-Net is the shape of the process like “U”. Usually,

through the pooling layer, the information of “WHERE” is dropped. In U-Net, skip-

connection passes each encode feature map step into each decoding step for fixing the

above problem. For instance, X. Li et al. proposed a tumor segmentation method for

CT scanned images [17].
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Furthermore, Zhou et al. proposed U-Net++, which was an improved U-Net [16]

(Figure 2.6 (b)). The difference with U-Net is decoding from each encoding step. Also,

the result of each node is used for prediction and loss calculation. In [16], they applied

U-Net++ to various medical images and showed the performance of U-Net++ was good

enough compared to other approaches.

Moreover, Chen et al. proposed DeepLab v3+, which was an encoder-decoder network

with atrous separable convolution for semantic image segmentation in 2018. The encoder

module encodes multi-scale contextual information by applying atrous convolution at

multiple scales, while the simple yet effective decoder module refines the segmentation

results along object boundaries [18].

2.3 CNNs Explanation Technologies

A lot of researchers efforts to understand what CNNs learned [19][20]. In [20], Zhou

et al. proposed methods that various layers of the CNNs behave as unsupervised object

detectors using a new technique called CAM (Class Activation Mapping). Then Sel-

varaju et al.[21] came up with an efficient generalization of CAM, known as Grad CAM,

which fuses the class-conditional property of CAM with existing pixel-space gradient

visualization techniques.

When learning CNNs model with GAP layer predicted c, which is one of classes, its

final classification score Y c can be defined using Ak
ij (feature map of GAP layer) by

Y c =
∑
k

wc
k

∑
i

∑
j

Ak
ij (2.1)

where Ak
ij is coordinate (i, j) of channel k. Also, wc

k expresses importance degree of∑
i

∑
j A

k
ij to return Y c, when Lc

ij is defined as

Lc
ij =

∑
k

wc
kA

k
ij, (2.2)

then Y c can be expressed by

Y c =
∑
i

∑
j

Lc
ij. (2.3)

The defined Lc
ij is important degree when pixel position (i, j) was decided class c. Thus

to derive Lc
ij means to draw important heatmap of pixel position (i, j). In [21], they

defined weight wc
k for a particular feature map Ak and class c as

wc
k =

1

Z

∑
i

∑
j

∂Y c

∂Ak
ij

(2.4)
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(a) U-Net

(b) U-Net++

Figure 2.6: Segmentation Architectures
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Figure 2.7: DeepLab v3
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where Z is the number of activation map. On the other hand, [6] formulated the structure

of the weights wc
k as

wc
k =

∑
i

∑
j

αkc
ij relu

(
∂Y c

∂Ak
ij

)
(2.5)

where relu is the Rectified Linear Unit activation function. From Eq. (2.1) and Eq.

(2.5), Y c can be reformulate as

Y c =
∑
k

{∑
a

∑
b

αkc
abrelu

(
∂Y c

∂Ak
ab

)}∑
i

∑
j

Ak
ij. (2.6)

Here, (i, j) and (a, b) are iterators over the same activation map Ak and are used to avoid

confusion. Without loss of generality, Eq. (2.6) drops the relu in our derivation as it only

functions as a threshold for allowing the gradients to flow back. Taking partial derivative

regarding Ak
ij on both sides:

∂Y c

∂Ak
ij

=
∑
a

∑
b

αkc
ab

∂Y c

∂Ak
ab

+
∑
a

∑
b

Ak
ab

{
αkc
ij

∂2Y c

(∂Ak
ij)

2

}
(2.7)

Taking a further partial derivative regarding Ak
ij:

∂2Y c

(∂Ak
ij)

2
= 2αkc

ij

∂2Y c

(∂Ak
ij)

2
+
∑
a

∑
b

Ak
ab

{
αkc
ij

∂3Y c

(∂Ak
ij)

3

}
(2.8)

from Eq. (2.7) and Eq. (2.8), αkc
ij can be defined by:

αkc
ij =

∂2Y c

(∂Ak
ij)

2

2
∂2Y c

(∂Ak
ij)

2
+
∑

a

∑
bA

k
ab

{
∂3Y c

(∂Ak
ij)

3

} (2.9)

Substituting Eq. (2.9) in Eq. (2.5), Grad CAM++ weights can be obtained as follows;

wc
k =

∑
i

∑
j

∂2Y c

(∂Ak
ij)

2

2
∂2Y c

(∂Ak
ij)

2
+
∑

a

∑
bA

k
ab

{
∂3Y c

(∂Ak
ij)

3

}relu( ∂Y c

∂Ak
ij

)
. (2.10)

If αk
ijc = 1/z was substituted in Eq. (2.10), Eq. (2.10) becomes the same as Eq. (2.4).

Thus unlike Grad CAM, which simply looked at the average of pixels, the weight α has

appeared. By doing this, even small features can be visualized properly.

Figure 2.8 shows the examples of Grad CAM++ using ImgageNet weight. These

heatmaps show the important region as red color. For instance, in (a) and (b), the author

can understand that a bill and neck were contributed to the prediction of ptarmigan.
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(a) Input Image 1 (b) Obtained Heatmap

(prediction : ptarmigan)

(c) Input Image 2 (d) Obtained Heatmap

(prediction : turtle)

(e) Input Image 3 (f) Obtained Heatmap

(prediction : gorilla)

Figure 2.8: Prediction with ImageNet Weight and Visualization by Grad CAM++
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Chapter 3

Experiments

3.1 Materials and Data set

In this paper, this thesis focused on Glioma histopathological images, which was one

of the brain tumors. Malignant brain tumor has characteristics that precede the stages

quickly so that it is crucial to find the disease earlier. Also, Glioma has various types

of corresponded for cause and stage. The author put two labels Glioblastoma (GBM)

and Low-Grade-Glioma (LGG) on the given images. Glioma histopathological images

are available on the official website of The Cancer Genome Atlas (TCGA) [22]. As the

experimental material, the author obtained Glioma images from TCGA. Figure 3.1 (a)

and (b) show examples of obtained original images.

In this work, two CNNs models were created. One of them is the model for the

disease stages classification, respectively. The other is for the segmentation model of cell

nuclei. This section explains the data set to create two CNNs models in the following

paragraphs.

In the model creation for the classification, the first process patched Glioma

histopathological images into 1000 × 1000 pixels images because the obtained images

from TCGA are too large for learning (Figure 3.2 (a)). This training process also used

20,000 (LGG: 10,000, GBM: 10,000) images that were patched from 604 patients’ data.

Then this paper partitioned the above images into training (80%), validation (10%), and

test (10%) to construct the classification model. Furthermore, two data sets were also

prepared in the same proportion for the Cross-Validation.

In addition, this thesis used CNNs for the mask image generation of the cell nuclei. For

this reason, the author put cell nuclei annotation into the images for the segmentation.

Figure 3.2 (b) shows a mask image of Figure 3.2 (a) with the annotation of cell nuclei. It

was put by ourselves for segmentation model construction. However, it was required to

convert 1000 × 1000 pixels to a more tiny size because the image size is too large for the

segmentation using CNNs. Thus, the pathological images were divided into 256 × 256

pixels. Furthermore, the author used HE and 14 patients’ mask images distributed
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(a) GBM

(b) LGG

Figure 3.1: Obtained Histopathological Images from TCGA
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(a) Pathological Image

(1000× 1000 pixels)

(b) Annotation Image

Figure 3.2: Patched Pathological Image and Mask Image of Cell Nucleus Annotation

by MoNuSeg [23] as training data set to enhance segmentation accuracy in this work

(Figure 3.3). A total of 8,400 images were used for training and test of segmentation.

The number of training, validation, and test data were prepared 6400, 1600, and 400,

respectively. MoNuSeg image was not used for evaluation. Also, the testing data were

prepared considering the patient ID, i.e., the patients used for training were not used for

testing.

3.2 Model Creation with CNNs

In this study, the above CNNs technologies implemented on the server (Table 3.1)

for the classification and segmentation. Also, sections 3.2.1 and 3.2.2 explain CNNs’

architectures using symbols of Table 3.2.

3.2.1 Classification for Glioma Histopathological Images

In this study, the author constructed a classification model with VGG16[8], which was

a kind of VGGNet model, and the VGG16 learned various parameters to classify disease

stages for glioma histopathological images. In particular, our model employed five blocks

for feature map generation. Block-1 and Block-2 have two convolutional layers, and

a max-pooling layer is installed under the convolutional layer. As well as these blocks,
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(a) Histopathological Image

(1000 × 1000 pixels)

(b) Annotation Image

Figure 3.3: An Example of MoNuSeg Data Set

Table 3.1: Experimental Environment for Segmentation

Item Specification

OS Ubuntu 18.04.5 LTS

CPU Intel Core i7 6850K 6core/12thread 3.6GHz

GPU NVIDIA GeForce GTX 2080Ti 11GB

RAM 32GB (8GBx4)

Storage 1 480GB (Intel SSDSC2BB48)

Storage 2 1TB (WDC WD10JPLX-00M)

Storage 3 1TB (WDC WD10JPLX-00M)

Deep Learning Framework Keras 2.2.2 (Classification Model)

Keras 2.2.4 (Other Experiments)

Language Python3.5 (Classification Model)

Python3.7 (Other Experiments)
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Table 3.2: Meanings of Symbols in Network Architecture Table

Symbol Meaning

Image Input Image Data

Conv. 2D Convolution Layer

Max Pool. Max Pooling Layer

GAP Global Average Pooling Layer

T. Conv. 2D Transposed Convolution Layer

Concatenate Mathematical Operation (Concatenation for Features)

ch Number of Channels

k Kernel Size (Filter Size) of Layer

p Padding Size before Operation

s Stride Size while Operation

Output Shape Output Shape after Operation

ReLU ReLU Activation Function

BN Batch Normalization

Block-3 to Block-5 have three convolutional layers and one max pooling layer. This article

fed ImageNet weights until block-4, and block-5 trained to classify Glioma disease stages.

Also, the author input pathological images to CNNs model after down-scale processing.

In this step, the size of the images was changed from 1000 × 1000 pixels to 256 × 256

pixels. However, the flatten-layer and fully-connected layer have too many parameters

in the original VGGNet, such as Figure 3.4 (a). To avoid the overfitting risk, the author

installed the GAP layer (Table 3.4) instead of flatten-layer and fully-connected layers.

Finally, the architecture of our model was Table 3.3.
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Table 3.3: Our Classification Model

Block Operation ch k p s Output shape Activation

Input 3 (299, 299)

1 Conv. 64 3 1 1 (299, 299) ReLU

Conv. 64 3 1 1 (299, 299) ReLU

Max Pool. 64 2 0 2 (149, 149)

2 Conv. 128 3 1 1 (149, 149) ReLU

Conv. 128 3 1 1 (149, 149) ReLU

Max Pool. 128 2 0 2 (74, 74)

3 Conv. 256 3 1 1 (74, 74) ReLU

Conv. 256 3 1 1 (74, 74) ReLU

Conv. 256 3 1 1 (74, 74) ReLU

Max Pool. 256 2 0 2 (37, 37)

4 Conv. 512 3 1 1 (37, 37) ReLU

Conv. 512 3 1 1 (37, 37) ReLU

Conv. 512 3 1 1 (37, 37) ReLU

Max Pool. 512 2 0 2 (18, 18)

5 Conv. 512 3 1 1 (18, 18) ReLU

Conv. 512 3 1 1 (18, 18) ReLU

Conv. 512 3 1 1 (18, 18) ReLU

Max Pool. 512 2 0 2 (9, 9)

GAP 512 (1, 512) ReLU, Softmax
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(a) Original Architecture of VGG16

(b) Global Average Pooling (GAP)

Figure 3.4: Comparative Fully-Connected-Layer vs. GAP

7 x 7 = 49 I 

7x7 • 

＇ '512'  
49 X 512 = 25,088 25,088 X 4,096 = 102,760,448 

Layer 
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(Block 5) 
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Calculating the Average of Feature Maps 

• 512 ・
Parameter is 512 

Layer 
Max Pooling 
(Block 5) 

Global Average Pooling 
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3.2.2 Training of Cell Nucleus Segmentation

The author focused on U-Net [15], U-Net++ [16], and DeepLabV3 [18] as the methods

of cell nucleus segmentation, and compared these models. Also, Tables 3.4 to 3.14 show

the structures of these models, respectively.

Back Born:

This thesis used ResNet [9] (34-layers and 50-layers) as an encode part. Tables 3.4

to 3.11 show the architecture of each block of ResNet. ResNet has skip connections that

connect the block and one previous block. Down sampling is used for skip connection in

the first block to adjust the feature shape. The numbers after Loop Block in Stage-1 to

Stage-3 mean the number of the same blocks.

U-Net :

Table 3.12 shows the architecture of U-Net. In the concatenate process, the output

features were generated by using the features shown in Output.

U-Net++ :

Table 3.13 shows the architecture of U-Net++. In the concatenate process, U-Net++

calculates the upsampling from each encode part to enhance the accuracy more than U-

Net. Thus this table expresses the detail of Input and Output as Xn (n means location

numbers).

DeepLabV3 :

Table 3.14, and Figure 2.7 describe the architecture of DeepLab v3+. Figure 2.7

shows the entire structure of deeplab including ResNet101.
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Table 3.4: Stage 1 (34-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 64 1 0 1

First Block

Conv. 64 3 0 1 BN + ReLU

Conv. 64 3 1 1 BN + ReLU

Loop Block (2)

Conv. 64 3 0 1 BN + ReLU

Conv. 64 3 1 1 BN + ReLU

Table 3.5: Stage 1 (50-layer, 101-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 256 1 0 1

First Block

Conv. 64 1 0 1 BN + ReLU

Conv. 64 3 1 1 BN + ReLU

Conv. 256 1 0 1 BN + ReLU

Loop Block (2, 2)

Conv. 64 1 0 1 BN + ReLU

Conv. 64 3 1 1 BN + ReLU

Conv. 256 1 0 1 BN + ReLU

Table 3.6: Stage 2 (34-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 128 1 0 2

First Block

Conv. 128 3 1 2 BN + ReLU

Conv. 128 3 1 2 BN + ReLU

Loop Block (3)

Conv. 128 3 1 1 BN + ReLU

Conv. 128 3 1 1 BN + ReLU
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Table 3.7: Stage 2 (50-layer, 101-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 512 1 0 2

First Block

Conv. 128 1 0 1 BN + ReLU

Conv. 128 3 1 2 BN + ReLU

Conv. 512 1 0 1 BN + ReLU

Loop Block (3, 3)

Conv. 128 1 0 1 BN + ReLU

Conv. 128 3 1 1 BN + ReLU

Conv. 512 1 0 1 BN + ReLU

Table 3.8: Stage 3 (34-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 256 1 0 2

First Block

Conv. 256 3 1 2 BN + ReLU

Conv. 256 3 1 2 BN + ReLU

Loop Block (5)

Conv. 256 3 1 1 BN + ReLU

Conv. 256 3 1 1 BN + ReLU

Table 3.9: Stage 3 (50-layer, 101-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 1024 1 0 2

First Block

Conv. 256 1 0 1 BN + ReLU

Conv. 256 3 1 2 BN + ReLU

Conv. 1024 1 0 1 BN

Loop Block (5, 22)

Conv. 256 1 0 1 BN + ReLU

Conv. 256 3 1 1 BN + ReLU

Conv. 1024 1 0 1 BN + ReLU
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Table 3.10: Stage 4 (34-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 512 1 0 2

First Block

Conv. 512 3 2 2 BN + ReLU

Conv. 512 3 2 2 BN + ReLU

Second Block

Conv. 512 3 2 1 BN + ReLU

Conv. 512 3 2 1 BN + ReLU

Third Block

Conv. 512 3 2 1 BN + ReLU

Conv. 512 3 2 1 BN + ReLU

Table 3.11: Stage 4 (50-layer, 101-layer)

Part Operation ch k p s Activation

Down Sampling Conv. 2048 1 0 1

First Block

Conv. 512 1 0 1 BN + ReLU

Conv. 512 3 2 1 BN + ReLU

Conv. 2048 1 0 1 BN + ReLU

Second Block

Conv. 512 1 0 1 BN + ReLU

Conv. 512 3 4 1 BN + ReLU

Conv. 2048 1 0 1 BN

Third Block

Conv. 512 1 0 1 BN + ReLU

Conv. 512 3 8 1 BN + ReLU

Conv. 2048 1 0 1 BN + ReLU
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Table 3.12: U-Net Architecture

No Operation ch k p s Size Activation Output

0 Input 3 (256, 256)

1 Conv. 64 7 3 2 (128, 128) BN + ReLU

Max Pool. 64 3 0 2 (64, 64)

2 Stage1 64 (64, 64) BN + ReLU X1

3 Stage2 128 (32, 32) BN + ReLU X2

4 Stage3 256 (16, 16) BN + ReLU X3

5 Stage4 512 (8, 8) BN + ReLU X4

6 T. Conv. 16 4 1 2 (16, 16) BN + ReLU X5

Concatenate 512 (16, 16) BN + ReLU X4, X5

Conv. 512 3 1 1 (16, 16) BN + ReLU

7 T. Conv. 128 4 1 2 (32, 32) BN + ReLU X6

Concatenate 256 (32, 32) BN + ReLU X3, X6

Conv. 128 3 1 1 (32, 32) BN + ReLU

8 T. Conv. 64 4 1 2 (64, 64) BN + ReLU X7

Concatenate 128 (64, 64) BN + ReLU X2, X7

Conv. 64 3 1 1 (64, 64) BN + ReLU

9 T. Conv. 32 4 1 2 (128, 128) BN + ReLU X8

Concatenate 96 (128, 128) BN + ReLU X1, X8

Conv. 32 3 1 1 (128, 128) BN + ReLU

10 T. Conv. 16 4 1 2 (256, 256) BN + ReLU X9

Conv. 16 3 1 1 (256, 256) BN + ReLU

11 Conv. 1 1 0 1 (256, 256)
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Table 3.13: U-Net++

No Operation ch k p s size Activation Input Output

0 Input 3 (256, 256) X0

1 Conv. 64 7 3 2 (128, 128) BN + ReLU X0 X11

Max Pool. 64 3 0 2 (64, 64) X12

2 Stage1 64 (64, 64) BN + ReLU X12 X2

3 Stage2 128 (32, 32) BN + ReLU X2 X3

4 Stage3 256 (16, 16) BN + ReLU X3 X4

5 Stage4 512 (8, 8) BN + ReLU X4 X5

6 T. Conv. 16 4 1 2 (16, 16) BN + ReLU X5 X61

Concatenate 272 (16, 16) X4, X61 X62

Conv. 16 3 1 1 (16, 16) BN + ReLU X62 X63

7 T. Conv. 256 (32, 32) BN + ReLU X4 X71

Concatenate 384 (32, 32) X3, X71 X72

Conv. 256 3 1 1 (32, 32) BN + ReLU X72 X73

8 T. Conv. 256 4 1 2 (32, 32) BN + ReLU X63 X81

Concatenate 640 (32, 32) X3,X81,X73 X82

Conv. 256 3 1 1 (32, 32) BN + ReLU X82 X83

9 T. Conv. 128 4 1 2 (64, 64) BN + ReLU X3 X91

Concatenate 192 (64, 64) X2, X91 X92

Conv. 128 3 1 1 (64, 64) BN + ReLU X92 X93

10 T. Conv. 128 4 1 2 (64, 64) BN + ReLU X73 X101

Concatenate 320 (64, 64) X2,X101,X93 X102

Conv. 128 3 1 1 (64, 64) BN + ReLU X102 X103

11 T. Conv. 128 4 1 2 (64, 64) BN + ReLU X83 X111

Concatenate 448 (64, 64) X111,X93 X102

Conv. 128 3 1 1 (64, 64) BN + ReLU X112 X113

12 T. Conv. 64 4 1 2 (128, 128) BN + ReLU X2 X121

Concatenate 128 (128, 128) X12,121 X122

Conv. 64 3 1 1 (128, 128) BN + ReLU X122 X123

13 T. Conv. 64 4 1 2 (128, 128) BN + ReLU X93 X131

Concatenate 192 (128, 128) X12,131 X132

Conv. 64 3 1 1 (128, 128) BN + ReLU X132 X133

14 T. Conv. 64 4 1 2 (128, 128) BN + ReLU X103 X141

Concatenate 256 (128, 128) X12,123,

X133,X141

X142

Conv. 64 3 1 1 (128, 128) BN + ReLU X142 X143

Continued on next page
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Table 3.13 – Continued from previous page

No Operation ch k p s size Activation Input Output

15 T. Conv. 64 4 1 2 (128, 128) BN + ReLU X113 X151

Concatenate 320 (128, 128) X2,123,133,

X143,X151

X152

Conv. 64 3 1 1 (128, 128) BN + ReLU X152 X153

16 T. Conv. 32 4 1 2 (256, 256) BN + ReLU X153 X161

Conv. 32 3 1 1 (256, 256) BN + ReLU X161 X162

17 Conv. 1 3 1 1 (256, 256) X162 X171

Loss Function:

Loss function is one of the important factors for CNNs model construction [24] so that

this thesis used two loss functions and compared them. Cross-entropy [25] was defined

as measuring the difference between two probability distributions. It is widely used for

classification objectives, and as segmentation is pixel-level classification, it works well.

BCE can be defined by

LBCE(y, p) = −(ylog(p)− (1− y)log(1− p)) (3.1)

where p is prediction value.

Meanwhile, dice coefficient is widely used as an evaluation index by calculated the

similarity between two images. It has also been adapted as a loss function known as Dice

Loss (DL) [26]. DL can be defined by

DL(y, p) = 1− 2yp+ 1

y + p+ 1
(3.2)

where 1 of numerator and denominator is located to avoid the case of division by 0.

Finally, this thesis conducted the training to tune hyper-parameters according to Table

3.15.

3.2.3 CNNs Evaluation

Classification Model:

The confusion matrix summarizes the results of the binary classification problem. It

is generally used as an index to measure the performance of the binary classification of

the machine learning model. This paper gives Tp (True Positive) label into the output

when the learning model predicted GBM correctly. Similarly, Tn (True Negative) means

the correct prediction of LGG. On the other hand, the author gives Fp (prediction GBM
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Table 3.14: DeepLab v3+

No. Operation ch k p s d output Activation Note

0 Image 3 (256, 256)

1
Conv. 64 7 3 2 1 (128, 128) BN + ReLU

Max Pool. 64 3 1 2 1 (64, 64)

2 Stage 1 256 (64, 64) X0

3 Stage 2 512 (32, 32)

4 Stage 3 1024 (16, 16)

5 Stage 4 2048 (16, 16) X

6 Conv. (X) 256 1 0 1 1 (16, 16) BN + ReLU X1

7 Conv. (X) 256 3 6 1 6 (16, 16) BN + ReLU X2

8 Conv. (X) 256 3 12 1 12 (16, 16) BN + ReLU X3

9 Conv. (X) 256 3 18 1 18 (16, 16) BN + ReLU X4

10

Avg. Pool. (X) 2048 (1, 1)

Conv. 256 1 0 1 1 (1, 1) BN+ReLU

Upsample 256 (16, 16) X5

11

Concatenate 1280 (16, 16) X1 ... X5

Conv. 256 1 0 1 1 (16, 16) BN + ReLU

Upsample 256 (64, 64) X6

12 Conv. (X0) 48 1 0 1 1 (64, 64) BN + ReLU X7

13

Concatenate 304 (64, 64) X6, X7

Conv. 256 3 1 1 1 (64, 64) BN + ReLU

Conv. 256 3 1 1 1 (64, 64) BN + ReLU

Conv. 6 1 0 1 1 (64, 64)

Upsample 6 (256, 256)
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Table 3.15: Parameters for Training Segmentation.

Architecture Backbone Loss Function Optimizer Learning Rate

UNet ResNet34 Binary Cross Entropy Adam 0.001

UNet ResNet34 Dice coefficient Adam 0.001

UNet ResNet50 Binary Cross Entropy Adam 0.001

UNet ResNet50 Dice Coefficient Adam 0.001

UNet++ ResNet34 Binary Cross Entropy Adam 0.001

UNet++ ResNet34 Dice coefficient Adam 0.001

UNet++ ResNet50 Binary Cross Entropy Adam 0.001

UNet++ ResNet50 Dice Coefficient Adam 0.001

DeepLabV3 ResNet101 Binary Cross Entropy Adam 0.001

DeepLabV3 ResNet101 Dice Coefficient Adam 0.001

incorrectly) and Fn (prediction LGG incorrectly), respectively. Then evaluation value

provided by confusion matrix can be defined as follows;

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn

(3.3)

Precision =
Tp

Tp + Fp

(3.4)

Recall =
Tp

Tp + Tn
(3.5)

F −Measure =
2Recall ∗ Precision
Recall + Precision

(3.6)

Segmentation Model :

When all constructed models shown in Table 3.15 were compared, the equations (3.4)

to (3.6) were used. The author gave Tp (True Positive) label into the output when the

learning model correctly predicted the region of cell nuclei. Similarly, Tn (True Negative)

means the correct prediction of background. In the incorrect case, Fp (False Positive) and

Fn (False Negative) were given. In addition, the author evaluated models with IoU,DSC,

and NOC. These indexes are defined by

IoU =
Tp

Tp + Tn + Fn

, (3.7)

DSC =
2|P ∩G|
|P |+ |G|

, (3.8)

NOC =

 1− |Np−Nt|
Np

(Np < 2Nt)

0 (Np > 2Nt)
(3.9)
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Figure 3.5: The Process of Mask Image Generation

where DSC means Dice coefficient and NOC is the number of cell nuclei. In DSC, P is

prediction result, and G is the ground truth. Np and Ng mean the number of cell nuclei

in the predicted and ground truth images, respectively. If Np is more than 2Ng, NOC

becomes 0. DSC and NOC are more important factor than others to select the best

hyper-parameters.

3.3 Object-Level-Features and Interpretability of CNNs classi-

fication

3.3.1 Mask Image of Large Size

This thesis created a cell nucleus segmentation model for glioma images in Sections

3.2.2 to 3.2.3. However, the optimal size of the constructed model is 256 × 256 pixels,

so that it was required to apply our model to 1000 × 1000 pixels pathological images.

Thus this process patched glioma images of 1000 × 1000 pixels into 256 × 256 pixels

with overlapping. Specifically, the author divided the given pathological images into 7 and

patched them in the horizontal or vertical axis direction. Thus 49 images were generated

from an image. Generally, segmentation performance is declined in the images’ edge. In

algorithm of this work, overlapping was employed to prevent the above problem. Then

constructed model predicted all patched images. From the mask images of prediction,

the author connected them with except for the images’ edge. This process could realize

to remove low accuracy prediction region. After that, nucleus mask images whose size

is the same as input pathological images were obtained. Figure 3.5 illustrates the above

process.
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3.3.2 Visualization

This thesis applied Grad CAM++ to the proposal classification model. Section 2.3

explained how Grad CAM++ detects important regions for CNNs classification. In

order to find the important region from the heatmap automatically, the author defined

important area for CNNs classification, in which Hue was H < 20◦, or H > 200◦ and

S > 128◦ in HSV color space.

3.3.3 Object Level Features

The cell nucleus’s size and positional relationship are useful for pathological analysis

[5]. This paper investigated the relationship between CNNs’ decision and Object-Level-

Features, which can be extracted after cell nuclei was approximated into several shapes.

In particular, this work used the shapes of the ellipse, convex hull, bounding box, and

boundary such as Figure 3.6. Also, the detail of Object-Level-Features were as follows.

1. Elliptical Features

• Major length - It is the major length of the ellipse.

• Minor length - It is the minor length of the ellipse.

• Accept ratio - It is the ratio of the major/minor length.

• Angle - It is the angle of the ellipse.

• Area - It is the area of the ellipse.

• Eccentricity - It is the eccentricity of the ellipse.

• Extent - It is the area ratio of ellipse and cell nuclei.

2. Convex Hull Features

• Area - It is the area of the convex hull area.

• Solidity - It is the longest distance of the displacing point.

• Defect point - It is the number of defect points.

3. Boundary Features

• Radii (average) - It is an average of all distances from the centre to each

boundary point.

• Radii (median) - It is an median of all distances from the centre to each

boundary point.

• Perimeter - It is the perimeter of cell nuclei.
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(a) Cell Nuclei (b) Ellipse (c) Convex Hull

(d) Bounding Box (e) Boundary

Figure 3.6: Explanation

• Reciprocal - It is Reciprocal of radii.

4. Boundary Box Features

• Accept Ratio - It is the ratio of the minor/major length.

• Extent - It is the area ratio of the bounding box and cell nuclei.

• Area - It is the area of the Boundary Box.

In this work, OpenCV was used because it can detect object contours easily. In

this tool, the detected contours are expressed as white objects in the black background.

Furthermore, OpenCV has other functions for the various objects’ approximation. The

author constructed the algorithm of Object-Level-Feature extraction with OpenCV.
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Figure 3.7: Important Region and Random Region on the Mask Image

3.3.4 Feature Selection

In Sections 3.3.2 and 3.3.1, our segmentation model generated a mask image of the

cell nucleus, and Grad CAM++ found an important area for the CNNs classification. By

comparing mask images and heatmap, the author obtained mask images of an important

area. Furthermore, unimportant areas were extracted to compare with the above data.

Figure 3.7 explains the outline of the above process. For instance, this work used the

bounding box with the width of 100 to 500 pixels and height of 100 to 500 pixels to define

the area. Then the author extracted its region from a random point of mask images of

1000 × 1000 pixels. This area was set to the unimportant area. The point was that the

author obtained important/unimportant mask images by refering the both of nucleus

mask image and heatmap, and then object-level-features including in these areas were

compared.

Finally, the author input the obtained features into K-S test (Kolmogorov–Smirnov

test). K-S test is a nonparametric test of the equality of continuous, one-dimensional

probability distributions that can be used to compare two samples. For instance, when

a sample X is distributed x1, x2, ..., xn, also a sample Y is distributed y1, y2, ..., ym, each

cumulative probability distribution Sn(x) (sample X) and Sm(x) (sample Y) can be

defined by

Sn =
1

n

n∑
i=0

Xi(x)

 1 (xi <= x)

0 (xi >= x)
(3.10)

Sm =
1

m

n∑
i=0

Xi(x)

 1 (yi ≤ x)

0 (yi > x)
(3.11)

ヽ
--

Important Region. 

Unimportant Region. 
Box range is (100 to 500) x (100 to 500) 
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Furthermore, the maximum value of the difference of above two cumulative probability

distribution as KS-Static can be defined by

D = max
−∞<x<∞

|Sn(x)− Sm(x)|. (3.12)

If the following formula is true, there is the significant difference between important

region and unimportant region.

D > C(α)

√
nm

n+m
(3.13)

In the above equation, the value of C(α) is given in the table below for the most common

levels of α.

Table 3.16: Significance Level and C(α)

α 0.20 0.15 0.10 0.05 0.025 0.01

C(α) 1.073 1.138 1.224 1.358 1.48 1.628

In this study, the author set up the 5% significance level (α = 0.05) and confirmed

whether a significance difference exists between the regions or not.

二
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Chapter 4

Result and Discussion

4.1 Performance of Classification Model

Table 4.1 shows the result of the learning with deep CNNs. The classification accuracy

was around 99% in every experiment. Table 4.2 provides the confusion matrix, and

evaluation value of CNNs model with the highest performance in this paper. In particular,

the classification accuracy of the constructed model was 99.2% so that it was higher than

the classification those of the previous research [27]. These results indicate that CNNs was

learned successfully for disease stage classification. Also, Figure 4.1 shows the training

curve when three data sets were used. This graph shows that any problems did not exist

in the training process. In the following experiments, the author used the learning model

with the performance shown in Table 4.2.

4.2 Segmentation

Figures (4.2 to 4.4) show the learning curves of each data set. Also, Table 4.3 and

Figure 4.5 show the result of all learning models.

In the pathological image segmentation, predicting the background is easy for the

learning model. Also, many pathological images have background region a lot. Thus,

almost the learning model had good accuracy in Precision,Recall, IoU , and F -measure

evaluation values.

Table 4.1: Classification Accuracy for Glioma Pathological Image.

Classification Accuracy [%]

Data Set 1 99.2

Data Set 2 99.3

Data Set 3 99.2

Average 99.2
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Table 4.2: Confusion Matrix for Learning CNNs with the Most Highest Performance.

Table Learning Model Prediction

Head GBM LGG Recall

GBM 995 5 99.5

LGG 11 989 98.9

Precision 98.9 99.7

F-Measure 99.3 99.3

Figure 4.1: Learning Curve of VGG16 Training
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Figure 4.2: Learning Curves of All Models (Data Set 1)

The author confirmed that there was critical difference between the best model and

other models in DSC and NOC. In particular, DeepLabV3 model with binary cross-

entropy had high performance in Accuracy, Recall, Precision, F -measure, and IoU ,

but NOC value was much smaller than those of U-Net and U-Net++. For instance, in

Figures 4.4 to 4.7, the prediction quality of the learning model with DeepLabV3 was

much low, especially model construction using dice coefficient was a failure. Also, the

learning curves of DeepLabV3 (Figures 4.2 to 4.4) show that there are some problems in

the learning process. This result indicates that the learning model had low performance

in the cell nuclei prediction.

On the other hand, the training of U-Net and U-Net++ was finished successfully.

(Figures 4.2 to 4.4). Also, DSC and NOC scores were good (Figure 4.5). Furthermore,

models with ResNet34 had high performance compare to those with ResNet50. This

problem was easy because it was just a problem to detect cell nuclei or not. Thus the

author concluded that ResNet50 was too deep for this segmentation problem. Finally,

U-Net++ with ResNet34 and binary cross-entropy had the highest NOC value of all

models, and it had a good score in other evaluation values. Therefore, this paper used

this model for the following experiments.
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Figure 4.3: Learning Curves of All Models (Data Set 2)

Figure 4.4: Learning Curves of All Models (Data Set 3)
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Table 4.3: Result of All Segmentation Models

U-Net U-Net++ DeepLabV3

Loss Function Dice Dice BCE BCE Dice Dice BCE BCE Dice BCE

# of ResNet’ layer 34 50 34 50 34 50 34 50 - -

DSC 0.92 0.92 0.91 0.91 0.92 0.92 0.91 0.92 0.50 0.86

NOC 0.67 0.66 0.73 0.68 0.68 0.66 0.75 0.74 0.0584 0.28

precision 0.93 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.85 0.86

recall 0.98 0.98 0.97 0.98 0.9 0.98 0.98 0.98 0.52 1.00

f1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.56 0.92

IoU 0.89 0.89 0.88 0.89 0.90 0.90 0.90 0.90 0.50 0.99

Figure 4.5: Bar Graph of All Segmentation Models

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Uaet d;,e cescet34 4
 
3
 

c
t
 
e
 
n
 ゚

z
s
 
ce w
 
a
 
n
 

b
 
t
 
e
 
n
 
u
 

pcem,oo 

Uoetpp_d,ce_cesoet34 

fl loU 

Ucetpp_b,cacy_cesaet34 一deeplab_d,ce 一deeplab_bloa「y一Ucet_d,ce_ces,et5。一Ucet_b;c,cy_cescet5。一Ucetpp_d,ce_ces,et5。一Ucetpp_b,cacy_cescet50



CHAPTER 4. RESULT AND DISCUSSION 39

Table 4.4: Prediction Result I

Model Parameter

Ground Truth

UNet

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.875 0.894 0.876 0.889

NOC 0.943 0.967 0.943 0.976

UNet++

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.863 0.899 0.861 0.880

NOC 0.919 0.976 0.878 0.886

DeepLabV3

Loss Func BCE dice

DSC 0.737 0.706

NOC 0.163 0.016

朧

朧

．
 
．
 
．
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Table 4.5: Prediction Result II

Model Parameter

Ground Truth

UNet

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.921 0.954 0.919 0.937

NOC 0.000 0.500 0.000 0.583

UNet++

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.934 0.952 0.939 0.947

NOC 0.667 0.583 0.583 0.583

DeepLabV3

Loss Func BCE dice

DSC 0.852 0.816

NOC 0.083 0.167
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Table 4.6: Prediction Result III

Model Parameter

Ground Truth

UNet

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.949 0.957 0.952 0.955

NOC 1.000 0.952 1.000 1.000

UNet++

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.944 0.957 0.947 0.958

NOC 1.000 0.952 0.952 1.000

DeepLabV3

Loss Func BCE dice

DSC 0.878 0.833

NOC 0.190 0.095
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Table 4.7: Prediction Result IV

Model Parameter

Ground Truth

UNet

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.923 0.935 0.927 0.931

NOC 0.914 0.886 0.914 0.743

UNet++

Back Born ResNet34 ResNet34 ResNet50 ResNet50

Loss Func BCE Dice BCE Dice

DSC 0.911 0.934 0.915 0.933

NOC 0.971 0.943 0.886 0.971

DeepLabV3

Loss Func BCE dice

DSC 0.804 0.751

NOC 0.429 0.057

麗

塵纏麗露

璽糊麗麗
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(a) Heatmap (b) Mask Image of Important Area in (a)

Figure 4.6: Heatmap by Grad CAM++ and Mask Image

4.3 Relationship between CNNs Decision and Object-Level-

Features

Figure 4.6 (a) shows an example of heatmap obtained by Grad CAM++, and this

image shows positions of important areas. Then the author can obtain mask images

of important areas like Figure 4.6 (b). After that, object-level-features were extracted

from the mask images, and K-S test was employed to compare important areas with

unimportant areas. Table 4.8 shows the result of K-S test. In this table, “O” means

statistically significant difference i.e., formula D
√

nm
n+m

was grater than 1.36.

In contrast, “−” means an insignificant difference. This table shows that 11 features

were effective for histopathological image classification using CNNs. This result indicates

that CNNs can learn and acquire pathologists’ knowledge thorough the training. In

particular, most all features with respect to the area including elliptical features were

significant. This result indicates that CNNs extracts these features for classification.

Furthermore, boundary and convex hull features had many significant marks in the table.

These features will be also effective for CNNs classification.
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Table 4.8: Result of K-S Test

Nuclei Shape Feature Result

Elliptical Accept Ratio -

Angle -

Area -

Eccentricity O

Extent O

Major Length O

Minor Length -

Bounding Box Accept Ratio O

Area O

Extent -

Boundary Radii (average) O

Radii (median) O

Radii Recipient O

Perimeter O

Convex Hull Area O

Defect Point -

Solidity O
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Chapter 5

Concluding Remarks

5.1 Conclusion

The purpose of this project was the investigation how CNNs make a decision. Last

decade, CNNs technologies were growing quickly. In particular, CNNs’ diagnosis is ex-

pected that pathologists’ work will reduce remarkably and those criteria will be quanti-

tative. However, in pathological analysis, there are many scenarios where doctors have

to explain the detail of their diagnosis. In a similar, constructed CNNs model is required

the diagnosis reason even if CNNs’ classification ability superior.

This thesis discussed the relationship between CNNs decision and object-level-

features. From this investigation, the author obtained the result that CNNs can learn

and acquire pathologists’ knowledge thorough the training. In particular, most all fea-

tures with respect to the area including elliptical features were significant. This result

indicates that CNNs extracts these features for classification. Furthermore, boundary

and convex hull features had many significant marks in the table. These features will be

also effective for CNNs classification.

5.2 Future Works

Firstly, this work will have to investigate the priority in object-level-features that has

the significant difference. Important features with CNNs were determined by using K-S

test. This test indicates just a whether there is a significant difference or not. In order to

explain the CNNs classification process clearly, visualizing the important degree should

be conducted.

Secondly, it is required to investigate the relationship between CNNs decision and

other features. CNNs extracted features from the overall image. Thus there is possibility

that CNNs used other features for the classification. In addition, according to [5], the

positional features of cell nucleus are useful for histopathological analysis. The author
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did not investigate regarding these features still in this thesis. For the above reason, this

project will have to research regarding other features.
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fication in ct images using deep learning,” IEEE Transactions on Medical Imaging,

vol. 37, no. 11, pp. 2428–2440, 2018.

[3] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, “An ensemble of fine-tuned

convolutional neural networks for medical image classification,” IEEE Journal of

Biomedical and Health Informatics, vol. 21, no. 1, pp. 31–40, 2017.

[4] M. Dinesh Kumar, M. Babaie, S. Zhu, S. Kalra, and H. R. Tizhoosh, “A comparative

study of cnn, bovw and lbp for classification of histopathological images,” in 2017

IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

[5] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and

B. Yener, “Histopathological image analysis: A review,” IEEE Reviews in Biomed-

ical Engineering, vol. 2, pp. 147–171, 2009.

[6] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-

cam++: Generalized gradient-based visual explanations for deep convolutional

networks,” 2018 IEEE Winter Conference on Applications of Computer Vision

(WACV), pp. 839–847, 2018.

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in Conference on Learning Representations (ICLR), 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.



Reference 49

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision,” in CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2015.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in International Conference on Machine Learning

(ICML), 2015.

[13] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International Conference

on Learning Representations (ICLR), 2014.

[14] V. B. S. Prasath, K. Fukuma, B. J. Aronow, and H. Kawanaka, “Cell nuclei segmen-

tation in glioma histopathology images with color decomposition based active con-

tours,” in 2015 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM), 2015.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in Mexican International Conference on Artificial

Intelligence (MICAI), 2015.

[16] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net

architecture for medical image segmentation,” in Deep Learning in Medical Image

Analysis and Multimodal Learning for Clinical Decision Support, 2018.

[17] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng, “H-denseunet: Hybrid

densely connected unet for liver and tumor segmentation from ct volumes,” in IEEE

Transactions on Medical Imaging, vol. 37, no. 12, 2018.

[18] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder

with atrous separable convolution for semantic image segmentation,” in Proceedings

of the European conference on computer vision (ECCV), 2018.

[19] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

in European Conference on Computer Vision (ECCV), 2014.

[20] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep fea-

tures for discriminative localization,” in European Conference on Computer Vision,

2015.



Reference 50

[21] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,

“Grad-cam: Visual explanations from deep networks via gradient-based localiza-

tion,” International Journal of Computer Vision, vol. 128, no. 2, 2019.

[22] “The cancer genome atlas,” 2018/2 accessed, https://cancergenome.nih.gov.

[23] “Monuseg - grand challenge,” 2020/5 accessed, https://monuseg.grand-challenge.

org/.

[24] “A survey of loss functions for semantic segmentation.”

[25] Ma Yi-de, Liu Qing, and Qian Zhi-bai, “Automated image segmentation using im-

proved pcnn model based on cross-entropy,” in Proceedings of 2004 International

Symposium on Intelligent Multimedia, Video and Speech Processing, 2004.

[26] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural net-

works for volumetric medical image segmentation,” in Fourth International Confer-

ence on 3D Vision (3DV), 2016.

[27] A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, and H. Takase, “Au-

tomatic disease stage classification of glioblastoma multiforme histopathological im-

ages using deep convolutional neural network,” Biomedical Engineering Letters,

vol. 8, no. 3, pp. 321–327, 2018.

https://cancergenome.nih.gov
https://monuseg.grand-challenge.org/
https://monuseg.grand-challenge.org/


Publication List 51

Publication List

Journal Paper

(1) 齊藤 大祐, 川中 普晴, V. B. Surya Prasath, Bruce J. Aronow, ”CNNを用い

たGliomaの疾患進行度評価における形状特徴量に関する一検討”, 電気学会論文

誌C（電子・情報・システム部門誌）Vol.140 No.12（2020）特集：電気・電子・情報

関係学会東海支部連合大会, pp. 1367-1368, 2020.

International Conferences

(1) Daisuke Saito, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”Glioma Histopathological Images Classification with Deep CNN and Object Level

Features,” in Joint 2020 9th International Conference on Informatics, Electronics &

Vision (ICIEV) & 2nd International Conference on Imaging, Vision & 4th Pattern

Recognition (icIVPR), pp. 47, 2020.

(2) Daisuke Saito, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”A Study on CNNs Decision and Object-Level-Features for Glioma Histopahological

Images,” in the 9th International Symposium for Sustainability by Engineering at Mie

University (Research Area C), pp. 49-50, 2019.

(3) Daisuke Saito, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”Comparative Study on Automatic Segmentation Approaches for Glioma Histopathology

Images,” in International Workshop of Regional Innovation Studies (IWRIS 2020), pp.

25-28, 2020.

(4) Daisuke Saito, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”A Study on CNNs Decision and Object-Level-Features for Glioma Histopahological

Images,” in the 10th International Symposium for Sustainability by Engineering at Mie

University (Research Area C), pp. 41-42, 2020.



Publication List 52

Domestic Conferences

(1)　齊藤大祐, 川中普晴, V. B. Surya Prasath, Bruce J. Aronow, “CNNを用い

た脳組織病理画像の分類問題における注目領域の可視化に関する一検討,” 令和元年

度電気・電子・情報関係学会東海支部連合大会講演論文集, E4-3, 2019．

(2)　齊藤大祐, 川中普晴, V. B. Surya Prasath, Bruce J. Aronow, ”CNNを用い

たGliomaのサブタイプ分類に関する一検討,” 2019年度日本生体医工学会東海支部大

会，pp. 27，2019.

(3) 齊藤大祐, 川中普晴, V. B. Surya Prasath, Bruce J. Aronow, ”CNNを用いた

脳組織病理画像における抽出特徴量に関する一検討,” 地域イノベーション学会2019,

pp. 6, 2019.

(4)　齊藤大祐, 川中普晴, V. B. Surya Prasath, Bruce J. Aronow, “Glioma病理

画像における細胞核のフロー特徴量に関する一検討,” 令和2年度電気・電子・情報関

係学会東海支部連合大会講演論文集, E4-3, 2020．

(5)　齊藤大祐, 川中普晴, V. B. Surya Prasath, Bruce J. Aronow, ”CNNを用い

た病理画像診断における判断根拠と細胞核フロー特徴量の関係性に関する一考察,”

2020年度日本生体医工学会東海支部大会，pp. 11，2020


	Introduction
	Background
	Research Objective

	Related Works
	Convolutional Neural Networks
	Segmentation with CNNs
	CNNs Explanation Technologies

	Experiments
	Materials and Data set
	Model Creation with CNNs
	Classification for Glioma Histopathological Images
	Training of Cell Nucleus Segmentation
	CNNs Evaluation

	Object-Level-Features and Interpretability of CNNs classification
	Mask Image of Large Size
	Visualization
	Object Level Features
	Feature Selection


	Result and Discussion
	Performance of Classification Model
	Segmentation
	Relationship between CNNs Decision and Object-Level-Features

	Concluding Remarks
	Conclusion
	Future Works

	Acknowledgment
	Reference
	Publication List

