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Abstract 

 

Cardiovascular diseases are one of the main causes of mortality around the 

world. Many of these events happen outside-of-hospital conditions when the person 

is at home or at a public space without being monitored. Advances in technology 

have improved the patients’ monitoring, be it a Holter monitor or a wearable device. 

However, these devices are still sensitive to noise from movement, therefore it is 

important to understand how the movement affects electrocardiographic recordings. 

In this research three devices were tested. The BIOPAC system is a non-

mobile device that represented conventional electrocardiography. The Hitoe system 

and the Vitalgram system are wearable solutions for ECG monitoring.  

Since the goal is to understand how noise from motion affects the ECG signal, 

based on previous research the motion noise was determined to be the sum of 

baseline wander (BW), electromyogram (EMG), and electrode motion artifacts 

(EMA). BW and EMG were obtained by using a low-pass filter and a high-pass filter, 

respectively. The EMA were obtained by doing a beat-by-beat analysis. To analyze 

the signal beat-by-beat, the R-peaks of the ECG signal had to be identified. To do this, 

the discrete wavelet transform (DWT) was employed. 

Once all the types were extracted, the signal-to-noise ratio (SNR) was used as 

a parameter to determine the quality of the ECG recordings from each device. The 

subjects were shown a video and were asked to perform certain actions in resting and 

stress conditions. The SNR values were more negative when the subject performed 

physical activities. 
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The results show that the ECG recordings from these devices were not affected 

by EMG noise, since the SNR values for EMG were always above 30 dB. As for the 

BW noise, the Vitalgram device was not affected, but the Hitoe and BIOPAC systems 

were mildly affected by it. The Vitalgram system was the only device to present a 

positive average SNR value for EMA while the subjects were running. 

In Apandi’s research the performance of several heartbeat detection 

algorithms was tested, including Apandi’s proposed method. Using Apandi’s research 

data and the SNR values from this research, the performance of these algorithms on 

recordings from these devices was estimated. The results show that using Apandi’s 

proposed algorithm on recordings from the Vitalgram device would render the best 

results, since the estimated heartbeat detection performance was of 100%. 
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Chapter 1: Introduction 

1.1 Research Motivation  

Cardiovascular diseases (CVDs) are one of the main causes of mortality 

worldwide. The World Health Organization estimates that roughly one third of all 

deaths globally are caused by CVDs [1].  

Moreover, although there are many types of cardiovascular diseases, 

according to [2], arrythmias and sudden cardiac death represent 15% to 20% of all 

deaths worldwide. In other words, about half of CVDs. 

Monitoring the electrocardiogram (ECG) of a person can help diagnose and 

treat the patient faster, narrowing the possibilities of a sudden death. However, this 

would require the use of a device that can monitor a person at any given time while 

the person performs its daily activities. This system should also be able to recognize 

abnormalities in the heartbeats and be able to notify the person in case there is risk 

of heart failure. 

Nowadays, good quality ECG measurements can be done at hospitals and 

research institutions using devices such as the Holter [3]. There are also other 

commercial solutions such as wearable devices that can monitor the heart’s activity. 

However, these solutions, even though they can record good quality ECG while the 

person is resting, when the person is moving the quality of the ECG signal is reduced 

by the noise caused by the movement. Also, these systems are recording tools, not 

diagnostic tools. This project is an initial step towards a greater goal: to build a 

system that is able to classify heartbeats when a person is moving. 
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1.2 Research Objectives  

In this study, mobile and stationary devices are tested while the person is 

resting and performing physical activities. The noise present in the ECG signal is 

then analyzed and the result of their performance is compared.  

The first objective of this research is to separate different types of noise. The 

noise from movement can be classified as baseline wander noise, electromyogram 

noise and electrode motion artifacts. The goal is to be able to extract these noises 

separately. 

The second objective of this research is to determine which device is more 

suitable for collecting samples while a person is moving. The point of comparison is 

the Signal-to-Noise ratio (SNR). The device with better SNR values shall be selected 

to proceed with further research if the quality of the signal recorded while the person 

is moving is good. 

The third objective is to estimate how would each device perform according to 

the heartbeat detection method proposed by Apandi et al. By taking the SNR values 

of each device while the subjects are involved in a physical activity, and using the 

data from Apandi’s research, the heartbeat detection rate for each device and activity 

can be estimated. 

  



8 
 

Chapter 2 Literature Review 

2.1 The Electrocardiogram 

The electrocardiogram, also know as ECG or EKG, is a recording of the 

electrical activity of the heart. When the cardiac impulse passes through the heart, 

some of the current propagates to the tissues around the heart and some of it reaches 

the skin. When electrodes are placed on the skin on opposite sides of the heart, these 

electrical potentials can be recorded [4]. As shown in Figure 1, the typical ECG 

waveform has different waves that are generated during the cardiac cycle. 

 

Figure 1. Typical ECG Waveform. 

The P wave is generated when the atria depolarize just before they contract 

and pump blood into the ventricles. The QRS complex is generated when the 

ventricles depolarize and contract to pump blood outside of the heart. The T wave is 

generated when ventricles repolarize after contraction [4]. This cycle of 

depolarizations and repolarization is shown in Figure 2. 

p
 

T
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Figure 2. Cycle of the repolarization and depolarization of the atria and ventricles of the heart and its 

correspondence with the ECG waves. 

2.2 The Discrete Wavelet Transform 

A wavelet is a waveform that has an average value of zero, but it has a limited 

time duration, unlike sinusoidal waveforms that extend to infinity [5]. There are 

many types of wavelets, and a determined wavelet may be used depending on the 

task at hand. In Figure 3 few types of wavelets are shown. 

 

Figure 3. Examples of wavelets. 
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In signal processing, mathematical transformations are applied to signals in 

order to obtain information that is not available within the raw signal. Most of the 

signals are in the time domain and when these signals are plotted, they are plotted in 

a time-amplitude representation [6]. 

The Fourier transform (FT) breaks down a signal into different sine waves of 

different frequencies. It is a mathematical transformation that provides a frequency-

amplitude representation of the signal. However, this transformation doesn’t provide 

information of when these frequencies happen in time. 

This is not a problem when the signal is stationary, which means that the 

frequency components of the signal are constant throughout the signal. However, an 

ECG signal’s frequency, for example, changes in time, thus it is non-stationary. The 

FT can be used to see if a determined frequency exists in the signal, but not when it 

happens. 

When a time-frequency representation is needed, the Wavelet Transform 

(WT) can be employed. Sometimes, a particular feature of interest happens abruptly 

in a signal. So, in a case like this it can be of interest to know when it occurs. An 

example of this are the R peaks of an ECG signal. 

But how does the discrete wavelet transform (DWT) work? By passing the 

time domain signal through a series of high-pass and low-pass filters, filtering out 

either low or high frequency portions of the signal [6]. By repeating this process, a 

portion of the signal is removed on each iteration. This process is called 

decomposition and Figure 4 shows a diagram that represents it. 
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Figure 4. Diagram showing a three-level decomposition process. (a) Schematic of the filter bank. (b) 

Results of the filtering in the frequency domain. K. Amolins, Y. Zhang and P. Dare, "Wavelet based 

image fusion techniques — An introduction, review and comparison", ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 62, no. 4, pp. 249-263, 2007. Available: 

10.1016/j.isprsjprs.2007.05.009. 

The result is a group of signals categorized by frequency bands. This shows 

which frequencies within the band exist at a certain time interval. 

2.3 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is a measure of how much of a desired signal 

there is against the level of undesired signals [8]. In other words, it is the ratio of the 

signal of interest against the noise. The SNR, in decibels, can be expressed by the 

following equation [9-10]: 

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) 

Where: 

𝑃𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 

𝑃𝑛𝑜𝑖𝑠𝑒 = 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙(𝑠)  

a 

x[n] level I coefficients 

level 2 coefficients 

level 3 coefficients 

level 3 approximation 

b
 level 2 high 

frequency level 1 high frequency 

fn/8 f;/4 fn/2 

frequency 

f
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If the SNR value is zero, it means that the magnitude of the signal and the 

magnitude of the noise are the same. If the SNR value is negative, it means that the 

power of the noise is superior to that of the signal. On the other hand, if the SNR 

value is positive, it means that the desired signal has more power than the noise. 

In this study, both the signal and the noise are voltages measured across the 

same impedance. The SNR is calculated using the averages of the powers of the noise 

and the signal, in other words, it is calculated using the root mean square (RMS) 

voltage squared. 

2.4 Types of Noise caused by Movement 

There are multiple factors that can contaminate an ECG signal. These unwanted 

signals that are mixed with ECG signal are considered noise, since they distort the 

shape of the pure ECG waveform. The main sources for noise in the ECG signal are 

[11]: 

• Power line interference 

• Baseline wandering 

• Electromyogram (EMG) 

• Motion artifacts 

The power line interference is a common noise that can be found not only in ECG 

but also other biometric signals. Depending on the region this noise has is sinusoidal 

wave of 50 Hz or 60 Hz [12]. However, this noise is not caused by the movement of a 

person. This type of noise, if present, can be reduced by using a notch type filter for 

the exact frequency of the power line in the country or region where the recording is 

taking place. 
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The baseline wander is a noise that is commonly caused by the respiration of the 

patient and movement of the instrumentation [13]. It is a low frequency noise that 

typically has a frequency below 1 Hz. A sample of ECG with baseline wander can be 

seen in Figure 5. 

 

Figure 5. ECG signal contaminated with baseline wandering. The blue line represents the 

contaminated ECG signal, and the red line represents the baseline wander. 

The electromyogram (EMG) is a signal generated when the muscles contract. 

However, it is considered noise when the signal of interest is the ECG. The EMG is 

high frequency noise [13]. The power spectrum of the EMG ranges from 0 Hz to 500 

Hz [14] and most of the power can be found in the frequency band of 50 to 250 Hz as 

shown in Figure 6. 
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Figure 6. (A) Power Spectrum of orbicularis oculi EMG with low frequency contamination. (B) 

Diagram of the power spectrum of an EMG signal showing the low frequency noise, the EMG signal 

and the mixture of both. A. Boxtel, "Optimal signal bandwidth for the recording of surface EMG 

activity of facial, jaw, oral, and neck muscles", Psychophysiology, vol. 38, no. 1, pp. 22-34, 2001. 

Available: 10.1111/1469-8986.3810022. 

The last type of noise produced by movement are electrode motion artifacts. 

These artifacts are caused by the shaking or movement of the patient [15]. The 

movement can be random or rhythmical and its causes can be several, such as 

tremors caused by a disease or a patient moving the limbs during the ECG recording. 

When the person moves, the cables and/or electrodes move too, generating noise and 

contaminating the ECG recording. Figure 7 shows an ECG signal contaminated with 

electrode motion artifacts. 
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Figure 7. ECG sample recorded when the subject was running. It is contaminated by electrode motion 

artifacts.  

2.5 Use of the DWT for QRS complex detection 

In the research paper by Haddadi et al. the application of DWT is proposed to 

detect the QRS complex, which is the most notorious feature of the ECG. In that 

study, the ECG samples from the MIT-BIH database were used.  

Haddadi et al. decided to use the Daubechies 4 (Db4) wavelet to implement 

the DWT. There is no absolute way to determine which wavelet shall be used for each 

application. They found that using the Db4 wavelet gave details more accurately than 

other wavelets. The energy spectrum of this wavelet has similarities with the QRS 

complex.  

In this study they did an 8-level decomposition and the d4 Coefficients 

showed the highest cross correlation with the original signal, so Haddadi et al. used 

this coefficient for the QRS complex detection. Figure 8 shows the ECG signal and 

the d4 coefficients. According to [16], an average QRS complex detection rate of 

98.1% was achieved. 
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Figure 8. (a) ECG signal with filtered baseline wander. (b) The filtered ECG signal reconstructed using 

the d4 coefficients. Image taken from: R. Haddadi, E. Abdelmounim, M. El Hanne and A. Belaguid, 

"Discrete Wavelet Transform Based Algorithm for Recognition of QRS Complexes", World of 

Computer Science and Information Technology Journal, vol. 4, no. 9, pp. 127-132, 2014. [Accessed 16 

January 2022]. 

In the research paper by Kumar et al. the DWT method was also used to detect 

the QRS complexes. However, in that study the Symlet 4 (sym4) wavelet was used 

instead of the Db4 wavelet. Symlet wavelets are versions of the Daubechies wavelets 

but with increased symmetry [17]. 

Similarly, samples from the MIT-BIH database were used. And since the sym4 

wavelet has similar characteristics to the ECG waveform, it was selected to perform 

the multi-level decomposition using the DWT. According to [17], que R peak 

detection rate was of 100%. 
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2.6 Performance of Heartbeat Detection Methods in 

Simulated Noise Conditions 

Apandi et al. used the ECG recordings from the MIT-BIH database. This 

database has 48 records and the samples were recorded in resting conditions. To 

simulate ECG samples in ambulatory conditions, different types of noise where 

recorded when a person was moving. This noise samples where also obtained from 

the MIT-BIH database. The types of noise are baseline wander (BW), EMG noise and 

electrode motion artifacts (EMA). 

In her thesis, Apandi simulated noisy signals by embedding these noise 

samples with different intensities to the original ECG recordings. She used SNR 

values ranging from -12dB to 12dB. Then, she tested several heartbeat detection 

methods on the ECG recordings with simulated noise to test their performance. The 

Figures below show the performance of different methods for heartbeat detection, 

such as the Pan-Tompkins algorithm, WQRS, Hamilton and Apandi’s proposed 

method for sample 100 of the MIT-BIH database. 
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Chapter 3: Data Collection 

3.1 ECG Evaluation 

The sample size for this study is 5 subjects. These subjects are male 

individuals whose age is between 20 and 37 years old. All of the individuals reported 

to have no problems regarding their health. The subjects were shown a video that 

contained instructions about what to do during the test.  

They were asked to perform simple actions such as resting while lying on a 

bed, resting while sitting, resting while standing, and also performing physical 

activities such as walking and running.  

The video not only serves as guidance for the subjects, but also serves as a 

timeline of events. Although some of the devices had integrated an accelerometer 

and gyroscope (which were quite useful when identifying the subject’s behavior), the 

video too, was useful when identifying which actions the subject was performing at a 

given time. 

3.2 Devices 

In this study three devices were used to record samples. One of the devices is 

not mobile, and the other two are portable devices. The non-mobile device represents 

conventional electrocardiographic recording. 

3.2.1 Biopac System 

The BIOPAC system is not a mobile device. It is capable of recording ECG 

signals at high sampling rates. However, to keep the sampling rates similar 

throughout all of the devices, it was set to 200Hz. 
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The BIOPAC system uses cable electrodes with gel to sense the hearts 

electrical potentials on the skin. These electrodes connect to BIOPAC’s ECG module 

to amplify the signal. The ECG module is connected to an Analog Output and Power 

Source module. A shielded cable connects the analog output module to a device 

called Aproc 1, which will digitalize the signal. Finally, the Aproc 1 device connects to 

the PC using a USB cable. The figure below shows a schematic of this system. 

 

Figure 9. Schematic of the BIOPAC System. 

 

3.2.2 Hitoe System 

The Hitoe System consists of a transmitter device, a special T-shirt, an 

Android application, and a mobile device such as a smartphone with Android OS. 

The Hitoe transmitter was developed by Docomo and has a maximum sampling 

frequency of 200 Hz. The electrodes are on the T-shirt, and they are made of some 

fabric-like proprietary material.  

The device also includes a 3-axis accelerometer that was used to record 

acceleration and identify the subjects’ actions during the ECG evaluation. It connects 
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to an Android device using a low energy Bluetooth (BLE) connection. The figure 

below shows a schematic of this system. 

 

Figure 10. Schematic of the Hitoe System 

 

3.2.3 Vitalgram 2 System 

The Vitalgram System consists of the Vitalgram 2 device, patch-type 

electrodes, an iOS application, and an iOS device. The Vitalgram 2 device is made by 

AffordSENS Corporation, and it has sampling frequencies ranging from 128Hz to 

1024Hz. However, to keep the measurements similar throughout all the devices, a 

sampling frequency of 256 Hz was selected. Like the Hitoe device, it is also capable of 

recording acceleration with a 3-axis accelerometer. It connects to an iOS device using 

a BLE connection. 

Transmitter 

device 

Cloth-based 

Electrodes ＇ 
~ 

}

i

i

 

[• 
UO!le~!I 

a
a
<
n
0
 
J
P
U
V
 

← 

八
Electrodes 

BLE 
Connection 



21 
 

 

Figure 10. Schematic of the Vitalgram System 
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Chapter 4: Data Analysis 

4.1 QRS Complex Detection 

The DWT method was used to detect the QRS complexes. This method was 

selected since it has shown good results in detecting the R peaks and it has a lower 

impact when computing according to previous research [16-17].  

The wavelet Symlet 4 was selected to perform the DWT since it has similarities 

with the ECG signal, and it had shown to detect more details of interest in previous 

research [17]. First, a five-level decomposition was performed. This decomposition 

can be seen in Figure 11. 

 

Figure 11. Five-level decomposition and reconstruction of an ECG signal using the coefficients for each 

level of decomposition. 
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After decomposing the signal into 5 levels, to emphasize the R peaks in the 

reconstruction process, the 3rd and 4th coefficients with a correlation average of 0.71 

and 0.83 were selected, since they showed more correlation to the original signal 

compared to the other coefficients. In the table below the correlation of the 

reconstruction for each coefficient to the original signal is shown. 

Coefficient Correlation Average 

1st 0.13327 

2nd 0.361929 

3rd 0.715412 

4th 0.830637 

5th 0.510984 
Table 1. Correlation average of the original signal and the signal reconstruction for each coefficient. 

 After reconstructing the signal using the 3rd and 4th coefficients, a simple 

method for detecting peaks was employed using the “findpeaks” function using 

MATLAB [20]. The results of this method are shown in the figures below, for an ECG 

signal recorded while resting and an ECG signal recorded while walking, respectively. 

It can be seen that this method effectively identifies the location in time of the R 

peaks in the ECG signal. 

 

Figure 12. a) Locations of the R-peaks in a clean ECG signal. b) Locations of the R-peaks in a noisy 

ECG signal 
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4.2 Baseline Wandering Noise Obtention 

The baseline wander is a common noise that comes from the motion of the 

subject. It is most commonly caused by the person’s respiration motion although it 

can also be caused by a slow movement of the cables. Since its frequency is very low, 

typically below 1 Hz, a low pass filter with a cut frequency of 1 Hz was implemented. 

The filter was designed using the MATLAB function “designfilt”. The type of 

filter is a Low-Pass IIR filter of order 12. The passing frequency is 1Hz and the 

passband ripple is of 0.001. The Magnitude response is shown in Figure 13, and an 

ECG signal with baseline wandering noise is shown in Figure 14. 

 

Figure 13. Magnitude response of the low-pass filter. The passband frequency is 1Hz. 
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Figure 14. ECG with baseline wandering. The blue line is the ECG signal with baseline wandering. The 

red line is the result of using the lowpass filter. 

4.3 EMG Noise Obtention 

The EMG is a biological signal generated when there is muscle activity. 

Therefore, when a person moves during an ECG recording, it is sometimes possible 

to record EMG activity as well. However, when recording and ECG signal, the EMG 

signal is only getting in the way of what would be a clean ECG recording, so it is 

considered noise. 

 As shown before, the power spectrum of an EMG signal ranges from 0 Hz to 

500Hz. However, most of the energy lies in the range of 50Hz to 200Hz. Since its 

frequency is high compared to the frequencies of an ECG signal, to obtain this noise a 

high-pass filter was used. 

 The filter was designed using the MATLAB function “designfilt”. The type of 

filter is a High-Pass IIR filter of order 12. The passing frequency is 50Hz and the 
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passband ripple is 0.01. Figure 15 shows the magnitude response of the filter, and 

Figure 16 shows an ECG signal with EMG noise. 

 

Figure 15. Magnitude response of the high-pass filter. The passband frequency is 50Hz. 

 

Figure 16. ECG signal with EMG noise. The blue line is the ECG signal with EMG noise and electrode 

motion artifacts. The red line represents the EMG signal. a few EMG bursts can barely be seen, since 

their amplitude is small. 
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4.4 Electrode Motion Noise Obtention 

 While the frequency bands where most of the energy of the BW and EMG 

noise lies are well known, electrode motion artifacts (EMA) are not as simple to 

isolate. EMA can vary widely. They can sometimes be rhythmical and sometimes 

sudden, and how the electrodes movement is going to generate a change in the 

voltage of the signal can be unpredictable at times. 

 To obtain the EMA, an indirect approach was done. In this study two 

assumptions were made. The first assumption is that when the EMG and BW are 

removed from a noisy signal, any leftover noise is considered EMA, as shown in the 

following equations: 

𝑁𝑜𝑖𝑠𝑒𝐴𝑙𝑙 = 𝐵𝑊 + 𝐸𝑀𝐺 + 𝐸𝑀𝐴 

𝐸𝑀𝐴 = 𝑁𝑜𝑖𝑠𝑒𝐴𝑙𝑙 − 𝐵𝑊 − 𝐸𝑀𝐺 

The second assumption is that the cleanest signal that can be recorded is the 

one recorded when the subjects are resting. This signal, in the case of the Hitoe and 

Vitalgram devices, has no EMG, BW and EMA. In the case of the BIOPAC device, the 

BW had to be subtracted to obtain the cleanest signal possible since it had some BW 

noise, but not EMG and EMA. 

Let’s take the case when the subject is running. Since it is the most noise 

inducing activity, that ECG recording has all types of motion noise. To obtain the 

noise in the signal, the noisy ECG can be compared to the resting (clean) ECG as in:  

𝑁𝑜𝑖𝑠𝑒 = 𝑁𝑜𝑖𝑠𝑦 𝐸𝐶𝐺 − 𝐶𝑙𝑒𝑎𝑛 𝐸𝐶𝐺 

However, this cannot be done directly. The noisy ECG signal is a signal that is 

recorded when a person is moving, thus, it has a higher heart rate. The clean ECG 

signal is recorded when a person is resting, thus it has a lower heartrate. Since both 
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signals have a different frequency, they cannot be directly subtracted. If they were 

directly subtracted, there would be a mismatch between the R peaks of both signals 

and the resulting “noise” would not be accurate. To minimize the impact of the 

mismatch between R-peaks, a solution would be to analyze the signal heartbeat by 

heartbeat.  

Before analyzing the signal beat by beat, the noisy signal must be pre-

processed. Since the current goal is to obtain the EMA, and the EMG and BW noises 

had already been isolated, the EMG and BW noise are subtracted from the noisy 

signal. Any leftover noise in the noisy signal comes from EMA.  

𝐸𝐶𝐺𝐸𝑀𝐴 = 𝐸𝐶𝐺𝑁𝑜𝑖𝑠𝑦 − 𝐵𝑊 − 𝐸𝑀𝐺 

Then, using the DWT to detect the R-peaks on the resting ECG signal, a single 

“clean” heartbeat is selected from R-peak to R-peak using the locations obtained. The 

heartbeat would be delimited by: 

𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑐𝑙𝑒𝑎𝑛 = 𝐸𝐶𝐺𝑟𝑒𝑠𝑡[ 𝑙𝑜𝑐𝑠(𝑛) ∶ 𝑙𝑜𝑐𝑠(𝑛 + 1)] 

Next, the R-peaks of the noisy ECG signal should be identified using the DWT. 

Once the locations of the R-peaks are known, the noisy signal can be analyzed beat 

by beat. Let’s take the first beat of the noisy signal. The period of this noisy heartbeat 

is known, and the period of the clean heartbeat is known.  

Using this information, the clean heartbeat can be rescaled to have the same 

duration as the noisy heartbeat using the resample function form MATLAB. Once the 

signal has been rescaled, the sampling frequency has changed. But to analyze the 

signal it must have the original sampling frequency, so it is resampled back to the 

original frequency. The following code shows the function developed to change the 

frequency of the clean heartbeat: 
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function [tResamp,ecgResamp] = 

changeEcgFreq(tRest,ecgRest,ecgFreqRest,ecgFreqMove) 
%changeEcgFreq: Changes the heart rate of an ecg sample. 
%               tRest,ecgRest,ecgFreqRest,ecgFreqMove 
%   Changes the time vector of the ECG sample by a factor determined by the 
%   heartrate of the ECG sample and a target heartrate. 
%   The new signal (time vector and ECG) has now a new sampling frequency. 
%   Higher if the heart rate was increased. Lower if the heart rate was 
%   decreased. 
%   To match the original sampling frequency, the ECG signal is now 
%   resampled. 
%   The output arguments correspond to a time vector and ECG that have a 
%   different frequency than the original, but have the original sampling 
%   frequency. 
  
tRestTemp = tRest*(ecgFreqRest/ecgFreqMove); 

delayFactor = tRest(1) - tRestTemp(1); 

tRest2 = tRestTemp + delayFactor; 

 

samplingFreq1 = ceil((1/(tRest(2)-tRest(1)))); 

samplingFreq2 = ceil((1/(tRest2(2)-tRest2(1)))); 

 

ecgResamp = resample(ecgRest,samplingFreq1,samplingFreq2); 

tResamp = []; 

temp = 0; 

for i = 1:size(ecgResamp) 

  tResamp(i) = temp; 

  temp = temp + (1/samplingFreq1); 

end 

tResamp = tResamp + tRest(1); 

tResamp = tResamp.'; 

end  

Once the clean heartbeat has been properly rescaled to the same length of the 

noisy heartbeat, and resampled to the same sampling frequency of the noisy 

heartbeat, the heartbeats can be subtracted to obtain the noise from EMA: 

𝐸𝑀𝐴𝑂𝑛𝑒 𝑏𝑒𝑎𝑡 =  𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝐸𝑀𝐴 − 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝐶𝑙𝑒𝑎𝑛 

𝐸𝑀𝐴𝑁 𝑏𝑒𝑎𝑡𝑠 =  𝐸𝐶𝐺𝐸𝑀𝐴𝑁 𝑏𝑒𝑎𝑡𝑠
− 𝐸𝐶𝐺𝐶𝐿𝐸𝐴𝑁𝑁 𝑏𝑒𝑎𝑡𝑠

 

This process can be repeated for N heartbeats to obtain a longer sample of the 

noise. Figure 17 shows the noise signals in one heartbeat when the subject was 

walking while being recorded with the BIOPAC System. 
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Figure 17. This figure shows all types of noise extracted from an ECG signal. The blue line is the 

combination of all noises. The red line represents the EMA. The yellow line represents the BW. The 

violet line represents the EMG. 

 It is worth noting that in the Hitoe System and Vitalgram System The signals 

were barely, if not at all, affected by EMG and BW noise. Therefore, almost all of the 

noise came from EMA. 

4.5 Signal-to-Noise Ratio Calculation 

As mentioned in chapter 1, the signal to noise ratio is a measure of the 

relationship between the power of the signal and the power of the noise. In this 

research, both the signal and the noise are voltages measured across the same 

impedance, so the SNR is calculated using the averages of the powers of the noise 

and the signal, in other words, it is calculated using the root mean square (RMS) 

voltage squared. 
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To calculate the SNR for BW the following equation was used: 

𝑆𝑁𝑅𝐵𝑊 = 10𝑙𝑜𝑔10 (
∑ 𝐸𝐶𝐺𝑐𝑙𝑒𝑎𝑛𝑖

2𝑛
𝑖=1

∑ 𝐵𝑊𝑖
2𝑛

𝑖=1

) 

To calculate the SNR for EMG the following equation was used: 

𝑆𝑁𝑅𝐸𝑀𝐺 = 10𝑙𝑜𝑔10 (
∑ 𝐸𝐶𝐺𝑐𝑙𝑒𝑎𝑛𝑖

2𝑛
𝑖=1

∑ 𝐸𝑀𝐺𝑖
2𝑛

𝑖=1

) 

 To calculate the SNR for EMA the following equation was used: 

𝑆𝑁𝑅𝐸𝑀𝐴 = 10𝑙𝑜𝑔10 (
∑ 𝐸𝐶𝐺𝑐𝑙𝑒𝑎𝑛𝑖

2𝑛
𝑖=1

∑ 𝐸𝑀𝐴𝑖
2𝑛

𝑖=1

) 
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Chapter 5: Results 

5.1 ECG Signal Quality of the Tested Devices 

After isolating each type of noise from motion, the equations in chapter 4.5 

were used to calculate their SNR values for the walking and running motions. These 

calculations were done for the three systems. 

The BIOPAC system presented an SNR of 9.7 dB for BW, an SNR of 46 dB for 

EMG and an SNR of 3.8 dB for EMA for the walking motion. As for the running 

motion, the BIOPAC system presented an SNR of 3.4 dB for BW, 30.1 dB for EMG, 

and -3.5 dB for EMA. Figure 18 shows the SNR values for the BIOPAC system. 

 

Figure 18. Average of the SNR values for the walking and running motions recorded with BIOPAC. 

The Hitoe system presented an SNR of 11.4 dB for BW, an SNR of 35.8 dB for 

EMG and an SNR of 3.1 dB for EMA for the walking motion. As for the running 

motion, the Hitoe system presented an SNR of 11.32 dB for BW, 35.7 dB for EMG, 

and -0.26 dB for EMA. Figure 19 shows the SNR values for the Hitoe system. 
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Figure 19. Average of the SNR values for the walking and running motions recorded with Hitoe. 

The Vitalgram system presented an SNR of 50.5 dB for BW, an SNR of 45.4 

dB for EMG and an SNR of 8 dB for EMA for the walking motion. As for the running 

motion, the Vitalgram system presented an SNR of 53.3 dB for BW, 44 dB for EMG, 

and 3.55 dB for EMA. Figure 20 shows the SNR values for the Vitalgram system. 

 

Figure 20. Average of the SNR values for the walking and running motions recorded with Vitalgram. 
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5.2 Device Performance According to Apandi et al. 

 Apandi simulated noisy ECG signals using the MIT-BIH database. She 

simulated noisy signals with BW, EMG and EMA with different SNR values from -9 

dB to 12 dB. Then, she tested several algorithms for heartbeat detection. The 

algorithms she tested were the Pan-Tompkins, Hamilton, WQRS and Apandi et al. 

proposed algorithm.  

To measure the performance of the algorithms she used the parameter of 

Sensitivity (SE) which denotes the percentage of true positive beats that are correctly 

identified. She also used the parameter of Positive Predictivity (PP) to describe the 

percentage of detected true heartbeats [18]. 

 

𝑆𝐸 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
× 100% 

 

𝑃𝑃 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
× 100% 

  

In Apandi’s research, all the algorithms had an excellent performance at 

detecting heartbeats in signals contaminated with BW noise as shown in Figure 21. 

Moreover, all the devices presented a positive SNR value for the BW noise. For those 

reasons it has been determined that all of the algorithms would have a 100% of SE 

and PP if they were applied on recordings from these devices. 
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Figure 21. (a)Relationship between SE performance of heartbeat detection for BW and the predicted 

performance for each device. (b)Relationship between PP performance of heartbeat detection for BW 

and the predicted performance for each device. 

 Similarly, the devices presented very positive SNR values for the EMG noise 

for the most noise inducing activity (running). The values were 30.1 dB, 35.7 dB and 

44 dB for the BIOPAC, Hitoe and Vitalgram respectively. For this reason, it was 

determined that the SE and PP for the EMG noise is 100% for all of the algorithms if 

they were applied on recordings from these devices. 

 For the BIOPAC system, the SNR value for EMA while running was -3.54 dB. 

According to Apandi’s research, the WQRS algorithm presents the worst results. The 

SE and PP for recordings of the BIOPAC system would be 89% and 40.7%, 

respectively. Apandi’s proposed method presents the bests results. 97.7% and 95%, 

for SE and PP, respectively. These results are shown in Figure 22. 
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Figure 22.  Performance of the heartbeat detection algorithms. (a)Relationship between SE 

performance of heartbeat detection for EMA and the estimated performance for BIOPAC ECG 

recordings. (b)Relationship between PP performance of heartbeat detection for EMA and the 

estimated performance for BIOPAC ECG recordings. 

For the Hitoe system, the SNR value for EMA while running was -0.26 dB. 

According to Apandi’s research, once again, the WQRS algorithm presents the worst 

results. The SE and PP for recordings of the Hitoe system would be 92.4% and 49.5%, 

respectively. Apandi’s proposed method presents the bests results. 99.8% and 99.3%, 

for SE and PP, respectively. These results are shown in Figure 23. 

 

Figure 23. Performance of the heartbeat detection algorithms. (a)Relationship between SE 

performance of heartbeat detection for EMA and the estimated performance for Hitoe ECG recordings. 
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(b)Relationship between PP performance of heartbeat detection for EMA and the predicted 

performance for Hitoe ECG recordings. 

 For the Vitalgram system, the SNR value for EMA while running was 3.56 dB. 

According to Apandi’s research, once more, the WQRS algorithm presents the worst 

results. The SE and PP for recordings of the Vitalgram system would be 94.7% and 

64.2%, respectively. Apandi’s proposed method presents the bests results. 100% for 

both SE and PP. These results are shown in Figure 24. 

 

Figure 24. Performance of the heartbeat detection algorithms. (a)Relationship between SE 

performance of heartbeat detection for EMA and the estimated performance for Vitalgram ECG 

recordings. (b)Relationship between PP performance of heartbeat detection for EMA and the 

estimated performance for Vitalgram ECG recordings. 
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Chapter 6: Conclusions and Future 

6.1 Conclusions 

 Observing the overall SNR results, it can be seen that the type of noise that 

affects the ECG recordings the most are the electrode motion artifacts (EMA). 

Looking at the results of the SNR calculations, it can be seen that all the 

devices presented and SNR greater than 30 dB for the EMG noise for both the 

walking and running motions. This is evidence that the EMG barely affects the 

recordings of these devices. 

 Even though the BIOPAC system had positive SNR values for EMA and BW 

for the walking motion, for the running motion the SNR for BW was only slightly 

positive, meaning that the BW is mildly affecting the ECG while running. Moreover, 

for EMA, the BIOPAC system had the most negative value (-3.54), meaning that the 

noise’s power is greater than the ECG signal’s power. 

 The Hitoe system’s BW SNR values were positive but not as positive as the 

values of the Vitalgram system. Hitoe’s SNR values for the walking and running 

motions were close to 0 (3.1 dB and -0.26 dB, respectively), indicating that motion, if 

not severely, it still affects the quality of the signal significantly. 

 The SNR values of the Vitalgram for EMG and BW were very positive (over 44 

dB), so it can be said that these noises do not affect the signal. Vitalgram’s SNR 

values for the walking and running motions were 8 dB and 3.5 dB, respectively, 

indicating that the ECG signal was only mildly affected. 

 According to Apandi’s research, the algorithms presented an excellent 

performance on recordings with BW noise. Since all the devices presented a positive 

SNR value for in running conditions, the heartbeat detection would be 100% on any 
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device using any of the algorithms. For the EMG noise, all devices presented SNR 

values over 30 dB. Therefore, the heartbeat detection performance would be 100% 

on any device using any of the algorithms. 

For the EMA, since the Vitalgram has better SNR values than the rest of the 

devices, the algorithms would perform better on Vitalgram’s recordings. According to 

the SNR values and Apandi’s research, it can be estimated that the Apandi’s 

proposed method would have 100% performance on recordings from the Vitalgram 

system. 

Taking into consideration all the previous statements, it can be concluded that 

the Vitalgram system is better suited than the other systems to take samples and 

continue this line of research. 

7.2 Future Work 

According to the results from this research, the Vitalgram system shall be used 

to take more samples and continue further research. The samples must be taken 

from real patients working in collaboration with the hospital of Mie University. This 

is important because, in order to test and develop heartbeat classification algorithms, 

machine learning must be used. The samples shall contain annotations by experts 

from the hospital of Mie University that will help with this purpose. 

The final goal of this line of research is to develop a wearable 

electrocardiograph that is not only capable of ECG monitoring in real-time but also 

capable of processing the signal and be able to classify each heartbeat whether they 

are normal or present some sort of abnormality, while the person wearing the device 

performs daily activities. 
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Appendix A 

“changeEcgFreq” function 

function [tResamp,ecgResamp] = changeEcgFreq(tRest,ecgRest,ecgFreqRest,ecgFreqMove) 

%changeEcgFreq: Changes the heart rate of an ecg sample. 

%               tRest,ecgRest,ecgFreqRest,ecgFreqMove 

%   Changes the time vector of the ECG sample by a factor determined by the 

%   heart rate of the ECG sample and a target heart rate. 

%   The new signal (time vector and ECG) has now a new sampling frequency. 

%   Higher if the heart rate was increased. Lower if the heart rate was 

%   decreased. 

%   To match the original sampling frequency, the ECG signal is now 

%   resampled. 

%   The output arguments correspond to a time vector and ECG that have a 

%   different frequency than the original, but have the original sampling 

%   frequency. 

  

tRestTemp = tRest*(ecgFreqRest/ecgFreqMove); 

delayFactor = tRest(1) - tRestTemp(1); 

tRest2 = tRestTemp + delayFactor; 

samplingFreq1 = ceil((1/(tRest(2)-tRest(1)))); 

samplingFreq2 = ceil((1/(tRest2(2)-tRest2(1)))); 

ecgResamp = resample(ecgRest,samplingFreq1,samplingFreq2); 

tResamp = []; 

temp = 0; 

for i = 1:size(ecgResamp) 

  tResamp(i) = temp; 

  temp = temp + (1/samplingFreq1); 

end 

 

 

“waveletPeakDetection” function 

function [rPeaks_wavelet,locs_wavelet,rPeaks,locs,y] = 

waveletPeakDetection(t,ecg,level,band1,band2,minPeakH1,minPeakD1,minPeakH2,minPeakD2) 

%waveletPeakDetection: Detects R peaks  

%   t,ecg,level,band1,band2,minPeakH1,minPeakD1,minPeakH2,minPeakD2 

%   Deconstruction and reconstruction of the ECG signal 

%   using the DWT transformation method. 

%   After the reconstruction is done, a simple findpeaks function  

%   is used to find the R-peak locations. 

  

waveletTransform = modwt(ecg,level); 

waveletRecon = zeros(size(waveletTransform)); 

waveletRecon(band1:band2,:) = waveletTransform(band1:band2,:); 

y = imodwt(waveletRecon,'sym4'); 

y = abs(y).^2; 

[rPeaks_wavelet,locs_wavelet] = 

findpeaks(y,t,'MinPeakHeight',minPeakH1,'MinPeakDistance',minPeakD1); 

[rPeaks,locs] = 

findpeaks(ecg,t,'MinPeakHeight',minPeakH2,'MinPeakDistance',minPeakD2); 

  

end 
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Script used to analyze ECG recordings (Vitalgram, Subject 

004) 

% -----    Vitalgram  Subject 004 Script   v3 --------------------------- 
%------------------------------------------------------------------------- 
clc 
clear 
close all 
  
%% ----------   Read ECG file ---------- 
[file, path] = uigetfile('D:\Documents\Academic\Mie University\Master Thesis 

Research\Data Samples\VITALGRAM\2021-12-29-Electrocardiogram.csv'); 
filename = strcat(path, file); 
table1 = readtable(filename); 
table1.Properties.VariableNames{'Time_HH_mm_ss_SSSSSSS_'} = 'Time_ECG'; 
VarNames = table1.Properties.VariableNames;    % Recover Variable Names (Column 

Titles) 
%ColIdx = find(strcmp(VarNames, 'c'));          % Return Column Index For Variable 

Name ‘c’ 
  
%% ----------   Read Acceleration file   ----------% 
[file2, path2] = uigetfile('D:\Documents\Academic\Mie University\Master Thesis 

Research\Data Samples\VITALGRAM\2021-12-29-Acceleration.csv'); 
filename2 = strcat(path2, file2); 
table2 = readtable(filename2); 
table2.Properties.VariableNames{'Time_HH_mm_ss_SSSSSSS_'} = 'Time_ACC'; 
VarNames2 = table2.Properties.VariableNames;    % Recover Variable Names (Column 

Titles) 
%ColIdx = find(strcmp(VarNames, 'c'));           % Return Column Index For Variable 

Name ‘c’ 
  
% Sampling Frequency 
Fs = 256; % If Vitalgram 
% Fs = 200; 
  
% 11 bit resolution 
BD_Constant = 3.3/1023; 
  
% ECG amplitude and time vectors 
mV = table1.('Amplitude')* BD_Constant; 
  
%mV = mV - mean(mV); 
%mV = table1.('Amplitude'); 
tECG = table1.('Time_ECG'); 
tECGduration = tECG; 
tECGseconds = seconds(tECG);   % Change time vector from duration to seconds 
ax = table2.('X_axis_g_'); 
ay = table2.('Y_axis_g_'); 
az = table2.('Z_axis_g_'); 
at = table2.('Time_ACC'); 
  
% figure(1); 
% subplot(2,1,1); 
% plot(mV); 
% subplot(2,1,2); 
% plot(ax); 
% hold on 
% plot(ay); 
% hold on  
% plot(az); 
%% ---------- Divide Sample by Action ----------% 
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[ecgLying, tLying, ecgSitting, tSitting, ecgStanding, tStanding, ecgWalking, 

tWalking, ecgJogging, tJogging,ecgUpDownLeft,tUpDownLeft, ecgUpDownRight, 

tUpDownRight, ecgPushPullLeft, tPushPullLeft, ecgPushPullRight, tPushPullRight, 

ecgWavingLeft, tWavingLeft, ecgWavingRight, tWavingRight, ecgStandUp, tStandUp, 

ecgSitDown, tSitDown] = divideEcgSample(tECGseconds, 

mV,80000,81280,90000,91280,94000,95280,106000,107280,116000,117280,132100,133380,14

3400,144680,157200,158480,170000,171280,183000,184280,191800,193080,196900,198180,1

98180,199460); 
  
%% ----------   Plot Whole Test   ----------% 
figure(1);                  %Full Test Plot 
axisX(2) = subplot(2,1,1); 
plot(tECG,mV);  %ECG Plot 
axisX(2) = subplot(2,1,2); 
title('ECG - Vitalgram'); 
xlabel('Time [s]'); 
ylabel('Voltage [V]'); 
hold on 
plot(at,ax);    %Acc X plot 
plot(at,ay);    %Acc Y plot 
plot(at,az);    %Acc Z plot 
title('ECG - Vitalgram'); 
xlabel('Time [s]'); 
ylabel('Acceleration [g]'); 
hold off 
linkaxes(axisX,'x'); 
 

%% ----------   Max Value For Each Test ----------% 
maxEcgLying = max(ecgLying); 
maxEcgSitting = max(ecgSitting); 
maxEcgStanding = max(ecgStanding); 
maxEcgWalking = max(ecgWalking); 
maxecgJogging = max(ecgJogging); 
maxEcgUpDownLeft = max(ecgUpDownLeft); 
maxEcgUpDownRight = max(ecgUpDownRight); 
maxEcgPushPullLeft = max(ecgPushPullLeft); 
maxEcgPushPullRight = max(ecgPushPullRight); 
maxEcgWavingLeft = max(ecgWavingLeft); 
maxEcgWavingRight = max(ecgWavingRight); 
maxEcgStandUp = max(ecgStandUp); 
maxEcgSitDown = max(ecgSitDown); 

 

%% ----------   Normalize All Tests   ----------% 
ecgLying = ecgLying/max(ecgLying); 
ecgSitting = ecgSitting/max(ecgSitting); 
ecgStanding = ecgStanding/max(ecgStanding); 
ecgWalking = ecgWalking/max(ecgWalking); 
ecgJogging = ecgJogging/max(ecgJogging); 
ecgUpDownLeft = ecgUpDownLeft/max(ecgUpDownLeft); 
ecgUpDownRight = ecgUpDownRight/max(ecgUpDownRight); 
ecgPushPullLeft = ecgPushPullLeft/max(ecgPushPullLeft); 
ecgPushPullRight = ecgPushPullRight/max(ecgPushPullRight); 
ecgWavingLeft = ecgWavingLeft/max(ecgWavingLeft); 
ecgWavingRight = ecgWavingRight/max(ecgWavingRight); 
ecgStandUp = ecgStandUp/max(ecgStandUp); 
ecgSitDown = ecgSitDown/max(ecgSitDown); 
  
%% ----------   Create Sample Vector For All Tests   ----------% 
samplesLying = 1:size(ecgLying); 
samplesSitting = 1:size(ecgSitting); 
samplesStanding = 1:size(ecgStanding); 
samplesWalking = 1:size(ecgWalking); 
samplesJogging = 1:size(ecgJogging); 
samplesUpDownLeft = 1:size(ecgUpDownLeft); 
samplesUpDownRight = 1:size(ecgUpDownRight); 
samplesPushPullLeft = 1:size(ecgPushPullLeft); 
samplesPushPullRight = 1:size(ecgPushPullRight); 
samplesWavingLeft = 1:size(ecgWavingLeft); 
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samplesWavingRight = 1:size(ecgWavingRight); 
samplesStandUp = 1:size(ecgStandUp); 
samplesSitDown = 1:size(ecgSitDown); 
samplesEcg = 1:size(mV); 
  
%% ----------   Get Baseline Wandering  (Low-Pass) ---------- 
lpFilt = designfilt('lowpassiir','FilterOrder',12, ... 
         'PassbandFrequency',1,'PassbandRipple',0.001, ... 
         'SampleRate',Fs); 
fvtool(lpFilt) 
baselineWanderShifted = filter(lpFilt,mV); 
  
[c, lag] = xcorr(mV, baselineWanderShifted);    % Find Correlation 
[M, I] = max(c);                            % Find Max Correlation Index 
lags = lag(I)                               % Find Max Correlation lag 
baselineWander = circshift(baselineWanderShifted, lags); 
  
figure(201); 
plot(mV); 
hold on 
plot(baselineWander,'linewidth',1.5); 
%% ---------- Divide Baseline Wandering 
[bwLying, tLying, bwSitting, tSitting, bwStanding, tStanding, bwWalking, tWalking, 

bwJogging, tJogging,bwUpDownLeft,tUpDownLeft, bwUpDownRight, tUpDownRight, 

bwPushPullLeft, tPushPullLeft, bwPushPullRight, tPushPullRight, bwWavingLeft, 

tWavingLeft, bwWavingRight, tWavingRight, bwStandUp, tStandUp, bwSitDown, tSitDown] 

= divideEcgSample(tECG, 

baselineWander,80000,81280,90000,91280,94000,95280,106000,107280,116000,117280,1321

00,133380,143400,144680,157200,158480,170000,171280,182800,184080,191800,193080,196

900,198180,198180,199460); 
  
%% Normalize Baseline Wandering 
bwLying = bwLying/max(ecgLying); 
bwSitting = bwSitting/max(ecgSitting); 
bwStanding = bwStanding/max(ecgStanding); 
bwWalking = bwWalking/max(ecgWalking); 
bwJogging = bwJogging/max(ecgJogging); 
bwUpDownLeft = bwUpDownLeft/max(ecgUpDownLeft); 
bwUpDownRight = bwUpDownRight/max(ecgUpDownRight); 
bwPushPullLeft = bwPushPullLeft/max(ecgPushPullLeft); 
bwPushPullRight = bwPushPullRight/max(ecgPushPullRight); 
bwWavingLeft = bwWavingLeft/max(ecgWavingLeft); 
bwWavingRight = bwWavingRight/max(ecgWavingRight); 
bwStandUp = bwStandUp/max(ecgStandUp); 
bwSitDown = bwSitDown/max(ecgSitDown); 
  
%% ----------   Get EMG Noise  (High-Pass) ---------- 
hpFilt = designfilt('highpassiir','FilterOrder',12, ... 
         'PassbandFrequency',50,'PassbandRipple',0.01, ... 
         'SampleRate',Fs); 
fvtool(hpFilt) 
emgNoiseShifted = filter(hpFilt,mV); 
  
[c, lag] = xcorr(mV,emgNoiseShifted);    % Find Correlation 
[M, I] = max(c);                            % Find Max Correlation Index 
lags = lag(I)                               % Find Max Correlation lag 
  
emgNoise = circshift(emgNoiseShifted, lags); 
  
figure(202);plot(mV - baselineWander); 
hold on 
plot(emgNoise,'linewidth',1.5); 
 

%% ---------- Divide EMG noise 
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[emgLying, tLying, emgSitting, tSitting, emgStanding, tStanding, emgWalking, 

tWalking, emgJogging, tJogging, emgUpDownLeft, tUpDownLeft, emgUpDownRight, 

tUpDownRight, emgPushPullLeft, tPushPullLeft, emgPushPullRight, tPushPullRight, 

emgWavingLeft, tWavingLeft, emgWavingRight, tWavingRight, emgStandUp, tStandUp, 

emgSitDown, tSitDown] = divideEcgSample(tECG, 

emgNoise,80000,81280,90000,91280,94000,95280,106000,107280,116000,117280,132100,133

380,143400,144680,157200,158480,170000,171280,182800,184080,191800,193080,196900,19

8180,198180,199460); 
%% Normalize EMG Noise 
emgLying = emgLying/max(ecgLying); 
emgSitting = emgSitting/max(ecgSitting); 
emgStanding = emgStanding/max(ecgStanding); 
emgWalking = emgWalking/max(ecgWalking); 
emgJogging = emgJogging/max(ecgJogging); 
emgUpDownLeft = emgUpDownLeft/max(ecgUpDownLeft); 
emgUpDownRight = emgUpDownRight/max(ecgUpDownRight); 
emgPushPullLeft = emgPushPullLeft/max(ecgPushPullLeft); 
emgPushPullRight = emgPushPullRight/max(ecgPushPullRight); 
emgWavingLeft = emgWavingLeft/max(ecgWavingLeft); 
emgWavingRight = emgWavingRight/max(ecgWavingRight); 
emgStandUp = emgStandUp/max(ecgStandUp); 
emgSitDown = emgSitDown/max(ecgSitDown); 

 

%% ----------   Change Time Duration Array to Seconds Array   ----------% 
tECG = seconds(tECG);   % Change time vector from duration to seconds 
  
%% ----------   Selecting the clean heartbeat   ----------% 
cleanEcgSignal = ecgSitting/max(ecgSitting); 
samplesCleanEcgSignal = (1:length(cleanEcgSignal))'; 
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesCleanEcgSignal,cleanEcgSignal,5,3,4,0.25,64,0.7,64); 
  
figure(91); 
rawData = plot(samplesCleanEcgSignal,cleanEcgSignal,'k','linewidth',0.75); 
hold on 
waveletRec = plot(samplesCleanEcgSignal,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R peak detection - Sitting (Clean ECG)'); 
legend([hwav rawData waveletRec],'R Peak Locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
cleanHeartBeat = cleanEcgSignal(locs_wavelet(4):locs_wavelet(5)); 
tCleanHeartBeat = ((0:length(cleanHeartBeat)-1)/Fs)'; 
periodCleanHeartBeat = length(cleanHeartBeat)/Fs; % In seconds 
cleanHeartRate = 1/periodCleanHeartBeat; 
  
%% ----------   Check Noisy signal R peaks   Walking   ----------% 
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesWalking,ecgWalking,5,3,4,0.25,64,0.7,64); 
figure(4); 
rawData = plot(samplesWalking,ecgWalking,'k','linewidth',0.75); 
hold on 
waveletRec = plot(samplesWalking,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R-peak detection - Check   Walking'); 
legend([hwav rawData waveletRec],'R Peaks Locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesWalking,ecgWalking,5,3,4,0.25,64,0.7,64); 
figure(92); 
rawData = plot(samplesWalking,ecgWalking,'k','linewidth',0.75); 
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hold on 
waveletRec = plot(samplesWalking,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R-peak detection - Walking (Noisy ECG)'); 
legend([hwav rawData waveletRec],'R peak locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
ecgWalkingSemiClean = ecgWalking - bwWalking - emgWalking; 
ecgWalkingSemiClean = ecgWalkingSemiClean / max(ecgWalkingSemiClean); 
%% ----------   Calculate SNR for "N" heartbeats   Walking   ----------% 
motionNoise = []; 
sumXs = 0; 
sumYs = 0; 
  
for i = 1:length(locs_wavelet)-1 
    per = (locs_wavelet(i+1)-1-locs_wavelet(i))+1; 
    period = per/Fs; 
    goalheartRate = 1/period; 
    [tCleanHeartBeatResamp,cleanHeartBeatResamp] = 

changeEcgFreq(tCleanHeartBeat,cleanHeartBeat,cleanHeartRate,goalheartRate); 
    cleanHeartBeatResamp = cleanHeartBeatResamp / max(cleanHeartBeatResamp); 
    ecgWalkingSemiCleanPortion = 

ecgWalkingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1) / 

max(ecgWalkingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)); 
    %noise = ecgWalkingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)- 

cleanHeartBeatResamp; 
    noise = ecgWalkingSemiCleanPortion - cleanHeartBeatResamp; 
    sumXs = sumXs + sum((cleanHeartBeatResamp).^2); 
    sumYs = sumYs + sum((noise).^2); 
    for j = 1:length(noise) 
        motionNoise(end+1,:) = noise(j); 
    end  
end 
rSumXs = (sqrt(sumXs)).^2; 
rSumYs = (sqrt(sumYs)).^2; 
  
motionNoiseWalking = motionNoise; 
allNoise = motionNoise + bwWalking(locs_wavelet(1):locs_wavelet(end)-1) + 

emgWalking(locs_wavelet(1):locs_wavelet(end)-1); 
  
%SNR (General) beat by beat 
SNR_General_Walking = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end)-

1)).^2)/(rssq(allNoise)).^2) 
  
%SNR (Motion Noise) cleanEcgSignal / motionNoise Walking 
SNR_Motion_Walking = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(motionN

oise)).^2) 
  
%SNR (Baseline Wander) Sitting / bwWalking 
SNR_BW_Walking = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(bwWalki

ng(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
%SNR (EMG noise) Sitting / emgWalking 
SNR_EMG_Walking = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(emgWalk

ing(locs_wavelet(1):locs_wavelet(end))).^2)) 
 

%% ----------   Check Noisy signal R peaks   Jogging   ----------% 
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesJogging,ecgJogging,5,3,4,0.25,64,0.7,64); 
figure(5); 
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rawData = plot(samplesJogging,ecgJogging,'k','linewidth',0.75); 
hold on 
waveletRec = plot(samplesJogging,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R-peak detection - Check   Jogging'); 
legend([hwav rawData waveletRec],'R Peaks Locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
ecgJoggingSemiClean = ecgJogging - bwJogging - emgJogging; 
ecgJoggingSemiClean = ecgJoggingSemiClean / max(ecgJoggingSemiClean); 
%% ----------   Calculate SNR for "N" heartbeats   Jogging   ----------% 
motionNoise = []; 
sumXs = 0; 
sumYs = 0; 
  
for i = 1:length(locs_wavelet)-1 
    per = (locs_wavelet(i+1)-1-locs_wavelet(i))+1; 
    period = per/Fs; 
    goalheartRate = 1/period; 
    [tCleanHeartBeatResamp,cleanHeartBeatResamp] = 

changeEcgFreq(tCleanHeartBeat,cleanHeartBeat,cleanHeartRate,goalheartRate); 
    cleanHeartBeatResamp = cleanHeartBeatResamp / max(cleanHeartBeatResamp); 
    ecgJoggingSemiCleanPortion = 

ecgJoggingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1) / 

max(ecgJoggingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)); 
    %noise = ecgJoggingSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)- 

cleanHeartBeatResamp; 
    noise = ecgJoggingSemiCleanPortion - cleanHeartBeatResamp; 
    sumXs = sumXs + sum((cleanHeartBeatResamp).^2); 
    sumYs = sumYs + sum((noise).^2); 
    for j = 1:length(noise) 
        motionNoise(end+1,:) = noise(j); 
    end  
end 
rSumXs = (sqrt(sumXs)).^2; 
rSumYs = (sqrt(sumYs)).^2; 
  
motionNoiseJogging = motionNoise; 
allNoise = motionNoise + bwJogging(locs_wavelet(1):locs_wavelet(end)-1) + 

emgJogging(locs_wavelet(1):locs_wavelet(end)-1); 
  
%SNR (General) beat by beat 
SNR_General_Jogging = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end)-

1)).^2)/rssq(allNoise).^2) 
  
%SNR (Motion Noise) cleanEcgSignal / motionNoise Jogging 
SNR_Motion_Jogging = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(motionN

oise)).^2) 
  
%SNR (Baseline Wander) Sitting / bwJogging 
SNR_BW_Jogging = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(bwJoggi

ng(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
%SNR (EMG noise) Sitting / emgJogging 
SNR_EMG_Jogging = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(emgJogg

ing(locs_wavelet(1):locs_wavelet(end))).^2)) 
%SNR_EMG_Jogging2 = 

snr( cleanEcgSignal(locs_wavelet(1):locs_wavelet(end)),emgJogging(locs_wavelet(1):l

ocs_wavelet(end)) ) 
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%SNR_EMG_Jogging3 = 

10*log10((sum((cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2))/(sum((emgJog

ging(locs_wavelet(1):locs_wavelet(end))).^2))) 
  
%% ----------   Check Noisy signal R peaks   WavingLeft   ----------% 
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesWavingLeft,ecgWavingLeft,5,3,4,0.25,64,0.7,64); 
figure(6); 
rawData = plot(samplesWavingLeft,ecgWavingLeft,'k','linewidth',0.75); 
hold on 
waveletRec = plot(samplesWavingLeft,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R-peak detection - Check   WavingLeft'); 
legend([hwav rawData waveletRec],'R Peak Locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
ecgWavingLeftSemiClean = ecgWavingLeft - bwWavingLeft - emgWavingLeft; 
ecgWavingLeftSemiClean = ecgWavingLeftSemiClean / max(ecgWavingLeftSemiClean); 
%% ----------   Calculate SNR for "N" heartbeats   WavingLeft   ----------% 
motionNoise = []; 
sumXs = 0; 
sumYs = 0; 
  
for i = 1:length(locs_wavelet)-1 
    per = (locs_wavelet(i+1)-1-locs_wavelet(i))+1; 
    period = per/Fs; 
    goalheartRate = 1/period; 
    [tCleanHeartBeatResamp,cleanHeartBeatResamp] = 

changeEcgFreq(tCleanHeartBeat,cleanHeartBeat,cleanHeartRate,goalheartRate); 
%     length(cleanHeartBeatResamp) 
%     length(Ya(locs_wavelet(i):locs_wavelet(i+1))) 
    noise = ecgWavingLeftSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)- 

cleanHeartBeatResamp; 
    sumXs = sumXs + sum((cleanHeartBeatResamp).^2); 
    sumYs = sumYs + sum((noise).^2); 
    for j = 1:length(noise) 
        motionNoise(end+1,:) = noise(j); 
    end  
end 
rSumXs = (sqrt(sumXs)).^2; 
rSumYs = (sqrt(sumYs)).^2; 
  
motionNoiseWavingLeft = motionNoise; 
allNoise = motionNoise + bwWavingLeft(locs_wavelet(1):locs_wavelet(end)-1) + 

emgWavingLeft(locs_wavelet(1):locs_wavelet(end)-1); 
  
%SNR (General) beat by beat 
SNR_General_WavingLeft = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end)-

1)).^2)/rssq(allNoise).^2) 
  
%SNR (Motion Noise) cleanEcgSignal / motionNoise WavingLeft 
SNR_Motion_WavingLeft = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(motionN

oise)).^2) 
  
%SNR (Baseline Wander) Sitting / bwWavingLeft 
SNR_BW_WavingLeft = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(bwWavin

gLeft(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
%SNR (EMG noise) Sitting / emgWavingLeft 
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SNR_EMG_WavingLeft = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(emgWavi

ngLeft(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
%% ----------   Check Noisy signal R peaks   WavingRight   ----------% 
[qrspeaks_wavelet,locs_wavelet,qrspeaks,locs,y] = 

waveletPeakDetection(samplesWavingRight,ecgWavingRight,5,3,4,0.25,64,0.7,64); 
figure(7); 
rawData = plot(samplesWavingRight,ecgWavingRight,'k','linewidth',0.75); 
hold on 
waveletRec = plot(samplesWavingRight,y,'r','linewidth',1); 
hwav = plot(locs_wavelet,qrspeaks_wavelet,'bo'); 
title('R-peak detection - Check   WavingRight'); 
legend([hwav rawData waveletRec],'R Peaks Locations','Raw Data','Wavelet 

Reconstruction','Location','Southeast'); 
xlabel('Samples'); 
hold off; 
  
ecgWavingRightSemiClean = ecgWavingRight - bwWavingRight - emgWavingRight; 
ecgWavingRightSemiClean = ecgWavingRightSemiClean / max(ecgWavingRightSemiClean); 
%% ----------   Calculate SNR for "N" heartbeats   WavingRight   ----------% 
motionNoise = []; 
sumXs = 0; 
sumYs = 0; 
  
for i = 1:length(locs_wavelet)-1 
    per = (locs_wavelet(i+1)-1-locs_wavelet(i))+1; 
    period = per/Fs; 
    goalheartRate = 1/period; 
    [tCleanHeartBeatResamp,cleanHeartBeatResamp] = 

changeEcgFreq(tCleanHeartBeat,cleanHeartBeat,cleanHeartRate,goalheartRate); 
%     length(cleanHeartBeatResamp) 
%     length(Ya(locs_wavelet(i):locs_wavelet(i+1))) 
    noise = ecgWavingRightSemiClean(locs_wavelet(i):locs_wavelet(i+1)-1)- 

cleanHeartBeatResamp; 
    sumXs = sumXs + sum((cleanHeartBeatResamp).^2); 
    sumYs = sumYs + sum((noise).^2); 
    for j = 1:length(noise) 
        motionNoise(end+1,:) = noise(j); 
    end  
end 
rSumXs = (sqrt(sumXs)).^2; 
rSumYs = (sqrt(sumYs)).^2; 
  
motionNoiseWavingRight = motionNoise; 
allNoise = motionNoise + bwWavingRight(locs_wavelet(1):locs_wavelet(end)-1) + 

emgWavingRight(locs_wavelet(1):locs_wavelet(end)-1); 
  
%SNR (General) beat by beat 
SNR_General_WavingRight = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end)-

1)).^2)/rssq(allNoise).^2) 
  
%SNR (Motion Noise) cleanEcgSignal / motionNoise WavingRight 
SNR_Motion_WavingRight = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(motionN

oise)).^2) 
  
%SNR (Baseline Wander) Sitting / bwWavingRight 
SNR_BW_WavingRight = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(bwWavin

gRight(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
%SNR (EMG noise) Sitting / emgWavingRight 
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SNR_EMG_WavingRight = 

10*log10((rssq(cleanEcgSignal(locs_wavelet(1):locs_wavelet(end))).^2)/(rssq(emgWavi

ngRight(locs_wavelet(1):locs_wavelet(end))).^2)) 
  
  
%%   ----------   Creating SNR Table and File ---------- 
NoiseType = {'All Noise';'Motion';'BW';'EMG'}; 
Walking = [SNR_General_Walking;SNR_Motion_Walking;SNR_BW_Walking;SNR_EMG_Walking]; 
Running = [SNR_General_Jogging;SNR_Motion_Jogging;SNR_BW_Jogging;SNR_EMG_Jogging]; 
WavingLeft = 

[SNR_General_WavingLeft;SNR_Motion_WavingLeft;SNR_BW_WavingLeft;SNR_EMG_WavingLeft]

; 
WavingRight = 

[SNR_General_WavingRight;SNR_Motion_WavingRight;SNR_BW_WavingRight;SNR_EMG_WavingRi

ght]; 
  
SNR_Table = table(Walking,Running,WavingLeft,WavingRight,'RowNames',NoiseType) 
  
writetable(SNR_Table,'SNR_Vit_004.xlsx','WriteRowNames',true); 
 

 

 

  



50 
 

References 

[1]"Cardiovascular diseases", Who.int, 2022. [Online]. Available: 

https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. [Accessed: 

12- Jan- 2022]. 

[2]N. Srinivasan and R. Schilling, "Sudden Cardiac Death and Arrhythmias", 

Arrhythmia & Electrophysiology Review, vol. 7, no. 2, p. 111, 2018. Available: 

10.15420/aer.2018:15:2. 

[3]P. Kowey and D. Kocovic, "Ambulatory Electrocardiographic Recording", 

Circulation, vol. 108, no. 5, 2003. Available: 10.1161/01.cir.0000082930.04238.8c. 

[4]J. Hall, M. Hall and A. Guyton, Guyton and Hall textbook of Medical Physiology, 

14th ed. Elsevier, 2021. 

[5]S. Talebi, "The Wavelet Transform", Medium, 2022. [Online]. Available: 

https://towardsdatascience.com/the-wavelet-transform-e9cfa85d7b34. [Accessed: 

15- Jan- 2022]. 

[6] R. Polikar, The Wavelet Tutorial, 2nd edition. Available: 

http://users.rowan.edu/~polikar/WTtutorial.html 

[7] K. Amolins, Y. Zhang and P. Dare, "Wavelet based image fusion techniques — An 

introduction, review and comparison", ISPRS Journal of Photogrammetry and 

Remote Sensing, vol. 62, no. 4, pp. 249-263, 2007. Available: 

10.1016/j.isprsjprs.2007.05.009. 

[8] "Signal-to-Noise Ratio Monitor - TechLibrary - Juniper Networks", Juniper.net, 

2022. [Online]. Available: https://www.juniper.net/documentation/en_US/junos-



51 
 

space-apps/network-director4.0/topics/reference/general/monitor-snr.html. 

[Accessed: 14- Jan- 2022]. 

[9] "snr", www.mathworks.com, 2022. [Online]. Available: 

https://www.mathworks.com/help/signal/ref/snr.html. [Accessed: 14- Jan- 2022]. 

[10] "How to Calculate Signal to Noise Ratio", Horiba.com, 2022. [Online]. 

Available: https://www.horiba.com/int/technology/spectroscopy/fluorescence-

spectroscopy/how-to-calculate-signal-to-noise-ratio/. [Accessed: 14- Jan- 2022]. 

[11]M. D’Aloia, A. Longo and M. Rizzi, "Noisy ECG Signal Analysis for Automatic 

Peak Detection", Information, vol. 10, no. 2, p. 35, 2019. Available: 

10.3390/info10020035. 

[12]J. Madeiro, Developments and applications for ECG signal processing. London: 

Academic Press, an imprint of Elsevier, 2019. 

[13]M. Blanco-Velasco, B. Weng and K. Barner, "ECG signal denoising and baseline 

wander correction based on the empirical mode decomposition", Computers in 

Biology and Medicine, vol. 38, no. 1, pp. 1-13, 2008. Available: 

10.1016/j.compbiomed.2007.06.003. 

[14]A. Boxtel, "Optimal signal bandwidth for the recording of surface EMG activity of 

facial, jaw, oral, and neck muscles", Psychophysiology, vol. 38, no. 1, pp. 22-34, 2001. 

Available: 10.1111/1469-8986.3810022. 

[15]A. Pérez-Riera, R. Barbosa-Barros, R. Daminello-Raimundo and L. de Abreu, 

"Main artifacts in electrocardiography", Annals of Noninvasive Electrocardiology, vol. 

23, no. 2, p. e12494, 2017. Available: 10.1111/anec.12494. 



52 
 

[16]R. Haddadi, E. Abdelmounim, M. El Hanne and A. Belaguid, "Discrete Wavelet 

Transform Based Algorithm for Recognition of QRS Complexes", World of Computer 

Science and Information Technology Journal, vol. 4, no. 9, pp. 127-132, 2014. 

[Accessed 16 January 2022]. 

[17] Patro K.K., Rajesh Kumar P. (2016) A Novel Frequency-Time Based Approach 

for the Detection of Characteristic Waves in Electrocardiogram Signal. In: Satapathy 

S., Rao N., Kumar S., Raj C., Rao V., Sarma G. (eds) Microelectronics, 

Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, 

vol 372. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2728-1_6 

[18] Z. F. M. Apandi, "Development of Noise-Tolerant Method for Arrhythmia 

Heartbeat Detection in Ambulatory Electrocardiogram", Ph.D., Mie University, 2021. 

[19] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database. IEEE 

Eng in Med and Biol 20(3):45-50 (May-June 2001). (PMID: 11446209) 

[20]MATLAB MATHWORKS. 

 

 

 

 


