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Chapter 1

Introduction

1.1 Background

Lung cancer is a leading cause of cancer death in the world, and in particular, the

annual mortality number is in excess of 150,000 in the United States [1]. Studying the

lung structures that perform gas exchange function is important in identifying disease

mechanisms. This task looks simple; however, the human lung is a complex organ with

high cellular heterogeneity. Its development and maintenance require interactive gene

networks and dynamic cross-talk among multiple cell types. Furthermore, it is difficult

to understand various causes of abnormal lung developmental patterns and adult lung

disorders at the molecular level until we understand its normal development [2]. Quantifi-

cation of normal lung development/formation and gene/cellular/molecular levels requires

carefully assessing various lung imaging modalities.

The LungMAP consortium is one of the research projects for lung development. The

consortium was initiated by the National Institutes of Health (NIH) in order to advance

molecular, physiologic, and imaging research on the alveolar lung stage using normal,

non-diseased human and mouse lung samples [3]. Along with the availability of various

types of data, such as biological sequencing data, RNA, protein, lipid, signaling, we

can also obtain multi-modal imaging data from the LungMAP database. In particular,

lung tissue imaging data shows the protein/cell localization in different tissue structures,

and these can provide a foundation upon which to build an atlas of the developing

lung [4]. In this thesis, we focus on the confocal immunofluorescent (IF) images of

lung tissues stained with specific sets of proteins. IF images are usually used for a

proteomics process to understand the protein localization on the sub-cellular level by

image annotation [5–7]. With the availability of large-scale lung confocal IF image,

automatic machine learning driving image processing tasks such as segmentation of lung

structures and quantification are important tasks. The realization of efficient automatic

annotations and segmentation using IF images drastically reduces the manual burden

among pulmonary specialists. It promises to increase the usability of such imaging data
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Figure 1.1: Pipeline image for the lung development analysis

on the analysis of lung development phases.

1.2 Research Objective

In this thesis, the author investigates obtaining accurate multi-class segmentation of

lung confocal IF images using the current state-of-the-art deep learning-based model. One

of the primary bottlenecks in using deep Convolutional Neural Network (CNN) models is

the lack of availability of training or ground-truth segmentation labels. The author imple-

ments the multi-class segmentation with generative adversarial network (GAN) models

to expand the training dataset and improve overall segmentation accuracy. To classify

various lung tissue classes along with the region of interest, the author proposes to uti-

lize recent GAN [8–10]. The author applies the method to the multi-class segmentation

problem of IF images and discusses the effectiveness of created synthetic images in the

segmentation.

The author organized the rest of the paper as follows. Chapter 2 introduces recent

GAN models in the context of biomedical images generation. Chapter 3 mentions the

experiment material for this project. Chapter 4 describes the details of our scheme,

i.e., preparation of dataset and synthetic image creation with GAN. Chapter 5 provides

experimental results and discusses the effectiveness of the proposed scheme from the

viewpoint of multi-class segmentation. Chapter 6 concludes our work and describes the

paper along with indicating future works.
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Chapter 2

Related Works

2.1 Generative Adversarial Network and its Contribution

Generative Adversarial Network (GAN) is well-known for generating synthetic data

close to the distribution of the training set. GAN can mimic the data distribution and

synthesize images with unprecedented realism, opening up a new way to bridge the gap

between supervised learning and image generation. It is worthwhile to explore effective

imbalanced learning methods because imbalanced data is prevalent in many applications

area in the industry, where anomaly detection is critical like electricity pilferage, fraud-

ulent transactions in banks, identification of rare diseases, etc [11].

2.2 Application of GAN in Medical Field

In the field of medical imaging, many methods based GAN were applied to a variety

of different modalities such as MRI, CT, OCT, chest X-Ray, Dermoscopy, Ultrasound,

PET, and Microscopy to implement applications: synthesis, reconstruction, detection,

denoising, registration, classification and segmentation [12]. In another research of image

reconstruction in the histopathological cancer diagnosis, GAN was applied to transform

Hematoxylin and Eosin (H&E) stained images into Immunohistochemistry (IHC) stained

images facilitating virtual IHC staining on the same slide. This attempt will contribute

to overcoming the limitation of the image analysis and cut off the staining cost [13]. For

instance, X. Gong et al. discussed style consistent image generation for nuclei instance

segmentation. They tried to generate H&E stained pathological images and discussed

the segmentation accuracy of Mask R-CNN [14]. R. Ranjan et al. proposed a new dual

deep generative method for synthesizing human cell protein images using the Generative

Adversarial Network technique. Also, they evaluated the quality of generated images by

the proposed method [15]. L. Hou et al. also tried to make synthetic images with GAN,

and U-net-based approaches were used for segmentation [16].
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These technologies, however, have not been investigated deeply for lung analysis.

The main point of this thesis is how the synthesized images contribute to improving the

performance of multi-class segmentation for development analysis using IF images.
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Chapter 3

Experimental Materials

3.1 Materials

We collected the IF images of the mouse (Mus musculus from embryo 16.5 days to

postnatal 28 days) and human (Homo sapiens from 9 months old to 4 years old) lung

from the official website of LungMAP project (https://lungmap.net/). Three types of

proteins are stained as red, green, and white in each IF image like Fig. 3.1. Fig. 3.1

is stained by antibodies to label specific proteins such as “Sox9”, “Sftpc”, and “Acta2”

(for more information, see Appendix A.) In addition, these stained proteins are the

markers for specific types of cells. For instance, Sox9, which is green-stained protein,

marks “chondrocyte”, “epithelial cell”, “unclassified fibroblast”, “pre-alveolar epithelial

cell”. The combination of stained proteins depends on each image. Furthermore, we

also used the label image like Fig. 3.2, which could be classified into six tissue classes,

i.e., Background (black : C1), Conductive Airway (red : C2), Distal Acinar Tubule Bud

(green : C3), Proximal Acinar Tubule (blue : C4), Artery (white : C5), and Vein (orange

: C6). The examples are shown in the Figure 3.3
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Figure 3.1: Example of lung confocal IF image

Figure 3.2: Example of labelled image
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(a) Conductive Airway (C2: Red) (b) Distal Acinar Tubule Bud

(C3: Green)

(c) Proximal Acinar Tubule

(C4: Blue)

(d) Pulmonary Artery (C5:

White)

(e) Pulmonary Vein (C6: Yel-

low)

Figure 3.3: Examples of object
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Chapter 4

Proposed Method

This thesis creates synthetic images with the following method, and the created images

are used for expanding the learning dataset for multi-class segmentation. Figure 4.1

illustrates the scheme of our method. The method mainly consists of four processes,

i.e., Preprocessing, Labeling, Image Synthesis, and Segmentation. The following sections

describe the detail of each process.

Figure 4.1: Workflow in our proposed method
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4.1 Preprocessing

Pre-processing was applied to the IF images to prepare the baseline dataset, which

is only used for the traditional augmentation. In this thesis, the original images were

resized 2475×2475 [pixels] to 1024×1024 [pixels] because the size of given tissues should

be matched to the patch image size for deep learning. Subsequently, the author cropped

256× 256 [pixels] with 128 [pixels] stride, and applied traditional augmentation such as

rotating (0◦,90◦,180◦,270◦), flipping, random erasing, blurring, sharpening. Consequently,

3815 images were prepared, and this dataset was used as the baseline for learning.

Figure 4.2: Pre-process workflow for learning models

4.2 Labeling

Before utilizing GAN-based image synthesis, the label image was created. Table 4.1

shows the numbers of objects in all types of creation and their average sizes before

applying traditional augmentation. In the table, object C1 means background so that

the number of objects and their sizes are described as ”-”.

4.2.1 Manual Labeling

In manual cration, label images that have six types of labels are manually created with

a painting tool. Also, the author prepared the label images considering the positional

relations of each tissue. For instance, a conductive airway, which is expressed by a red

label (C2), is usually located near an artery (white label: C5). Such knowledge is very

important in the labeling process because if the created label is not based on topological

knowledge, a created image will not reflect features of the original image. To prevent

this, the author prepared the label image based on topological information.
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Table 4.1: Number of Objects and Average Size (256px × 256px)

Label Dataset

Object Original Image Manual-Synthetic Image Auto-Synthetic Image

[# of Images] [196] [1000] [3000]

# of Obj. Size #of Obj. Size #of Obj. Size

C1 - - - - - -

C2 177 9530 628 11515 2736 6577

C3 1978 1123 6449 1384 8076 1040

C4 767 2385 4108 1779 6868 1219

C5 60 843 657 1071 1856 855

C6 88 4739 295 5891 926 3527

4.2.2 Automatic Labeling

In automatic creation, we used Diffusion Probabilistic Model (hereinafter called ”dif-

fusion models”) for automatic label creation. This model is a parameterized Markov

chain trained using variational inference to produce samples matching the data after fi-

nite time. Transitions of this chain are learned to reverse a diffusion process showing

in Figure 4.3. That is, a Markov chain that gradually adds noise to the data in the

opposite direction of sampling until signal is destroyed. When the diffusion consists of

small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to

conditional Gaussians too, allowing for a particularly simple neural network parameteri-

zation [17].

Figure 4.3: Learning process of the diffusion model

It is difficult for a generative model to have simplicity and flexibility properties. The

model needs to be able to create a variety of features. The created label patterns must

not be similar to the original patterns. So, GAN was unsuitable in our situations. GAN

will generate the image only to deceive the discriminator even if the same pattern is

generated .

On the other hand, the diffusion model can generate a wide variety of patterns if given

`―●●→［口~-8m ···→ G-~-
q(xtlxt-1) 
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enough learning costs. Therefore, the author used the diffusion models for automatic label

creation. The model was trained by the labels only including the few ratio tissues (C5

and C6) to generate few data and moderate the imbalanced data.

4.3 Image Translation Using GAN

We utilized Pix2Pix, Pix2PixHD, GauGAN for image translation [8–10]. These mod-

els can be trained with all images prepared in section 4.1 and generate a synthetic image

from a given label. We focused on this operation and considered the synthetic image and

the label as a pair image set for the segmentation dataset. The pair of images is applied

to the segmentation dataset as a ground truth and training image.

Pix2Pix has a generator that uses skip connections, and its discriminator is designed

to look at the patches rather than the entire image to distinguish real from synthetic

images [8]. The main architecture of Pix2Pix is shown in Figure 4.4. This helps the

generator to create high-level details associated with real data distribution.

Pix2PixHD is a method based on the Pix2Pix. This architecture stabilizes learning

at high resolution and enables the generation of details. Figure 4.5 shows the generator

of Pix2PixHD. Combining G1 (is called as ’global generator’) and G2 (is called as local

enhancer) enables to create different resolution image. On the other hand, the discrim-

inator consists of different scale network for each generator. These architecture helps

to improve the photorealism and resolution. Moreover, it embedded the instance-level

object semantic information to improve the image quality [9].

GauGAN is a state-of-the-art image synthesis model that focuses on converting seg-

mentation masks to photorealistic images. The architecture of GauGAN is shown in

Figure 4.6. It can better preserve semantic information against common normalization

layers to propose a new convolutional normalization method called spatially-adaptive

denormalization (SPADE) [10]. Thus, this normalization layer tends to keep the infor-

mation contained in the semantic input masks.

It is easily expected that the quality of synthetic images generated by newer generation

models is higher than other models because these models have effective architectures for

image translation. However, the author also aims to get any clue for an effective data

augmentation approach by comparing different models and conditions.



CHAPTER 4. PROPOSED METHOD 12

Figure 4.4: The architecture of Pix2Pix

Figure 4.5: The architecture of Pix2PixHD
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(a) Generator network in GauGAN

(b) SPADE Residual Brock (c) Detail of SPADE filter

Figure 4.6: The architecture of GauGAN
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4.4 Evaluation of Segmentation Accuracy

In this scheme, Mask R-CNN, which was one of the well-known segmentation models

in the field of medical image segmentation, was used as a segmentation model [18]. The

author implemented Mask R-CNN and tuned the parameters of the model by changing

the number of synthetic images.

Before the evaluation experiments, the author prepared 1000 synthetic images for

segmentation detailed in Table 4.1. Traditional augmentation was also applied to the

synthetic images. Consequently, 3815 original images, 12046 manual-synthetic and 35894

automatic-synthetic images were used for the experiments. The augmented data condi-

tions are shown in Table 4.2.

In the learning process, the author conducted the 4-fold cross-validation to divide

only the original datasets. Divided one was used as a validation dataset, and the others

were used as train datasets detailed in Table 4.2. The datasets did not make the class

ratio uniform because each dataset was created from each image. To compare the ex-

perimental conditions, the author conducted the learning model in three steps. First,

manual-synthetic images add to the training dataset gradually. Second, each automatic-

synthetic images also add to the training dataset. Finally, all synthetic images used for

training.

In the test process, the test dataset was prepared before image patching and aug-

mentation, and its condition is shown in Table 4.3. The segmentation model predicts an

image whose size is 256 × 256 [pixels]. As shown in Figure 4.7, image prediction is con-

ducted with over-wrapped every 64 [pixels] for deciding by a majority results. Moreover,

predicted images deleted edge prediction (32 [pixel]) because the prediction edge tends

to be misrecognized. Finally, the final prediction determine the most possibly class in

each pixels.

The author evaluated segmentation performance with the dice coefficient score for

class c (Dc), which was defined by

Dc =

2
∑
x

∑
y

|Coutputxy ·Cgtxy ·Uc|∑
x

∑
y

|Coutputxy ·Uc|+
∑
x

∑
y

|Cgtxy ·Uc|
(4.1)

where Coutputxy was predicted class vector at any pixel (x, y) in the image, and Cgtxy

was ground truth class vector as a one-hot vector. In the above equation, Uc means the

one-hot vector for class c, and it is defined by the following equation.

Uc = (U1, ..., UN) where Ui =

0 (i ̸= c)

1 (i = c),
c = 1, 2, ..., N. (4.2)



CHAPTER 4. PROPOSED METHOD 15

Table 4.2: Number of objects and pixels in Train Dataset (256px × 256px)

Original Dataset

[3815]

Obj. Dataset-1 Dataset-2 Dataset-3 Dataset-4

[#] [914] [992] [929] [980]

# of Obj. Pixels # of Obj, Pixels # of Obj. Pixels # of Obj, Pixels

C1 - 28.8M - 34.5M - 36.4M - 33.0M

C2 1140 13.3M 807 4.7M 603 4.6M 886 9.3M

C3 7029 7.6M 11386 12.3M 10617 11.3M 9402 10.8M

C4 3538 7.5M 4055 12.4M 3649 6.5M 3621 8.1M

C5 385 256k 260 233k 221 263k 281 182k

C6 352 2.1M 332 840k 459 178k 648 2.8M

Synthetic Dataset

[47940]

Obj. Manual Automatic-1 Automatic-2 Automatic-3

[#] [12046] [11920] [12017] [11957]

# of Obj. Pixels # of Obj, Pixels # of Obj. Pixels # of Obj, Pixels

C1 – 492.1M - 631.7M - 637.3M - 632.2M

C2 7683 83.1M 11181 69.1M 10878 68.4M 10884 69.1M

C3 76901 102.6M 30519 30.5M 32060 31.9M 32301 33.0M

C4 49074 83.5M 27349 31.9M 27310 31.8M 26164 31.2M

C5 7838 8.1M 7208 5.9M 7343 6.1M 7188 5.9M

C6 3606 19.9M 3522 12.1M 3719 12.8M 3935 12.9M
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Table 4.3: Number of objects and pixels in Test Dataset (1024px × 1024px)

Obj. Dataset-1 Dataset-2 Dataset-3 Dataset-4

# of Obj. Pixels # of Obj, Pixels # of Obj. Pixels # of Obj, Pixels

C1 - 473k - 530k - 614k - 535k

C2 7 261k 10 103k 4 84k 5 144k

C3 91 131k 130 200k 136 199k 113 186k

C4 43 150k 37 200k 43 114k 41 138k

C5 7 6.6k 4 5.0k 3 3.8k 4 30k

C6 2 28k 2 9.5k 4 34k 4 43k

In the equation (4.2), cmeans the class, N is the number of classes. In the testing process,

the only original images were used for the evaluation. The distribution of objects in each

testing dataset is shown in Table 4.3.

□

[
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Figure 4.7: Each area of the image prediction
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Chapter 5

Experimental Results and Discussion

The GAN models used in this paper were trained with the original dataset and applied

for the image translation from the label images. The each hyper parameter for learning

was shown in Table 5.1. Some columns explain omitted forms, i.e., ‘batch’ means batch

size, ‘lrate’ means learning rate, and ‘opt’ means optimizer. Almost parameter were not

changed in the public domain system described in [8–10,18]. Also, the batch of GauGAN

and Mask R-CNN is restricted by the machine performance the author used.

5.1 Manual Labeling Augmentation

5.1.1 Created Synthetic IF Images by GANs

In the experiment, the author created all synthetic images by using each GAN model.

Figure. 5.1 shows examples of created synthetic images by GAN models and label images.

These results show that all GAN models could create synthetic IF images from the given

label images, and the created images reflect features of the original images well.

In the case of Pix2Pix, the created images lost focus compared to others, i.e., GauGAN

and Pix2PixHD. Pix2Pix is an old model compared to others, and its architecture does

not support high resolution. This is why the results were obtained. However, the created

IF images look like they have enough capability to be used as a dataset not only for

segmentation but also for image classification.

5.1.2 Evaluation of Segmentation Accuracy with Manual Datasets

Table 5.2 and Figure 5.2 show the segmentation accuracy of Mask R-CNN. This table

summarizes the dice coefficient score for each tissue when the number of added synthetic

images are 0 (i.e., only original dataset), 6000. 9000, and all manual-synthetic images,

respectively. The rightmost column means the average of segmentation performance in

each condition. The obtained results indicate that the accuracy of six class segmentation
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Table 5.1: Each model’s hyper parameter for learning

Model batch lrate momentum epoch opt loss

Pix2Pix 8 0.002 beta1:0.9 beta2: 0.999 990 adam BCE

Pix2PixHD 8 0.0002 beta1: 0.5 beta2: - 200 adam BCE

GauGAN 1 0.0002 beta1: 0.0 beta2: 0.9 50 adam CE

Mask R-CNN 2 0.001 beta1: 0.9 beta2: - 50 SGD CE, BCE

Table 5.2: Comparison with segmentation accuracy using manual datasets

GAN Training Set C1 C2 C3 C4 C5 C6 Average

Original 0.837 0.717 0.809 0.625 0.104 0.642 0.622

6000 0.862 0.792 0.806 0.737 0.527 0.784 0.752

Pix2Pix 9000 0.869 0.772 0.817 0.684 0.594 0.843 0.763

All 0.866 0.809 0.811 0.710 0.652 0.789 0.773

6000 0.872 0.781 0.815 0.716 0.625 0.707 0.753

Pix2PixHD 9000 0.870 0.783 0.809 0.685 0.629 0.762 0.756

All 0.872 0.779 0.816 0.689 0.626 0.805 0.765

6000 0.871 0.796 0.809 0.720 0.614 0.785 0.766

GauGAN 9000 0.863 0.807 0.804 0.704 0.550 0.798 0.754

All 0.867 0.833 0.804 0.708 0.632 0.765 0.768

using Mask R-CNN was improved in all cases. In particular, the segmentation accuracy

was increased by 15.1% when 1000 additional synthetic images were used for learning

of Pix2Pix. As mentioned before, the synthetic images created by Pix2Pix lost focus

compared to others, but these images also contributed to improving the segmentation

accuracy of Mask R-CNN. In the field of medical imaging, it is generally difficult to

collect plenty of data for machine learning. In particular, deep learning requires several

thousands of images for accurate recognition. By using this approach, the author does

not need to collect plenty of data and only prepare label images considering features of

the baseline dataset.

Figure 5.3 and Table 5.3 show examples of failures in the segmentation process. In

the figure, these images mean the original IF images, ground truth, and segmentation

result from the first-tier image. In these cases, Mask R-CNN could not segment red

(conductive airway: C2) and orange (vein: C6) objects appropriately. Both objects are a
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Table 5.3: Confusion matrices in fail cases

(a) Fail Case 1

C1 C2 C3 C4 C5 C6 Sum of Pred

C1 433213 86296 26443 31059 2035 4077 563123

C2 3871 183311 0 10901 193 0 198276

C3 16979 0 101199 9200 26 0 127404

C4 18149 2586 3195 98642 0 0 122572

C5 284 245 0 0 4330 0 4759

C6 565 8082 0 0 0 23975 32442

Sum of GT 472961 280520 130837 149802 6584 27872 1048576

(b) Fail Case 2

C1 C2 C3 C4 C5 C6 Sum of Pred

C1 456470 20981 26839 27755 349 12607 545001

C2 20945 116653 0 4557 152 0 142307

C3 20883 0 151074 17362 0 0 189319

C4 24583 6280 7605 88683 621 0 127772

C5 881 0 0 0 1918 0 2799

C6 11100 128 0 0 0 30150 41378

Sum of GT 534862 144042 185518 138357 3040 42527 1048576

type of muscle fibers and their feature, e.g., shapes and distributions of pixels, is similar

to each other. Also, in Table 5.3, the author can indicate the same considerations above.

The table shows that Mask R-CNN still failed to determine the object’s boundary ideally.

This is one of the reasons for such experimental results being obtained. It is, however, a

heavy task for us to prepare thousands of label images manually. The author needs to

use the automatic process to create the labels. The following section tried to extend the

research and show the conducted experiment’s results.
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5.2 Automatic Labeling Augmentation

5.2.1 Automatic Labeling with Diffusion Model

In the automatic creation, the diffusion models create the label images, and the detail

of parameters is shown in Table 5.4. The model was learned by labels including white

(pulmonary artery: C5) or yellow (pulmonary vein: C6) in the original and manual label

datasets. The generation results are shown in Figure 5.4. The diffusion model created the

label images to moderate imbalanced data. The author also applied the GAN models to

translate the synthetic images from these created labels. The synthesized datasets were

divided into three ones randomly for observing the average effects.

Table 5.4: Diffusion model’s parameter

Batch size 4

Learning rate 2× 10−5

Number of steps 500k

Gradient accumulation steps 2

Exponential moving average decay 0.995

5.2.2 Evaluation of Segmentation Accuracy with Automatic Datasets

This experiment was conducted to add the automatic-synthetic dataset to the manual-

synthetic dataset. Table 5.5 and Figure 5.5 show the segmentation accuracy of added

automatic synthetic datasets. This table summarizes the dice coefficient score for each

tissue when the added datasets are Manual (i.e., the best accuracy in Table 5.2), Auto-1,

Auto-2, Auto-3, and all synthetic images, respectively. The obtained results indicate

that Pix2Pix’s accuracy was also the best, improving 1.2% from the accuracy using

Manual dataset. In the Pix2Pix’s rows, the automatic-synthetic datasets effectively im-

proved segmentation accuracy. However, other models’ accuracy were not improved us-

ing automatic-synthetic datasets; nevertheless, the author considered the synthetic image

quality was better than Pix2Pix’s. This reason is that the Mask R-CNN cannot extract

detailed features from the IF images but only use outlines such as general shape and

color. High-resolution synthetic images might make it complicated for Mask R-CNN. In

addition, each accuracy in ‘All’ rows indicates the worst in each model’s accuracy. The

author considers that the number of additional images exceeded the saturation point of

improving accuracy.

In the next trials, the author refines the number of additional images to determine
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the limitation of the Mask R-CNN and our methods. In another method, other segmen-

tation models are necessary to extract high-resolution synthetic features. Also, if the

model changes, the author needs to pursue the experimental conditions for other model

performances.

In terms of the data, the given image was imbalanced, e.g., the number of C5 and C6

objects is small compared to others. Hence, an architecture for imbalanced data should

also be involved in the improved method. In addition, the error of 1% corresponds to

10 pixels in the case of LungMAP IF images. If high-resolution images are used for

image analysis, this small difference may cause misrecognition. At the moment, nobody

knows the reasons and bottleneck of the proposed method. We have to investigate what

contributed to image segmentation.

Table 5.5: Comparison with segmentation accuracy using automatic datasets

GAN Training Set C1 C2 C3 C4 C5 C6 Average

Manual 0.866 0.809 0.811 0.710 0.652 0.789 0.773

Auto-1 0.872 0.803 0.819 0.709 0.621 0.819 0.774

Pix2Pix Auto-2 0.873 0.791 0.810 0.714 0.670 0.802 0.777

Auto-3 0.871 0.810 0.814 0.725 0.656 0.835 0.785

All 0.869 0.797 0.800 0.666 0.631 0.738 0.750

Manual 0.872 0.779 0.816 0.689 0.626 0.805 0.765

Auto-1 0.869 0.786 0.809 0.700 0.583 0.650 0.733

Pix2PixHD Auto-2 0.872 0.814 0.801 0.707 0.613 0.735 0.757

Auto-3 0.871 0.804 0.810 0.708 0.643 0.613 0.742

All 0.858 0.759 0.799 0.667 0.507 0.613 0.700

Manual 0.867 0.833 0.804 0.708 0.632 0.765 0.768

Auto-1 0.868 0.818 0.792 0.689 0.637 0.758 0.760

GauGAN Auto-2 0.854 0.739 0.791 0.663 0.637 0.763 0.741

Auto-3 0.871 0.825 0.796 0.698 0.644 0.737 0.762

All 0.850 0.708 0.800 0.613 0.700 0.732 0.734
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(a) GauGAN (b) Pix2PixHD (c) Pix2Pix (d) Label Image

Figure 5.1: Examples of synthetic images the author created
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Figure 5.2: Accuracy of each best model’s score with manual datasets
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(a) Case 1 (b) Fail Case 2

Figure 5.3: Examples of failures in segmentation with our approach
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Figure 5.4: The created label samples using diffusion model
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Figure 5.5: Accuracy of each model’s best score with automatic datasets
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Chapter 6

Conclusion

6.1 Conclusion

In this paper, the author investigated obtaining accurate multi-class segmentation

of lung confocal IF images using the current state-of-the-art deep learning-based model.

One of the primary bottlenecks in using deep convolutional neural network (CNN) models

was the lack of availability of training or ground-truth segmentation labels. The author

implemented Mask R-CNN with GAN models to expand the training dataset and improve

overall segmentation accuracy. To classify various lung tissue classes along with the

region of interest, the author proposed to utilize recent GAN based-models, such as

Pix2Pix, Pix2PixHD, and GauGAN. The author applied the method to the multi-class

segmentation problem of lung IF images, and the accuracy of six-class segmentation

using Mask R-CNN was improved in all cases. In particular, the segmentation accuracy

increased by 16.3% when the segmentation model trained the manual-dataset and the

automatic-dataset by synthesized Pix2Pix.

6.2 Future Works

In the discussion, the author described four contents in future works. First, it is

necessary to attempt how are the best conditions, e.g., pursuing the saturation point of

Mask R-CNN learning. Second, the author suspects that the Mask R-CNN cannot obtain

detailed features because the best accuracy was obtained by synthesized Pix2Pix, which is

the vaguest of these generation results. Third, the given data is imbalanced, in particular,

the number of C5 and C6 objects are small compared to others. Robust architectures for

handling imbalanced data should also be involved to improve the classification results.

Finally, to discover the detailed reasons and bottlenecks, the author has to investigate

what contributed to image segmentation. These future works are necessary to proceed

with the LungMAP project and analyze lung development.



Acknowledgement 29

Acknowledgement

First of all, I really would like to express my deepest gratitude to Associate Prof.

Hiroharu Kawanaka at Graduate School of Engineering, Mie University who offered con-

tinuing supports and constant encouragements.

I am also grateful to Prof. Bruce J. Aronow and Prof. V. B. Surya Prasath at

Cincinnati Children’s Hospital Medical Center, USA. They provided a lot of technical

help and encouragement. Thanks to his help and encouragement, I was able to make

good progress in my project. Prof. Surya gave me a lot of technical and language help

in my research project and writing papers.

Also, the results shown here are in whole based upon the data generated by the

LungMAP Consortium [U01HL122642] and downloaded from https://lungmap.net/, on

October 1, 2019. The LungMAP consortium and the LungMAP Data Coordinating

Center (1U01HL122638) are funded by the National Heart, Lung, and Blood Institute

(NHLBI).



Publication List 30

Publication List

Journal Papers

(1) Daiki Katsuma, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”Data Augmentation Using Generative Adversarial Networks for Multi-class Seg-

mentation of Lung Confocal IF Images,” Journal of Advanced Computational Intel-

ligence and Intelligent Informatics (JACIII), Vol. 26, No. 2, 2022 (in Print)

International Conferences

(1) Daiki Katsuma, Shu Isaka, Hiroharu Kawanaka, Bruce J. Aronow, and V. B. Surya

Prasath, ”On Data Augmentation Techniques for Deep Learning Multi-class Seg-

mentation of Lung Confocal Immunofluorescent Images”, Proc. of Joint 2020 9th

International Conference on Informatics, Electronics & Vision (ICIEV) & 2nd In-

ternational Conference on Imaging, Vision & 4th Pattern Recognition (icIVPR),

PID-152,2020.

(2) Daiki Katsuma, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

A Study on Data Augmentation Using GAN for Lung Image Segmentation, Proc.

of the 10th International Symposium for Sustainability by Engineering at Mie Uni-

versity (Research Area C), pp. 19-20, 2020

(3) Daiki Katsuma, Hiroharu Kawanaka, Bruce J. Aronow, and V. B. Surya Prasath,

The Effects of Augmentation Using GAN for Confocal Immunofluorescence Image

Segmentation, Proc. of Work-in-Progress session in 10th International Conference

on Informatics, Elec-tronics & Vision (ICIEV2021), PID-88, 2021 (WIP Award)

(4) Daiki Katsuma, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”Generative Adversarial Network driven Synthetic Augmentation of Confocal Im-

munofluorescence Image Segmentation,” The 2021 5th IEEE International Confer-

ence on Cybernetics (CYBCONF), 2M4-CC-04, 2021

(5) Daiki Katsuma, Hiroharu Kawanaka, V. B. Surya Prasath, and Bruce J. Aronow,

”Effects of Augmentation with GAN and Diffusion Probabilistic Models for Im-

munofluorescence Image Segmentation,” Proc. of the 11th International Symposium

for Sustainability by Engineering at Mie University (Research Area C), pp. 63-64,

2021



Publication List 31

Domestic Conferences

(1) 勝間大喜，川中普晴，V. B. Surya Prasath, Bruce J. Arronow，”肺組織の免疫蛍光染色
画像を対象としたPix2Pixによるデータオーギュメンテーションに関する一検討 (A

Study on Data Augmentation Method Using Pix2Pix for Lung Immnunofluorescence-

Confocal Images),” 令和二年度電気・電子・情報学会東海支部連合大会講演論文集，
E6-4，2020

(2) 勝間大喜，川中普晴，V. B. Surya Prasath, Bruce J. Arronow，”免疫蛍光染色画像
解析のためのGANによる データセットの拡張方法に関する一考察,” 2020年度日
本生体医工学会東海支部大会抄録集，pp . 10，2020

(3) 勝間大喜，川中普晴，V. B. Surya Prasath, Bruce J. Arronow，”肺の免疫蛍光染
色画像を用いた拡散過程モデルと GANを組み合わせたデータオーギュメンテー
ション法に関する一考察 (A Study on Data Augmentation Method Using Diffusion

Probability Model and GAN for Lung Immunofluorescence-Confocal Images),” 令
和三年度電気・電子・情報学会東海支部連合大会講演論文集，E4-4，2021



Reference 32

Reference

[1] N. Howlader, A. Noone, M. Krapcho, J. Garshell, and D. Miller, et al., “Seercancer

statistics review,” 1975-2012, national Cancer Institute. Bethesda,MD. Available

from: https://seer.cancer.gov/index.html. [accessed July 16, 2021].

[2] M. Herriges and E. Morrisey, “Lung development: orchestrating the generation and

regeneration of a complex organ,” Development, vol. 141, pp. 502–513, 2014.

[3] LungMAP, “Official web site,” retrieved September 01, 2021, from:

https://lungmap.net/.

[4] M. Ardini-Poleske, R. Clark, C. Ansong, J. Carson, R. Corley, G. Deutsch, J. Ha-

good, N. Kaminski, T. Mariani, S. Potter, G. Pryhuber, D. Warburton, J. Whitsett,

S. Palmer, and N. Ambalavanan, “Lungmap: The molecular atlas of lung devel-

opment program,” American Journal of Physiology - Lung Cellular and Molecular

Physiology, vol. 313, p. ajplung.00139.2017, 08 2017.

[5] S. Isaka, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, and S. Tsuruoka, “De-

velopment of a web based image annotation tool for lung immunofluorescent con-

focal images,” International Symposium on Affective Science and Engineering, vol.

ISASE2018, pp. 1–5, 2018.

[6] M. E. Ardini-Poleske, T. J. Mariani, G. S. Pryhuber, R. S. Misra, and

The LungMAP Consortium, “Chapter 4 - initiating multiomics approach

to understand neonatal chronic lung disease: the lungmap experience,” in

Updates on Neonatal Chronic Lung Disease, S. G. Kallapur and G. S.

Pryhuber, Eds. Elsevier, 2020, pp. 45–59. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/B978032368353100004X

[7] L. Barbe, E. Lundberg, P. Oksvold, A. Stenius, E. Lewin, E. Björling,

A. Asplund, F. Pontén, H. Brismar, M. Uhlén, and H. Andersson-Svahn,

“Toward a confocal subcellular atlas of the human proteome*,” Molecular &

Cellular Proteomics, vol. 7, no. 3, pp. 499–508, 2008. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S153594762031210X



Reference 33

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), July 2017, https://github.com/

tdeboissiere/DeepLearningImplementations/tree/master/pix2pix.

[9] T. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-

resolution image synthesis and semantic manipulation with conditional gans,” 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.

8798–8807, 2018, https://github.com/NVIDIA/pix2pixHD.

[10] T. Park, M.-Y. Liu, T. Wang, and J.-Y. Zhu, “Semantic image synthesis with

spatially-adaptive normalization,” 2019 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp. 2332–2341, 2019, https://github.com/

NVlabs/SPADE.

[11] Y. Zhang, “Deep generative model for multi-class imbalanced learning,”

2018, open Access Master’s Theses. Paper 1277. [Online]. Available: https:

//digitalcommons.uri.edu/theses/1277

[12] S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni,

and A. Mukhopadhyay, “Gans for medical image analysis,” Artificial Intelligence in

Medicine, vol. 109, p. 101938, 2020. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0933365719311510
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AppendixA

Detailed Immunofluorescence Method

Purpose

Purpose Immunofluorescence on slides of 7µm frozen sections of C57BL6 E16.5

lungs for SOX9, SFTPC, and ACTA2.

Day 1

1. For Frozen tissue, rinse 2X in PBS, then 5 min in 4% PFA/PBS, then rinse

1X in PBS.

2. Briefly equilibrate slides in Antigen Retrieval Buffer.

3. Antigen retrieval, pH 6.0 (times will vary according to microwave).

4. 10 mM sodium citrate, pH 6.0, and heat in a microwave at 96oC.

5. Microwave according to instructions on microwave.

6. Cool on countertop, 15 min.

7. Rinse with dH2O.

8. 1X PBS, 5 min.

9. Block in 4% Donkey serum/PBS‐T, 2 hours at RT.

10. For Rabbit anti-SOX9 (AB-5535, Lot# 2167153, Millipore) dilute 1:100, For

goat anti-SFTPC (SC-7706, Santa Cruz) dilute 1:100, for mouse anti-ACTA2

(α Smooth muscle actin, A5228, Sigma) dilute 1:2000 in blocking buffer. Spin

down in µfuge for 10 minutes and incubate on tissue overnight @ 4oC.

Day 2

1. Rinse slides in PBS‐T 3X, 5 min.

2. Apply secondary antibody , Donkey Alexa Fluor 488 anti-rabbit IgG (A21206,

Lot# 1608521, for anti-SOX9), Donkey Alexa Fluor 568 anti-goat IgG (A11057,

Lot# 1485187, for anti-SFTPC) at 1:200, Donkey Alexa Fluor 647 anti-mouse

IgG A31571, Lot# 1549801, ACTA2) at 1:200, in blocking buffer. Spin down

in µfuge for 10 min, apply to tissue and incubated at room temperature for 1

hour.

3. Rinse in PBS-T 3X, 5 min.
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4. Dilute DAPI 1:2000 and apply to slides for 10 min.

5. Wash in PBS-T 3X, 5 min.

6. Rinse slides in 0.1M PB, 3X, 5 min.

7. Add 1 drop of Prolong Gold anti-fade mounting medium (P36930).

8. Coverslip with Gold Seal Coverslip (Cat# 3422 Electron Microscopy Sciences,

22 X 22 mm).

9. Allow Prolong Gold to cure overnight at room temp in light sealed box.

Tissue Used

LMM.14.24.4.46, E16.5, C57BL6, Gender: Male, Crown-to-rump: 16.0mm, and

Weight: 0.592g


