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Abstract  Endothelial dysfunction is a key element in early atherogenesis. The 

purposes of this study were to evaluate the feasibility of magnetic resonance (MR) 

assessment of altered myocardial blood flow (MBF) in response to the cold pressor 

test (CPT), and to determine if coronary endothelial dysfunction in young smokers 

can be detected with this noninvasive approach. Fourteen healthy non-smokers (31 ± 

6 years) and 12 smokers (34 ± 8 years) were studied. Breath-hold phase-contrast 

cine MR imaging (PC-MRI) of the coronary sinus (CS) were obtained at rest and 

during the CPT. MBF was measured as CS flow divided by LV mass and the rate 

pressure product. In non-smokers, MBF was 0.88 ± 0.19 ml/min/g at rest and 

significantly increased to 1.13 ± 0.26 ml/min/g during the CPT (P = 0.0001). In 

smokers, MBF was 0.94 ± 0.26 ml/min/g at rest and 0.96 ± 0.30 ml/min/g during the 

CPT (P = 0.73). MBF (MBF during the CPT − MBF at rest) was significantly reduced 

in smokers compared with non-smokers (0.02 ± 0.20 ml/min/g vs. 0.26 ± 0.18 

ml/min/g, P = 0.005). The intra-class correlation coefficient between measurements 

by two observers was 0.90 for MBF. A significant reduction in MBF response to CPT 

was demonstrated in young smokers with PC-MRI at 1.5 tesla. This noninvasive 

method has great potential for assessment of coronary endothelial function. 

 

Keywords  Coronary endothelial function ∙ Myocardial blood flow ∙ Cold pressor 

test ∙ Magnetic resonance imaging ∙ Smoking 
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Introduction 

 

The endothelium plays an important role in antiatherosclerotic and antithrombotic 

events in vessels [1-2]. Patients with coronary endothelial dysfunction have a higher 

cardiovascular event rate than those with normal coronary vasomotion [3-4]. Several 

mechanisms contribute to impairment of endothelial function [5-6]; for example, 

chronic smoking may cause endothelial dysfunction in subjects without epicardial 

coronary artery stenosis [7-9]. 

The cold pressor test (CPT) has been used as one of several approaches to 

evaluate endothelial function [10-13]. In healthy subjects, the vasodilatory effect of 

the CPT is mediated through a central sympathetic response which stimulates the 

release of nitric oxide from the coronary endothelium [11]. Prior studies have shown 

that a vasoconstrictive response to the CPT is observed in angiographically normal 

subjects with cardiovascular risk factors [14-15], and that such a response is an 

independent predictor of future cardiac events [15]. Thus, a flow response to CPT 

might be a sensitive measure of coronary endothelial dysfunction in the early stages 

of atherosclerosis. 

Phase-contrast cine magnetic resonance imaging (PC-MRI) of coronary sinus 

(CS) blood flow can provide a noninvasive estimate of total myocardial blood flow 

(MBF) [16], because the CS drains over 96% of the myocardial venous blood from the 

left ventricle (LV) [17]. Quantification of CS flow using PC-MRI in response to 

vasodilator pharmacological stress has been used to assess coronary flow reserve in 

patients with hypertrophic cardiomyopathy, heart failure and dilated cardiomyopathy 

[18-20]. In a more recent study by Maroules et al. [21], they investigated coronary 

flow response to CPT in asymptomatic women using spiral velocity encoded MRI at 3 
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tesla. However, the spiral velocity encoded sequence at 3 tesla is a research pulse 

sequence that is not available in clinical cardiac MRI studies. In addition, altered MBF 

response to CPT in subjects with abnormal endothelial function compared with 

control subjects due to smoking or atherosclerosis has not been investigated.  

The purposes of this study were to evaluate the feasibility and intra- and 

inter-observer variabilities of measuring MBF alteration during the CPT by using a 1.5 

tesla MR system and a PC-MRI sequence that are widely available, and to determine 

if impaired coronary endothelial dysfunction in smokers can be detected with this 

noninvasive approach. 

 

Methods 

 

Study population 

 

The study population consisted of 14 healthy male non-smokers (mean age, 30.9 ± 

5.9 years) and 12 healthy male smokers (mean age, 33.8 ± 7.8 years) who had been 

smoking ≥ 5 years (range, 5–20 years) and a total of 10.6 ± 8.0 pack-years (1 

pack-year is defined as smoking of 20 cigarettes per day for 1 year or the equivalent). 

All subjects were male and non-obese (body mass index < 27 kg/m2), and did not 

have hypertension, diabetes or a family history of vascular disease. They were 

clinically well and taking no regular cardiovascular medication or antioxidant vitamin 

supplementation. Before MRI examination, all subjects abstained from consuming 

caffeine and alcohol and from smoking for at least 12 hours, and from consuming 

flavonoid-containing food for at least 24 hours. This study was approved by the local 

Institutional Review Board, and all participants provided written informed consent. 
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MRI acquisition 

 

MRI was acquired at 1.5 tesla with 5-channel cardiac coils (Achieva, Nova-dual 

gradient; Philips Medical Systems, Best, The Netherlands). After placement of 

vector-electrocardiographic monitoring leads, subjects underwent imaging in the 

supine position. For cardiac orientation, scout images were acquired in three 

orthogonal planes. After acquiring vertical long axis and horizontal long axis cine 

images of the LV using a steady-state free precession sequence, short-axis cine 

images of the LV were acquired from apex to base with suspended shallow 

breath-holds (repetition time = 3.2 ms, echo time = 1.6 ms, flip angle = 55, field of 

view = 350  350 mm, reconstruction matrix = 256  256, reconstruction pixel size = 

1.37  1.37 mm, slice thickness = 10 mm, and phases per cardiac cycle = 20). 

To identify the location of the CS, axial plane breath-hold cine MRI was 

obtained through the atrioventricular groove (repetition time = 2.9 ms, echo time = 1.5 

ms, flip angle = 55, field of view = 350  350 mm, reconstruction matrix = 256  256, 

reconstruction pixel size = 1.37  1.37 mm, slice thickness = 5 mm, and phases per 

cardiac cycle = 20) (Fig. 1). The imaging plane for PC-MRI was placed perpendicular 

to the CS, approximately 1 to 2 cm proximal to the entrance of the CS into the right 

atrium and distal to the merging portion of the middle cardiac vein. CS flow 

measurements were obtained during a suspended shallow breath-hold using an 

electrocardiography-triggered turbo phase contrast field echo sequence with k-space 

segmentation (repetition time = 5.6 ms, echo time = 3.6 ms, flip angle = 15, slice 

thickness = 5 mm, field of view = 240  194 mm, acquisition matrix = 160  112, 

acquisition pixel size = 1.5  1.7 mm, velocity encoding = ± 50 cm/s, reconstruction 
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matrix = 256  256, reconstruction resolution = 0.9  0.9 mm, and phases per cardiac 

cycle = 20). 

 

Cold pressor test 

 

After acquisition of cine MRI of the LV and PC-MRI of the CS at rest, the subject’s foot 

was immersed in a MRI-compatible ice-water bath (at a temperature of approximately 

7C) for 2 minutes. After 1 minute of foot immersion, flow measurement of the CS was 

performed during the CPT. Heart rate and blood pressure were measured using a 

noninvasive and MRI-compatible electrocardiogram and calf blood pressure monitor 

at baseline and at 30-s intervals throughout each study. The rate-pressure product 

(RPP) was calculated as systolic blood pressure  heart rate. 

 

Image analysis 

 

Cine MRI and PC-MRI were analyzed using a workstation (ViewForum, Philips 

Medical Systems, Best, The Netherlands). For measurement of LV mass and LV 

volume, two independent observers manually traced epi- and endo-cardial borders of 

the LV wall on short axis cine images at end-diastole and end-systole. LV mass was 

calculated as the sum of myocardial areas multiplied by the slice thickness and the 

density (1.05 g/ml) of myocardial tissue [22]. 

CS flow was measured by tracing the CS contour on each magnitude image 

throughout the cardiac cycle by two independent observers blinded to both subject 

group (control vs. smoker) and state (rest vs. CPT). The area of the CS was recorded, 

and the traced region was automatically transferred to the corresponding phase 
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images in order to measure average flow velocity in the CS. Phasic blood flow was 

calculated as the product of the area and spatial average flow velocity. Mean volume 

flow was derived by means of integration of phasic flow over time. To compensate for 

the through-plane motion and phase offset error, a second region of interest was 

traced for each phase image on the adjacent tissue of CS [18, 23]. Flow velocity in 

each pixel within the vessel lumen was corrected by subtracting the mean velocity in 

the second region of interest. According to previous studies [23-25], MBF (ml/min/g) 

was calculated as follows: MBF = (CS flow / (RPP  LV mass))  7500. The difference 

between MBF during the CPT and at rest and the percent change of MBF during the 

CPT were calculated as follows: 

MBF = MBF during the CPT − MBF at rest, and 

Percent change of MBF (%) = MBF / MBF at rest  100. 

 

Statistical analysis 

 

Data were statistically analyzed using SPSS software, version 11.5 (SPSS, Inc., 

Chicago, IL, USA). Continuous values are presented as mean ± standard deviation or 

as median and interquartile range (IQR). MRI data are reported as an average of 

measurements recorded by two observers. Differences between control subjects and 

smokers in age, height, weight, BMI, LV end-diastolic volume, ejection fraction, LV 

mass, MBF, MBF, and percent change of MBF were tested with the unpaired 

Student’s t-test. Differences in LV end-systolic volume between control subjects and 

smokers were analyzed by the Mann-Whitney U test. The effect of the CPT on blood 

pressure, heart rate, and MBF was analyzed by the paired Student’s t-test. For 

investigating the effect of the CPT on RPP, the Wilcoxon signed-rank test was used. 
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For correlation analysis, we calculated Spearman’s correlation coefficients. Inter- and 

intra-observer variabilities in measuring MBF and MBF were evaluated using an 

intra-class correlation coefficient (ICC), the Bland-Altman method [26] and a 

repeatability coefficient. The repeatability coefficient was calculated as 1.96 times the 

standard deviation of the differences, as proposed by Bland and Altman [26]. All P 

values < 0.05 were considered to represent statistical significance. 

 

Results 

 

Clinical characteristics of all 26 subjects are shown in Table 1. There were no 

significant differences in clinical characteristics between smokers and non-smokers. 

No significant differences were found between non-smokers and smokers for LV 

end-diastolic volume, end-systolic volume, ejection fraction, heart rate or LV mass 

(159.6  14.4 ml vs. 163.8  24.2 ml, P = 0.60; 62.2  7.6 ml vs. 62.4  13.9 ml, P = 

0.96; 63.1  7.6% vs. 62.1  4.2%, P = 0.68; 61.9  9.3 beats/min vs. 63.5  9.9 

beats/min, P = 0.67; and 88.1  9.4 g vs. 90.4  11.6 g, P = 0.58, respectively). 

 PC-MRI was acquired at rest and during the CPT at diagnostic quality in all 

subjects. Representative CS volume flow curves in the cardiac cycle are shown in 

Figure 2. Peak volume flow in the CS was observed during early diastole. 

Hemodynamic parameters and MBF values at rest and during the CPT are shown in 

Table 2.   

In non-smokers, MBF was 0.88 ± 0.19 ml/min/g at rest, and significantly 

increased to 1.13 ± 0.26 ml/min/g during the CPT (P = 0.0001). In smokers, MBF was 

0.94 ± 0.26 ml/min/g at rest and 0.96 ± 0.30 ml/min/g during the CPT (P = 0.73). 

Individual MBF values and percent change of MBF are shown in Figure 3. Mean 
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MBF during the CPT in smokers (0.02 ± 0.20 ml/min/g [95% CI: 0.16 to 0.35 

ml/min/g]) was significantly lower than in non-smokers (0.26 ± 0.18 ml/min/g [95% CI: 

-0.10 to 0.14 ml/min/g], P = 0.005). The mean percent change of MBF in smokers 

was also significantly lower than in non-smokers (3.6 ± 19.7% vs. 30.7 ± 21.3%, P = 

0.003). There was no significant correlation between pack-years and percent change 

of MBF in smokers (r = -0.39, P = 0.20) (Fig. 4). 

 Inter- and intra-observer variation in MBF measurements are summarized in 

Table 3. The ICC between the measurements by the two observers was 0.91 for MBF 

at rest, 0.96 for MBF during the CPT and 0.90 for MBF. Bland-Altman plots of inter- 

and intra-observer variabilities in measuring MBF and percent change of MBF are 

presented in Figures 5 and 6, respectively. The mean difference between the two 

observers was 0.03 ± 0.10 ml/min/g for MBF and 2.3 ± 12.7% for percent change of 

MBF. 

 

Discussion 

 

The present study demonstrated that noninvasive assessment of MBF response to 

CPT using PC-MRI can provide detection of altered endothelial function in coronary 

circulation. Impaired coronary endothelial function in healthy smokers was detected 

with PC-MRI at 1.5 tesla without administration of contrast medium or exposure to 

ionizing radiation. 

 For evaluating coronary endothelial function, acetylcholine infusions during 

X-ray coronary angiography or coronary flow measurement by an intracoronary 

Doppler flow wire have been used [27]. However, the clinical utility of these methods 

is limited to patients with a high probability of coronary artery disease due to their 
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invasiveness. A noninvasive approach that permits assessment of coronary 

endothelial function is desirable. Several investigators have used myocardial 

perfusion positron emission tomography (PET) to assess MBF before and during the 

CPT [24-25, 28-30]. One previous PET study demonstrated that cigarette smoking 

causes impairment of endothelium-dependent coronary vasodilatory capacity and 

abnormal coronary flow response to CPT [28]. However, myocardial perfusion PET is 

a more complex and time-consuming method than MRI. MRI flow measurement does 

not expose patients to ionizing radiation nor does it require venous injection of 

contrast medium; thus, an MR approach using a 1.5 tesla MR system can be used in 

many clinical hospitals.  

 In the present study, MRI measurement of MBF in non-smokers was 0.88  

0.19 ml/min/g at rest, in good agreement with resting MBF values reported in previous 

studies using myocardial perfusion PET [28-30]. A previous PET study using 

15O-water demonstrated that MBF at rest was 0.80  0.14 ml/min/g in 12 young 

non-smokers without coronary risk factors [29]. Another PET study using 

13N-ammonium demonstrated that MBF at rest was 0.75  0.17 ml/min/g in 10 healthy 

subjects without coronary risk factors [28]. In addition, MRI measurement of resting 

MBF in the present study was consistent with values calculated from CS flow divided 

by LV mass, a method used by Kawada et al. [18] (0.74  0.23 ml/min/g) and by 

Schwitter et al. [31] (0.53  0.14 ml/min/g). 

Because MBF at rest and after sympathetic stimulation is strongly determined 

by cardiac workload, we corrected MBF values for corresponding RPP in this study. 

According to previous studies [8, 29-30, 32-34], the percent change of MBF during 

CPT in healthy young non-smokers was 4.5-37% with RPP correction and 40-55% 

without correction. Siegrist et al. [25] reported that the change of MBF during the CPT 
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was significantly lower after correcting by RPP. In our study, the percent change of 

MBF during the CPT in non-smokers was approximately 30%, in concordance with 

the results of previous studies using RPP-corrected MBF. 

In the current study, impairment of coronary endothelial function in young 

healthy smokers was detected using a noninvasive PC-MRI approach. Mean MBF 

during the CPT in smokers (0.02  0.20 ml/min/g) was significantly lower than in 

non-smokers (0.26  0.18 ml/min/g, P = 0.005). The impaired MBF response to the 

CPT in smokers observed in the present study is in agreement with the findings of 

previous PET studies [28-29]. Schindler et al. [28] investigated MBF response to the 

CPT in smokers using 13N-ammonium PET. They found that MBF during the CPT in 

smokers was -0.08  0.16 ml/min/g. In the present study, the 95% CI of MBF was 

0.16 to 0.35 ml/min/g for non-smokers, and -0.10 to 0.14 ml/min/g for smokers, 

indicating that an MRI approach with the CPT can detect impaired coronary 

endothelial dysfunction in young smokers.  

Accuracy of phase-contrast flow volume MRI measurements in small blood 

vessels depends on spatial resolution. A previous study demonstrated that accurate 

blood flow volume can be determined with PC-MRI if the number of pixels per vessel 

diameter is 3 or greater [35]. In our current study, PC-MRI was acquired with a field of 

view of 240  194 mm, acquisition matrix of 160  112, acquisition pixel size of 1.5  

1.7 mm and reconstruction resolution of 0.9  0.9 mm. These parameters allowed for 

> 3 pixels per vessel diameter. Thus, the spatial resolution in the present study was 

acceptable for quantifying flow volume in the CS. 

As reviewed by Czernin and Waldherr [36], cigarette smoking acutely 

increases coronary blood flow in healthy individuals by up to 40%. In this study, to 

investigate the long-term effect of cigarette smoking on MBF response to CPT, all 
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subjects abstained from smoking for at least 12 hours before MRI examination. The 

mechanism by which smoking causes endothelial dysfunction is thought to be 

primarily the effects of oxidant chemicals. Oxidant chemicals degrade nitric oxide and 

reduce nitric oxide release, therefore antagonizing the actions of nitric oxide to dilate 

blood vessels and inhibiting platelet aggregation [8]. A previous study demonstrated 

that coronary endothelial dysfunction was reversible by short-term smoking cessation 

in young smokers, but not in middle-aged smokers [37]. Long-term smoking exposure 

could lead to more advanced coronary endothelial dysfunction and atherosclerosis 

possibly via oxidative stress. 

Several limitations need to be acknowledged in this study. First, the number 

of subjects was limited and a larger number of subjects might be necessary to confirm 

our findings. However, an impaired CS flow response to the CPT in young male 

smokers was clearly demonstrated with the phase contrast cine MRI with sufficient 

inter- and intra-observer variability in this study. In addition, MBF at rest and during 

the CPT as well as MBF observed in this study are in good accordance with the 

results by previous PET studies [28-30]. The current study shows that MR CPT 

method has great potential for noninvasive assessment of coronary endothelial 

function. Second, only male smokers and non-smokers were enrolled in the present 

study. A recent study in young, healthy men and women demonstrated a higher 

increase in MBF during the CPT in women than in men, presumably because 

estrogen improves coronary endothelial function [32]. Because MBF response to CPT 

is smaller in men, the feasibility and reproducibility of assessing MBF during the 

CPT is more difficult in men than in women. Thus, the major aims of this study, to test 

the feasibility and reproducibility of the MR CPT method, have been validated in the 

current study. However, further study is necessary to evaluate the effect of smoking 
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on coronary endothelial function in women. Third, the present technique was not 

compared with invasive measurement of CS flow, which is considered to be a gold 

standard measurement. However, since the purpose of the present study was to 

explore the feasibility of assessing coronary endothelial function in asymptomatic 

volunteers, it was not considered ethically appropriate to perform intracoronary 

catheterization or transesophageal echocardiography in the present study. 

In conclusion, an impaired CS flow response to the CPT in young male 

smokers was clearly demonstrated with PC-MRI by using a 1.5 tesla MR system that 

is widely available. This technique has sufficient inter- and intra-observer variability. 

MRI measurement of the response to the CPT could be of great value for assessing 

coronary endothelial dysfunction and coronary microvascular disease. 
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Figure Legends 

 

Fig. 1  Coronary sinus (CS) flow measurement by phase-contrast cine MRI. a A 

representative axial cine image of the CS with slice orientation for flow imaging (solid 

line). Representative phase-contrast cine images are also depicted: b magnitude 

image and c velocity map of the CS (arrows). 

 

Fig. 2  Representative coronary sinus (CS) volume flow curves in the cardiac cycle 

at baseline and during the cold pressor test (CPT). Peak volume flow in CS was 

observed during early diastole.  

 

Fig. 3  Individual MBF values and percent change of MBF in non-smokers and 

smokers. The mean MBF during the CPT in non-smokers was 0.26  0.18 ml/min/g. 

The mean MBF during the CPT in smokers was 0.02  0.20 ml/min/g, and was 

significantly lower than in non-smokers (P = 0.005). The mean percent change of 

MBF in smokers was significantly lower than in non-smokers (3.6  19.7% vs. 30.7  

21.3%, P = 0.003). 

 

Fig. 4  Relationship between percent change of MBF and pack-years. Number of 

pack-years is calculated as packs smoked per day multiplied by years as a smoker. 

There was no significant correlation between pack-years and percent change of MBF 

in smokers (r = -0.39, P = 0.20, y = -0.79x + 13.3). 

 

Fig. 5  Bland-Altman plots of (a) inter-observer and (b) intra-observer variability of 

ΔMBF (ml/min/g). The mean difference in MBF inter-observer variability was 0.03  
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0.10 ml/min/g and intra-observer variability was 0.02  0.07 ml/min/g. 

 

Fig. 6  Bland-Altman plots of (a) inter-observer and (b) intra-observer variability of 

percent change of myocardial blood flow (MBF). The mean difference in MBF 

inter-observer variability was 2.3  12.7% and intra-observer variability was 2.6  

10.5%. 
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Fig. 1  Coronary sinus (CS) flow measurement by phase-contrast cine MRI. a A 

representative axial cine image of the CS with slice orientation for flow imaging (solid 

line). Representative phase-contrast cine images are also depicted: b magnitude image 

and c velocity map of the CS (arrows). 
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Fig. 2  Representative coronary sinus (CS) volume flow curves in the cardiac cycle at 

baseline and during the cold pressor test (CPT). Peak volume flow in CS was 

observed during early diastole. 
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Fig. 3  Individual MBF values and percent change of MBF in non-smokers and smokers. The mean MBF during the CPT in 

non-smokers was 0.26  0.18 ml/min/g. The mean MBF during the CPT in smokers was 0.02  0.20 ml/min/g, and was 

significantly lower than in non-smokers (P = 0.005). The mean percent change of MBF in smokers was significantly lower than in 

non-smokers (3.6  19.7% vs. 30.7  21.3%, P = 0.003). 
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Fig. 4  Relationship between percent change of MBF and pack-years. Number of pack-

years is calculated as packs smoked per day multiplied by years as a smoker. There was 

no significant correlation between pack-years and percent change of MBF in smokers (r 

= -0.39, P = 0.20, y = -0.79x + 13.3). 
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Fig. 5  Bland-Altman plots of (a) inter-observer and (b) intra-observer variability of ΔMBF (ml/min/g). The mean difference 

in MBF inter-observer variability was 0.03  0.10 ml/min/g and intra-observer variability was 0.02  0.07 ml/min/g. 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4 0.6 0.8

+1.96xSD 

-1.96xSD 

0.22 

-0.16 

Mean 

0.03 

+1.96xSD 

-1.96xSD 

0.16 

-0.12 

Mean 
0.02 

 D
if

fe
re

n
c
e

s
  
(m

l/
m

in
/g

) 

MBF (ml/min/g) 

MBF (ml/min/g) 

(a) 

(b) 

 D
if

fe
re

n
c
e

s
 (

m
l/
m

in
/g

) 

． 
············································································~································································ ． 

. . ~ •\』・． ． ．． 
.......................................................................................................... 鳥．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

．． 
● 

.: . ． ． ． ． • 

． ················•·········• ・ヽ・ ． ．． --.. . - ..; 

•• • ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．●●● ......................................................................................................... . 

• 



Fig 6.  Bland-Altman plots of (a) inter-observer and (b) intra-observer variability of percent change of myocardial blood 

flow (MBF). The mean difference in MBF inter-observer variability was 2.3  12.7% and intra-observer variability was 2.6 

 10.5%. 
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Table 1  Clinical characteristics of subjects   

Variables 
Non-smokers Smokers 

P value 
n = 14 n = 12 

Age (years) 31 ± 6 33 ± 8 0.30  

Body mass index (kg/m2) 22 ± 2 22 ± 3 0.75 

Systolic blood pressure (mmHg) 118 ± 7 123 ± 14 0.38 

Diastolic blood pressure (mmHg) 63 ± 6 66 ± 7 0.27 

Heart rate (beats/min) 62 ± 9 64 ± 10 0.67 

Total cholesterol (mg/dl) 200 ± 34 176 ± 28 0.09 

Triglycerides (mg/dl) 105 ± 51 94 ± 57 0.67 

Low-density lipoprotein cholesterol (mg/dl) 121 ± 27 111 ± 19 0.4 

High-density lipoprotein cholesterol (mg/dl) 59 ± 13 53 ± 16 0.35 

Serum creatinine (mg/dl) 0.90 ± 0.08 0.83 ± 0.14 0.80  

All results are expressed as mean ± standard deviation 
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Table 2  Change in hemodynamics and myocardial blood flow (MBF) values during the cold pressor test (CPT)  

  Measurement Baseline (rest) During CPT % Change P value 

Non-smokers Systolic blood pressure (mmHg) 118 ± 7 138 ± 12 18 ± 10 <0.001 

n = 14 Diastolic blood pressure (mmHg) 63 ± 6 79 ± 9 25 ± 11 <0.001 

 Heart rate (beats/min) 62 ± 9 74 ± 15 19 ± 17 0.001 

 RPP (mmHg/min) Median, 7110 

IQR, 1081 

Median, 9697 

IQR, 3637 

Median, 37 

IQR, 21 
0.001 

 MBF (ml/min/g)  0.88 ± 0.19 1.13 ± 0.26 31 ± 21 <0.001 

Smokers Systolic blood pressure (mmHg) 123 ± 14 147 ± 18 20 ± 12 <0.001 

n = 12 Diastolic blood pressure (mmHg) 66 ± 7 83 ± 11 26 ± 13 <0.001 

 Heart rate (beats/min) 64 ± 10 75 ± 21 18 ± 27 0.045 

 RPP (mmHg/min) Median, 7543 

IQR, 1360 

Median, 9658 

IQR, 6062 

Median, 33 

IQR, 32 
0.004 

 MBF (ml/min/g)  0.94 ± 0.26 0.96 ± 0.30 4 ± 20 0.73 

All results except for rate-pressure product (RPP) are expressed as mean ± standard deviation. RPP values are expressed as median 

and interquartile range (IQR) 

 



 

Table 3  Inter- and Intra-observer variation     

Inter-observer variation Intra-class correlation coefficient Repeatability coefficient Mean absolute difference 

MBF at rest 0.91  0.19 ml/min/g 0.07 ± 0.07 ml/min/g 

MBF during the CPT 0.96  0.14 ml/min/g 0.07 ± 0.05 ml/min/g  

ΔMBF 0.90  0.19 ml/min/g 0.07 ± 0.07 ml/min/g 

Percentage change in MBF 0.87  25.0% 8.9 ± 9.2% 

Intra-observer variation Intra-class correlation coefficient Repeatability coefficient Mean absolute difference 

MBF at rest 0.95 0.15 ml/min/g 0.06 ± 0.05 ml/min/g 

MBF during the CPT 0.98 0.10 ml/min/g 0.04 ± 0.04 ml/min/g 

ΔMBF 0.95 0.14 ml/min/g 0.06 ± 0.05 ml/min/g 

Percentage change in MBF 0.91 20.5% 8.0 ± 7.1% 

MBF myocardial blood flow, CPT cold pressor test   
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