# 修士論文

令和3年度

# 椎体置換術が上下隣接椎間に及ぼす 生体力学的影響

三重大学大学院 工学研究科 博士前期課程 機械工学専攻 生体システム工学研究室

富永 怜

# 目次

| 1 | 章           | 緒   | 言                                         |
|---|-------------|-----|-------------------------------------------|
| 2 | 章 脊椎の構造および機 |     | 進の構造および機能                                 |
|   | 2.1         | 脊柱  | <b>惟の構成要素2</b>                            |
|   | 2.2 骨の      |     | Dバイオメカニクス ·······4                        |
|   | 2.2.1       |     | 骨組織の構造4                                   |
|   | 2.3 機能      |     | 能的脊椎単位と安定要素6                              |
|   | 2.3.1       |     | 脊椎の前方部分6                                  |
|   | 2.3.2       |     | 脊椎の後方部分                                   |
|   | 2.3.3       |     | 脊椎の靭帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |
|   | 2.4 脊柱      |     | 隹のバイオメカニクス                                |
|   | 2.4         | 4.1 | Coupled motion (Coupling)                 |
|   | 2.4.2       |     | Viscoelasticity (粘弾性) ···········10       |
|   | 2.4.3       |     | 椎間可動域(Range of motion: ROM) ····· 11      |
|   | 2.5         | 脊柱  | 隹疾患                                       |
|   | 2.5         | 5.1 | 脊椎の損傷12                                   |
|   | 2.5         | 5.2 | 脊椎疾患 ···································· |
|   | 2.5         | 5.3 | 脊椎手術 ······   14                          |
|   | 2.5.4       |     | 脊椎固定具                                     |
|   | 2.5.5       |     | 脊椎固定術 ·······   17                        |
|   | 2.5.6       |     | 脊椎固定術における隣接椎間への影響                         |
| 3 | 章           | 実懸  | · · · · · · · · · · · · · · · · · · ·     |
|   | 3.1         | 6 朝 | 由材料試験機                                    |
|   | 3.2         | 試賜  | <b>倹体の概要</b>                              |
|   | 3.2         | 2.1 | 試験体の作製                                    |
|   | 3.2.2       |     | 試験体の固定位置25                                |
|   | 3.2         | 2.3 | 初期位置の決定                                   |
|   | 3.2.4       |     | 多椎間脊椎の試験体モデル 26                           |
|   | 3.3         | 曲》  | <b>が試験</b>                                |
|   | 3.4         | 椎体  | 本変形挙動の評価パラメーター                            |
|   | 3.4         | 4.1 | 3 次元動画計測 … 32                             |
|   | 3.4.2       |     | 椎間可動域                                     |

| 4章  | 実際  | 験結果および考察            |      |
|-----|-----|---------------------|------|
| 4.1 | 各   | 椎間における変形挙動          | . 36 |
| 4.  | 1.1 | トルク規定試験による結果        | . 36 |
| 4.  | 1.2 | 角変位規定試験による結果        | · 41 |
| 4.2 | 各   | 椎間における変形挙動の考察       | • 47 |
| 4.  | 2.1 | トルク規定試験における各椎間の変形挙動 | • 47 |
| 4.  | 2.2 | 角変位規定試験における各椎間の変形挙動 | • 47 |
| 5章  | 結   | 言                   | · 48 |
| 参考之 | ケ献  | <del>`</del> `      | . 49 |

# 第1章 緒言

近年,高性能な医療機器の出現に見られるように医療技術は著しく向上し,多くの疾患の治療が可能となった.この背景には医用工学の発展があり,様々な疾患に対して工学の視点からアプローチすることはさらなる医学の発展に貢献すると考えられる.生体を構成する様々な器官の機能は力学負荷が加わった状態で維持・発揮されている.そのため,疾患の治療方法や医療機器を選択する上で,疾患に対するそれらの効果を力学的に解析することは重要である.

生体を構成する器官の1つとして脊椎がある.脊椎の役割には脊髄の保護,体幹の支持,筋肉や椎間関節を介した運動の伝達が挙げられる.脊椎を構成する安定要素には椎体,椎間板,椎間関節,棘上・棘間靭帯等があり,これらの安定要素に外傷や変性,腫瘍が生じることで,脊椎のもつ役割が十分に果たされない状態を脊椎疾患という.

脊椎疾患に対する治療法の1つに手術がある.この手術において、術野確保および除 圧術等の手術手技により靭帯や関節等の安定要素が切除される場合がある.安定要素が 切除されることで安定性が失われた脊椎に対して、脊椎固定具を用いた固定術が施され る.脊椎固定術の一つに椎体置換術がある.椎体置換術は、疾患のある椎体を除去したのち、 Cage と呼ばれる金属製のスペーサーで置換する手術であり、脊椎腫瘍や脊椎圧迫骨折など の椎体の疾患に対して施される.また、一般的に椎体置換術は Pedicle Screw and Rod system (以下、PS 固定術)が併用される. PS 固定術は椎体後方から椎弓根部へ Screw を挿入し、 それらを Rod で連結する固定術である.

PS 固定術は短期的には良好な成績を収めているが、長期的には固定隣接椎間障害の発生が報告されている[1]. 隣接椎間障害とは固定術を施した椎間に隣接する椎間においてすべり症や椎間板変性が発生することである. 隣接椎間障害に関する先行研究として、永原らは、PS 固定術は短期的には良好な臨床結果を収めているが、長期的には固定隣接椎間障害の発生が報告している[1]. また、乾らは、PS 固定術による過度な固定が固定隣接椎間およびそのさらに頭尾側の隣接椎間に影響を与えていると報告している[2]. しかしながら、椎体置換術における隣接椎間への影響は調査されていない. そのため、椎体置換術が上下隣接椎間へ及ぼす影響に関する調査が必要である.

本研究グループでも、パラレルメカニズムを採用した6軸材料試験機を使用して脊椎のバイオメカニクスに関する研究を遂行してきた[3][4][5]. しかし、椎体置換術を施した多椎間脊椎を扱うにあたり、試験機により大きな可動域が必要である. そのため、動作可動域が大きいシリアルメカニズムを採用した6軸材料試験機を新規に開発した[6][7]. 以上の背景より本研究では、椎体置換術が上下隣接椎間の変形挙動に及ぼす影響を明らかにすることを目的とし、シリアルメカニズムを有した6軸材料試験機にて、シカ屍体腰椎を用いて曲げ試験を行い、各椎間の可動域を調査した.

# 2章 脊椎の構造および機能

本章では、脊椎の解剖学的な理論について述べる.

### 2.1 脊椎の構成要素

図 2.1 に示すように、人間の脊椎は、24 個の椎骨と仙骨、および尾骨から形成され、大きく分けて頸椎、胸椎、腰椎の3部分がある. 特に腰椎は、5 つの椎骨より構成され、頭側から L1, …, L4, L5 とよばれている.

人体における脊椎の主な役割は、身体の支持と運動の伝達および軸、そして特徴的であるのが中枢神経である脊髄の保護である。図 2.2 の (a), (b) はそれぞれ脊椎の断面図と側面図を表し、その構成要素を示す. 椎骨は椎体部分と椎弓部分に大きく分けられ、主に椎体が前者の役割を,椎弓が後者の役割を果たしている. 椎弓から、棘突起、横突起、上下関節突起などが突出しており、それらの間、あるいは周囲に椎間板や各種靭帯が存在し、脊椎の安定要素を構成している<sup>[8]</sup>.

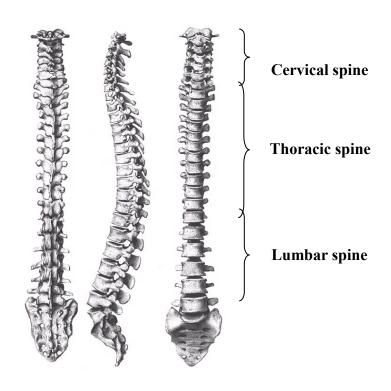
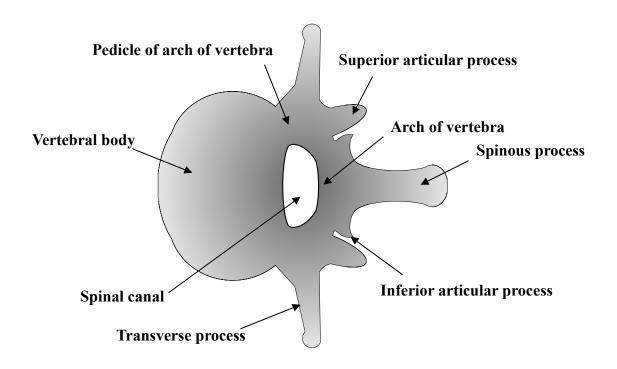
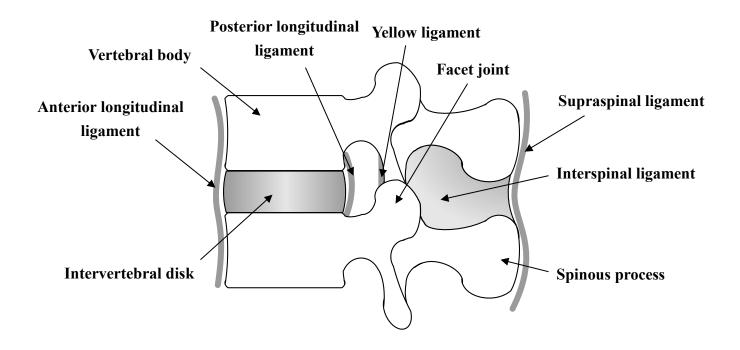





Fig. 2.1 Spine



(a) Cross section diagram.



(b) Left lateral view

Fig. 2.2 Component of spine

### 2.2 椎骨のバイオメカニクス

骨格は、生体の内部臓器を保護し、筋肉の働きを介して生体の運動に関与する. そのため、骨はきわめて独特の機械的特質を有している. 例えば、骨には自己修復機能があり、機械的要求に応じてその性状と形状を変化させることができる. 一般に、骨の密度は使用しなかった場合や、使いすぎた場合に変化することが確かめられている. また、骨折の治療後あるいは、ある種の骨折手術の後に、骨の形状が変化することも確かめられている. すなわち骨は、機械的要求に適合する能力を有するといえる.

さて、椎骨は前方要素と後方要素の2つに大きく分けられる。前方の要素としては椎体、後方の要素としては椎弓や棘突起などが含まれる。体重の支持機構としての役割は主に前方要素である椎体が担っている。椎体のみで行った圧縮試験では6000~8000Nの破壊荷重を示しており、体重を10倍した負荷にも抵抗することが可能であるといえる<sup>[9]</sup>. しかし、椎体の強度が年齢によって変化することはもちろんであり、特に40歳を超えるとその強度は減少してくる。

### 2.2.1 骨組織の構造

骨は、皮質骨と海綿骨からなる。これらの二つのタイプは、その多孔度に関してかなりの差があるといわれている[10]。多孔度とは、その骨組織における非鉱質組織を含む割合のことである。皮質骨の場合は、その多孔度は5~30%の範囲であり、海綿骨では30~90%以上とされている。ただし、多孔度の低い皮質骨と、多孔度の高い海面骨の区別はなかなか難しい。また、皮質骨は海綿骨と比較してより剛性が高い。すなわち、皮質骨は応力に対しては強いが、ひずみに対しては弱いといえる。皮質骨は、in vitroの実験では、2%以上のひずみが加わると骨折を惹起するが、海綿骨の場合は、7%を超えるまで骨折を惹起しない。というのは、海綿骨はその多孔質な構造によって、より高いエネルギー蓄積能力を有するからである[11]。

皮質骨も海綿骨も異方性,つまり外力を加える方向に依存して機械的性質が変化する材料の性質を持つ.この異方性物質は,種々の方向に負荷された場合,種々の違った機械的特性を表す.というのも骨組織は,縦軸方向と横軸方向で異なるからである.図 2.3 に示すように骨の強度は,負荷の方向でかなり変化する.骨の強度と剛性は,通常負荷が最もかかる方向において最高値を示すと考えられている[12].

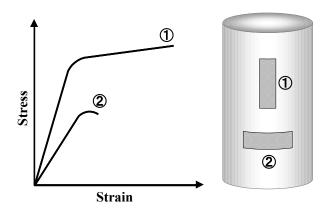



Fig. 2.3 Stress-strain diagrams of each direction of longitudinal axis and abscissa axis in cortical bone (human femur)

### 2.3 機能的脊椎単位と脊椎の安定要素

脊椎のバイオメカニクスを考えるうえで2個の椎体およびその間に介在する軟部組織を一つの機能単位とした.これを機能的脊椎単位(Functional Spinal Unit,以下,FSU)と呼ぶ.FSUを構成する要素のうち、椎体、椎間板および縦走靭帯を前方安定要素、椎弓、椎間関節、横突起、棘突起および棘上・棘間靭帯を後方安定要素と呼ぶ.

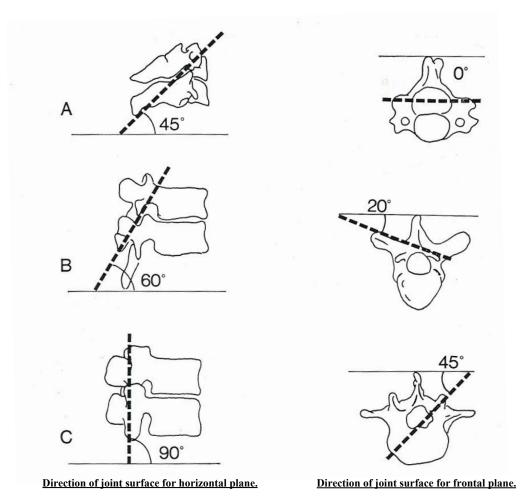
### 2.3.1 脊椎の前方部分

前方要素は脊椎における静的支持機構の中心であり、圧縮負荷の大部分が椎体と椎間板によって支持される. 椎体は、主に圧縮負荷を支持するように形作られ、上部に積み重ねられる重量が増すにつれて大きくなる. つまり、腰椎における椎体は、頸椎や胸椎と比較してより高く、かつ、より大きな横断面を持つ. 腰椎はこのようにサイズが大きいため、同部分が受けなければならないより大きな負荷を支持することが可能となる. よって、椎体の圧縮強度は頸

椎から腰椎へと下方へ進むにつれて増加し、腰椎での強度は最下段に位置する L5 に おいて 5.7kN といわれている[13].

椎間板は機械的に、また機能的に非常に重要であり、髄核および線維輪の二つの構造物からなっている. 髄核は内側部分に存在し、線維輪は外側部分に存在している. 髄核は、水を結合したグリコサミノグリカンに富むコロイド性のゲルよりなる液状の物質で、70~90%の水分量を含んでいる[14]. 線維輪は、交叉性に配列したコラーゲン線維束を持つ線維軟骨からなり、層状構造をなす. 各層の線維の方向は椎体終板に対して 30°の傾斜を持っており、このような線維束の配列は高い曲げ、および回旋負荷に抵抗することを可能にしている[15]. 椎間板の重要な部分である軟骨終板は、硝子軟骨からなり、椎体より髄核および線維輪を分離させている.

また、椎間板は日常生活動作時に、圧縮、曲げおよびねじりの組み合わせのような複雑な負荷を受けている。椎間板に切開を施した場合には、髄核が突出してくるが、これは髄核が圧縮を受けていることを示している。椎間板は椎体を離そうとするため、輪状線維と縦走靭帯に引張を生じさせている。正常な髄核は静水圧的に作用しており、負荷を受けている間でも圧力は均等に分布している[16]。それゆえ椎間板は、運動分節で静水圧的機能を備えており、椎体間でクッションとして作用し、エネルギーを蓄え、負荷を分散させている。


ヒト屍体からの正常およびやや変性した腰椎髄核における椎間板内圧の測定では,負荷を受けない椎間板での固有の圧力が 10[N/cm²]であることを示している[17]. 椎間におけるこの圧力は靭帯の力によるものである.また,圧力負荷を受けた椎間板内の圧力は,単位面積当たりにおいて外部より加えられた負荷の約1.5倍であることが示されている.このようにして,圧縮負荷は椎間板を外側に膨隆させ,そして円周張力が輪状線維に加

えられる.これに対する線維輪の引張強さは椎間板の外側で最も強くなるが,垂直方向へは 0.7~1.4MPa, 水平方向へはその約 5 倍, さらに線維方向へは水平方向の約 3 倍の強度を持つとされている<sup>[18]</sup>.しかし,変性した椎間板では,圧縮負荷が加わると上下方向の力が線維輪を通じて椎体終板に伝わるのみであり,このとき,線維輪には均等な力が加わらず,ストレス集中によって一部が破壊されやすくなる.

### 2.3.2 脊椎の後方部分

後方要素は運動分節の動きを導いており, 椎間関節の働きによるところが大きい. 椎 間関節は,一対の上下関節突起で形成されており,関節包と靭帯で囲まれた滑膜関節で ある. また, この突起の関節面は硝子様軟骨で覆われている. 椎間関節は脊椎運動のコ ントロールに最も大きく関与し、この運動方向は椎間関節の関節面の向きに依存してい る(図2.4参照).この方向は脊椎全体を通じて横断面と前額面に関連して変化する.下 部頸椎,胸椎,腰椎における椎間関節の関節面の方向を図 2.4 に示す.最上部にある二 つの頚椎の関節は水平方向に向いているが、それら二つを除いた頚椎における椎間関節 の関節面は水平面に対して 45°傾き、前額面に対しては平行である。これらの頚椎椎間 関節の配列は屈曲,伸展,側屈および回旋を許容している.胸椎の椎間関節面は水平面 に対して 60°, 前額面に対して 20°傾いている. この配列は側屈, 回旋, そしてある程度 の屈曲および伸展を許容している. 腰椎部での椎間関節は水平面に対して直角, 前額面 に対して 45°の傾きを持っている[19]. この配列は屈曲, 伸展および側屈を許容するが, 回旋に関してはほとんど許容できない.腰仙部の椎間関節は腰椎部の椎間関節と異なっ ている.この部位での関節面の方向と形状はある程度の回旋を許容している[20].ここで 挙げられた値はおおよそのものであり、関節面の向きは一個体の中でも個体間でも変化 があることに注意しなければならない.

関節面は以前には、運動分節における運動のガイドに主な意味があり、負荷を支持する機能はわずかであると考えられていた.しかし、近年の研究では、それらの負荷支持機能はさらに複雑であることが示唆されてきた.脊椎の位置によって、関節面と椎間板との間の負荷分担は変化する.中でも関節面の負荷支持は 0 から全負荷の約 30%であり、その負荷支持機能は脊椎が過伸展位にあるとき、特に明瞭であることが示されている[21].また、せん断力に抵抗するためには椎弓と椎間関節が重要であり、このことは脊椎分離症や関節欠損の状態で椎体が前方にずれる危険があることから具体的に示されている.



 $A: Cervical\ spine.\ Joint\ surface\ inclines\ at\ horizontal\ plane\ by\ 45^\circ\quad ,\ and\ is\ parallel\ to\ the\ frontal\ plane.$   $B: Thoracic\ spine.\ Joint\ surface\ inclines\ at\ horizontal\ plane\ by\ 60^\circ\quad ,\ and\ incline\ at\ the\ frontal\ plane\ by\ 20^\circ\quad .$   $C: Lumbar\ spine.\ Joint\ surface\ inclines\ at\ horizontal\ plane\ by\ 90^\circ\quad ,\ and\ incline\ at\ the\ surface\ plane\ by\ 45^\circ\quad .$ 

Fig.2.4 Direction of joint surface of facet joint

### 2.3.3 脊椎の靭帯

脊椎の周囲には、前縦、後縦、左横突起間、右横突起間、黄色、棘間、棘上の7靭帯が存在する。これらは脊椎の内因的安定性の一部を担っており、多くは主として同一方向のコラーゲン線維の東から構成される。これらは繊維方向と同じ方向への引っ張りに対しては強い抵抗能力を持つが、一方で、圧縮に対しては曲がってしわがよるため、その意味ではゴムバンドに似ているといわれる。しかしながら、椎弓を縦に連結する黄色靭帯は、生体の中でも弾性線維を高率に含んでいる例外的なものである。黄色靭帯の高い弾性は、脊椎の引張時に黄色靭帯が伸張し、圧縮時には短縮することを可能にしており、靭帯が脊柱間内へ突出することがない。このように、黄色靭帯は常に一定の緊張を保っている。また、椎間板にある運動中心と黄色靭帯との間の距離は、椎間板に予め圧力を与えることになり、椎間板内圧を作り出す一因となっている。

靭帯の効果としては、脊椎の動きに順応して椎体間の関係を良好に保ち、筋のエネルギー消費を少なくすることや脊椎の運動を一定限度に制御することで、脊髄を保護すること、さらに、急激な外力を吸収し、脊椎を護ることなどが挙げられる[22]。また、引張負荷を一つの椎体から他の椎体へと伝達し、少ない抵抗でなされねばならない生理学的運動範囲内での、滑らかな動きを可能にするのも靭帯の持つ機能の一つである。

### 2.4 脊椎のバイオメカニクス

### 2.4.1 Coupled motion (Coupling)

生体内においては、例えば単軸引張や圧縮などの純粋な力やトルクが加わることはなく、引張とねじりなどといったように複合された力が加わる。このように、一軸における主運動(main motion)である並進や回旋には、他軸に関する並進や回旋が付随して生じることが通常であり、この付随した運動のことを Coupled motion という[23]。例えば、Miles と Sullivan は腰椎において、側屈運動には棘突起が側屈した方向に向かう回旋運動を伴うことを報告している[23]。

### 2.4.2 Viscoelasticity

FSU (機能的脊椎単位)を構成する靭帯や椎間板組織の多くは、コラーゲン線維と弾性線維からなり、粘弾性を有する. 粘弾性を有する脊椎は、Creep、Hysteresis などの現象を呈する.

- Creep: 負荷荷重一定のもとで、時間とともに変位が増加する現象である. 脊椎における粘弾性は、変位の速度が次第に減少し、数十分から数時間で最大変位に達するという特徴を有する.
- **Hysteresis**: 粘弾性を有する物質に負荷,および除荷を行うと,負荷時と除荷時とでは異なった負荷一変位曲線を示す.この現象を Hysteresis といい,エネルギーの喪失を示す.図 2.5 は,FSU を用いた圧縮試験による負荷一変位曲線である.変位は圧縮方向を正とした.

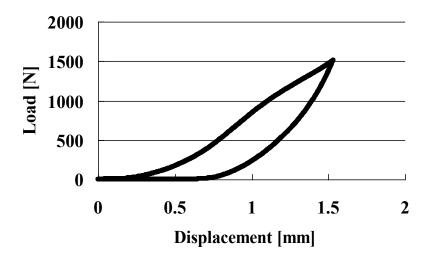



Fig. 2.5 Load-displacement curve indicates Hysteresis

### 2.4.3 椎間可動域 (Range of motion: ROM)

図 2.6 に示すように FSU における負荷 0 での変位の大きさを Panjabi らは Neutral zone (NZ) と称した. NZ を始点として,負荷一変位曲線は Elastic zone (EZ) に入り,NZ と EZ を合わせたのが可動域(Range of motion: ROM)である $[^{24]}$ . NZ では,椎間運動は小さい力で生じ,負荷と除荷を繰り返すと,Creep により NZ および ROM は漸増する $[^{25][^{26]}}$ . 一般に,安定要素に損傷を加えると,NZ が大きくなるといわれ、臨床において NZ を把握することは極めて重要である.なお,図 2.6 は FSU に対し,前屈方向の曲げトルクを負,後屈方向の曲げトルクを正とした場合における,曲げトルクと角変位の関係を表している.

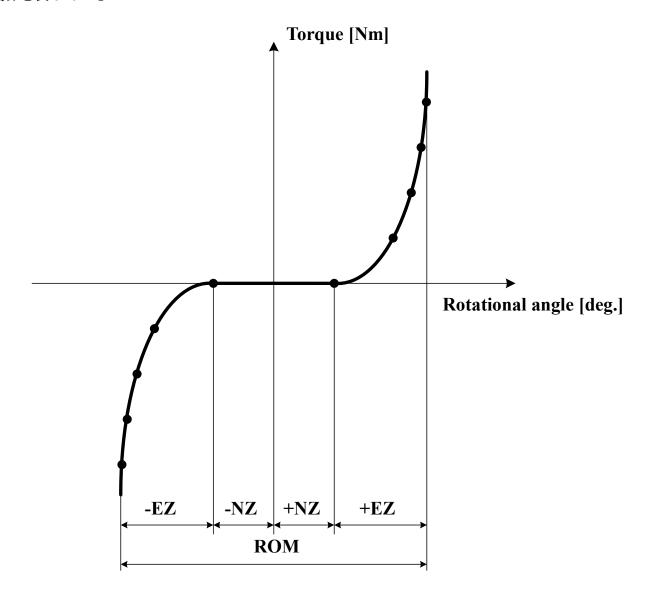



Fig. 2.6 Relationship between torque and rotational angle of spine

### 2.5 脊椎疾患

脊椎はそれを取り巻く安定要素に対して、変性や破壊などの損傷が加わると不安定になり機能障害を起こす.ここでは、不安定の原因となる脊椎の損傷について簡単に述べる.

### 2.5.1 脊椎の損傷

脊椎の損傷は大きく2つに分類され、その1つは骨折や腫瘍などの疾患によるものであり、もう一方はそれを治療するための手術手技によるものである.後者は手術をする際に、視野の妨げとなる靭帯や関節などの安定要素を、やむなく切除することによって生じる損傷である.

### 2.5.2 脊椎疾患

表 2.1 に、成因別に分類した脊椎における代表的疾患を示す。その中で、脊椎分離すべり症や脊椎腫瘍は前者に相当する症例であり、脊柱管狭窄症は後者に相当する、すなわち手術の際にやむを得ず損傷が加わる症例である。これら代表例について、以下に説明するとともに、次項にて、その代表的な治療法について簡単な説明を付け加える。

### • 脊椎圧迫骨折

脊椎圧迫骨折とは骨粗鬆症性椎体骨折とも呼ばれ、主な原因は骨粗鬆症による骨の脆弱化である. 脆弱化した骨が上半身の重さに耐えきれず押しつぶされるように骨折し、それに伴い寝返りの際や、起床、体動時に痛みが生じる疾患である. 治療方法としては、症状の軽い場合であればコルセットや薬物療法が選択されるが、症状が重い場合には骨折した骨を除去し、スペーサーで置き換える椎体置換術を行う.

### ・ 脊椎分離すべり症

脊椎分離症とは、椎骨の後方要素である椎弓部分の関節突起間部に骨欠損(分離)がある状態で、それに起因して腰痛や下肢痛が生じる疾患である。また、脊椎すべり症とは、上下の椎体がその間にある椎間板の部分ですべりの現象を起こしている状態で、それに起因する同様の臨床症状がみられる疾患である[27][28]。治療方法としては、症状の軽い場合であればコルセットや薬物療法が選択されるが、症状が重い場合は椎弓の切除を行い、圧迫されている神経の除圧を行うため、手術の行われた椎間に不安定性が生じる。

### • 脊椎腫瘍

脊椎腫瘍は原発性脊椎腫瘍と転移性脊椎腫瘍の二つに区別される. 原発性脊椎腫瘍は 病巣が脊椎自体から発生する疾患であり, 転移性脊椎腫瘍は病巣が他の器官から脊椎に 転移することによって発生する疾患である. 脊椎腫瘍が脊髄を圧迫することによって疼 痛や麻痺が生じる. 治療方法としては, 腫瘍ができた椎骨を摘出することで, 神経除圧 術を行う<sup>[29]</sup>.

### • 脊柱管狭窄症

脊椎の中心にある脊柱管は、トンネルのような管になっており、脊髄や腰部の神経を保護している。脊柱管狭窄症とは、この脊柱管が狭くなることにより、中にある神経が圧迫されて足や腰にしびれや痛み、麻痺が生じる疾患である。原因として、1.先天的なもの、2.脊椎すべり症などの病気に伴うもの、3.椎間板などの老化により起こるものなどが挙げられ、症状が軽い場合には薬物療法やコルセットの装着などの保存的治療を行うが、症状が重い場合には椎弓の切除を行い、圧迫されている神経の除圧をして、脊柱管を広げる手術的治療を行う。

| Ta                 | ble. 2.1 Typical disease of spine. |                           |
|--------------------|------------------------------------|---------------------------|
| 筋・筋膜症のもの           | 脊椎の老化に起因                           | 外傷によるもの                   |
| 基礎因子による現象としての腰痛    | 椎間関節症<br>骨粗鬆症<br>脊柱管狭窄所            | 腰椎圧迫骨折<br>脊椎すべり症<br>脊椎分離症 |
| 椎間板に起因             | 腰椎の構造に起因                           | 内臓諸疾患に起因                  |
| 椎間板ヘルニア<br>シュモール結節 | 腰椎移行椎<br>二分脊椎<br>側彎症               | 性器の炎症<br>自律神経失調症          |
| 炎症によるもの            | 腫瘍によるもの                            | その他                       |
| 結核性脊椎炎<br>椎間板炎     | 脊椎骨の腫瘍<br>脊髄腫瘍                     | 心因性のため                    |

### 2.5.3 脊椎手術

前項で述べたような疾患に対して,一般的には,薬物療法や理学療法などの保存的治療を十分に行う.しかし,それらの効果がみられない場合は外科的治療である手術を行うことになる.その手術法として以下の方法が挙げられる.

### • 除圧術(神経除圧術)

除圧術の主な目的は、圧迫された神経への圧力を取り除いて臨床症状を緩和することである.除圧の方法には、神経を圧迫している部分の骨を取り除く方法や、骨をずらして神経の通る空間を広げる方法などがある.また、脊椎や脊髄の腫瘍が圧迫の原因になっている場合は、可能な限りそれを取り除く.

### 固定術

除圧だけでは症状が再発する可能性がある場合や、骨を取り除いたことで脊椎が不安定になってしまう場合は、除圧した後に、患者自身の骨盤などから骨をとって移植することにより、不安定な椎骨と椎骨を一塊に骨癒合する固定術を行う。固定の際、移植した骨が骨癒合するまで数ヶ月の月日が必要となるため、手術後の早期離床や早期の社会復帰を目的として、脊椎固定器具(Spinal instrumentation)を用い固定の補強を行う。

また、これら除圧術と固定術は、併用して行われることがあり、その手術法を脊椎固定術と呼ぶ. 脊椎固定術は前方法固定術と後方法固定術に大別される. 前方法固定術として、前方進入腰椎椎体間固定術(Anterior Lumbar Interbody Fusion; ALIF)があり、後方法固定術としては、後側方腰椎固定術(Posterior Lumbar Interbody Fusion; PLF)、後方進入腰椎椎体間固定術(Posterior Lumbar Interbody Fusion; PLIF)、経椎間孔進入椎体間固定術(Transforaminal Lumbar Interbody Fusion; TLIF)がある. 適応される疾患については、各術者によって多少異なるが、術者はそれぞれの術式の利点、欠点を十分に理解したうえで選択している.

### 2.5.4 脊椎固定具 (Spinal instrumentation)

疾患や手術手技による損傷などによって脊椎に不安定性が生じた場合,程度によっては脊椎固定具を用いて脊椎固定術を施すことがある.これは,安定性を失った脊椎に対して,配列の維持や変形の矯正を行うことで,早期に日常生活に復帰できるように力学的安定性を作り出し,骨融合が起こるまでの間,脊椎を保護することを目的としている.脊椎固定具にはプレート,ロッド,スクリュー,フック,およびワイヤなどが使用されており,現在では様々な種類の脊椎固定具が存在する[30].

### • Pedicle screw and rod (PS)

Pedicle screw and rod (以下 PS、図 2.7 参照) は、脊椎固定具の中でも最も使用頻度が高く、後方から進入して椎弓根部へスクリューを挿入し、それらをロッドで連結することにより安定性を確保する方法である.

### • 椎体置換術用 Cage

椎体置換術用 Cage (図 2.8 参照) とは、脊椎腫瘍や脊椎圧迫骨折などの疾患に対して使用される金属製のスペーサーのことである。疾患のある骨を除去し、このスペーサーを人工椎体として挿入することにより、神経の間接的な除圧が期待できる。また、固定力の上昇のために、PS 固定術も併用される。椎体置換術用 Cage を用いた固定術の代表例として、椎体置換術がある<sup>[31]</sup>。

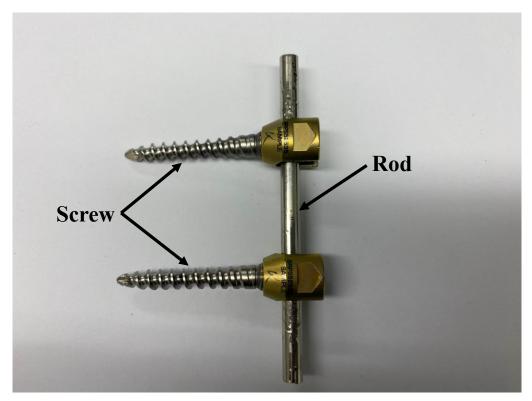



Fig. 2.7 Pedicle screw and rod system



Fig. 2.8 Cage (T2 Stratosphere, Medtronic)

### 2.5.5 脊椎固定術

本研究では、シカ屍体腰椎を用い、損傷モデル、固定モデルを作製した。その際、PS および Cage を用いた椎体置換術という実際に行われている手術法を基にモデル化を行った。そこで、以下に脊椎固定術における手術方法について簡単に説明する。

### • Pedicle screw and rod system (PS 固定術)

この手術法は、脊椎疾患に対して最もよく行われている一般的な脊椎固定術であり、 主に神経を圧迫している部分の骨を取り除く除圧術が必要となる疾患に対して行われ る.手術の際、各脊椎の安定要素をやむなく切除しなければいけないため、除圧後、脊 椎が不安定になり、PSによる固定術が行われる.

実際の手術手順は、まず背中側から切開し、筋肉などの組織を掻き分け、疾患部の脊椎に到達する。その後、圧迫されている神経を除圧するため、神経を取り巻く棘上・棘間靭帯や左右の椎間関節などの安定要素を取り除く。図 2.9 に示すように、除圧後、不安定になった椎間の上下椎弓に対して、後方から左右 2 本ずつの計 4 本のスクリューを挿入し、それらスクリューにロッドを通し、左右両側を PS 固定する.

### • 椎体置換術

椎体置換術とは,経皮的後弯矯正術と同様に脊椎腫瘍や脊椎圧迫骨折に対して行われる固定術である.

実際の手術手順は、側腹部を 3~4 cm 程度切開し、疾患のある骨を除去した後、除去してできた椎体内の空間に椎体置換術用 Cage とよばれる金属製のスペーサーの挿入と自家骨移植を行い、後方より PS 固定術を併用し固定を行う、術後の合併症の軽減や低侵襲による術後の早期回復が期待される手術である.

# Preoperative status Postoperative status Screw Rod

Fig. 2.9 X-ray photograph of spinal fusion with pedicle screw and rod system

### 2.5.6 脊椎固定術における隣接椎間への影響

PS 固定術は、一般に短期の臨床成績は良好であるが、長期成績においては隣接椎間の椎間板変性やすべり症など、術後の機能障害発生が報告されている[32][33][34]. 森らは、腰椎変性すべり症に対する Pedicle Screw 併用後側方固定術後 9 年以上経過し、直接検診した 31 例(男 10 例、女 21 例、平均年齢 59.8 歳)中、再手術を要したものが 6 例、再手術までには至らなかったものの固定隣接高位に関与した症状が発現したものが 7 例であったと報告している. また、固定隣接椎間だけではなくその頭尾側の椎間でも隣接椎間障害の発生が報告されている[2].

# 第3章 実験概要

本研究では、シカ屍体腰椎の多椎間脊椎(L1-L6)に対して前後屈方向への曲げ試験を行い、その各椎体の変形挙動について調査した.本章では、使用した試験機および試験体、実験内容の詳細を述べる.

### 3.1 6 軸材料試験機

域が再現できる.

2章にて述べたように、脊椎は3つの軸における並進および回旋運動を有するため、 自由度は6自由度であり、その変形挙動を解析するためには6自由度すべてのカ/トル クおよび変位/角変位を計測・制御可能な試験機が必要不可欠である。さらに、多椎間 脊椎を試験する上では、動作領域が大きいことが必要となる。本章では、脊椎の力学的 解析用に新規に構築した6軸材料試験機の概要と精度について紹介する。

脊椎試料における 6 軸方向の力/トルクおよび変位/角変位を制御するためには、多軸ロボットを用いる方法が考えられる. 多軸ロボットには主にシリアルメカニズム (図 3.1) とパラレルメカニズム (図 3.2) があり、それぞれの特徴を表 3.1 に示す. 両機構の特徴は、相対性を有している. このことは、どちらの機構が優れているということではなく、これらの特徴を踏まえて使用条件に合わせて機構を選択することが重要である. パラレルメカニズムとは 6 本の駆動源を独立して制御することにより、空間中で任意の 6 自由度運動を生成可能とする多自由度ロボット機構の一種である [35]. その特徴として、手先の等方性に優れ、高精度高負荷作業に向いている. 次に、シリアルメカニズムとは多関節型ロボット機構のことをいい、本体基礎部からロボット先端部まで複数のリンクで直列に結合されている構造のことである [35]. また、リンクの結合部に回転角度を

調節できる回転モータや,伸縮を調節できる直動アクチュエータを用いることで,被動 部材の位置や姿勢を変化させることができ,駆動源が連結していることから大きな可動

往来,当研究室では、パラレルメカニズムを有した 6 軸材料試験機を使用してきた[3] [4][5]. しかし、本研究では多椎間脊椎を扱うにあたり試験機の可動域が大きいことが必要となる.以上より、本研究では動作領域が大きいシリアルメカニズムを採用した.シリアルメカニズムを有した 6 軸材料試験機には、デンソーウェーブ社製のロボット (VS-087A4-A) を用い、ワコーテック社製 (WEP-6A500-10-RCD-B) の力覚センサを用いた.なお、図 3.3、表 3.2 に本研究で用いたシリアルメカニズムを有した 6 軸材料試験機(以下、新 6 軸試験機)の詳細を示す.

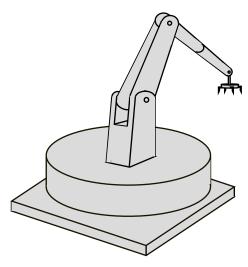





Fig. 3.1 Serial mechanism

Fig. 3.2 Parallel mechanism

Table 3.1 Features of serial mechanism and parallel mechanism

| 機構      | シリアルメカニズム | パラレルメカニズム |
|---------|-----------|-----------|
| アクチュエータ | 直列        | 並列        |
| 精度      | 低い        | 高い        |
| 出力比     | 小さい       | 大きい       |
| 動作領域    | 大きい       | 小さい       |
| 順運動     | 容易        | 困難        |
| 逆運動     | 困難        | 容易        |
| リンク誤差   | 累積        | 平均化       |
| 手先特性    | 異方的       | 等方的       |
| 部品の共通化  | 困難        | 容易        |

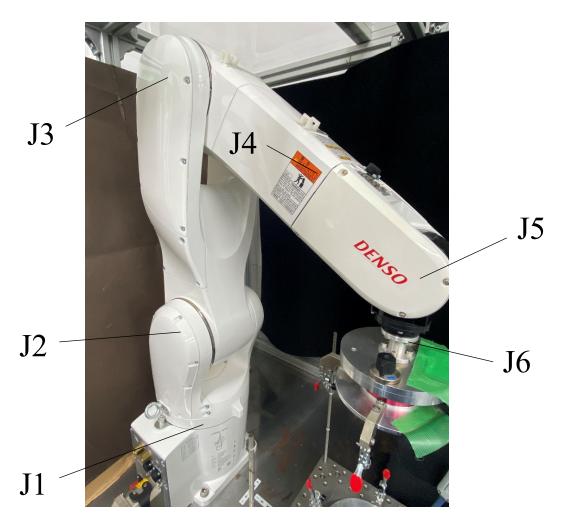



Fig. 3.3 Six-axis testing machine with a serial mechanism

Table 3.2 Range of movement of the testing machine

|    | 正方向[deg.] | 負方向[deg.] |
|----|-----------|-----------|
| J1 | 170       | -170      |
| J2 | 135       | -100      |
| J3 | 153       | -136      |
| J4 | 270       | -270      |
| J5 | 120       | -120      |
| J6 | 360       | -360      |

### 3.2 試験体の概要

試験体には、獣害対策として狩猟され、食肉に供されたシカ屍体腰椎5椎間(L1-L6)を6体用いた.なお、試験体は余分な筋肉、脂肪などを取り除き、脊椎の安定要素である椎間板、椎間関節、棘上・棘間靭帯などを残した状態を正常状態とした.

### 3.2.1 試験体の作製

試験体の作製から試験機の取り付けまでを以下の手順で行った. なお,本研究において PS を使用するにあたり, PS と歯科用レジンの干渉を防ぎ,より正確に Screw を椎弓に挿入するために,手順(1)の段階であらかじめ Screw を挿入した. また,本研究で取り扱う負荷の範囲では椎体を剛体として取り扱い,この作業による試験体の運動特性への影響はないと考える.

- (1) -30° にて冷凍保存していたシカ屍体腰椎を自然解凍し、内的安定要素以外の 余分な筋肉や脂肪を除去した後、L1-L6 の多椎間脊椎を切り取る.
- (2) 試験体と試験機に固定するために用いる歯科用レジン(オストロンⅡ;株式会社シージー社製)との間のすべりやずれを防止する目的で, L1 および L6 椎体にネジを挿入する(図 3.4).
- (3) 試験体取付冶具に歯科用レジンを盛り、L1 および L6 椎体を歯科用レジンに て固定し、室温にて歯科用レジンを硬化させる.
- (4) 試験体を試験機に取り付ける (図 3.5).



Fig. 3.4 Specimen after screw insertion to vertebral body

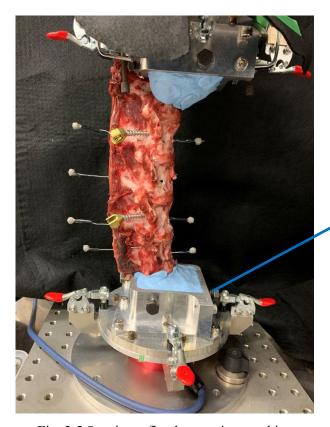



Fig. 3.5 Specimen fixed on testing machine

Fixed jig

### 3.2.2 試験体の固定位置

本研究では、治具に試験体を固定する際の試験体の位置を次のように定めた (図 3.6). なお、多椎間 (L1-L6) では自然に湾曲していることから、中間椎体である L3-L4 を基準とした.

・前方方向:脊柱管の前方部分を冶具の中心線と合わせる.

・左右方向:椎体の正中矢状面を冶具の中心線と合わせる.

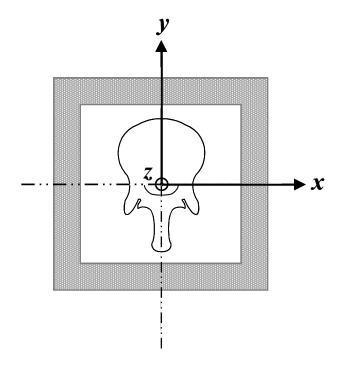



Fig. 3.6 Fixed position of specimen to jig

### 3.2.3 初期位置の決定

本研究では、多椎間脊椎の無負荷時における姿勢を初期姿勢と定義し、その際の試験機へッド位置(各軸における座標と角度)を実験開始位置とした。試験体には、試験機への取り付け時に治具の重みや自重などによって負荷が加わる。それらを力覚センサによって各軸方向の力と各軸回りのトルクとして計測し、制御系にフィードバックする。そして、力制御を用いてすべての力およびトルクが0になるように変位を許容することで、試験体に対して全軸無負荷の状態を再現した。

### 3.2.4 多椎間脊椎の試験体モデル

本研究では、同一試験体に対して段階的に以下の5つの試験体モデルを作製し、変形挙動の解析を行った、図3.7に各モデルの模式図、図3.8に各モデルの写真を示す.

### (a) 正常モデル (図 3.7(a)) (図 3.8(a))

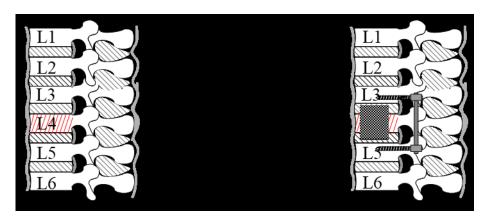
脊椎の内的安定要素である椎間板,椎間関節,棘上・棘間靭帯などを残したモデル.

- (b) Damage1 モデル(図 3.7(b))(図 3.8(b))L3/L5 を責任椎間とし、L4 椎体をドリルで全除去したモデル。
- (c) Cage+PS1 モデル (図 3.7(c)) (図 3.8(c))

Damage1 モデルに対し、除去した L4 椎体部に Cage を挿入し、L3/L5 間に PS 固定術を施したモデル.

(d) Damage2 モデル (図 3.7(d))

Damagel モデルに加え、両側の椎間関節を全切除したモデル.


(e) Cage+PS2 モデル (図 3.7(e))

Damage2 モデルに対し、除去した L4 椎体部に Cage を挿入し、L3/L5 間に PS 固定術を施したモデル.

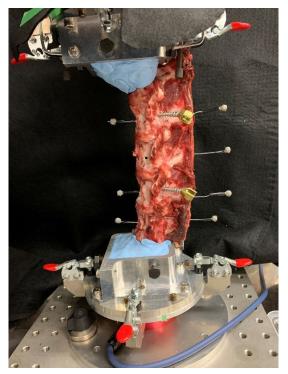

また、本研究で用いたモデルは疾患および手術手技を想定したものである。疾患の程度や箇所により医師の判断で術野確保のために椎間関節を損傷させることがある。Damage2 モデルにおける椎間関節への損傷は、疾患に対して視野の拡大と神経の圧迫を回避する術式を想定したものである。



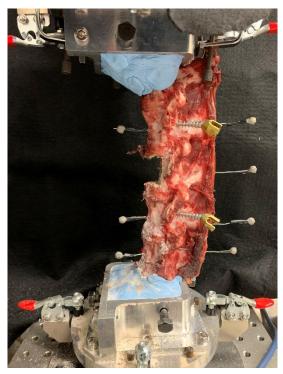

(a) Intact model



(b) Damage1 model







(d) Damage2 model

(e) Cage+PS2 model

Fig. 3.7 Experimental models



(a) intact models



(b) Damage1 models

Fig. 3.8 Picture of experimental models



(c) Cage+PS1 models

Fig. 3.8 Picture of experimental models

### 3.3 曲げ試験

各モデルに対して、図 3.9 に示すように前後屈方向への曲げ試験を行った.曲げ試験は、トルクを規定したトルク規定試験と角変位を規定した角変位規定試験を行った.トルク規定試験における負荷トルクは脊椎の変形挙動において NZ から EZ への移行が確認されるよう 3 Nm とした.また、角変位規定試験はトルク規定試験により得られた正常モデルの最大角変位に規定した.全ての試験において、曲げ速度は脊椎の粘弾性特性が現れないよう 0.1 deg./sec とした.そして、試験時の上位椎体の変位・角変位および各軸に発生する力・トルクをサンプリング周期 5 Hz にて記録した.各試験は連続的に 2 回試験し、2 回目の負荷によって得られたトルクー回転角度曲線における最大角変位を椎間可動域とした.また、図 3.10 に示すように 2 次元平面内の純粋な曲げを行うために自由度は 3 自由度とした.なお、統計検定法には関連 2 群の差の検定である paired t testを用い、p<0.05 を有意差ありと判定した.

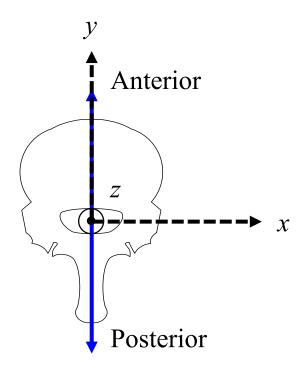



Fig. 3.9 Schematic representation of bending direction

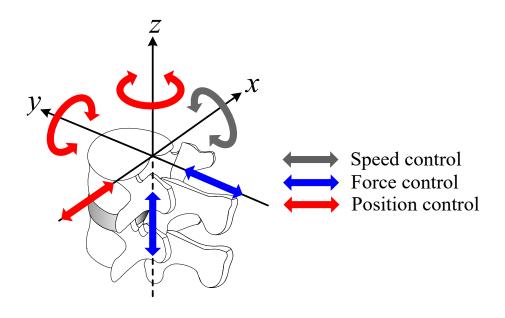



Fig. 3.10 Condition of bending test for flexion and extension

### 3.4 椎体変形挙動の評価パラメーター

### 3.4.1 3 次元動画計測

本研究では、多椎間脊椎における各椎間の ROM (椎間可動域) を計測するために、 3 次元動画計測システムを用いた. 以下にその詳細を示す.

図 3.11 に示すように L4 椎体を除く L2-L5 椎体に 1mm のドリルで穴を開け、各椎体に 3 次元動画計測用のマーカーを 2 箇所ずつ計 6 箇所上下治具に 2 箇所ずつ計 4 箇所の総計 10 箇所取り付け、図 3.12 に示す解析手順にて 3 次元動画計測を行った。また、動画撮影にはデジタルビデオカメラ HDR-XR350V(sony 製)を 2 台用い、記録方式 AVCHD(1080/60i)、有効画素数約 143 万画素にて行った。そして、図 3.13 に示すように、試験機の x 軸方向から±45° 開いた位置にそれぞれデジタルビデオカメラを設置し、新 6 軸試験機の正面から撮影した。また、デジタルビデオカメラの絞り値を大きく設定し、さらに録画範囲の周囲に暗幕を付けることで、反射テープを貼りつけたマーカーを引き立たせる環境を作った。これにより、3 次元動画計測ソフトによる 2 値化においてマーカーの抽出を容易にし、計測精度の向上を図った。

3 次元動画解析ソフトには Move-tr/3D (ライブラリー製) を用いた.このソフトは,一定の時間間隔で連続的に取り込まれた画像から,追跡したいマーカーを指定すると,指定したマーカーを自動追跡することが可能である.また,自動追跡を行う際に,画像はモノクロに変換され 256 段階の明るさ (輝度) に対して一定のしきい値を選択する.本研究では,計測ターゲットである治具および試験体上のマーカーとそれら以外の部分に対し,適当なしきい値を選択することで 2 値化させた (図 3.14).回転角度の算出には,自動追跡した上部マーカーの 2 点を結ぶ直線と下部マーカーの 2 点を結ぶ直線の 2直線間の角度を計測することで回転角度を算出した.

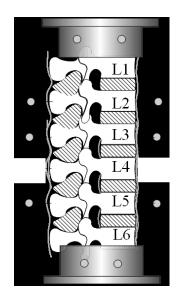



Fig. 3.11 Position of markers for measurement of spinal deformation

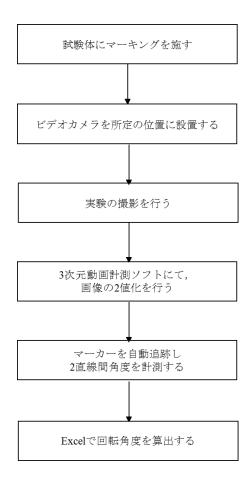



Fig. 3.12 Analytical procedure

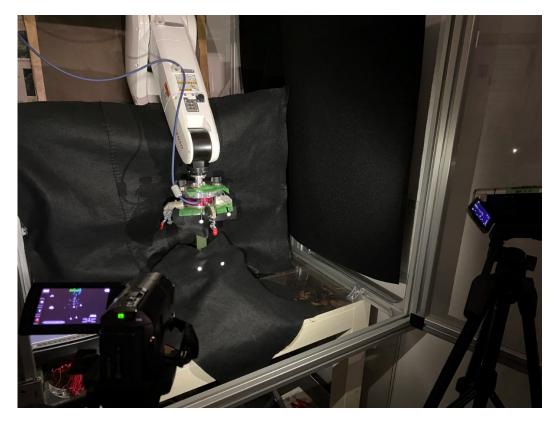



Fig. 3.13 Conditions of recording





Fig. 3.14 Select the suitable threshold

### 3.4.2 椎間可動域

図 3.15 に前後屈方向への曲げ試験におけるトルク―回転角度曲線の模式図を示す. 同図において,正のトルクは前屈方向,負のトルクは後屈方向を示す.本研究では,多 椎間脊椎における各椎間の変形挙動の評価を行うため,前屈方向のNZ,EZと後屈方向 のNZ,EZの全ての和をROMとして定義し,評価パラメーターとした.

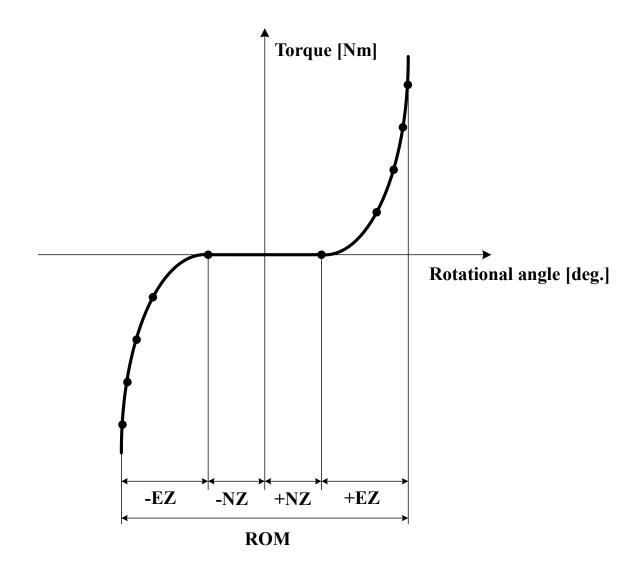



Fig. 3.15 Torque and rotational angle curve of spine

# 第4章 実験結果および考察

本章では,第3章で説明した実験方法により得られた実験結果,およびその考察を述べる.

### 4.1 各椎間における変形挙動

#### 4.1.1 トルク規定試験による結果


図 4.1(a)~(d)にトルク規定試験から得られた各椎間における ROM を示す. これらのグラフの縦軸は ROM[deg.]を示す. グラフの値は 6 体の平均値であり, エラーバーは標準偏差を示す. また, 責任椎間は L3/L5 であり, 隣接椎間は L1/L2, L2/L3, L5/L6 である.

図 4.1(c)より、Cage+PS1 モデルの責任椎間の ROM は Damage1 モデルと比較して 8.3deg., 正常モデルと比較して 4.3deg.減少した. また、Cage+PS2 モデルの責任椎間の ROM は Damage2 モデルと比較して 11.1deg., 正常モデルと比較して 6.4deg.減少した. 一方で、図 4.1(a)、(b)、(d)より、隣接椎間の ROM は全てのモデルにおいて同程度の値を示した.

続いて、図 4.2(a)、(b)にトルク規定試験から得られた各椎間における ROM 変化率を示す.これらのグラフの縦軸は ROM 変化率[%]を示し、(a)は Damage1 モデルに対する Cage+PS1 モデルの ROM 変化率であり、(b)は Damage2 モデルに対する Cage+PS2 モデルの ROM 変化率である.グラフの値は 6 体の平均値であり,エラーバーは標準偏差を示す.

図 4.2(a)より,Cage+PS1 モデルの責任椎間(L3/L5)の ROM 変化率(平均±標準偏差)は, $-18.8\pm3.5$ %であったのに対して,隣接椎間のROM変化率はL1/L2で $-1.9\pm1.2$ %,L2/L3で $-1.1\pm1.5$ %,L5/L6で  $2.9\pm2.2$ %であった.図 4.2 (b)より,Cage+PS2 モデルの責任椎間の ROM 変化率は,L3/L4で $-40.1\pm7.1$ %であったのに対して,隣接椎間の ROM変化率は L1/L2で $-2.1\pm1.1$ %,L2/L3で $-3.4\pm2.6$ %,L5/L6で $-2.2\pm2.5$ %であった.

次に、図 4.3 にトルク規定試験において試験機から得られた、トルク―回転角度曲線の代表例を示す。同図において、縦軸はトルク[Nm]を示し、横軸は最下位椎体に対する最上位椎体の角変位[deg.]を示す。また、青色は正常モデル、赤色は Cage+PS1 モデル、緑色は Cage+PS2 モデルをそれぞれ示す。この図より、Cage+PS2 モデル、Cage+PS1 モデル、正常モデルの順に回転角度が小さいことが示された。



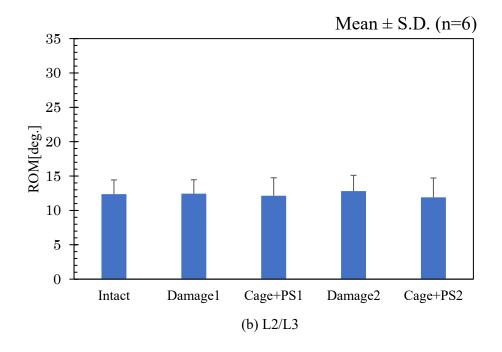



Fig. 4.1 ROM of each segment in torque test



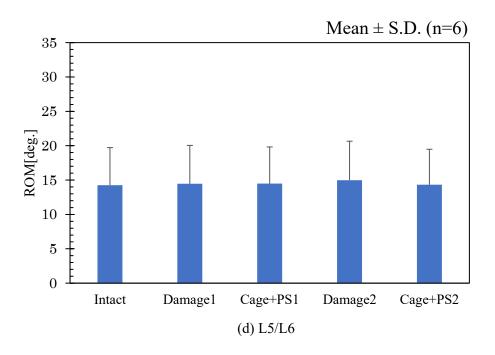
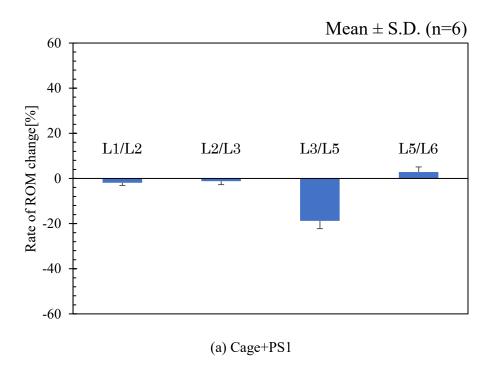




Fig. 4.1 ROM of each segment in torque test



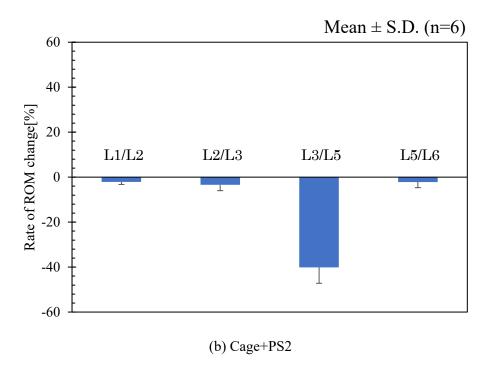



Fig. 4.2 Rate of ROM of change of each segment in torque test

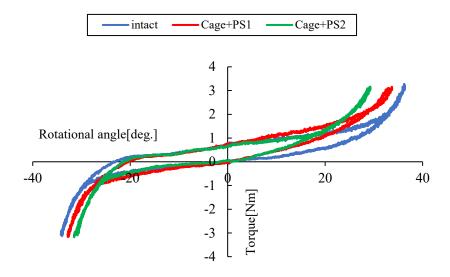
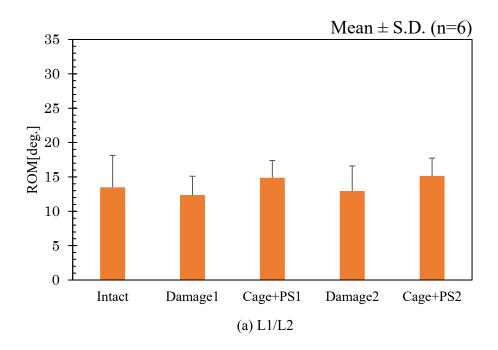



Fig. 4.3 Torque-rotational angle curve of each model

#### 4.1.2 角変位規定試験による結果

図 4.4(a)~(d)亿角変位規定試験から得られた各椎間における ROM を示す. これらのグラフの縦軸は ROM[deg.]を示す. グラフの値は 6 体の平均値であり, エラーバーは標準偏差を示す. また, 責任椎間は L3/L5 であり, 隣接椎間は L1/L2, L2/L3, L5/L6 である.


図 4.4(c)より、Cage+PS1 モデルの責任椎間の ROM は Damage1 モデルと比較して、5.1deg., 正常モデルと比較して 2.5deg.減少した. また、Cage+PS2 モデルの責任椎間の ROM は Damage2 モデルと比較して 9.1deg., 正常モデルと比較して 5.5deg.減少した. 図 4.4(a), (b), (d)より、Cage+PS1 モデルの ROM は正常モデルの ROM と比較して L1/L2で 1.4deg., L2/L3で 0.8deg., L5/L6で 1.6deg.増加した. 同様に、Cage+PS2 モデルの ROM は正常モデルの ROM と比較して L1/L2で 1.8deg., L2/L3で 2.0deg., L5/L6で 3.0deg.増加した.

続いて、図 4.5(a)、(b)に角変位規定試験から得られた各椎間における ROM 変化率を示す.これらのグラフの縦軸は ROM 変化率[%]を示し、(a)は Damage1 モデルに対する Cage+PS1 モデルの ROM 変化率であり、(b)は Damage2 モデルに対する Cage+PS2 モデルの ROM 変化率である.グラフの値は 6 体の平均値であり,エラーバーは標準偏差を示す.

図 4.5(a)より、Cage+PS1 モデルの責任椎間の ROM 変化率(平均±標準偏差)は、 $-29.5\pm5.7$ %であり、隣接椎間の ROM 変化率は L1/L2 で  $24.7\pm10.5$ %、L2/L3 で  $17.2\pm2.5$ %、L5/L6 で  $16.4\pm1.4$ %であった。図 4.5(b)より、Cage+PS2 モデルの責任椎間の ROM 変化率は、 $-46.8\pm10.0$ %であり、隣接椎間の ROM 変化率は L1/L2 で  $23.2\pm9.5$ %、L2/L3 で  $29.1\pm10.6$ %、L5/L6 で  $31.2\pm11.4$ %であった。また、Cage+PS1 モデルおよび Cage+PS2 モデルそれぞれにおいて、モデル内の隣接椎間同士での ROM 変化率には有意な差は認められなかった。

次に、図 4.6(a)、(b)に角変位規定試験から得られた各モデルの最大曲げ角度におけるトルクを示す。これらのグラフの縦軸はトルク[Nm]を示し、(a)は前屈時のトルク、(b)は後屈時のトルクである。グラフの値は6体の平均値であり、エラーバーは標準偏差を示す。

次に、図 4.7 に角変位規定試験において試験機から得られた、トルク―回転角度曲線の代表例を示す。同図において、縦軸および横軸はそれぞれトルク[Nm]および最下位椎体に対する最上位椎体の角変位[deg.]をそれぞれ示す。また、青色は正常モデル、赤色はCage+PS1 モデル、緑色は Cage+PS2 モデルをそれぞれ示す。この図より、正常モデル、Cage+PS1 モデル、Cage+PS2 モデルの順に最大トルクが大きいことが示された。



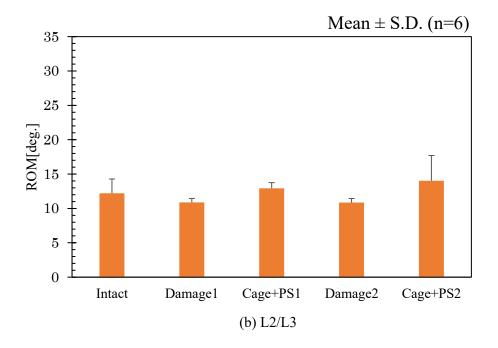
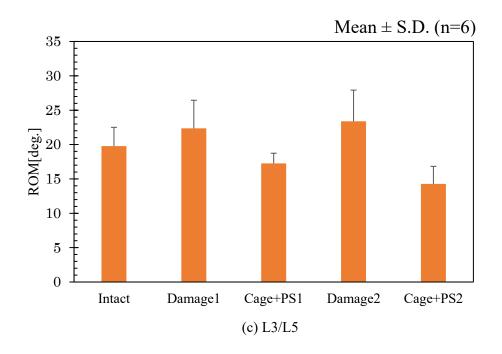




Fig. 4.4 ROM of each segment in angle test



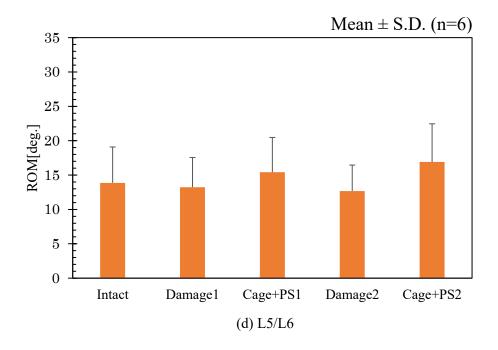
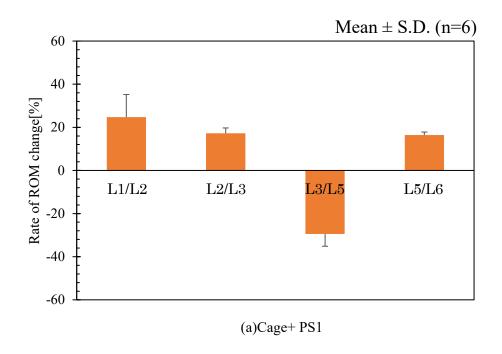




Fig. 4.4 ROM of each segment in angle test



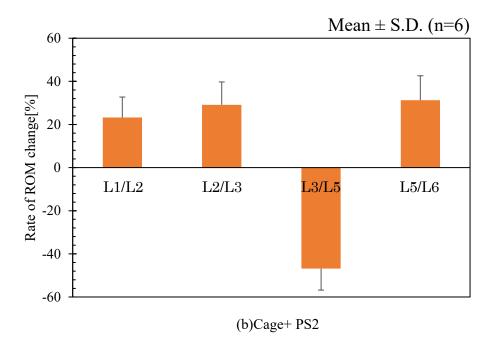
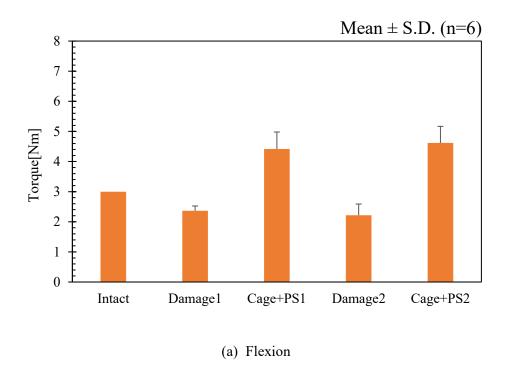




Fig. 4.5 Rate of ROM of change of each segment in angle test



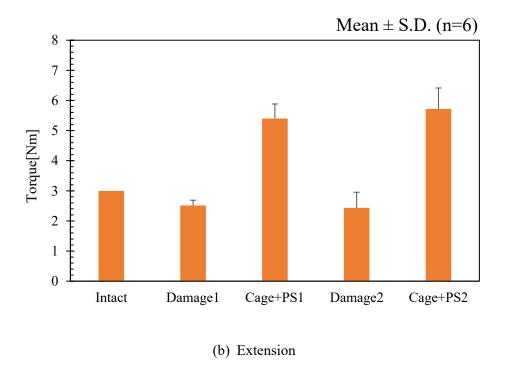



Fig.4.6 Torque at maximum bending angle of each model

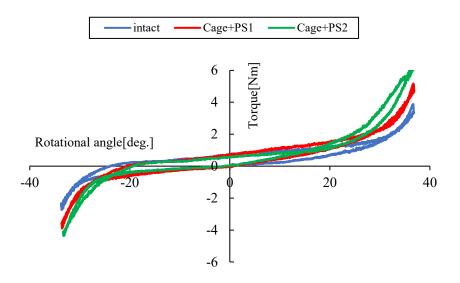



Fig. 4.7 Torque-rotational angle curve of each model

### 4.2 各椎間における変形挙動の考察

#### 4.2.1 トルク規定試験における各椎間の変形挙動

Cage+PS1 モデルにおける責任椎間(L3/L5)および Cage+PS2 モデルにおける責任椎間の ROM はそれぞれ損傷モデルと比較して減少した。また,正常モデルと比較した際も同様に減少した。PS によって固定された椎間は正常状態よりも高い剛性が獲得されることが示された。一方で,Cage+PS1 モデルの隣接椎間(L1/L2,L2/L3,L5/L6)および Cage+PS2 モデルの隣接椎間の ROM は正常モデルおよび Damage モデルと比較して同程度の値であり,その変化率はほぼ 0 であった。この理由は次の通りである.一般に,物体にトルクが負荷されるとそのトルクは各位置に一様に負荷される $^{[36]}$ . トルク規定試験では全てのモデルで一定のトルク( $^{3}$ Nm)を負荷しているため,各椎間に付与されるトルクも一様に  $^{3}$ Nm となり,脊椎の状態が正常状態から変化していない隣接椎間のROM は変化しなかったと考えられる.

また,椎体全体(L1/L6)における回転角度はモデル間で変化したが,責任椎間の剛性の変化により変化したものであると考えられる.

#### 4.2.2 角変位規定試験における各椎間の変形挙動

Cage+PS1 モデルおよび Cage+PS2 モデルの隣接椎間の ROM はそれぞれ Damage1 モデルおよび Damage2 モデルと比較して増大し、Cage+PS1 モデルおよび Cage+PS2 モデルの隣接椎間の ROM 変化率はトルク規定試験の ROM 変化率と比べて、大きく増加した。また、ROM の増大は固定隣接椎間だけではなく、そのさらに頭側の椎間でも認められた。さらに、正常モデルの回転角度と同じ角度まで曲げた際のトルクは正常モデルと比較して椎体置換術を施したモデルの方が大きかった。この結果より、椎体置換術を施したモデルでは固定した椎間の剛性が高くなるため、正常モデルの回転角度と同じ角度まで曲げた際に、より大きなトルクが必要となる。そして、そのトルクが各椎間に一様に付与されることで隣接椎間のROM が増大したと考えられる。そのため、固定隣接椎間のみでなく、そのさらに頭側の椎間にも影響が現れ、モデル内の各隣接椎間同士のROM 変化率には有意な差は認められなかったと考えられる。

よって、椎体置換術を施した脊椎において、隣接椎間は正常状態より大きいトルクが 負荷されることが示され隣接椎間障害の発生リスクがあることが示唆された。また、そ の固定隣接椎間だけではなく、そのさらに頭側の隣接椎間にも影響を及ぼすことが確認 できた.

# 第5章 結言

本研究では、シリアルメカニズムを有した6軸材料試験機を用いてシカ屍体腰椎より得られた多椎間脊椎(L1-L6)の正常モデル、Damage1モデル、Cage+PS1モデル、Damage2モデル、Cage+PS2モデルの5モデルそれぞれに対して前後屈方向へのトルク規定および角変位規定にて曲げ試験を行った。この試験により脊椎固定術後の責任椎間および隣接椎間における各椎間の変形挙動を調査し、椎体置換術が隣接椎間へおよぼす影響を生体力学的に検討し、以下の知見が得られた。

- (1)トルク規定試験において、Cage+PS1モデルおよび Cage+PS2モデルの隣接椎間(L1/L2、L2/L3、L5/L6)の ROM 変化率はほとんど 0 である. このことから、脊椎に同様のトルクを与える試験では責任椎間が固定されても固定隣接椎間およびその頭尾側の椎間に影響が出ないことが明らかとなった.
- (2)角変位規定試験において、Cage+PS1 モデルおよび Cage+PS2 モデルの隣接椎間の ROM はそれぞれ Damage1 モデルおよび Damage2 モデルと比較して増大した. 加えて、Cage+PS1 モデルおよび Cage+PS2 モデルの隣接椎間にかかるトルクも増大した. この 結果から、固定隣接椎間だけではなく、そのさらに頭側の椎間にも影響が生じることが 明らかとなった.

以上の結果より、椎体置換術を施した際、隣接椎間障害の発生リスクがあることが示唆された。また、その影響は固定隣接椎間だけではなく、そのさらに頭側の椎間にも及ぼすことが確認された。

# 参考文献

- 永原 亮一,池永 稔,他:腰椎後側方固定術の長期成績.中部日本整形外科災害 科学会誌,52(1):77-78,2009.
- 乾 敏彦, 高橋 敏行:腰椎固定術後の隣接椎間病変に対する治療. 脊髄外科, 34(1):40-53,2020.
- 3. 正岡卓也, 稲葉忠司, 他: Spinal instrumentation が隣接椎間に与える生体力学的影響. 日本臨床バイオメカニクス学会誌, Vol. 29: 205-310, 2008.
- 4. 茂木万梨子, 稲葉忠司, 他:6 軸材料試験機を用いた脊椎変形挙動の実験的解明(第1報, 脊椎強度測定用試験機の開発). 日本機械学会論文集 A 編 74:621-627, 2008.
- 5. 松岡 勇貴矢,稲葉忠司,他:術後の隣接椎間障害発症を防ぐ新たな脊椎固定具の 実験的評価.令和2年度修士論文,2021.
- 6. Fujiwara M, Masuda T et al.: Development of 6-Axis Material Tester for Measuring Mechanical Spine Properties. Journal of Robotics and Mechanics 18. 160-166, 2006.
- 7. 林純也,稲葉忠司,他:脊椎固定具が上下隣接椎間に及ぼす生体力学的影響.令和2 年度修士論文,2021.
- 8. 島津 晃, 浅田 莞爾:バイオメカニクスよりみた整形外科. 金原出版株式会社, 60-69, 1988.
- 9. 寺山和雄, 片岡治: 整形外科: 痛みへのアプローチ 腰背部の痛み. 南江堂, 34-39, 1999.
- 10. Carter, D.R., and Hayes, W.C., 'Compact Bone fatigue damage, A microscopic examination', Clin. Orthop, Vol. 127, pp.265, 1997.
- 11. Carter, D.R, and Hayes, W.C., 'Bone compressive strength, The influence of density and strain rate', Science, Vol. 127, pp.265, 1997.
- 12. Frankel, V.H., and Burstein, A.H., Orthopaedic Biomechanics. Philadelphia, Lea & Febiger, 1970.
- 13. White, A.A, and Panjabi, M.M.: Clinical Biomechanics of the Spine. J.B.Lippincott, 22, 1978.
- 14. Slucky AV, Brodke DS, et al.: Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J, 6, 30-33, 2006.
- 15. White, III.A.A, Panjabi, M.M.: Clinical Biomechanics of the Spine. 2nd edition, J.B. Lippincott, Philadelphia, 1-83, 1990.
- 16. Nachemson, A.: Lumbar intradiscal pressure. Acta Orthop. Scand., Suppl. 43, 1-140, 1960.
- 17. 山本 真, 笹田 直:整形外科バイオメカニクス入門. 南江堂, 225-228, 1983.
- 18. Tokuhashi Y, Matsuzaki H et al.: Clinical Course Significance of the Clear Zone Around the Pedicle Screws in the Lumbar Degenerative Disease. Spine, Vol.33, No.8, 228-280, 2008.

- 19. Lumsden, R. M., and Morris, J. M.: An *in vivo* study of axial rotation and immobilization at the lumbosacral joint. L, Bone Joint Surg., 50A: 1591, 1968.
- 20. King, A. I., Prasad, P., and Ewing, C. L.: Mechanism of spinal injury due to caudocephalad acceleration. Orthop. Clin. North Am., 6-19, 1975.
- 21. Nachemson. A., Lewin, T., Maroudas, A., Freeman, M. A. R.: In vitro diffusion of dye through the endplates and the annulus fibrosus of human lumber intervertebral discs, Acta Orthop. Scand., Vol.41, pp.589-608, 1970.
- 22. Miles, M., Sullivan, W. E.: Lateral bending at the lumbar and lumbosacral joints. Anat. Rec., 139: 387-398, 1961.
- 23. Panjabi, M.M., Goel, V.K., Takata, K.: Physiologic strains in the lumbar spinal ligaments, An in vitro biomechanical study. Spine, 7, 192-203, 1982.
- 24. Virgin, W.J.: Experimental investigations into the physical properties of the intervertebral disc.J, Bone Joint Surg., 33-B, 607-611, 1951.
- 25. Twomey, L.T., Taylor J.R.: Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine, 7, 116-122, 1982.
- 26. Panjabi, M.M., Goel, V.K., Takata, K., "Physiologic strains in the lumber spinal ligaments; An in vitro biomechanical study.", Spine, Vol. 7, pp. 192-203, 1982
- 27. 大谷 清: 骨折・外傷シリーズ 3, 脊椎の外傷 その 1. 南江堂, 1986.
- 28. 圓尾 宗司:腰椎分離・すべり症の後側方固定術. MB Orthop11, pp.41-48, 1989.
- 29. Shikata, J., et al.: Posterior Instrumentation about Thorasic and Lumber Growth. Orthopedic Surgery MOOK Spinal Instrumentation, No.60, 197-205, 1900.
- 30. Michael.G., et al.: AO 整形外科マニュアル. シュプリンガーフェアラーク東京, 2002.
- 31. メドトロニック社公式サイト, https://www.medtronic.com/jp-ja/index.html(2022 年 2 月 5 日参照)
- 32. Gary G, Jeffrey C. Wang, et al.: Adjacent Segment Degeneration in the Lumbar Spine. J Bone Joint Surg 86:1497-1503,2004.
- 33. 徳橋 泰明, 西村 太一, 他:腰椎変性すべり症に対する pedicle screw fixation を 併用した後側方固定術後 10 年以上の臨床成績. 脊椎脊髄, 17:185-192, 2004.
- 34. 森 英治, 芝啓 一郎, 他:腰椎変性すべり症に対する pedicle screw 併用後側方 固定術の長期成績. 臨整外, 40:791-798, 2005.
- 35. 武田 行生: パラレルメカニズム, 精密工学会誌, 11:1363-1368, 2005.
- 36. 鐙 邦芳, Panjabi, M. M.: Spinal Instrumentation のための解剖とバイオメカニクス. 整形外科 MOOK. No.60, 1990.

## 謝辞

本研究を遂行するにあたり、終始その進むべき道をご教示していただき、幅広い分野からの多数のご助言を賜りました稲葉忠司教授に心より御礼申し上げます。また、本研究に関する数多くの有益なご教示、ご助言を賜りました吉川高正准教授、馬場創太郎助教授にも心より御礼申し上げます。

この3年間,懇切丁寧に医学の知識を教えていただき,また臨床学的観点から研究の指針となる多数のご助言を賜りました石井病院 ASEAN 事業部の笠井裕一医師,聖隷浜松病院の水野哲太郎医師に多大なる感謝を致します。また,本研究で用いた6軸材料試験機の導入から実験のサポートまで多大なる支援をしていただいた,三重県工業研究所の藤原基芳さんに深く感謝いたします。さらに,生体システム工学研究室の先輩である三重大学地域創生戦略企画室の加藤貴也准教授には,文武両道ともにご指導を賜り,厚く御礼申し上げます。

脊椎に関する知識に加え、研究に限らず様々な面で私を支えてくださったバイオメカニクスチームの先輩である青木さん、吉村さん、林さん、松岡さんに心から御礼申し上げます.

そして,研究ミーティングや実験など,数多くの場面で支えあったバイオメカニクス チームの後輩である磯貝君、砂川君、濱口君に深く感謝いたします.

最後に、共に研究に取り組んだ池田君、石川君、一尾君、世古口君、服部君、牧野内君をはじめとする生体システム工学研究室のメンバーに心から感謝いたします.

充実した研究室生活を過ごせたと思います. 心より感謝します.

冨永 怜