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Abstract 

 

Optical sensors based on surface plasmon resonance (SPR) have advantages in 

measuring refractive index of material towards a development of highly sensitive 

biosensing sensors. Since the SPR-based sensors are limited in measuring chemical 

quantities such as concentrations of constituents, recent efforts have focused to utilize 

magneto-optical SPR (MOSPR), which combines magneto-optical Kerr effect (MOKE) 

to the SPR by using a hybrid magneto-plasmonic system consisting of ferromagnetic and 

noble metal thin films. With this background, the present dissertation devotes theoretical 

investigation of the electronic and optical properties of ferromagnetic/noble metal 

multilayers, based on first-principles calculations, and proposes a guideline for highly 

sensitive MOSPR sensors in term of material design.  

The dissertation consists of six chapters. Chapter one states the basic concept of SPR 

and MOSPR, and presents purpose of study. Chapter two describes methodologies of 

calculations. First, method of electronic structure calculations based on density functional 

theory are presented where calculations are performed by using full-potential linearized 

augmented plane wave method. Second, the macroscopic and microscopic theories of the 

magneto-optical Kerr effect (MOKE) are presented. The optical conductivity tensors are 

calculated by applying the Kubo formula in the linear response theory and the 

reflectivities of multilayer systems are evaluated based on 44 transfer matrix method.    

 Chapter three provides systematically results of optical properties for transition 

metals, 3d (Fe, Ni, Co, Cu), 4d (Ru, Rh, Pd, Ag), and 5d (Os, Ir, Pt, Au) metals, by first-

principles calculations. The transition metals, especially noble metals, are known to be 

desired candidates to plasmonic materials as used in sensing layers of the SPR 

applications. To clarify these optical characteristics, we calculated the optical 

conductivities and dielectric functions. Results for all systems can be reproduced to 

experimental trends. The edge position of the real part of diagonal optical conductivity of 

1.7, 2.9, and 1.8 eV for Cu, Ag, and Au, respectively, can be confirmed by the band-by-

band decomposition analysis proposed in the present study. We find that calculated SPR 

reflectivity curves of the noble metals in the Kretschmann configuration demonstrate 

sharp dips that correspond to small values of the imaginary parts of the dielectric 

functions. 
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In chapter four, the investigation is extended to apply ferromagnetic/noble metal 

multilayers, FexCux superlattices (SLs) with x = 1, 2, and 3. One of the main physical 

quantities in magnetoplasmonic is the optical loss caused by the dipole-interband 

transitions. From calculated electronic structures of FexCux SLs, we find that the interband 

transitions responsible in the optical losses that can be tuned through orbital hybridization 

by varying the thickness of the superlattices. In the visible range, FexCux SLs are found 

to have excellent magnetoplasmonic properties, indicated by negative real part of 

diagonal component of dielectric tensor and by non-zero off-diagonal component, which 

promise to martial candidates in the MOSPR applications. In addition, the electronic 

origin in the optical and magneto-optical anisotropies (OA and MOA) of the Fe1Cu1 SLs 

can be elucidated by the band-by-band decomposition analysis.  

In chapter five, the MOSPR system with FexCux SLs as a magnetoplasmonic 

structure is proposed, where the TMOKE is employed in the Kretschmann configuration. 

The results show that a crossing position with respect to SPR angle between reflectivity 

curves for the positive and negative applied magnetization gives the strength of the 

TMOKE signal. Consequently, the maximum slopes of TMOKE signals results in 0.31, 

1.00, and 12.23 /degree for FexCux SLs with x = 1, 2, and 3, respectively. To concreting 

the MOSPR system by using FexCux SLs, when a small variation of the refractive index 

of a gelatin is introduced, the sensitivity in the MOSPR system is enhanced to 600.1 RIU-

1 for Fe3Cu3 SL, which is two order of magnitude higher than that of the SPR system. 

Thus, the ferromagnetic/noble metal superlattice structure is promising choice to 

demonstrate high performance in the MOSPR applications.  

 Chapter six remarks conclusions and prospects of the present study. 
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Chapter 1 

Introduction 

1.1 Background 

Interest in surface plasmon resonance (SPR) has rapidly increased in optical sensing 

applications, including biosensing [1,2], bioimaging [3,4], colorimetric sensor [5,6], 

disease detection [7–9], environmental monitoring [10,11], food safety [12–14], and 

medical diagnosis [15,16]. This is a phenomenon associated with surface plasmons 

polaritons (SPPs), which can be excited by light at metal/dielectric interfaces. [17] 

Several methods are used to excite the SPP, including prism-, grating-, and waveguide 

coupler methods. [18] The prism coupling method, schematically shown in Fig. 1.1, has 

been used as a standard configuration based on the Kretschmann configuration [19]. The 

first experimental demonstration as sensing was reported by Liedberg and co-workers in 

1983. [20]  

 

Figure 1.1: Schematic diagram of SPR structure in the Kretschmann configuration. 

The SPR refers to a condition where there is a resonance between evanescent waves 

at a prism/metal interface and surface plasmon waves at a metal/dielectric interface (see 

Fig.1.1). The wavevector of the evanescent wave propagating along the prism/metal 

interface is given by 

𝑘𝐸𝑊 =
2𝜋

𝜆
√𝜀𝑝sin(𝜃0), (1.1) 

where p is a dielectric function of the prism, 0 is an incident angle, and  is a wavelength 

of the incident light. The wavevector of the surface plasmon wave along the 

metal/dielectric interface is 
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𝑘𝑆𝑃𝑊 =


𝑐
√

𝜀𝑚𝜀𝑑
𝜀𝑚 +  𝜀𝑑

, (1.2) 

where  is an angular frequency of wave, c is the speed of light in vacuum, m and d are 

dielectric functions of the metals and dielectric, respectively. The resonance condition is 

thus occurred when kEW = kSPW, and the SPR angle at the resonance condition can be given 

by 

𝜃𝑆𝑃𝑅 = sin
−1(√

1

𝜀𝑝

𝜀𝑚𝜀𝑑
𝜀𝑚 +  𝜀𝑑

) . (1.3) 

Variation in the dielectric function of dielectric media may lead to a change in the SPP 

wavevector of Eq. 1.2, which alters directly the resonance condition. This feature is the 

foundation of the SPR sensors, and thus a high sensitivity in the SPR sensor can be 

achieved so that a significant shift in a SPR angle or a SPR wavelength is yielded by a 

small change in the refractive index at the close vicinity of the sensing layer.  

The performance factor of the sensor is generally represented by the limit of 

detection (LOD), namely, the smallest concentration or quantity measured by output 

signals. It is given by LOD = 3σ/S, where σ is a standard deviation, and S is a sensitivity 

of the sensor. As noted above, the sensitivity is determined by the resonance shift with 

respect to the change of the refractive index of a dielectric. Since the sensitivity is 

determined by a slope of the reflectivity curve, many efforts have been focused on a 

design of sensing structures including materials. 

The development of SPR sensors in biosensor applications has been marked by the 

emergence of several commercially available instruments, like BIAcore, IBIS, SPR-670, 

IASys, BioNavis, and others. The first commercial SPR sensor was launched in 1990 by 

BIAcore, based on the Kretschmann configuration and angular modulation. Since then, 

the instruments have evolved, and several new manufacturers provide SPR instruments 

with new features. However, research involving SPR sensors based on the Kretschmann 

configuration continues to date. Table 1.1 summarizes the state of the art on performance 

of prism-based SPR sensors in the Kretschmann configuration. 
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Table 1.1 State of the art on SPR sensor in the Kretschmann configuration. 

Year Sensing layer Target sample Performance Reference 

1983 Ag 
Antibody human -

globulin 
-  [20] 

2010 Ti/Au Bovine serum albumin LOD: 2.510-6 RIU  [21] 

2014 Ag nanorod Glucose  LOD: 7.110-8 RIU  [22] 

2015 

Au/ succinimidyl-

terminated 

propanethiol 

monolayer 

Dithiobis(succinimidyl) 

propionate  

LOD: 3 pg/mL (3 

ppt) 
 [23] 

2016 Au/SnO2  Amonia gas 
Sensitivity: 

0.055/ppm 
 [10] 

2016 Au/ZnO/ssDNA 
DNA of Neisseria 

meningitidis 

Sensitivity: 

0.03/(ng/l) 
 [24] 

2017 Bimetalic Ag/Au  VP1 protein LOD: 4.8 pg/mL  [25] 

2017 SiO2
/Au Water  LOD: 6.7910-5 RIU  [26] 

2018  

Molecularly 

imprinted polymer 

nanoparticles 
-casein 

LOD: 127 ng/mL 

(0.127 ppm) 
 [27] 

2019 

Modified-

nanocrystalline 

cellulose/graphene 

oxide 

Zinc ion LOD: 0.01 ppm  [28] 

2020 Cr/Au Carbon dioxide 
Sensitivity: 

6640 %/RIU 
 [11] 

2021 Bimetallic Ag-Au Cathepsin S protein LOD: 0.031 ng/mL  [29] 

*RIU: refractive index unit 

Previously, we carried out experiments by using the conventional SPR sensors to 

detect gelatins with two concentrations of 1% and 2.5% based on the Kretschmann 

configuration. [30] Due to the low sensitivity of the present SPR setup, however, the two 

concentrations could not be distinguished. We further improved the accuracy of the SPR 

setup, and the built system had been successfully demonstrated to increase the resolution 

of an incident angle by 0.01°. [31] By reconstructing the detection method additionally, 

the LOD of the sensor to the bovine and porcine gelatins resulted in 0.22% (w/w). [32] 

Because food products with porcine-derived gelatins are not acceptable in Muslim 

communities, the development toward high sensitive SPR sensors in analyzing gelatins 

is one of highlights. 
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Efforts towards highly sensitive SPR sensors have been further made to utilize 

magneto-optical SPR (MOSPR) phenomena, which combines a magneto-optical Kerr 

effect (MOKE) to the SPR phenomena by using hybrid magnetoplasmonic materials. The 

phenomenon of MOSPR is schematically illustrated in Fig. 1.2. In contrast to 

conventional SPR, the MOSPR configuration uses a sensing layer in a combination of 

magnetic and plasmonic materials in an external magnetic field along to the in-plane 

direction. In the magnetoplasmonic system, magnetic and plasmonic properties are 

intertwined, allowing the control of plasmonic properties by external magnetic field or 

magnetization directions, so-called magneto-optical (MO) activity. [33,34] Althoguh 

ferromagnetic metals exhibit large optical losses and very broad plasmon resonances in 

the visible range, they may enable high MO activity, while noble metals, characterized 

by their low optical losses, support propagating surface plasmon modes. Particularly, the 

MOSPR sensors utilizing the transverse magneto-optical Kerr effect (TMOKE) have been 

developed to date. [26,33,35–40] In this configuration, a magnetic field is applied 

perpendicular to the plane of incident light, where the TMOKE signal can be 

characterized by relative changes in the reflectivity of light when the magnetization 

direction is reversed. 

 

Figure 1.2: Schematic illustration of magnetoplasmonic structure in the Kretschmann 

configuration. A magnetic field is applied perpendicular to the incident plane. 

Recently, Qin et al.  [26] demonstrated the TMOKE experiments using low loss 

magneto-optical oxide thin films, and the LOD reaches 4.1310-6 RIU (refractive index 

unit), which is higher by a factor of 16 compared to a standard Au SPR sensor. Rizal et 

al. [39] reported the response of the SPR and TMOKE signals in magneto-optic 

plasmonic nanostructures using Ti/Au(Ag)/Co/Au. The sensitivity of the MOSPR sensor 

was improved by three times over the ordinal SPR sensitivity. Theoretical studies are also 

proposed to demonstrate a giant enhancement of TMOKE signal and a high sensitivity of 



5 

 

MOSPR sensors. For example, Moncada-villa et al. [41] theoretically predicted a 

negative peak of the maximum value of TMOKE (~ −1), using uniaxial -near-zero 

metamaterial on Fe substrate, with the sensitivity of 11.55 /RIU. Wang et al. [42] also 

theoretically investigated the sensing performance of MOSPR sensor in CoFeB slab 

coupled with an Au grating and showed the sensitivity of 105 /RIU. The study has been 

extended to multilayer and nanostructure systems [43,44] that we have interested in the 

present work, in which superlattices (SLs) are found to have an advantage that offers a 

wide range of customizable properties because of the flexibility in material selections.  

1.2 Purpose of study 

The present thesis has mainly two objectives; origins in optical and MO properties 

of the FM/NM SL and sensitivity of the MOSPR sensors. For this, we calculated the 

optical conductivity tensors of the sensing layers based on density functional theory 

(DFT). We first look at transitions metals systematically according to the periodic table, 

and then we expand our investigations to a multilayer system of FeCu SLs. Finally, we 

demonstrate the sensitivity of the MOSPR sensor using FeCu SLs in the Kretschmann 

configuration.  

The thesis is organized as follows. Chapter one presents the basic concept of SPR 

and MOSPR sensors and the purpose of the present work. In chapter two, we describe 

DFT and full potential augmented plane wave (FLAPW) method for calculating 

electronic structures of the sensing layers, and we present theory of optical and MO 

properties. In chapter three, we present calculated results of optical properties of transition 

metals and reflectivity curves in the Kretschmann configuration. In chapter four, we 

present results of the optical and MO properties of the FeCu SLs, including optical and 

MO anisotropies (OA and MOA). In chapter five, we present results of the TMOKE 

signal in the FeCu SLs and discuss the sensitivity of the MOSPR sensor. In chapter six, 

we summarize the present work. 
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Chapter 2 

Theory and methods  

2.1 Electronic structure calculations 

2.1.1 Density functional theory 

The condensed matter physics has a rich diversity of physical phenomena, which 

has been well studied experimentally and theoretically, in while computer modeling and 

simulation have emerged as indispensable methods for the research of materials. Since 

condensed matter systems are made of many atoms consisting of positively charged 

nuclei surrounded by one or more negatively charged electrons, physical properties may 

be understood by identifying the interactions of their constituent electrons and nuclei. 

According to quantum mechanics principles, the many-body Schrödinger equation is 

given by 

𝐻Ψ({𝐫𝑖, 𝐑𝐼}) = 𝐸Ψ({𝐫𝑖, 𝐑𝐼}) (2.1) 

where Ψ({ri,RI}) is a wavefunction of the system, ri and RI are the coordinators of i-th 

electron and I-th nucleus, respectively, and E is the total energy of the system. H is the 

Hamiltonian of the system, defined in atomic units as [45] 

𝐻 = −∑
∇𝑖
2

2
𝑖

−∑
∇𝐼
2

2𝑀𝐼
𝐼

+
1

2
∑∑

1

|𝐫𝑖 − 𝐫𝑗|𝑗≠𝑖𝑖

−∑∑
𝑍𝐼

|𝐫𝑖 − 𝐑𝐼|
𝐼

+

𝑖

1

2
∑∑

𝑍𝐼𝑍𝐽

|𝐑𝐼 − 𝐑𝐽|𝐽≠𝐼𝑖

. (2.2)

 

where MI and ZI are the mass and charge of the I-th nucleus. We can write the Hamiltonian 

in Eq. (2.2) as: 

𝐻 = 𝑇𝑒𝑙 + 𝑇𝑛𝑢𝑐 + 𝑈𝑒𝑙−𝑒𝑙 + 𝑈𝑒𝑙−𝑛𝑢𝑐 + 𝑈𝑛𝑢𝑐−𝑛𝑢𝑐. (2.3) 

The first and second terms are the kinetic energy operators of electrons and nuclei, 

respectively. Other terms are Coulomb interactions between electrons and electrons, 

electrons and nuclei, and nuclei and nuclei, respectively. In the Born-Oppenheimer 

approximation, the electronic motion and the nuclei motion can be separated. The 

physical basis for the Born-Oppenheimer approximation is the fact that the nuclei are 

several thousand times heavier than the electrons. 



7 

 

There are two traditional methods for solving the many-body Schrodinger equation, 

namely the Hartree and Hartree-Fock approximation. The Hartree approximation is a 

simple approximation that starts with the one-electron equation. The Hartree-Fock 

approximation is a method which considers anti-symmetric of the wavefunction in terms 

of a Slater determinant written using one-electron Schrödinger wavefunctions. The 

Hartree-Fock methods neglect proper Coulomb correlations but only include correlations 

among the positions of electrons with parallel spin due to the Pauli principle. In contrast, 

density functional theory (DFT) is an alternate method for solving the many-body 

Schrödinger equation, based on the electron density rather than the many-body 

wavefunction. This method was introduced by Hohenberg and Kohn in 1964 [46] that 

ground-state properties of a many-electron system can be determined by a functional 

depending only on the density distribution. Kohn and Sham then perfected the DFT 

method in 1965 [47] and showed how to replace the many-body problem with a self-

consistent one-electron equation by adding the effective potential to incorporate the 

many-body effect. 

We focus on the electron density, which is defined as: 

𝑛(𝐫) = ⟨Ψ|𝑛̂(𝐫)|Ψ⟩, (2.4) 

where 𝑛̂(𝐫) is the electron density operator, given by: 

𝑛̂(𝐫) =  ∑ 𝛿(𝐫 − 𝐫𝑖)

𝑖

. (2.5) 

There are two basic theorems introduced by Hohenberg and Kohn to describe electron 

density. 

Theorem 1 The external potential Vext(r) is determined uniquely for any many-electron 

system by the ground-state electron density n(r). 

Theorem 2 A universal functional for the total energy E[n] in terms of the density n(r) 

can be defined, valid for any external potential Vext(r). The exact ground state energy of 

the system is the global minimum of this functional, and the density that minimizes the 

functional is the exact ground state density n0(r). 

The first theorem indicates that the exact ground-state electron determines all 

ground-state properties, and the second theorem implies that the kinetic T[n] and 

interacting energies Eint[n] are the functionals of electron density. The total energy is 

given by (ignoring the nuclei-nuclei interaction): 
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𝐸[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] + ∫𝑛(𝐫)𝑉𝑒𝑥𝑡(𝐫)d𝐫 . (2.6) 

The Kohn-Sham method is a suitable formulation of DFT to solve Eq. (2.6). This 

method used the variational principle implied by the minimal properties of the energy 

functional to derive a single-particle Schrödinger equation. In this method, the ground 

state density is assumed in the non-interacting system, which is given by: 

𝑛(𝐫) =∑|𝜓
𝑖
(𝐫)|

2
𝑁

𝑖

. (2.7) 

 The Kohn-Sham equation is derived as: 

(−
∇2

2
+ 𝑉𝐾𝑆(𝐫))𝜓𝑖(𝐫) = 𝜖𝑖𝜓𝑖(𝐫), (2.8) 

where VKS is Kohn-Sham potential, which is given as: 

𝑉𝐾𝑆(𝐫) = 𝑉𝑒𝑥𝑡(𝐫) + 𝑉𝐻(𝐫) + 𝑉𝑥𝑐(𝐫). (2.9) 

The Vext, VH, and Vxc represent the external, Hartree, and exchange-correlation potentials, 

respectively. The solution for the Kohn-Sham equation is achieved from the self-

consistent calculations schematically given in Fig. 2.1. At the beginning of the calculation, 

the initial electron density, obtained by a superpoition of atomic electron deinsty 

distribution, is made to calculate the Kohn-Sham potential VKS. Subsequently, the Kohn-

Sham equation is solved. From the eigenvalues and eigenfunctions, the total energy and 

new charge density are obtained. If there are not converged, the new guest of electron 

density is used to calculate the new VKS. This procedure is then repeated until convergence 

is reached. 

 There are many approximations to approximate the exchange-correlation potential 

Vxc part. The simplest and most frequently used is the local density approximation (LDA). 

In this approximation, the exchange-correlation charge density xc(r,r−r) has a form for 

a homogeneous electron gas, but with the density at every point of the space replaced by 

the local value of the charge density (r). However, LDA fails in situations where the 

density undergoes rapid changes. Therefore, the gradient of the electron density should 

be included. This approach is called the gradient-expansion approximation (GGA). 
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Figure 2.1: Self-consistent calculation for solving the Kohn-Sham equation. 

 

2.1.2 Full-potential linearized augmented plane wave method 

There are many possible ways to solve the Kohn-Sham equations. In order to solve 

the Kohn-Sham equations for periodic crystals systems, a set of plane waves is chosen as 

a basis function for the wavefunction satisfying the Bloch boundary condition. In the 

augmented plane-wave (APW) methods, which is proposed by Slater [48], the unit cell is 

divided into two different regions: one is a sphere region called the muffin tin (MT) region, 

and the remaining region is called the interstitial region. The disadvantage of the APW 

methods is that the wavefunction is energy-dependent, which leads to a nonlinear 

eigenvalue problem. In order to solve this problem, Andersen [49], Koelling and 

Arbman [50] proposed the linear APW (LAPW) method. The idea of the LAPW methods 

is to add extra variational freedom to the basis inside the muffin-tins by using the Taylor 

expansion of a radial function. The LAPW methods are difficult to apply for crystals with 
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open structures such as perovskites or surfaces. Both APW and LAPW methods 

employed shape-approximation on the potential used in the Hamiltonian.  

The full-potential LAPW method (FLAPW), developed by Hamman and 

Wimmer [51,52], combines the choice of the LAPW basis set with the treatment of the 

charge density and full-potential without any shape-approximations inside the muffin-tin 

spheres and interstitial region. This generalization is achieved by relaxing the interstitial 

potential 𝑉𝐼
0 and the spherical muffin-tin approximation 𝑉𝑀𝑇

0 (𝑟) due to the inclusion of 

warped interstitial ∑𝑉𝐼
𝐆𝑒𝑖𝐆𝐫  and the non-spherical term inside the muffin-tin 

spheres: [53] 

𝑉(𝐫) =

{
 
 

 
 ∑𝑉𝐼

𝐺𝑒𝑖𝐆𝐫

𝐺

              interstitial region

∑𝑉𝑀𝑇
𝐿 (𝑟)𝑌𝐿(𝐫̂)

𝐿

                 muffin-tin.
 (2.10) 

Here, G are all reciprocal lattice vectors up to the largest value of Kmax, L abbreviates the 

quantum numbers l and m, and YL is the spherical harmonics. The FLAPW method is the 

method of choice for accurate electronic structure calculations. The code that has been 

used in this work is a FLAPW code developed by Nakamura and co-workers. [54]  

2.2 Magneto-optical Kerr effect  

2.2.1 Basic configurations  

The MOKE, discovered by John Kerr in 1877, is a phenomenon in which the 

modification of polarization in reflected light on magnetized material, [55] which is 

widely used as potential applications such as biosensors [56], data storages [57], 

magnetometry [58], and spintronic devices [59]. Three geometries in the MOKE 

measurements, i.e., polar, longitudinal, and transversal geometries, have been configured 

depending on magnetization directions in a sample film with respect to the wave 

propagation direction and the surface normal, systematically shown in Fig. 2.2. [60] 

When the magnetization M is perpendicular to the sample surface, this phenomenon is 

called polar MOKE (PMOKE). If M is parallel to the surface and in the plane of incidence, 

it is called longitudinal MOKE (LMOKE). Finally, when M is parallel to the surface but 

perpendicular to the plane of incidence, this method is called transverse MOKE 

(TMOKE).  
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Figure 2.2:  Illustration of the (a) polar, (b) longitudinal, and (c) transverse MOKE. The 

incident light is linear p- or s-polarized according to whether its E-fields are in the plane 

of incidence (Ep) or perpendicular to it (Es). The single ended black arrow indicates the 

direction of the magnetization in each case. 

 

When linearly polarized light interacts with magnetized materials, the polarization 

state of the reflected light will modify in two ways. First, the polarization plane is rotated 

over a small angle that is characterized by Kerr rotation (K), and second, the reflected 

light has become elliptically polarized that is called Kerr ellipticity (K). These 

modifications in the reflected light occur in the PMOKE and LMOKE. In the TMOKE, 

the behavior of the reflected light differs from that in the PMOKE and LMOKE. When 

the incident light is s-polarized, the E-field is parallel to M, therefore there is no 

interaction with the magnetic moment of the sample. When the incident light is p-

polarized, the interaction is confined to the plane of incidence, creating an extra E-field 

component within the same plane and not generating E-field in perpendicular to the plane 

of incidence. Therefore, there are no polarization rotations in the TMOKE and 

magnetization Mx induces only a variation of the reflection coefficient at a non-zero 

incidence angle. The reflectivity of the sample depends on the magnitude and direction 

of the magnetization. Therefore, TMOKE can be used to measure the relative change of 

intensity of reflected light when a sample magnetization is revised along with positive 

and negative directions parallel to the sample surface.  
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2.2.2 Microscopic and macroscopic theory of magneto-optical effect 

Phenomenologically, the optical properties in magnetic materials may be described 

by a dielectric function or equivalently an optical conductivity tensor in metal systems. 

In this section, we derive the optical conductivity from the quantum mechanical point of 

view. The Hamiltonian of the motion of the electron in an external field with the vector 

potential A and the external electromagnetic field is  [61,62] 

𝐻̂ =
1

2𝑚
(𝐩 +

𝑒

𝑐
𝐀𝑀 +

𝑒

𝑐
𝐀𝐸)

2

+ 𝑉(𝐫) (2.11) 

where p is the electron momentum operator, AM is the vector potential of the applied 

magnetic field, and AE is the vector potential of the electromagnetic wave. The 

Hamiltonian in Eq. (2.11) can be divided into an unperturbed H0, the optical interaction 

term HI, and the magnetic interaction term HM. The interaction involving the optical 

transitions can be regarded as a small perturbation. The HM term has two parts, namely 

spin-orbit and Zeeman interaction. Neglecting the 𝐀𝑀
2 , 𝐀𝐸

2 , and 𝐀𝑀 ∙ 𝐀𝐸  terms, the 

Hamiltonian becomes 

𝐻̂ = 𝐻̂0 + 𝐻̂𝐼 + 𝐻̂𝑀 (2.12) 

where 

𝐻̂0 =
1

2𝑚
𝑝2 + 𝑉(𝐫),                    (2.13)

𝐻̂𝐼 =
𝑒

𝑚𝑐
𝐀𝐿 ∙ 𝐩.                            (2.14)

𝐻̂𝑀 = 𝜉𝐋 ∙ 𝐒 + 𝜇𝐵(𝐋 + 2𝐒) ∙ 𝐁, (2.15)

 

The electron-photon interaction and the Zeeman interaction energy is very small 

compared to other interactions, typically 10-5 − 10-4 eV.  

With electric dipole approximation, the term 𝐻̂𝐼 may express by 

𝐻̂𝐼(𝑡) = −𝐩𝑒 ∙ 𝐄(𝑡), (2.16) 

where pe = er is the electric dipole moment of the electron. It states the interaction of 

energy with dipoles in an electric field and explains why the transition is called an 

'electric-dipole' transition. First order time-dependent perturbation theory shows the 

transition between the stationary states induced by 𝐻̂𝐼(𝑡). The transition probability per 

unit time Wk by absorbing a photon of energy ħ at given k point in the Brillouin zone is 

obtained from Fermi’s Golden rules: 

𝑊𝛼𝛽 =
2𝜋

ℏ
∫|⟨𝑗′|𝐻̂𝐼|𝑗⟩|

2 2

8𝜋3
𝛿(𝐸𝑗′(𝐤) − 𝐸𝑗(𝐤) − ℏ𝜔)𝑑

3𝑘 , (2.17) 
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where |⟨𝑗′|𝐻̂𝐼|𝑗⟩| is the dipole matrix element,  |𝑗⟩ and |𝑗′⟩ are the occupied initial and 

unoccupied final states of the transition, respectively, and delta function 𝛿(𝐸𝑗′(𝐤) −

𝐸𝑗(𝐤) − ℏ𝜔) expresses energy conservation with Ej and 𝐸𝑗′  are the energies of the initial 

and final states, respectively. The transition probability is proportional to the square of 

the dipole matrix element. 

The transition probability per unit volume multiplied by the energy of the photon is 

the power loss function. This power loss can be expressed in terms of the optical 

conductivity, thus creating the link between microscopic theory and macroscopic 

phenomena. The power absorbed by a solid of volume V interacting with an electric field 

E is given by [63]  

𝑃 =
1

2
∫𝑅𝑒(𝐉∗ ∙ 𝐄) 𝑑𝑉 =

1

2
𝑅𝑒 (∑𝜎𝑖𝑗𝐸𝑗

∗𝐸𝑖
𝑖𝑗

) . (2.18) 

The optical conductivity tensor, , can be separated into two terms: the interband 

and intraband contributions. For the interband contribution, the optical conductivity 

tensor with magnetization M was calculated by applying the Kubo formula in the linear 

response theory, [64,65]  

𝜎𝛼𝛽(𝜔,𝐌) =
𝑖𝑒2

𝑚2ℏ𝑉
∑∑

1

𝜔𝑗𝑗′,𝐤
(

∏𝑗′𝑗,𝐤
𝛼 ∏

𝑗𝑗′,𝐤

𝛽
 

𝜔 − 𝜔𝑗𝑗′,𝐤 + 𝑖/𝜏
+
(∏𝑗′𝑗,𝐤

𝛼 ∏
𝑗𝑗′,𝐤

𝛽
)
∗

𝜔 + 𝜔𝑗𝑗′,𝒌 + 𝑖/𝜏
) ,

𝑗𝑗′𝐤

(2.19) 

where V is a volume of a unit cell, 𝜔 is photon energy, and ℏωjj′,k is an energy difference 

between an unoccupied state j′ and an occupied state j at k, j',k−j,k. The momentum 

matrix elements Π𝑗′𝑗,𝐤
𝛼 = ⟨𝑗′, 𝐤|𝑝𝛼|𝑗, 𝐤⟩ , where 𝑝𝛼 = −𝑖ℏ∇α  and  is the Cartesian 

components (x, y, and z), are constructed by using Bloch states |𝑗, 𝐤⟩s obtained by 

FLAPW calculations. The quantity  is the relaxation time parameter, where several 

previous calculations were used the 1/ values from 0.1 to 0.7 eV for transition metal 

systems such as Fe [64,65], Cu [66], Co/Cu [65], and Co/Pt [67]. The optical matrix 

elements are calculated with the converged results within a self-consistent loop. Then, the 

optical conductivities are obtained by adding all possible optical matrix elements. 

Equation (2.18) clearly states the relationship between the macroscopic optical 

conductivity tensor and microscopic optical transitions. 

In this thesis, we will restrict ourselves to the cases of the PMOKE and TMOKE 
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geometries with sample magnetizations of Mz and Mx, respectively.  For the PMOKE 

geometry with Mz, the optical conductivity tensor is composed by diagonal and the off-

diagonal components in the form 

𝜎𝛼𝛽 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 0

𝜎𝑦𝑥 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧

) , (2.20) 

where xx = yy and yx = −xy. For the TMOKE geometry with Mx, the optical 

conductivity tensor is of the form 

𝜎𝛼𝛽 = (

𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 𝜎𝑦𝑧
0 𝜎𝑧𝑦 𝜎𝑧𝑧

) , (2.21) 

where zy = −yz. The elements of σαβ are complex numbers and are represented by σ1αβ + 

iσ2αβ throughout the present paper. 

In addition, the selection rules for electric dipole transitions must be satisfied, 

i.e.,  [68] 

∆𝑙 = ±1, (2.22𝑎)
∆𝑚𝑙 = 0,±1. (2.22𝑏)

 

These are rules about the quantum numbers of the initial and final states. The first 

selection rule indicates that only transitions between s and p orbitals, or p and d orbitals 

are allowed.  In the second rule, the transitions with ml = +1 and ml = −1 correspond 

to left and right circularly polarized light (LCP and RCP), respectively. Since ± = x ± 

iy corresponds to the optical matrix for LCP and RCP, the off-diagonal component, σ2xy, 

in the PMOKE geometry shows the MO absorption, which is proportional to the 

difference in the LCP and RCP between an occupied initial state j and an unoccupied final 

state j'. This shows that the σ2xy is non-zero if contributions of the LCP and RCP transitions 

are different. The σ1xx is an optical absorption measuring the corresponding average in the 

LCP and RCP transitions, which satisfies the selection rule of mz = ±1 (for in-plane 

electric field polarization E ⊥ cz), while the σ1zz is an optical absorption that satisfies mz 

= 0 (for out-of-plane electric field polarization E ∥ cz). On contrary, as for Mx in the 

TMOKE geometry, since the quantum axis is along x-axis, the optical transitions with 

mx = + 1 and mx = − 1 for the LCP and RCP transitions may be adopted by ± = y ± 

iz. 
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Next, we consider the modification of the electronic structure by the “magnetic” 

Hamiltonian. It is known that the spin-orbit (SO) interaction and exchange interaction is 

the most important perturbations lifting the degeneration of electronic states, which in 

turn is responsible for the MOKE. [46] The SO Hamiltonian, 𝐻̂𝑆𝑂 = 𝜉𝐋 ∙ 𝐒 , is an 

interaction between the atomic orbital momentum L and the atomic spin momentum S, 

where 𝜉 is the spin-orbit coupling strength. The SO interaction energy in terms of the 

potential function V(r) and the quantum number l, s, and j, which j = l + s, is 

∆𝐸 =
ℏ

4𝑚2𝑐2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
. (2.23) 

The Hamiltonian of Heisenberg exchange between the resulting spin of two neighboring 

atoms may be given by: 

𝐻̂𝑒𝑥 =∑𝐽𝑖𝑗𝐒𝑖 ∙ 𝑺𝒋
𝑖𝑗

. (2.24) 

where Jij being the exchange integral of the ith and jth ions. It is important to note that 

the exchange field affects only the spin of the ion, and in this sense, it is not equivalent to 

a magnetic field. 

Let's try to figure out how the exchange and SO interactions induce energy level 

splitting. Figure 2.3 explains the optical transition from occupied states to unoccupied 

states, inspired by [69]. The left-hand side represents the majority (↑) states, and the right-

hand side is the minority (↓) states. In the notation |𝑙𝑚⟩, l is the orbital quantum number 

(l = 1 for p states and l = 2 for d states), and m is the magnetic quantum number that takes 

integer values in the interval (−l, l). Assuming a ferromagnetic material is magnetized 

along the z-direction, the exchange interaction splits the energy level of the electronic 

states, where the majority spin states have smaller energy than the minority spin states. 

We ignore the exchange splitting in p levels. The SO interaction lifts the energy level 

degeneracy of m for both p or d states. Noting that for the majority spins, the energy 

increases with m, although the situation is reversed for the minority spins. 
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Figure 2.3: Schematic modification of the electronic structure of p and d state with 

exchange and SO interactions energy. The arrows indicate the allowed electric dipole 

transitions, with the solid and dotted lines represent RCP and LCP corresponding to m 

= −1 and m = 1, respectively.  

 

MO effects result from magnetically induced off-diagonal component in the optical 

conductivity tensor or dielectric function. In general, a possible source for non-vanishing 

σ2xy is dominant from the lifting of the degeneracy of energy level. [65] This source is 

from the SO and exchange interaction, as mentioned earlier. As an example, let us 

consider a transition between a doubly degenerate 𝑑𝑥𝑦,𝑦𝑧 level (l = 2, ml = ±1) and 𝑝𝑧 

level (l = 1, ml = 0). If there is no SO interaction, the dipole matrix elements for LCP and 

RCP are the same, as shown in Fig. 2.4a. Therefore, the off-diagonal component of the 

conductivity is canceled out for each total spin state, but the diagonal component, which 

is the sum of LCP and RCP, remains without spin-orbit interaction. If there is no exchange 

interaction, there is no splitting between majority and minority spin states, as shown in 

Fig. 2.4b. Then, the off-diagonal component for the majority and minority spin states 

exactly the same, and the sum of the contributions from the two states cancels.  
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Figure 2.4: Sketch of the energy level of the electric dipole transition for LCP and RCP 

in the case: (a) no SO interaction and (b) no exchange interaction. The right side in (a) 

and (b) show the corresponding absorption spectra versus photon energy hν. 

 

In addition to the interband contribution, there is the intraband contribution which 

correspond to the electronic conduction by free carrier. Drude model has been used for 

the intraband contribution,  

𝜎𝐷(𝜔) =
𝜔𝑝
2

4𝜋(𝛾𝐷 − 𝑖𝜔)
, (2.25) 

where 𝛾𝐷 is the relaxation time Drude parameter and is usually known from experiments. 

The plasma frequency ωp, directly related to the momentum operator, has been deduced 

from our DFT calculations. However, the contribution of the intraband transition to the 

off-diagonal conductivity is usually not considered.  

The dielectric function 𝜀 is related to the optical conductivity tensor  through 
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𝜀𝛼𝛽(𝜔) = 𝛿𝛼𝛽 +
𝑖4𝜋

𝜔
𝜎𝛼𝛽(𝜔), (2.25) 

where δαβ is Kronecker delta, and ω is photon energy. Optical observables like complex 

refractive index, 𝑛̃(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔), can be obtained from the dielectric function 

through 

𝑛̃𝛼𝛼(𝜔) = √𝜀𝛼𝛼(𝜔). (2.26) 

Here, we are setting the relative magnetic permeabilities are approximated to one at 

optical frequency, μr(ω) = 1. [65] 

 We review the MO observable in MOKE configuration. In the polar geometry, the 

expression for the complex Kerr angle is given by [64] 

Φ𝐾 = 𝜙𝐾 + 𝑖𝜖𝐾 =
−𝜎𝑥𝑦

𝜎𝑥𝑥√1 + 𝑖 (
4𝜋
𝜔 )𝜎𝑥𝑥

. (2.26)
 

Here 𝜙𝐾 is the real Kerr rotation angle, and 𝜖𝐾 is the Kerr ellipticity. In the transverse 

geometry, the magnitude of TMOKE signal (R/R) as differences in the reflectivity at 

opposite directions of the magnetization is defined as [33] 

∆𝑅

𝑅
=
𝑅𝑝𝑝(+𝑀) − 𝑅𝑝𝑝(−𝑀)

𝑅𝑝𝑝(+𝑀) + 𝑅𝑝𝑝(−𝑀)
(2.27) 

where Rpp(+M) and Rpp(−M) are the reflectivity of the p-polarised light for positive and 

negative magnetization, respectively. Subindice pp emphasize that polarization 

conversion (the presence of ps or sp terms) does not occur in TMOKE configuration. The 

maximum reachable value of R/R is 1. 

2.3 Light propagations in a multilayer system  

2.3.1 44 transfer matrix methods 

In order to calculate the MO effect of the multilayers system, Zak et al. [60] 

developed a universal approach based on the medium boundary A and the medium 

propagation D matrices. We consider an arbitrary direction of the magnetization M with 

respect to the plane incidence yz and the plane of separation xy shown in Fig. 2.5. In the 

TMOKE configuration, the M direction is in polar angles φ = π/2 and γ = 0. The dielectric 

function of a magnetic medium having an arbitrary direction of M can be generalized as 

follows:  
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𝜀 = 𝜀𝑥𝑥 (
1 𝑖 cos𝜑 𝑄 −𝑖 sin 𝛾 sin𝜑𝑄

−𝑖 cos𝜑𝑄 1 𝑖 cos 𝛾 sin𝜑 𝑄
𝑖 sin 𝛾 sin𝜑 𝑄 −𝑖 cos 𝛾 sin𝜑 𝑄 1

) (2.28) 

where Q is the magneto-optical constant. We assume εxx = εyy = εzz for simplicity. 

 

Figure 2.5: Spherical coordinates for the magnetization M in the xyz system. M is the 

magnetization. γ and φ is the angle of M with the x and z direction, respectively. 

 

We assume that the xy plane represents the separation plane between two media. 

The medium boundary A connects the two following vectors F and P:  

𝐹 = 𝐴𝑃, (2.29) 

where F vector contains the x and y components of the electric E and magnetic H fields, 

and P vector contains the components of E on the p and s direction. Then, two column 

vector F and P is denoted by: 

𝐹 =

[
 
 
 
𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦]
 
 
 
, 𝑃 =

[
 
 
 
 
𝐸𝑠
𝑖

𝐸𝑝
𝑖

𝐸𝑠
𝑟

𝐸𝑝
𝑟]
 
 
 
 

, (2.30) 

where i and r denote the incident and reflected light, and s and p denote the perpendicular 

and the parallel direction to the plane of incident light, respectively. The medium 

boundary matrix A having arbitrary direction of M can be expressed by 
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𝐴 =

[
 
 
 
 
 
 
 

1 0 1 0
𝑖

2

𝛼𝑦

𝛼𝑧
𝑄𝐵 𝛼𝑧 + 𝑖𝛼𝑦 sin𝜑 cos 𝛾 𝑄

𝑖

2

𝛼𝑦

𝛼𝑧
𝑄𝐶 −𝛼𝑧 + 𝑖𝛼𝑦 sin 𝜑 cos 𝛾 𝑄

𝑖

2
𝑁𝑔𝑖𝑄 −𝑁

𝑖𝑁

2𝛼𝑧
𝑔𝑟𝑄 −𝑁

𝑁𝛼𝑧
𝑖𝑁

2𝛼𝑧
𝑔𝑖𝑄 −𝑁𝛼𝑧 −

𝑖𝑁

2𝛼𝑧
𝑔𝑟𝑄 ]

 
 
 
 
 
 
 

, (2.31) 

where  

𝛼𝑦 = sin 𝜃 , (2.32𝑎)

𝛼𝑧 = cos 𝜃 , (2.32𝑏)
𝐵 = 𝛼𝑦𝑔𝑖 − 2 sin𝜑 sin𝜑 , (2.32𝑐)

𝐶 = 𝛼𝑦𝑔𝑟 − 2 sin𝜑 sin𝜑 , (2.32𝑑)

𝑔𝑖 = cos𝜑 𝛼𝑧 + 𝛼𝑦 sin𝜑 sin 𝛾 , (2.32𝑒)

𝑔𝑟 = −cos𝜑 𝛼𝑧 + 𝛼𝑦 sin 𝜑 sin 𝛾 . (2.32𝑓)

 

Here N is the refractive index of medium and θ is the complex refractive angle determined 

by Snell’s law.  

The medium propagation matrix takes into account the change in the phase of the 

wave when the wave propagates through the medium of thickness d, expressed by 

𝐷 =

[
 
 
 
𝑈 𝑈𝛿𝑖 0 0

−𝑈𝛿𝑖 𝑈 0 0

0 0 𝑈−1 −𝑈−1𝛿𝑟
0 0 𝑈−1𝛿𝑟 𝑈−1 ]

 
 
 

, (2.33) 

where 

𝑈 = exp (−𝑖
2𝜋

𝜆
𝑁𝑑𝛼𝑧) , (2.34𝑎)

𝛿𝑖 =
𝜋

𝜆𝛼𝑧
𝑁𝑑𝑄𝑔𝑖, (2.34𝑏)

𝛿𝑟 =
𝜋

𝜆𝛼𝑧
𝑁𝑑𝑄𝑔𝑟 . (2.34𝑐)

 

We consider the multilayer system as shown in Fig. 2.6. The beam light passes from 

the initial medium i, goes through the multilayer system, and ends up in the final medium 

f. The condition in this process is given by the so-called 44 M matrix,  

𝑀 = 𝐴𝑖
−1∏(𝐴𝑚𝐷𝑚𝐴𝑚

−1)

𝑙

𝑚=1

𝐴𝑓 , (2.35) 

where l is the total number of layers in the system, Ai and Af are the medium boundary 

matrices for initial and final media, and Am and Dm are the medium boundary and the 
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propagation matrices, respectively, for the m-th layer. The 44 M matrix can be expressed 

in the form of 22 block matrices as follows:  

𝑀 = [
𝐺 𝐻
𝐼 𝐽

] (2.36) 

The magneto-optical Fresnel reflection coefficients can be given as 

[
𝑟𝑠𝑠 𝑟𝑠𝑝
𝑟𝑝𝑠 𝑟𝑝𝑝

] = 𝐼𝐺−1, (2.37) 

where r is the reflection coefficient. The subscript in each coefficient identifies the 

perpendicular (s) or parallel (p) component of the electric field with respect to the 

reflection plane. 

 

Figure 2.6: Multilayer system. d is the thickness of the layer. i and f label the initial and 

final media. m is the running index of the layers. 

 

2.3.2 Reflectivity of three-layer system 

We consider the three-layer system at the transverse magnetization, which consists 

of non-magnetic medium 0, magnetic medium 1, and non-magnetic medium 2. The 

medium boundary matrix A for non-magnetic and magnetic medium can be expressed by 

  

𝐴0,2 =

[
 
 
 

1 0 1 0
0 𝛼𝑧0,2 0 −𝛼𝑧0,2
0 −𝑁0,2 0 −𝑁0,2

𝑁0,2𝛼𝑧0,2 0 −𝑁0,2𝛼𝑧0,2 0 ]
 
 
 
, (2.38) 

 

and  
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𝐴1 = [

1 0 1 0
0 𝛼𝑧1 + 𝑖𝛼𝑦1𝑄1 0 −𝛼𝑧1 + 𝑖𝛼𝑦1𝑄1
0 −𝑁1 0 −𝑁1

𝑁1𝛼𝑧1 0 −𝑁1𝛼𝑧1 0

] , (2.39) 

respectively. For propagation through a layer a thickness d1, we find the propagation 

matrix 𝐷1 

𝐷1 =

[
 
 
 
𝑈1 0 0 0
0 𝑈1 0 0

0 0 𝑈1
−1 0

0 0 0 𝑈1
−1]
 
 
 

. (2.40) 

The matrix product M can be written as 

𝑀 = 𝐴0
−1𝐴1𝐷1𝐴1

−1𝐴2. (2.41) 

Here, A0, A1, and A2 are the boundary matrix of medium 0, medium 1, and medium 2, 

respectively. The reflection coefficients for p-polarized can be expressed by 

𝑟𝑝𝑝 =
𝑀42

𝑀22
=
𝑊𝑈1

2 + 𝑋

𝑌𝑈1
2 + 𝑍

, (2.42) 

where 

𝑊 = −
𝑁2𝛼𝑦1

2

𝑁1𝛼𝑧2𝛼𝑧1
𝑄1
2 − (

𝑁2𝛼𝑧0
𝑁0𝛼𝑧2

+ 1)
𝑎𝑦1

𝛼𝑧1
𝑖𝑄1 −

𝑁2
𝛼𝑧2

(
𝛼𝑧0
𝑁0

+
𝛼𝑧1
𝑁1
) +

𝑁1𝛼𝑧0
𝑁0𝛼𝑧1

− 1, (2.43𝑎) 

𝑋 =
𝑁2𝛼𝑦1

2

𝑁1𝛼𝑧2𝛼𝑧1
𝑄1
2 − (

𝑁2𝛼𝑧0
𝑁0𝛼𝑧2

− 1)
𝑎𝑦1

𝛼𝑧1
𝑖𝑄1 −

𝑁2
𝛼𝑧2

(
𝛼𝑧0
𝑁0

−
𝛼𝑧1
𝑁1
) −

𝑁1𝛼𝑧0
𝑁0𝛼𝑧1

− 1, (2.43𝑏) 

𝑌 =
𝑁2𝛼𝑦1

2

𝑁1𝛼𝑧2𝛼𝑧1
𝑄1
2 − (

𝑁2𝛼𝑧0
𝑁0𝛼𝑧2

− 1)
𝑎𝑦1

𝛼𝑧1
𝑖𝑄1 −

𝑁2
𝛼𝑧2

(
𝛼𝑧0
𝑁0

−
𝛼𝑧1
𝑁1
) +

𝑁1𝛼𝑧0
𝑁0𝛼𝑧1

+ 1, (2.43𝑐) 

𝑍 = −
𝑁2𝛼𝑦1

2

𝑁1𝛼𝑧2𝛼𝑧1
𝑄1
2 − (

𝑁2𝛼𝑧0
𝑁0𝛼𝑧2

+ 1)
𝑎𝑦1

𝛼𝑧1
𝑖𝑄1 −

𝑁2
𝛼𝑧2

(
𝛼𝑧0
𝑁0

−
𝛼𝑧1
𝑁1
) −

𝑁1𝛼𝑧0
𝑁0𝛼𝑧1

+ 1. (2.43𝑑) 

 

The intensity of reflected p polarized light, Rpp, is calculated by 

𝑅𝑝𝑝 = |𝑟𝑝𝑝|
2
, (2.44) 

where rpp is given by Eq. (2.42).  
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Chapter 3 

Optical properties of 3d, 4d, and 5d transition 

metals 

3.1 Introduction 

Transition metals (TMs), especially noble metals, are plasmonic materials because 

they have large plasma frequencies and high electrical conductivity. Several studies, 

including optical conductivity, dielectric function, or optical constant in the TMs, have 

been conducted to explore the plasmonic performance. For instance, Johnson and Christy 

report their experimental values of the optical constants for copper, silver, and gold in the 

spectral range 0.5-6.5 eV and conclude that the interband absorption dominates in the 

visible and ultraviolet regimes. [70] On the theoretical counterparts, Uba et al. apply the 

GGA approximation with Hubbard energy correction to improve the description of the 

optical conductivity spectra of noble metal. [66] The dielectric function of metal m has 

an important role in SPR. It is well known that the dielectric function of a good plasmonic 

metal must fulfill two properties, namely, the real part must be negative, Rem  0, and 

the imaginary part are small enough, Imm ≪ −Rem. 

In this chapter, in order to provide a systematic analysis on the SPR related optical 

properties for the late series of transition metals, we present the results of the optical 

conductivities and dielectric functions of 3d (Fe, Ni, Co, Cu), 4d (Ru, Rh, Pd, Ag) and 5d 

(Os, Ir, Pt, Au) metals by using DFT calculations. [71] Next, by using the computed 

values, the reflectivity of the SPR curve on the three-layer system in the Kretschmann 

configuration is presented.  

3.2 Computational methods 

Self-consistent DFT, implemented in the full-potential linearized augmented plane 

wave (FLAPW) method. [54] were performed where the generalized gradient 

approximation (GGA) was used for the exchange-correlation potential. [72] The 

electronic wave function is expanded on a plane-wave basis set by a kinetic energy cutoff 

of 3.9 a.u.-1 and angular momentum lmax = 8 inside the muffin-tin spheres. The number of 

k-points in the first full Brillouin zone was set to 70×70×70. Crystal structures and lattice 
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constants of all systems were adopted from experimental structures available in Ref. [73], 

since in metals, the optical spectrum is relatively insensitive to small changes in the lattice 

parameters. [74] 

The modelling was carrier out by using a three-layer systems in the Kretschmann 

configuration, commonly used in experiments for exciting SPP waves, as shown in Fig. 

3.1. The first layer in this configuration is a prism with a dielectric function εp, the second 

layer is a transition metal with a dielectric function εm and thickness d, and the third layer 

is air as dielectric with dielectric function εa. The reflectivity of the system was calculated 

through Eq. (2.44).  

 

Figure 3.1: Schematic illustration of SPR configuration in the Kretschmann prism 

coupling system.  

 

A N-BK7 (SCHOTT) glass was used as the prism substrate for all configurations. 

The dielectric function of prism εp and air εa as function of energy are obtained from 

Ref. [75] The complex dielectric function of the transition metal εm = ε1xx + iε2xx  is taken 

from present calculation results. The optimum thickness of the metal layer and the 

incident angle are chosen so that the reflectivity has a minimum dip, shown in Table 3.1. 

The incident light is varied from 0 to 6 eV in the optical region (1.65-3.26 eV).  

Table 3.1: The optimum thickness and incident angle used in the simulation. 

 Fe Co Ni Cu Ru Rh Pd Ag Os Ir Pt Au 

Thickness (nm) 70 40 50 25 20 10 20 35 25 25 10 30 

Incident angle (°) 50 50 50 44 50 50 50 44 50 50 50 44 
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3.3 Optical properties 

3.3.1 Optical conductivity 

We start by discussing the optical conductivities, σ1xx, which include the interband 

and intraband contributions. Figure 3.1 shows the diagonal part of optical conductivity 

compared to the experimental data. It is visible that the general features of the calculated 

optical conductivities reproduce reasonably well to the experiments. Peaks in the 

spectrum of the absorptive parts of the optical conductivity σ1xx have also been obtained 

in our calculations, resembling those measured in experiments. 

  In the 3d metals, our calculation results have the same trend and only slightly differ 

in amplitude, especially for Fe and Co. The peak of the experimental spectrum of Fe is 

located at 2-3 eV, while our calculation nicely obtained the peak at around 3 eV.  In the 

Cu, the contribution of the Drude model is very dominant at low energy levels. However, 

the position of the calculated edge of the optical conductivity are shifted toward smaller 

energies as compared to the experimental data. This edge position shift can be confirmed 

from the partial 1xx spectra for the transitions from the uppermost d states (band 5) into 

s,p-like states (band 6) just above the Fermi level, especially in X and L symmetry points. 

Similar situations have also been found for Ag and Au from the 4d and 5d metals, 

respectively. The salient features of the calculated results at 1.7, 2.9 and 1.8 eV for Cu, 

Ag, and Au, respectively, is observed. In noble metals, intraband contributions have a 

significant effect on low energy, which indicates that an optimized Drude model might 

be crucial. [76] In other atoms, namely Ru, Rh, Pd, Os, Ir, and Pt, our results are also 

similar to experimental data. 
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Figure 3.2: Calculated diagonal optical conductivity (blue solid lines) for transition metals atom. Dashed lines drawn by red squares are 

experimental data collected from literature; Fe, Co, Ni and Pd [77], Cu, Ag, and Au [78], Ru [79], Rh [80], Os [81], Ir [82], and Pt [83].  
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3.3.2 Dielectric functions 

Calculated of the real part of dielectric functions ε1xx of 3d, 4d and 5d TMs are 

shown in Fig. 3.3. Almost all calculations of ε1xx are in good agreement with the 

experiment data. We get the zero crossings of ε1xx, which represents bulk plasmon energy. 

Zero crossings of ε1xx in Cu at low energy are not observed. In Ag, the zero crossings of 

ε1xx first shift to lower energy at 3 eV, then at more than 4 eV, several bulk plasmon values 

appear. In Au, there are multiple zero-crossings of ε1xx between 3.5-4.4 eV. The presence 

of a bulk plasmon in the optical range would facilitate the excitation of surface plasmons 

in these materials. Most of the transition metals in Fig. 3.3 have a negative ε1xx in the 

optical range so that they are potential as a plasmonic material. 
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Figure 3.3: Comparison of the real part of dielectric functions for transition metals atom. Notations are the same as Figure 3.2. 
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The calculatied of the imaginary part ε2xx are shown in Fig. 3.4. At low energy, our 

calculation results confirm that only noble metals have 𝜀2𝑥𝑥 ≈ 0 . Metallic high 

reflectivity was observed at 1-1.5 eV, 1-3 eV, and 1-2 eV, respectively, for Cu, Ag, and 

Au. Compared to other atoms, Ru and Os also have dips in the low energy range so that 

the peak of spectra ε2xx can be observed. The spectrum of ε2xx has the same characteristics 

as that of σ1xx which both represent a loss mechanism in material. Energy absorption of 

incident photons occurs in the interband transition process when electrons move from 

energy below the Fermi level to the next higher empty energy level.  
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Figure 3.4: Comparison of the imaginary part of dielectric functions for transition metals atom. Notations are the same as Figure 3.2. 
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3.4 Reflectivity curve  

To find out the material characteristics in the SPR application, we calculated the 

reflectivity based on Eq. (2), as shown in Figure 3.5. In the optical region, the curves that 

have dips are Cu, Ag, Au, Os, and Ru. We can show that noble metal (i.e., Cu, Au, and 

Ag) has the optimum dip with a small full-width-half-maximum (FWHM). Ru and Os 

also have dipped, but the FWHM is wide. The dip shows the resonance condition between 

the SPP wave and the evanescent wave. The imaginary part of ε2xx plays an important role 

in determining the magnitude of the FWHM. The small ε2xx will give a narrow FWHM 

resulting in a sharp dip.  

  Our simulation curve is similar to the reference in thin layers using the 

Kretschmann configuration. For Cu, the reflectivity calculation shifts to the left, 

indicating the difference in thickness of Cu used, which is 25 nm and 43.5 nm for our 

calculations and Ref. [84], respectively. In Ag and Au, the curve also shifts to lower 

energy than the reference curve caused by differences in the prism material used, namely 

a UV fused quartz and a CaF2 glass for Ref. [85] and Ref. [86], respectively. The 

difference in prism material indicates a different refractive index, which is sensitive to 

reflectivity in the system.  



32 

 

 

Figure 3.5: SPR reflectivity curve as a function of the energy. Lines drawn by black 

squares are experimental data from literature; Cu [84], Ag [85], and Au [86]. 

a) 

b) 

c) 
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3.5 Summary  

Using the first-principles calculations, we systematically calculated the optical 

conductivity and dielectric functions for  3d (Fe, Ni, Co, Cu), 4d (Ru, Rh, Pd, Ag), and 

5d (Os, Ir, Pt, Au) transition metals. We obtained a good agreement with experimental 

data. In Fe, the peak of optical conductivity around 3 eV is reproduced by our calculation, 

while in the Cu, the edge position shift can be confirmed from the partial 1xx spectra. 

The calculated SPR reflectivity curve in the Kretschmann configuration shows a sharp 

dip for noble metals corresponding to a small enough of the imaginary part of the 

dielectric function. 
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Chapter 4 

Optical and magneto-optical properties of the 

FeCu superlattices 

4.1 Introduction 

In 3d transition metals, Fe and Cu each have interesting properties. As a 

ferromagnetic material, Fe is easy to magnetize and offers large MO properties. Cu is the 

low-cost plasmonic metal possessing tunable plasmonic resonance in the visible region. 

The combination of Fe and Cu, which are ferromagnetic/noble metals, is particularly 

interesting in both multilayer and superlattice (SL) forms. [87–92] Multilayers with small 

repetition periods, where each layer consists of only a few atomic layers, can be easily 

modeled theoretically. The FeCu SL may open a vesta for magnetoplasmonic applications 

in MOSPR. The special interest in the FeCu SL arises from the fact that the small lattice 

mismatch between fcc Fe and Cu of 0.83% [93] and high Curie temperature of 400 K [87] . 

However, one of the main physical parameters in magnetoplasmonic is the optical losses 

in the structure. These optical losses are caused by the interband transition, which consists 

of optical absorption and MO absorption. 

This chapter reports on the first-principles study to explain the origin of optical and 

magneto-optical properties of FeCu SL. In the first stage, we present the electronic 

properties, such as density of states and band structure, then discuss the feature of optical 

conductivity and dielectric function of FeCu SLs. Based on the band-by-band 

decomposition analysis, we discuss the electronic origin of optical and MO anisotropies 

in the Fe1Cu1 SL. [94].  

4.2 Computational methods 

Models of the FexCux SLs with x = 1, 2, and 3 atomic-layers were constructed by 

atomic-layer stackings with a body-centered alignment along (001) direction, 

schematically presented in Fig. 4.1. The case with x = 1 corresponds to an ordered Fe1Cu1 

SL in the L10 type. Both in-plane and out-of-plane lattice constants, a and c, were fully 

optimized based on a total energy minimization. 
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Figure 4.1: The unit cells used for Fe1Cu1, Fe2Cu2, and Fe3Cu3 SLs. Brown spheres are 

Cu atoms and blue ones are Fe atoms. 

Electronic structure of the FexCux SLs were calculated by using full-potential 

linearized augmented plane wave (FLAPW) method based on generalized gradient 

approximation (GGA) of exchange-correlation potential. [54,72] The wave function was 

expanded by a plane-wave basis set with a cutoff of 3.9 bohr−1 (Kmax) and the maximum 

number of angular momentums was chosen to 8 (lmax), and the muffin-tin radius set to 2.2 

bohr (RMT) for both Fe and Cu atoms, where RMTKmax ~ lmax was adopted. The spin-orbit 

coupling (SOC) was treated by using the second variational method. The sample 

magnetization of Mz and Mx are oriented along the out-of-plane [001] and the in-plane 

[100] directions, respectively. In Mx, the m-decomposed weights of orbitals may be 

transformed in accordance with a rotation matrix, 𝐷𝑚′𝑚
𝑙 (𝜃, 𝜙). [95]. For the Brillouin 

zone (BZ) integration, k-point meshes of 51×51×51 were used. The relaxation time  is 

assumed to 1/ = 0.5 eV for the interband transitions. The Drude model has been used to 

combine the intraband contribution with the optical conductivity. 

4.3 Structural, magnetic, and electronic properties 

4.3.1 Structural and magnetic properties 

The calculated of the structural properties of the FexCux SLs are summarized in 

Table 4.1. The optimized in-plane lattice constants are close to the experimental results 

of the [Fe1/Cu1]100 multilayer of 3.596 Å [96], while the c/a in Fe1Cu1 SLs results in 1.04, 

agreed with that in the previous calculation. [97] It was found that there was a decrease 

a) b) c) 
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in the in-plane lattice constant for x = 2 and 3 by 0.56% and 0.84%, respectively, 

compared to those of x = 1. Importantly, the Fe-Cu interlayer spacing in the SLs is found 

to increase as the x increases, while the Fe-Fe interlayer spacing at x = 2 and 3 are almost 

half that at x = 1, indicating that the interlayer spacing may play an important role for the 

electronic properties of the SLs. 

 

Table 4.1. The calculated of in-plane and out-of-plane lattice constant, a 

and c, of the FexCux SLs. The Fe-Cu and Fe-Fe distance are the atomic 

interplane spacing along the z direction, respectively. 

Superlattices Fe1Cu1 Fe2Cu2 Fe3Cu3 

a (Å) 3.57 3.55 3.54 

c (Å) 3.72 7.56 11.41 

Fe-Cu (Å) 1.86 1.89 1.89 

Fe-Fe (Å) - 1.92 1.94 

 

The calculated spin and orbitals magnetic moments for Mz and Mx are listed in Table 

4.2 and 4.3, respectively. In the sample magnetization Mz, a large moment about 2.646 μB
 

is found for Fe layer may belong to the L10 family of ferromagnets, agrees with the 

previous calculations of 2.67μB.  [98] We can confirm that the magnetic moment of Fe 

layer in the ordered L10 of FeCu SL is between 2.2μB and 3.4μB, which is the magnetic 

moment for bulk bcc Fe and free-standing Fe ML, respectively. The enhancement of 

magnetic moment of Fe in FeCu SL can be caused by reducing the symmetry of 

system [99] or lattice expansion in plane of Fe sandwiched by Cu atoms [100]. The 

change of magnetization direction shows that the spin magnetic moment does not change 

while the orbitals magnetic moment changes slightly. 
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TABLE 4.2. The calculated spin magnetic moment MS  (in μB) of Cu and Fe atoms 

in atomic layers of FexCux SLs with magnetization direction Mz and Mx. 

 Mz  Mx 

Atom Fe1Cu1 Fe2Cu2 Fe3Cu3  Fe1Cu1 Fe2Cu2 Fe3Cu3 

Cu1 0.092 0.051 0.060  0.092 0.051 0.060 

Cu2  0.049 0.008   0.049 0.008 

Cu3   0.061    0.061 

Fe1 2.646 2.623 2.593  2.647 2.623 2.593 

Fe2  2.616 2.603   2.616 2.603 

Fe3   2.596    2.596 

 

 

TABLE 4.3. The calculated orbital magnetic moment ML (in μB) of Cu and Fe 

atoms in atomic layers of FexCux SLs with magnetization direction Mz and Mx. 

 Mz  Mx 

Atom Fe1Cu1 Fe2Cu2 Fe3Cu3  Fe1Cu1 Fe2Cu2 Fe3Cu3 

Cu1 0.010 0.005 0.006  0.009 0.004 0.004 

Cu2  0.004 0.001   0.004 0.000 

Cu3   0.006    0.004 

Fe1 0.055 0.057 0.055  0.044 0.058 0.056 

Fe2  0.057 0.056   0.058 0.055 

Fe3   0.055    0.056 

 

4.3.2 Electronic properties 

The calculated partial densities of states (PDOSs) of Fe and Cu atoms in FexCux 

SLs with magnetization direction Mx are shown in Fig. 4.2. For the Fe1Cu1 (x = 1) SL, 

The PDOS at the vicinity of Fermi energy (EF), at around −1.5 eV to 2 eV, consists of 

mainly the Fe d orbitals with the minority-spin state. A large exchange splitting in the Fe 

d orbitals can be seen, which leads to the large magnetic moment of 2.646 µB, as observed 

in the free-standing Fe monolayer (ML). [101] The fact that the Cu d orbitals are almost 

occupied and are located around −5 to −2 eV gives rise to a weak hybridization between 

the Fe d and Cu d orbitals, which induces a small exchange splitting in the Cu atoms with 

the moment of 0.092 μB. It is noted that when the number of monolayer (MLs), x, increase, 

there are a change in the peaks of PDOS in the Fe-minority states and the hybridization 
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between the neighboring Fe and Cu orbitals becomes stronger. The bandwidth of the 

hybridization in Fe minority states which located around Fermi energy are 4.0, 4.6 and 

4.8 for x = 1, 2, and 3, respectively, marked with the black arrow in Figs. 4.2(a-b) and 

Fig. 4.3(a).  

 

Figure 4.2: Partial density of states (PDOSs) of (a) Fe1Cu1 and (b) Fe2Cu2 SLs. 

 

Figure 4.3: Partial density of states (PDOSs) of Fe3Cu3 SLs for (a) interface and (b) 

interior atoms. 

Figures 4.4(a-b) show the band structure of the Fe1Cu1 SLs, where the weights of 

wave functions of the d orbitals in the Fe minority-spin states, by projecting to the 

quantum mz- and mx-numbers along z- and x-axes, respectively, are plotted by linewidth. 

The band structure with sample magnetization of Mz can be discerned as an analogy of 

two-dimensional feature as seen in the free-standing Fe ML [101], as shown in Fig. 4.4(a). 

The out-of-plane dd hybridization between the 𝑑𝑧2−𝑟2  orbitals in the next nearest 

a) b) 

a) b) 
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neighboring Fe atoms along the plan normal can be seen in the vicinity of EF from −0.1 

to 1.0 eV. The Fe dxz,yz orbitals with the in-plane dd bonding and antibonding states are 

seen to cross EF from −1.7 to 1.2 eV. It however notes that the Fe d orbitals weakly couple 

to the Cu d orbitals via the dxz and dyz orbitals due to an Fe-Cu dd hybridization. The Fe 

𝑑𝑚𝑧=±2 (= 𝑑𝑥𝑦,𝑥2−𝑦2) orbitals located above and below EF show a large dispersion along 

to M--X-M of the in-plane k-path, due to the strong in-plane dd hybridization between 

the neighboring in-plane Fe atoms. Importantly, the p orbitals at Fe and Cu atoms, which 

are highly dispersive, couple weakly to the d orbitals; pz couples to dxz,yz and px,y couple 

to 𝑑𝑥𝑦,𝑧2−𝑟2 by through pd hybridizations.  

 

Figure 4.4: Fully relativistic band structures (left panel) and partial density of states for 

Fe d orbitals (right panel) with the minority-spin state of Fe1Cu1 SLs with magnetization 

oriented along (a) the out-of-plane, Mx, and (b) in-plane, Mx, direction.  The real space 

projected weights of Fe d orbitals are marked by colors and linewidth.  

 

a) 

b) 
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Figure 4.4(b) shows the band structure when the sample magnetization orients 

along x-axis, Mx, where eigenvalues in the whole k-space do not vary much compared to 

those for Mz due to the small SOC strength in Fe and Cu atoms. Due to the transformation 

corresponds to the rotation matrix, the weight of the 𝑑𝑚𝑧=±2 (= 𝑑𝑥𝑦,𝑥2−𝑦2) orbitals along 

M--X transforms into a linear combination of those of 𝑑𝑚𝑥=±1 (= dxy,xz) and  𝑑𝑚𝑥=0 (= 

𝑑𝑥2−𝑟2) orbitals.  It notes that the flat band of 𝑑𝑥𝑧,𝑦𝑧 (𝑑𝑥2−𝑟2) orbitals around  (R and ) 

points form the peaks of DOS at an unoccupied states around 1.2 (1.2 and 2.0) eV. The 

electronic properties of Fe2Cu2 and Fe3Cu3 SLs for Fe minority-spin state with sample 

magnetization of Mx are described in the next paragraph. 

In the Fe2Cu2 SLs, two MLs of Fe significantly changes the electronic properties of 

an unoccupied states, as shown in Fig. 4.5. The reduction of the Fe-Fe interlayer spacing, 

which is almost half that of Fe1Cu1 SLs, causes the Fe dd hybridization via 𝑑𝑥𝑧,𝑦𝑧,𝑧2−𝑦2 

orbitals to be more intensive. As a result, the flat band of dxz,yz (𝑑𝑧2−𝑦2) orbitals around  

point splits into two regions at 0.6 (-1.4) and 1.8 (0.4) eV. Meanwhile, the contraction of 

the in-plane lattice constant causes the shift of the flat band of 𝑑𝑥2−𝑟2  orbitals around R 

point which approaches EF at 0.9 eV. The contraction also makes the bandwidth of in-

plane Fe dd hybridization via dxy orbitals wider than in Fe1Cu1 SLs from -2.0 to 2.4 eV. 

 

Figure 4.5: Fully relativistic band structures (left panel) and partial density of states for 

Fe d orbitals (right panel) with the minority-spin state of Fe2Cu2 SLs. Notations are the 

same as Fig. 4.4 
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When the number of MLs increases in the Fe3Cu3SLs, the bands attributed in Fe 

atoms at the interface and interior layers, which are denoted by Fe(F) and Fe(R), 

respectively, behave different characteristics, as shown in Figs. 4.6(a) and 4.6(b). In the 

Fe(F), the dxz,yz orbitals represent delocalized orbitals between 0.0 and 2 eV above the EF 

with the flat band at the  point located at 0.4, 1.3, and 2.0 eV, as shown in Fig. 4.6(a). 

The DOS peak of 𝑑𝑧2−𝑦2 orbitals in Fe(F) of about 1.0 eV replace the two peaks in Fe(R) 

due to the out-of-plane Fe dd hybridization between the neighboring out-of-plane Fe 

atoms. Meanwhile, in the Fe(R) the flat band of dxz,yz orbitals at  point around 0.5 and 

2.0 eV form DOS peaks at minority states which are both farther apart than in Fe2Cu2 SLs, 

as shown in Fig. 4.6(b). The bandwidth of in-plane Fe dd hybridization via dxy orbitals 

from -2.2 eV to 2.4 eV was also found to widen due to the contraction of the in-plane 

lattice constant. Therefore, tuning electronic properties in the vicinity of EF in SLs can be 

done through bandwidth, i.e., degree of hybridization, by changing the number of MLs.  
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Figure 4.6: Fully relativistic band structures (left panel) and partial density of states for 

Fe d orbitals (right panel) with the minority-spin state of of Fe3Cu3 SLs for (a) Fe(F) and 

(b) Fe(R). Notations are the same as Fig. 4.4 

 

 

 

 

 

 

 

 

b) 

a) 
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4.4 Optical conductivity and dielectric function 

4.4.1 Optical conductivity 

The interband contribution of the diagonal component of the optical conductivities of 

the FexCux SLs with in-plane (001) magnetization is summarized in Fig. 4.7. The 

prominent peak of the real part of the diagonal component, 1xx, at around 1.5, 2.4 and 

2.0 eV for x = 1, 2, and 3, respectively, dominated by the interband transition of Fe atoms, 

as shown in Fig. 4.7(a), while the imaginary parts, 2xx, are negative in low photon energy 

 and increase as  increases, as shown in Fig. 4.7(b). A sign change in 2xx shifts to 

lower  as x increases.  

 

Figure 4.7: The interband contribution of the diagonal component of the optical 

conductivity: (a) and (b) are the real and imaginary parts, 1xx and 2xx, respectively. 

The calculation of the contribution of each atomic layer to the interband transition 

shows that the peak spectra of 1xx in the FexCux SLs are dominated by Fe atom, as shown 

in Figs. 4.8(a-c). The gray vertical lines and blue arrows indicate the peak position of the 

1xx in the FexCux SLs and Fe atom, respectively. In the Fe1Cu1 SLs, the contribution 

along the M–Γ–X–M–R–Γ–Z–M path to the interband transitions of Fe atom at 1.5 eV is 

shown in Fig. 4.8(d), which correspond to the in-plane Fe-Fe and out-of-plane FeCu dd 

hybridization along Γ–X–M and M–R–Γ path, respectively. It shows that the hybridization 

process plays an important role in the interband transition. [102] 

 

 

 

b) a) 
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Figure 4.8: Contribution of individual Fe and Cu atoms to the 1xx spectra (left panel) and 

k-path of 1xx spectra from Fe atom (right panel) of FexCux SLs. 

In the Fe2Cu2 SLs, a blueshift of the peak spectra from 1.5 eV to 2.4 eV is found. The 

shift is dominated by the peak interband transition of Fe atom around 2.1 eV. The 

increasing contribution around Γ (X) point to the interband transitions at 2.1 eV due to 

the influence of the out-of-plane (in-plane) Fe dd hybridization via 𝑑𝑧2−𝑦2  (𝑑𝑥2−𝑟2 )  

orbitals, as shown in Fig. 4.8(e). The redshift of peak in Fe3Cu3 SLs is a superposition of 

the interband transition contributions of Fe(F) and Fe(R), which have peaks around 1.3 

and 2.3 eV, respectively. In the Fe(F) atoms, the contribution around Γ, M, X, and R 

points to interband transitions at 1.3 eV mainly from p to d orbitals due to the Fe dd 

hybridization via dyz orbitals, as shown in Fig. 4.8(f). In the Fe(R) atoms, the contribution 

to interband transitions at 2.3 eV is evenly distributed along the k-path of all d orbitals, 

as shown in Fig. 4.8(g). It is found that the energy band having high DOS at high 

symmetry point usually dominates the interband transition, e.g., interband transition via 

𝑑𝑥2−𝑟2 orbitals located 0.5 (2.0) eV above EF contributes small peaks around X (R) point. 

The increasing the number of MLs on SLs can shift the flat energy band at a high 

symmetry point due to the hybridization process so that it can tune the interband transition. 

a) 

b) 

c) 

1.5 eV 

2.1 eV 

1.3 eV 2.3 eV 

Fe2Cu2 

Fe3Cu3 

Fe1Cu1 
d) 

e) 

f) 

g) 
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In the off-diagonal components of the optical conductivity with in-plane (001) 

magnetization, the real parts, 1yz, decrease as w increases, while the imaginary parts, 2yz, 

exhibit the prominent peaks located around 1.7, 1.9, and 1.4 eV for x =1, 2, and 3, 

respectively, as shown in Figs. 4.9(a) and 4.9(b). The physical interpretation of 2yz is 

magneto-optical absorption which proportional to the difference in absorption rate of the 

left and right circularly polarized (LCP and RCP) lights. In the low energy, the positive 

value of 2yz suggests that interband transitions related to LCP light should be stronger. 

The nonvanishing of 2yz is a spin orbit-coupling effect in the form of the lifting of energy 

level degeneracies, hybrid mixing different spin characters, and spin-flip transitions. [65] 

Hence, we calculated the 2yz spectra by switching off the SOC strength at Fe(Cu) atom 

artificially. As a result, the Fe SOC plays a role in demonstrating these spectra, as shown 

in the Fig. 4.10 for Fe1Cu1 SLs. It is found that, for example, a mixed state of 𝑑𝑦𝑧 and 

𝑑𝑧2−𝑦2 character is located at 1.2 eV above EF along the M-R path; see Fig. 4.4(b).  

 

Figure 4.9: The interband contribution of the off-diagonal component of the optical 

conductivity: (a) and (b) are the real and imaginary parts, 2yz and 2yz, respectively. 

 

b) a) 
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Figure 4.10: Contribution of the SO coupling set to zero on Cu site (dot-dash black lines) 

and Fe site (dot purple lines) to the 2yz spectra of Fe1Cu1 SLs. 

4.4.2 Dielectric function 

The dielectric functions 𝜀 is related to the optical conductivity tensor  through 

Eq. (2.25). The diagonal components of the dielectric functions are presented in Figs. 

4.11(a-b), which reflect the contribution of both interband and intraband transitions into 

the optical spectrum. The negative value of 𝜀1xx indicates that FexCux SLs is metallic with 

a high plasma frequency (> 6 eV), and the positive value of 𝜀2xx is slightly lower than that 

of bulk Fe. Therefore FexCux SLs can be applied as plasmonic materials in the optical 

range although they have higher optical losses than pure noble metals. The trend of 

prominent peaks of 𝜀2xx follows 1xx spectrum through Eq. (2.25). In the optical range, 

tuning the optical properties can be done by a varying number of MLs of SLs. 

 

Figure. 4.11: (a) and (b) show the real and imaginary parts of the diagonal component xx 

dielectric functions of FexCux SLs, respectively. The gray vertical lines indicate the HeNe 

laser energy at 1.96 eV. 

a) b) 
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In the off-diagonal component, as shown in Figs. 4.12(a-b), the absolute value of 

𝜀1yz of the Fe2Cu2 and Fe3Cu3 SLs is almost the same but it is more significant than the 

Fe1Cu1 SLs. The small valley of about 2.0 and 1.4 eV for the Fe2Cu2 and Fe3Cu3 SLs, 

respectively, correspond to blue shift and redshift in the peaks of 2xy spectra. The non-

vanishing of the off-diagonal component shows that FeCu SLs offer a MO effect, which 

has the potential as a magnetoplasmonic structure. 

 

Figure. 4.12: (a) and (b) show the real and imaginary parts of the off-diagonal component 

yz dielectric function of FexCux SLs, respectively.  

4.5 Optical and magneto-optical anisotropies of the Fe1Cu1 SL 

In this section, we discuss the electronic origins of the optical and magneto-optical 

properties (OA and MOA) from first-principles calculations. A OA and MOA may be 

required for achieving high accuracy in applications [34,41,103], and understanding of 

optical conductivity in ferromagnetic uniaxial materials with frequency in visible and 

infrared range is essential. The OA was then estimated by the difference in the real parts 

of diagonal components, 1xx−1zz, for Mz, and the MOA was given by the difference in 

the imaginary parts of off-diagonal components for Mz and Mx, 2xy−2yz. 

4.5.1 Optical conductivity  

The optical conductivities as a function of the photon energy  up to 6.0 eV are 

summarized in Fig. 4.13. The absorptive parts, 1xx and 1zz, behave differently each other, 

which exhibit the system with a strong OA, as shown in Figs. 4.13(a) and 4.13(c). The 

dispersive parts of diagonal components, 2xx and 2zz, are negative in low  and increase 

a) b) 
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as  increases, as seen in Fig. 4.13(b). The 1xx shows large finite values in the whole  

due to the metallic character, where typically two prominent peaks at around 1.5 and 3.5 

eV were observed, which are close to those in the previous calculations, 1.6 and 3.4 

eV. [104] In the case of 1zz, although it shows the same trend to that in the 1xx spectrum, 

the magnitudes of the two prominent peaks are differently suppressed, namely, the 1zz 

peak at 1.5 eV is suppressed significantly but that at 3.5 eV is slight. This makes different 

features around 1.5 and 3.5 eV in the OA spectrum; the former gives a peak but the latter 

is a dip, as indicated by vertical arrows in Fig. 4.13(c). 

 

Figure 4.13: Calculated optical spectra of Fe1Cu1 SL. (a) and (b) show real and imaginary 

parts of the diagonal components in optical conductivities for Mz, and (c) shows the OA. 

Arrows in (a) indicates the prominent features in these spectra. 

In the off-diagonal components, the dispersive parts, 1xy and 1yz, decrease as  

increases, as shown in Fig. 4.14(a). The typical peaks and shoulders of the absorptive 

parts, 2xy and 2yz, are indicated by vertical arrows in Fig. 4.14(b) with three features at 
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0.5, 1.7 and 2.5 eV; a valley goes a hump, a peak becomes broad, and a dip changes a 

broad peak, from 2xy to 2yz, respectively. Thus, the MOA at the infrared and visible 

region is featured by the three peaks at 0.5, 1.7, and 2.5 eV, which exhibit an oscillating 

behavior with extreme values at these  positions as seen in Fig. 4.14(c). 

 

Figure 4.14: (a) and (b) show real and imaginary parts of the off-diagonal components for 

both Mz and Mx, and (c) shows the MOA. Arrows in (e) indicates the prominent features 

in these spectra. 

4.5.2 Band-by-band decomposition analysis 

In order to identify the governed interband transitions in the OA and MOA spectra, 

we carried out band-by-band decomposition analysis [105,106] to the 1 and 2 by 

slicing two bands occupied and unoccupied. In this analysis, as shown in Fig. 4.15, bands 

are assigned by indexes at each k-point by using sequential numbers, Ns, from the lowest 

energy to above. Figures 4.16(a-b) show the interband contributions to the 1xx and 1zz 

as a function of , where a set of the two indexes for initial and final states, Ni→Nf, is 
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appended. In the 1xx, two interband transitions, 19→21 and 19→22, provide a peak at 

1.5 eV. In the case of 1zz, in contrast, the shoulder at 1.5 eV in Fig. 4.14(a) is from 17→20 

transition. However, the other set of interband transitions cannot be ruled out in 

participation to the 1xx and 1zz spectra, it is evident that the interband contributions to 

the 1zz at 1.5 eV have lower magnitude than those in the 1xx, which leads to the large 

OA as seen in Fig. 4.14(c). 

 

Figure 4.15: Band indexes used in band-by-band decomposition analysis. 

 

Figure 4.16: Contributions of different interband transitions in (a) 1xx, and (b) 1zz, where 

a set of the two indexes for the initial and final states are represented by Ni→Nf. Vertical 

grey lines show energy positions of the prominent peaks in the corresponding OA 

spectrum. 
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Although the interband contributions to the 1xx and 1zz distribute over the whole 

k-space, the contribution along M--X-M-R--Z-M path to the interband transitions in the 

spectra can be assigned. Based on the selection rules and the fat band plot for the Fe d 

orbitals with the minority-spin states, for example, at 1.5 eV, the interband transition of 

19→22 around ⅓(X-M) in the 1xx correspond to that from Fe 𝑑𝑚𝑧=±2 to 𝑝𝑚𝑧=±1 with 

mz=1. The final states of 22, which locates at around 1.1 eV above EF is the antibonding 

state in the in-plane Fe-Fe dd hybridization, and the 𝑝𝑚𝑧=±1 orbitals in the initial state 19, 

located about 0.5 eV below EF, couples to the bonding state of the in-plane Fe-Fe dd state 

through the pd hybridization. Meanwhile, the interband transition of 19→21 around ⅓(-

X) correspond to that from Fe 𝑑𝑚𝑧=±1 to 𝑝𝑚𝑧=0 with mz=1. In the 1zz, however, the 

19→22 and 19→21 transitions are unallowed due to the different rule of mz=0, and thus 

the hump in the 1zz spectra at 1.5 eV in Fig. 4.14(a) is explained by a suppression of the 

two interband (19→22 and 19→21) transitions. In addition, other contributions come 

from the interband transition of 17→20 around ½(M-R) correspond to that from Fe 

𝑑𝑚𝑧=±1 to 𝑝𝑚𝑧=±1 with mz=1. 

At 3.5 eV, the interband transition of 20→24 in the 1xx contributes from Fe 𝑝𝑚𝑧=±1 

to 𝑑𝑚𝑧=0,±2 at around X with mz=1. The final states of 24 located at 3.2 eV are the flat 

band of 𝑑𝑧2−𝑦2,𝑥𝑦 orbitals that form the small peak of DOS at Fe minority state, as seen 

in Fig. 4.4(a). In the 1zz, however, although the interband transition is unallowed due to 

mz=0, the other interband transitions, e.g., 16→23 (Fe 𝑑𝑚𝑧=±1 to 𝑝𝑚𝑧=±1) at ½(M-R), 

participate to the 1zz spectra. Since the initial states of 16 are composed of the Fe 𝑑𝑥𝑧,𝑦𝑧 

orbitals that couple to the Cu d orbitals, the peak in the 1zz at 3.5 eV in Fig. 4.13(a) causes 

the Fe-Cu dd hybridization.  

For the off-diagonal components, the interband transitions responsible for the 

prominent peaks at 0.5 eV in the MOA spectrum can be demonstrated by band-by-band 

decomposition analysis, as shown in Figs. 4.17(a) and 4.17(b), respectively. At 0.5 eV, 

the interband transition 19→20 provides a large negative contribution to the 2xy spectrum 

but it turns to be positive in the 2yz spectrum; the former is dominated by the LCP 

transition, but the latter is by the RCP transition. In the analysis, the 19→20 at ½(Z-M) 

corresponds to the transition from 𝑝𝑚𝑧=+1 to 𝑑𝑚𝑧=0 in the 2xy but it transforms that from 
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𝑝𝑚𝑥=+1  to 𝑑𝑚𝑥=+2 in the 2yz, both give different polarizations, RCP and LCP, 

respectively. 

 

Figure 4.17: Contributions of different interband transitions in (a) 2xy, and (b) 2yz. 

Vertical grey lines show energy positions of the prominent peaks in the corresponding a 

MOA spectrum. 

4.6 Summary 

The electronic and optical properties of the FexCux SLs are calculated by 

performing the FLAPW method. We found that the interband transition at peaks in optical 

conductivity spectra, which is responsible for optical losses, can be tuned through the 

hybridization process by varying the thickness of the superlattices. The blue and red-shift 

of the optical conductivity spectrum correspond to the peaks of DOS of Fe minority states. 

In the visible range, FeCu SLs shows plasmonic properties indicated by negative real part 

of diagonal component of dielectric function, and MO properties indicated by non-zero 

off-diagonal component so that it can be offered as magnetoplasmonic in the MOSPR 

application. In particular, OA and MOA properties of optical conductivity were shown in 

Fe1Cu1 SL. Based on the band-by-band decomposition analysis, the interband transition 

at 1.5 eV on the OA spectrum is attributed to the strong in-plane Fe-Fe dd hybridization. 

The MOA spectrum is featured by the three prominent peaks at 0.5, 1.7, and 2.5 eV for 

the off-diagonal components. 
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Chapter 5 

Magneto-optical surface plasmon resonance 

sensor 

5.1 Introduction 

Magneto-optical surface plasmon resonance (MOSPR) sensor is a new modulation 

technique based on MO and SPR interaction.  The MOSPR sensor has been proposed and 

experimentally demonstrated to extremely enhance the performance of the sensor. 

Substrates as the sensing layer play an essential role in achieving enhanced sensitivity. 

Combinations of ferromagnetic and noble metals, e.g., (Fe, Co, or Ni)/(Cu, Ag, or Au) 

multilayer, can be used to enhance both MO effect and SPP excitation.  

This chapter demonstrated the MOSPR system in the Kretschmann configuration 

with FeCu SL using a magnetoplasmonic structure for refractive index detection. To 

describe the sensitivity of the MOSPR sensor, we first consider the TMOKE and SPP 

excitation conditions. We exploit the FexCux SLs to provide giant TMOKE ( ±1). Then, 

we present that FexCux SLs can increase the sensitivity in the MOSPR system compared 

to the SPR system.  

5.2 Computational methods 

The model in the present study is schematically presented in Fig 5.1. We consider 

the MOSPR systems illuminated by light with the fixed wavelength of λ= 632.8 nm (1.96 

eV) through a half-cylindrical glass (BK7, n = 1.515) prims in the Kretschmann 

configuration. The magnetoplasmonic structure consists of the FexCux SLs covered by an 

Au thin film (d = 1 nm) which is used to prevent oxidation. The dielectric medium is 

considered as gelatin, with refractive index nd = 1.341. The complex dielectric function 

of Au at 632.8 nm wavelength is -11.740 + i1.2611, while the optical parameter of the 

FexCux SLs is taken from the calculation presented in Table 5.1. Applying magnetization 

to the magnetoplasmonic structure in the opposite direction will change the sign of the 

off-diagonal component of the dielectric function, εyz (−M) = −εyz(M). 
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Figure 5.1: Schematic illustration of the Au/FexCux MOSPR sensor in the Kretschmann 

prism coupling system. The magnetization M is applied perpendicular to the incident 

plane. 

 

Table 5.1 Diagonal and off-diagonal of dielectric function of FexCux SLs at λ = 1.96 eV. 

Superlattices 𝜀𝑥𝑥 = 𝜀1𝑥𝑥 + 𝑖𝜀2𝑥𝑥 𝜀𝑦𝑧 = 𝜀1𝑦𝑧 + 𝑖𝜀2𝑦𝑧 

Fe
1
Cu

1
 -7.9025+18.0226i -0.3725+0.19001i 

Fe
2
Cu

2
 -7.9504+18.9619i -0.4763+0.2126i 

Fe
3
Cu

3
 -8.6026+19.8839i -0.4376+0.1810i 

 

The magnitude of TMOKE signal (R/R) is defined through Eq. (2.27). TMOKE 

measures the differences in the reflectivity when the magnetization is reversed from 

positive (negative) to negative (positive) sense, along the direction perpendicular to the 

plane of polarization of the incident light. The reflectivity (Rpp) was performed via the 

4 × 4 transfer-matrix methods in the form of Eq. (2.44). 

5.3 Application to refractive index sensor 

5.3.1 Transverse magneto-optical Kerr effect signal 

To investigate the reflectivity as a function of the function of incident angle (θ) and 

thickness (d), we calculated the reflectivity minimum (Rmin) for θ varying from 60 to 85, 

in step of θ = 0.01, and for d = 0 to 40 nm, in step of d = 0.01 nm. For visualization 

purposes, results are presented in Fig. 5.2 by the reflectivity versus both incident angle 

and thickness of the FexCux SLs. A minimum reflectivity around the incident angle of 75 

is observed with a white plus sign (+) at the middle of the blue area. The optimum 
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thicknesses of the FexCux SLs are 20.8, 20.3, and 19.7 nm for x =1, 2, and 3, respectively. 

The different optimum thicknesses for SPP excitation at FexCux SLs are due to the 

different optical absorption determined by the imaginary part of the diagonal dielectric 

function. In the present simulation, we used a thickness of 19.7 nm to analyze the 

dependence of optical absorption on the sensitivity of the MOSPR system. 

 

Figure 5.2: Reflectivity as a function of incident angle and thickness for (a) Fe1Cu1, (b) 

Fe2Cu2 SL, and (c) Fe3Cu3 SLs.   
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Simulation of R and R/R in the Kretschmann configuration as a function of 

incident angle for FexCux SLs are shown in Fig. 5.3(a). As expected, the FexCux SLs do 

not exhibit a sharp reflectivity minimum compared to pure noble metals films, since 

FexCux SLs has higher optical absorption characterized by a higher value of the imaginary 

part of the dielectric function. The reflectivity curve of FexCux SLs have an FWHM of 

19.1, indicating a narrowing compared to pure Fe of 20.2. The SPR angles (SPR), which 

is an excitation of SPP occurs, are 75.24, 75.42, and 75.39 for x =1, 2 and 3, 

respectively, is close to the previous experimental result of the conventional SPR in the 

Kretschmann configuration for gelatin of 75.4. [30] In the MOSPR, in contrast, there are 

strongly enhanced R/R around SPR. Also, for a larger incident angle away from SPR, 

the magnitude R/R decreases dramatically. The maximum slope of d(R/R)/d is 0.31, 

1.00, and 12.23 /degree and dR/d of 0.13, 0.13 and 0.14 /degree for x = 1, 2, and 3, 

respectively, indicating two order magnitude of slope of R/R compared to R spectra for 

the Fe3Cu3 SL. Using the optimum thickness of 18.9 nm,  d(R/R)/d dan dR/d for pure 

Fe film are 8.44 and 0.12 /degree, respectively. 

The origin of a strong R/R under SPP excitation is due to both a simultaneous 

reduction in the reflectivity and an enhancement of the electromagnetic field at the MO 

active layer. [33,34]  
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Figure 5.3: (a) Simulated angular spectrum of R and ∆𝑅𝑝𝑝 𝑅⁄  of FexCux SLs with the 

gelatin (nd = 1.341). (b) The minimum reflectivity Rmin(0) is marked by dot lines, and the 

position of zero-crossing of R(+M) and R(−M) is marked by red, green, and blue circles 

for x = 1, 2, and 3, respectively. 

We focus on the dependence of the slope of R/R on the reflectivity. In fact, when 

the magnetization is applied perpendicular to the SPP propagation direction, the SPP 

wave vector can be modified and has nonreciprocal behavior: 𝑘⃗ 𝑠𝑝𝑝(+𝑀) ≠ 𝑘⃗ 𝑠𝑝𝑝(−𝑀). 

Consequently, the resonance condition also changes, and the SPR angle is shifted 

compared with that without magnetization. Figure 5.3(b) shows the minimum of 

reflectivity without magnetization applied, Rmin(0), as indicated by dashed lines, and the 

angular shift of the reflectivity minimum due to the positive and negative applied 

magnetization,  = min(+M) − min(−M). The present results show Rmin(0) are 1.8410-

3, 0.5910-3, and 010-3 a.u., and   are 0.17, 0.21 and 0.18 degree for x = 1, 2, and 3, 

a) 

b) 
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respectively. The magnitude  of FeCu SLs is more significant than that of 

AuAgCoAg [33] or AuCoAu [107] multilayer on the order of 10-2 degree. The , which 

is also called the modulation factor, is proportional to the Voigt parameter, Q = i𝜀yz/𝜀xx, 

i.e., 0.0212, 0.0254 and 0.0219 for for x = 1, 2 and 3, respectively. It can be said that the 

dependence of the slope of R/R on  is not so significant.  

Meanwhile, the shift of reflectivity minimum for the positive and negative applied 

magnetization, Rmin(+) and Rmin(−), respectively, with respect to Rmin(0), is inversely 

proportional to the increasing value of x. The position of zero-crossing for R/R, when 

Rpp(+M)  = Rpp(−M), indicated by dot color in Fig. 5.3(b). The degree of  the shifts with 

respect to Rmin(0) are  0.77, 0.38 and 0.01 degree for for x = 1, 2, and 3, respectively. 

Therefore we can conclude that strong R/R occurs when both the magnitudes of 

Rmin(+M) and Rmin(−M) are equal, and it occurs when Rmin is close to zero. In other words, 

the magnitude of R/R increases drastically with decreasing the Rmin. 

5.3.2 Sensitivity  

`One approach to determining the sensitivity of optical sensors is RIU (refractive 

index units), which is the sensor response on the change of the dielectric refractive index 

nd. Generally, sensitivity can be defined as  [35,108] 

𝜂 =
𝜕𝑆

𝜕𝑛𝑑
=
𝜕𝑆

𝜕𝐴
×
𝜕𝐴

𝜕𝑛𝑑
,   (5.1) 

where S represents the Rpp (for conventional SPR) or R/R (for MOSPR) and A is the 

incident angle of the light. Therefore, the maximum sensitivity will be achieved by 

combining the high slope of the measured signal as a function of the incident angle and 

large displacement of the resonance position when nd changes. 

To demonstrate our concept for sensing applications, we consider small variations 

of the refractive index of the gelatin. Figures 5.4(a-c) shows the change of R/R for the 

refractive index of gelatin varying from nd =1.341 to nd = 1.347, in steps of nd = 0.001. 

With increasing the refractive index of gelatin, R/R spectrum gradually shifts to a higher 

angle due to the larger SPP wavevector.  
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Figure 5.4: Simulated angular spectra of R/R of (a) Fe1Cu1, (b) Fe2Cu2, and (c) Fe3Cu3 

SLs as a function of the index of the gelatin nd. 

The sensitivity can be obtained by Eq. (5.1) and for the MOSPR system shown in 

Fig. 5.5(a). The numerical calculations predict that the highest sensitivity is 600.1 RIU-1 

for Fe3Cu3 SLs due to the sharp behavior of the R/R, while for the Fe1Cu1 and Fe2Cu2 

SLs, 1 = 18.8 RIU-1 and 2 = 54.0 RIU-1, respectively, the sensitivity decrease due to the 

a) 

b) 

c) 
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smaller slope of R/R. The sensitivity of the MOSPR is very sensitive to the number of 

x. When the x value is less than three, the sensitivity has one order reduction. The higher 

sensitivity of MOSPR at the Fe3Cu3 SL indicates that the tiny change of refractive index 

can be responded to clearly.  

We have additionally simulated the sensitivity of the SPR conventional, and the 

results are shown in Fig. 5.5(b). In this configuration, the sensitivity of the FexCux SLs 

gives the same magnitude of 8.8 RIU-1, which is two order magnitude lower than the 

maximum sensitivity of the MOSPR system. We can observe that the shift of SPR due to 

change of nd in conventional SPR and MOSPR systems is the same.  

 

Figure 5.5: Output signal S as function of the refractive index nd  of FexCux SLs and pure 

Fe for the (a) MOSPR and (b) SPR systems. 

Although both conventional SPR and MOSPR have different approaches in the 

measurements, we can conclude that the difference in the sensitivity is dominantly 

derived from the slope of angular spectra. Therefore, the most important feature of the 

a) 

b) 
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MOSPR sensor is a high sensitivity achieved by the giant enhancement of TMOKE signal. 

We have shown that layer thickness (x) on SLs can tune optical properties and 

subsequently affect reflectivity curves. By selecting optimized thickness (d), an extremely 

high slope of TMOKE signal is achieved at the number x of FexCux SLs of 3. It is 

important to point out that the high sensitivity of the MOSPR sensor is performed in the 

SLs, which is relatively easy to fabricate. It is also shown here that multilayer has 

advantages over pure ferromagnetic films. Finally, the proposed approach of 

magnetoplasmonic SLs can be applied to various structures to obtain enhanced sensitivity 

of the refractive index sensor. 

5.4 Summary 

This chapter demonstrated the enhancement of the TMOKE signal in FexCux SLs. 

The reflectivity of the structure is studied using 44 transfer-matrix methods. Upon 

comparing the minimum reflectivity with differences in the dielectric function, we could 

observe the slope feature of the angular spectra. The stronger coupling between surface 

plasmon and incident wave leads to a sharper TMOKE signal. Then, we have shown 

TMOKE signal to be sensitive to small changes in the refractive index of the gelatin. The 

sharp behavior of TMOKE signal is the origin for an enhance in sensitivity. The 

calculation shows that the sensitivity of the proposed sensor in the MOSPR system is 

600.1 RIU-1 for Fe3Cu3 SL, which is two order magnitude higher than the SPR system of 

the same configuration. Our result can be implemented for different applications based 

on the MO effect.   
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Chapter 6 

Conclusions and prospects 

In this thesis, we present the study of optical and magneto-optical properties on the 

magnetoplasmonic material, namely FeCu SLs, by using first-principles calculations for 

improving the performance of surface plasmon resonance (SPR) application. The basic 

concept of SPR and magneto-optical SPR (MOSPR) are stated in chapter one. 

Chapter two present the theory and method of the electronic structure calculation 

and magneto-optical Kerr effect (MOKE). We briefly explain the concept of density 

functional theory (DFT) and full-potential linearized augmented plane wave methods that 

we apply in present calculations. The optical conductivity tensors that create the link 

between microscopic theory and macroscopic phenomena of magneto-optical (MO) 

effect are calculated by applying the Kubo formula in the linear response theory. The 

reflectivities of multilayer systems are evaluated based on 44 transfer matrix method.    

 Chapter three systematically calculated the optical conductivities and dielectric 

functions for 3d (Fe, Ni, Co, Cu), 4d (Ru, Rh, Pd, Ag), and 5d (Os, Ir, Pt, Au) transition 

metals by first-principles calculations. In the optical range, the calculated results are good 

agreement with experimental data. The edge position of the real part of diagonal optical 

conductivity for noble metals can be confirmed from the band-by-band decomposition. 

We also demonstrated the SPR reflectivity curve in the Kretschmann configuration with 

a sharp dip for noble metals corresponds to a small value of the imaginary part of the 

dielectric function. 

In chapter four, we extend the calculation of electronic structure and optical and 

MO properties of ferromagnetic/noble metal multilayers, FexCux superlattices (SLs) with 

x = 1, 2, and 3. One of the main physical quantities in magnetoplasmonic is the optical 

loss caused by the dipole-interband transitions. From calculated electronic structures of 

FexCux SLs, we find that the interband transitions responsible in the optical losses that 

can be tuned through orbital hybridization by varying the number of layers of the 

superlattices. In the visible range, FexCux SLs are found to have excellent 

magnetoplasmonic properties, indicated by negative real part of diagonal component of 

dielectric tensor and by non-zero off-diagonal component, which promise to martial 
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candidates in the MOSPR applications. In particular, we present the electronic origin in 

the optical and magneto-optical anisotropies (OA and MOA) of Fe1Cu1 SLs based on the 

band-by-band decomposition analysis.  

In chapter five, we implemented FexCux SLs to demonstrate the MOSPR system in 

the Kretschmann configuration by employing the transverse MOKE (TMOKE). Our 

results show the important role of the minimum reflectivity for the positive and negative 

applied magnetization on the strength of the TMOKE signal. The maximum slopes of 

TMOKE signals proportional to the increasing value of x. We have demonstrated the 

TMOKE signal to be sensitive to small variations in the refractive index of the gelatin. 

The calculation shows that the sensitivity of the MOSPR system for Fe3Cu3 SL is two 

order magnitude higher than the SPR system. 

Finally, this dissertation shows an enhanced sensitivity in SPR application as a 

refractive index sensor using a ferromagnetic/noble metal structure. The combination of 

materials in the magnetoplasmonic structure promises to establish plasmonic and MO 

properties, in addition to ease of fabrication. Superlattices offer the advantage that optical 

properties can be adjusted through a hybridization process of electronic properties. In 

conclusion, the methodology in this dissertation can open up new opportunities to 

understand the relationship between optical and electronic properties of the 

magnetoplasmonic system so that it can be applied in biosensor research. 
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