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Abstract 

Rotating machinery is an important and indispensable engineering equipment in industries such 

as electric power, petrochemical, metallurgy, rail transit and marine ships. Once fault occurs, not 

only the rotating machinery itself is damaged, so serious that it led to economic losses, major 

accidents, and life-threatening. With the development of the industrial intelligence, the fault 

diagnosis of rotating machinery based on vibration signal is becoming more and more extensive 

application. However, due to the complication of rotary machinery, bad working environment, 

and variable operating conditions, the vibration signal acquired by the acceleration sensor has the 

characteristic of non-stationarity, non-linearity, and complexity. At the same time, affected by 

factors such as transmission loss, signal attenuation, and strong background noise, the regularity 

fault impact contained in the vibration signal is further weakened. The fault characteristic 

frequency in the spectrum is more difficult to extract, and it is more difficult to realize the accurate 

fault diagnosis of rotating machinery. Therefore, the research on effective vibration signal 

processing method for rotating machinery fault diagnosis has important engineering application 

significance. 

Aiming at the key problems that urgently need to be solved in the signal processing of rotating 

machinery fault diagnosis, such as suppressing background noise and enhancing fault feature 

information, the thesis carried out the research about signal fault impact enhancement, signal non-

stationarity decomposition, signal adaptive filtering and signal image conversion. By analyzing 

the rotating machinery vibration signals under different working conditions, the characteristics of 

the signal are deeply studied, and the corresponding signal processing methods are proposed in a 

targeted manner. The specific research contents are as follows: 

(1) Aiming at the problems of strong background noise and submerged regular impact in 

vibration signals, a signal processing method based on weighted kurtosis variational 

modal decomposition (VMD) and improved frequency-weighted energy operator 

(IFWEO) is proposed. Firstly, the raw signal is decomposed by VMD, and the weighted 

kurtosis is employed to select the intrinsic mode function (IMF) optimally to reconstruct 

the signal. The reconstructed signal will carry abundant fault information. Secondly, a 

third-order cumulant method is introduced to improve the frequency-weighted energy 

operator (FWEO), which could strengthen the signal impulse and enhance the fault feature. 

The IFWEO could better effectively reduce the noise impact. Finally, the method is 

validated in low-speed bearing fault diagnosis. 

(2) Aiming at the non-stationary and non-linear of vibration signal, this chapter proposed a 

signal filtering and fault characteristic enhancement method based on reconstruction 

adaptive determinate stationary subspace filtering (Rad-SSF) and enhanced third-order 

spectrum to address the above-mentioned problems. In particular, Rad-SSF reconstructs 

an adaptive self-determined and decomposed vibration signal trajectory matrix to obtain 

the non-stationary signals. Thereafter, the filtered signal with the best fault characteristics 

is extracted according to the kurtosis. Meanwhile, a 1.5-dimensional third-order energy 

spectrum is performed to enhance the fault characteristics by strengthening the 

fundamental frequency and eliminating non-coupling harmonics. Finally, the method is 

validated in high-speed bearing fault diagnosis. 

(3) To solve the problem where the actual rotating frequency and its harmonics cannot be 

accurately extracted in engineering applications, an improved adaptive multi-band 

filtering method is designed. This method takes the theoretical rotating frequency as the 

search center, extracts the maximum within the positive and negative deviation as the 

actual rotating frequency, and sets a threshold according to the actual value to realize 
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multi-band filtering. This method can effectively remove background noise and accurately 

extract the actual rotating frequency and its harmonics. This model can automatically 

extract the in-depth features of the filtered signal and improve the fault classification 

accuracy. Finally, the method is validated in rotating machinery abnormal structure fault 

diagnosis. 

(4) Aiming at the problem that the discrimination between fault categories is not obvious after 

one-dimensional vibration signal is converted to two-dimensional image, an 

incrementally accumulated holographic symmetrical dot pattern (SDP) characteristic 

fusion method is proposed in this chapter. The current study simultaneously extracts the 

time- and frequency-domain characteristic parameters of vibration signal based on the 

incremental accumulation method to avoid inconspicuous difference and small 

discrimination generated by a single parameter. Subsequently, the extracted characteristic 

signals are transformed into a 2D image based on the SDP method to enhance the 

differences between signals. Finally, the method is validated in rotating machinery bearing 

fault diagnosis. 

The vibration signal processing methods of rotating machinery proposed in this thesis have 

been verified by simulation experiments and engineering experiments, and the verification results 

prove that the proposed methods can realize effective and targeted signal processing. 

The main contribution of this thesis is to propose the corresponding signal processing method 

according to the unique characteristics of vibration signals under different operating conditions 

and the actual engineering application of rotating machinery fault diagnosis, which effectively 

suppresses the background noise, enhances the fault characteristic signal, and increases the 

discrimination between fault types. 
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Chapter 1 Introduction 

1.1 Background and significance of rotating machinery fault diagnosis 

Rotating machinery is usually composed of bearings, gears, transmission mechanisms, and 

motors, with the advantage of integration, complexity, and stability [1-3]. As the most widely 

used mechanical equipment in industry, it plays an important role in aerospace, energy, electric 

power, transportation, petrochemical, and other industrial fields [4-6]. In recent decades, with the 

rapid development of science and technology, rotating machinery is developing towards large-

scale, precision, automation, and intelligence [7, 8]. However, in the harsh working environment 

of high-speed, high-load, and high-temperature, the number of faults of rotating machinery is 

much higher than that of other industrial equipment [9-12]. As the key equipment of large-scale 

industry, once fault occurs to rotating machinery, it will cause sudden shutdown and stoppage of 

the whole production line, resulting in huge economic losses, even serious cause the tragedy of 

machine destruction and human death [13-15]. Most rotating machinery has complex structures, 

and the fault is often the result of the joint action of many factors [16], all of which increase the 

difficulty of fault diagnosis. At present, regular maintenance of rotating machinery is a common 

method to ensure the normal operation of equipment. However, this method causes excessive 

maintenance in the early stage of the rotating machinery life cycle and insufficient maintenance 

in the later period. At the same time, the regular maintenance based on disassembly method not 

only consumes time and energy, but also may cause rotating machinery abnormalities. Therefore, 

it is of great significance to carry out intelligent diagnosis of rotating machinery. 

In recent years, many scholars have carried out scientific research in the fault diagnosis of 

rotating machinery, and successfully designed some condition monitoring and fault diagnosis 

systems dedicated to engineering application. Those methods play a positive role in guaranteeing 

the healthy operation of rotating machinery, reducing regular maintenance costs, and enhancing 

production efficiency of industry. Those fault diagnosis research is mainly divided into two 

categories: 

1) The method based on extracting the fault characteristic frequency. This method mainly 

studies signal filtering, signal decomposition, and the envelope spectrum, among others [17-20]. 

In reference [21], considering the rotating machinery has the characteristic of non-linear working 

conditions and unknown background noise, a statistical filtering method for vibration signal 

feature extraction is designed based on the central limit theory, it can significantly improve the 

performance of fault classification. In reference [22], the multiscale clustering grey infogram is 

used to diagnose the local faults of rotating machinery, and the Fourier spectrum of vibration 

signal is decomposed into multiple scales with different initial resolutions. At the same time, both 

time- and frequency-domain spectral negentropies are taken into account to guide the clustering 

through grey evaluation of both negentropies. In reference [23], a time-frequency analysis method 

based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for 

rotating machinery fault diagnosis. This method has the capability to decompose multicomponent 

modulation vibration signal into a series of demodulated mono-components, and the selected 

product functions signal is further filtered by an optimal band-pass filtering based on FK to extract 

impulse signal. In reference [24], a signal feature extraction and fault diagnosis method based on 

statistic filtering (SF) and wavelet package transform (WPT) combined with moving-peak-hold 

method (M-PH) is proposed. The SF is first used to adaptively cancel noises, and then fault 
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detection is performed by exploiting the optimum symptom parameters in a time-domain to 

identify a normal or fault state low-speed machinery. 

2) The feature self-extraction diagnosis method based on deep learning models, such as the 

deep belief network (DBN), convolutional neural network (CNN), and stacked autoencoder (SAE) 

[25-28]. In this method, the characteristics of the input signal are adaptively extracted to achieve 

accurate fault diagnosis. In reference [29], the deep convolutional network (DCN) is used to 

establish the rotating machinery fault diagnosis model. Based on the multiscale information 

extraction capability of the WPT method, a vibration signal is subjected to pyramid wavelet 

packet decomposition, and each sub-band coefficient is used as the input for each channel of a 

DCN. In reference [30], it provides a comprehensive review of artificial intelligence (AI) 

algorithms in rotating machinery fault diagnosis, from both the views of theory background and 

industrial applications. This review presented a brief introduction of k-nearest neighbor, naive 

Bayes, support vector machine, artificial neural network and deep learning, and discussed the 

advantages, limitations, practical implications of different AI algorithms, as well as some new 

research trends. In reference [31], a new intelligent method based on deep neural networks (DNNs) 

is proposed to diagnose rotating machinery faults. In this method, DNNs with deep architectures, 

instead of shallow ones, could be established to mine the useful information from raw data and 

approximate complex non-linear functions. The diagnosis results show that the proposed method 

is able to not only adaptively mine available fault characteristics from the measured signals, but 

also obtain superior diagnosis accuracy. In reference [32], a CNN based fault diagnosis method 

for rotating machinery is proposed. Both temporal and spatial information of the raw data from 

multiple sensors is considered during the training process of the CNN. Representative features 

can be extracted automatically from the raw signals and avoids manual feature extraction or 

selection. 

Although the abovementioned literatures have been realized the fault diagnosis of rotating 

machinery, with the mechanical equipment becoming larger, more continuous and more automatic, 

the technology of fault diagnosis has been demanded higher. In addition, under the strong 

background noise, the regular impact signal caused by faults in vibration signals is submerged, 

and the fault characteristics are difficult to accurately extract, which brings challenges to the fault 

diagnosis of rotating machinery [33-35]. Therefore, aiming at the problems of strong background 

noise, large external disturbances, and weak fault characteristics, it is of great significance for 

engineering applications to study signal processing methods that can effectively suppress noise, 

enhance fault characteristics frequency, and improve fault recognition rate. 

1.2 Literature review 

Rotating machinery fault diagnosis is an emerging interdisciplinary technology that integrates 

machinery, mechanics, mathematics, signal analysis and processing, and computer technology. It 

has very important engineering application value for the research of this kind of technology. The 

fault diagnosis of rotating machinery mainly includes signal acquisition, signal processing, 

feature extraction, and fault recognition [36], in which signal processing is the key to improve the 

diagnostic accuracy [37-39]. The premise of accurate fault diagnosis of rotating machinery is to 

timely acquire the current state information of the equipment, such as vibration signal [40], 

acoustic emission signal [41,42], and instantaneous angular speed [43]. Among them, vibration 

signals can provide equipment status information timely and accurately, and can be monitored 

permanently or intermittently, which has obvious advantages [44,45]. 

Traditional rotating machinery vibration signal processing methods are mainly divided into 

three categories: time-domain, frequency-domain, and time-frequency domain analysis [46]. The 

time-domain analysis method is to diagnose the fault by calculating the statistics of the vibration 
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signal, including dimensional parameters such as peak-value, mean-value, mean-square-value, 

variance, etc., and dimensionless parameters including margin, skewness, kurtosis, divergence, 

etc. [47,48]. Dimensionless parameters are mostly suitable for non-stationary vibration signals. 

In engineering applications, dimensionless parameters such as kurtosis and divergence are 

commonly used for fault diagnosis of signals with obvious impact characteristics of rotating 

machinery. However, time-domain signal statistics characters are easily affected by the changes 

of speed and load, so it is not suitable for quantitative analysis. The frequency-domain analysis 

method mainly refers to the Fourier transform of the vibration signal to obtain its spectrum [49], 

and it also includes the envelope spectrum, cepstrum, higher-order spectrum and holographic 

spectrum. Among them, envelope spectrum analysis is the most widely used in vibration signal 

fault diagnosis [50, 51]. The time-frequency domain analysis [52, 53] is mainly based on short-

time Fourier transform (STFT), Wigner-Ville distribution (WVD), wavelet transform (WT) and 

Hilbert-Huang transform. This time-frequency analysis method provides the joint distribution 

information of time domain and frequency domain of vibration signal, and can clearly describe 

the relationship between the frequency and the time change. 

The vibration signals acquired under different engineering working conditions usually contain 

multiple resonance frequency bands and complex frequency components, the global 

characteristics of Fourier transform have certain limitations in such signals [54, 55]. Therefore, it 

is necessary to reduce the influence of the interference frequency to effectively diagnose the 

rotating machinery faults. 

1.2.1 Signal filtering method 

Filtering methods based on setting the best center frequency and frequency band [56, 57], 

including a high-pass filtering, a low-pass filtering, a band-pass filtering, a kurtogram [58], and 

an infogram [59]. High-pass filtering, low-pass filtering and band-pass filtering are simple and 

effective vibration signal filtering methods. They are widely used in engineering because they 

have the advantages of small calculation, simple algorithm, and short running time.  

Some filtering methods based on artificial intelligence algorithm, such as genetic algorithm 

(GA). In reference [60], the optimal cut-off frequency of the high-pass filtering is determined 

using a combination of GA and tabu search, and the bearing fault is properly diagnosed using the 

possibility theory and fuzzy reasoning. This method achieved certain results in some signal 

filtering, but it has disadvantages, such as difficulty in parameter adjustment and high algorithm 

complexity. 

In order to both reflect the strength of signal transient impact and indicate the signal frequency, 

Dwye proposed the concept of spectral kurtosis (SK) based on the statistical signal processing 

method. According to this, a method, such as kurtogram, and infogram, is developed for finding 

the best cut-off frequency. Reference [61] proposed a filtering method based on kurtogram and 

frequency domain correlation kurtosis. The frequency folding problem caused by down-sampling 

was solved by frequency sequencing, and the maximum value in the correlation kurtogram 

demonstrated the best frequency band for envelope analysis. Reference [62] proposed an 

ALKurtogram (ALK), which aligns the traditional fast kurtogram frequency division strategy with 

the average local kurtosis. The ALK measures the target component local and global impulsivity 

and essentially makes up some shortcomings of fault feature extraction under multi-interference 

conditions in previous methods. However, the difficulty of those filtering method is to accurately 

set the cut-off frequency. Researchers need to have a priori knowledge about the characteristics 

of signal frequency, otherwise the inappropriate parameter setting will make the filtering result 

very poor. 



4 

WT [63] is widely used in frequency domain analysis of rotating machinery, mainly including 

wavelet transform modulus maximum denoising, wavelet coefficient correlation denoising and 

wavelet threshold denoising. Reference [64] used continuous wavelet transform (CWT) and 

sparse measurement (SM) to detect and characterize the resonance caused by gear faults. 

1.2.2 Signal decomposition method 

In order to realize adaptive signal filtering, a new signal processing method, empirical mode 

decomposition (EMD), creatively proposed by NE Huang at NASA in 1998. It is especially suitable 

for the analysis of non-linear and non-stationary vibration signals. EMD [65-67] and its improved 

algorithms complementary ensemble empirical mode decomposition (CEEMD), complete 

ensemble empirical mode decomposition adaptive noise (CEEMDAN), etc. are applied to 

decompose the bearing fault signal. The reference [68] proposed an EMD filtering based on 

adaptive optimization time-varying to extract clear and rich bearing early fault features. This 

method can remove background noise and extract the fault characteristic frequency accurately. 

However, the adaptiveness should be studied further. In reference [69], the EMD is used to 

decompose the equally-divided vibration signals into several intrinsic mode function (IMF) 

components, and the rolling bearing fault types classification is realized by combining the 

symmetrized dot pattern (SDP) image with improved Manhattan distance. In reference [70], a 

novel fault diagnosis method combining CEEMD, probabilistic neural network (PNN) and 

particle swarm optimization (PSO) algorithm is proposed. In this method, the vibration signals 

are decomposed into a number of IMFs by the CEEMD algorithm since it has good adaptive 

ability to nonstable signals and can effectively extract fault features. In reference [71], considering 

the non-linear and non-stationary characteristics of rolling bearing vibration signals, a signal 

processing method based on CEEMDAN, refined composite multi-scale fuzzy entropy (RCMFE), 

Laplace score (LS), and PSO-PNN is proposed. CEEMDAN is used to decompose the vibration 

signal, and select the IMF containing the primary fault information via the frequency domain 

correlation coefficient method. Those methods work well in some conditions, but the EMD uses 

cubic spline interpolation to fit the envelope, which has obvious shortcomings such as over-

envelope, under-envelope, end effect and mode mixing, resulting in distortion of the IMF 

components decomposed from the original signal. Although their improved methods could 

alleviate the above deficiencies, they still introduce new problems, such as the white noise cannot 

be completely neutralized and resulting in false components, therefore, the fault feature extraction 

is still seriously affected under strong background noise. 

Other adaptive decomposition methods, include local mode decomposition (LMD), adaptive 

local iterative filtering (ALIF), intrinsic timescale decomposition (ITD), variational mode 

decomposition (VMD) and their improvement methods，have also been well developed in rotating 

machinery fault diagnosis. LMD [72, 73] could self-adaptively decompose a complicated multi-

component signal into a set of product function (PF) components, each of which is the product of 

an envelope signal and a purely frequency modulated signal. The local mean function and 

envelope function are calculated by the moving averaging method according to the local extreme 

points. Reference [74] proposed a time-frequency analytical method of ensemble LMD, which 

can effectively alleviate mode mixing, but it still retains a large amount of noise in the filtered 

signal. In reference [75], an early bearing fault diagnosis method, local mean decomposition-

based multilayer hybrid denoising (LMD-MHD), is proposed for extracting the weak fault 

features under strong background noise. LMD is a novel self-adaptive time-frequency analysis 

method, and is thus particularly suitable for processing of multicomponent amplitude-modulated 

and frequency-modulated signals. But the construction of local mean function and envelope 

function in the LMD algorithm plays an important role in the accuracy of the PF components it 
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extracts, the moving averaging method may cause phase error of the functions after several 

iterations, which has an adverse effect on the accuracy of PF components. 

ALIF constructs an adaptive filtering through the Fokker-Planck equation, it can effectively 

solve the noise sensitivity and modal aliasing problems in the adaptive decomposition algorithm. 

In reference [76], the ALIF is used to decompose the vibration signal, and best IMF is selected 

according to the multiscale entropy features to realize bearing fault diagnosis. In reference [77], 

the ALIF is combined with Teager energy operator (TEO) to realize the fault characteristic 

frequency extraction of bearing rolling elements early faults. Although the ALIF used in the 

bearing fault signals decomposition is more and more widespread, there still some problems need 

to be resolved such as large amount of calculation, unstable convergence, and easy to fall into 

local loops.  

The ITD [78, 79] method adopts the form of linear transformation to decompose the signal, it 

could adaptively decompose any complex signal into a sum of several proper rotation components 

(PRCs) independent of each other, and its instantaneous frequency has physical meaning. In 

reference [80], a new method called intrinsic time-scale decomposition-based sparse coding 

shrinkage (SCS) (named ITD-SCS) is proposed as a sparse representation for impulse component 

extraction from bearing vibration signals. ITD can decompose the signal into a set of proper 

rotations (PRs) to enable impulse components as prominent as possible. In reference [81], based 

on the linear transformation and cubic spline interpolation of the ITD method, an improved 

intrinsic time scale decomposition method (IITD) is proposed, which is combined with spectral 

kurtosis to realize the intelligent diagnosis of bearing fault. The definition of the baseline in the 

ITD method is based on the linear transformation of the signal itself, and there is an evident signal 

distortion starting from the second component.  

VMD [82, 83] is an effective decomposition method. VMD can complete the adaptive division 

of the frequency band according to the frequency characteristics of the signal itself, and it is 

suitable for the separation of multi-component non-stationary signals. VMD is a generalization 

of the classical Wiener filtering for adaptive, multiple bands and is somewhat more robust to noise. 

It has the advantages of high precision, fast decomposition speed and strong robustness. Reference 

[84] proposed an independence-oriented VMD method. The number of IMFs is determined by 

the approximately complete reconstruction criterion to overcome the information loss and over-

decomposition. Reference [85] uses VMD to decompose the vibration signal and extracts the IMF 

component containing the best fault information based on the weighted kurtosis index. The 

spectral kurtosis filtering method can help the decomposition algorithm in extracting the best IMF, 

but this approach cannot work efficiently when a higher impulse is present. In Reference [86], a 

vibration signal-based hybrid diagnostic method is proposed to realize fault diagnosis of general 

gearboxes. VMD was adopted to realize adaptive signal decomposition and wolf grey optimizer 

(GWO) was applied to optimize parameters of VMD. However, the signal decomposition filtering 

has certain limitations, including breakpoint effects and modal aliasing. Although the noise can 

be filtered out, it also inevitably weakens the energy of useful signals, and finally the signal-to-

noise ratio (SNR) is lower, which affects the fault diagnosis accuracy.  

1.2.3 Signal enhancement method 

The vibration signal acquired by the acceleration sensor is often a mixed signal generated and 

superimposed by the common vibration of rotating machinery multiple structures. After these 

complex vibration signals reach the rotating machinery surface through different transmission 

paths, the signals interfere and couple with each other. In addition, the impact signal containing 

fault information is often interfered by the structural vibration and background noise of the 

machine itself, making most of the fault signals very weak. It is difficult to ensure the accuracy 
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of fault identification by directly using the signal acquired by the sensor. Therefore, in engineering 

application, it is particularly important to enhance the fault impact signal of rotating machinery. 

TEO [87-90] is an effective signal feature enhancement method, and it could analyze the signal 

time-frequency characteristics, it is often used to analyze and track the narrowband signal energy. 

This method could effectively improve the signal impulse, and it has the advantages of simple 

algorithms and response quickly. In reference [91], TEO is used for low-speed bearing fault 

feature extraction, according to its good time resolution and adaptive ability of transient signal 

changes. Although the TEO has the advantage of enhancing the signal impulse, it also has the 

disadvantages of low demodulation accuracy and substantial noise interference. In order to 

improve the shortcomings of TEO, the central finite difference method was introduced into it [92], 

the improved TEO could overcome the problem of low demodulation accuracy, but it is still 

greatly bad affected by strong background noise. In reference [93], an alternative bearing fault 

extraction method based on fast iterative filtering decomposition (FIFD) and symmetric 

difference analytic energy operator (SDAEO) is proposed. The enhanced demodulation 

technology, SDAEO, is used to detect the bearing fault features from the selected IMF. In 

reference [94], a higher order energy operator fusion (HOEO-F) method is proposed for bearing 

fault detection. In this method, multiple high-order energy operators are fused to form a simple 

transformation to process the bearing signal obscured by noise and vibration interference. 

Frequency-weighted energy operator (FWEO) as an improved TEO method is proposed in [95], 

it can assess instantaneous energy, and improve the analytic performance, but it still imperfect 

when signals have strong noise. 

1.2.4 Signal transition method 

The time-frequency domain analysis method can characterize the relationship between the 

frequency of the signal and time, and is more suitable for processing non-linear and non-stationary 

vibration signals. The commonly used time-frequency transform methods include STFT [96, 97], 

CWT [98, 99] and WVD [100, 101] etc. In reference [102], a time-frequency procedure 

incorporating a new feature extraction step that combines the classical wavelet packet 

decomposition energy distribution technique and a new feature extraction technique based on the 

selection of the most impulsive frequency bands is proposed. In this method, the most useful sub-

bands are represented in the time-frequency domain by using STFT algorithm for knowing exactly 

what the frequency components presented in those frequency sub-bands are. In reference [103], 

an optimized deep learning structure is constructed for bearing fault diagnosis based on the simple 

spectral matrix obtained by STFT. In this method, the sensor signal is preprocessed by STFT for 

effectively mining features from big data and accurately identifying the bearing health conditions. 

However, STFT requires researchers to manually select the window function that changes with 

time. Meanwhile, limited by Heisenberg uncertainty law, it has high requirements for the selection 

of window function, and it is more suitable for analyzing linear and slowly varying signals.  

In reference [104], a data-driven intelligent fault diagnosis approach for rotating machinery 

based on a novel continuous wavelet transform-local binary convolutional neural network (CWT-

LBCNN) model is proposed. The proposed approach builds an end-to-end diagnosis mechanism, 

and does not need manual feature extraction. By feeding the inputting vibration signal, features 

are captured adaptively and fault condition of rotating machinery is diagnosed automatically. In 

reference [105], the CWT and time domain signal analysis methods are used for feature extraction 

of the recorded acoustic emission signals. In this method, GAs in combination with artificial 

neural networks (ANN) are applied to select and classify the extracted features. Although CWT 

can take into account both time and frequency characteristics, and filter the background noise 

well, there is information omission in the processing of high-frequency signal. At the same time, 
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the selection of the wavelet basis is difficult, and different wavelet bases produce different results. 

WVD is a bilinear time-frequency distribution algorithm, it has the advantages of good time-

frequency resolution and concentrated energy. It is a representative algorithm in quadratic time-

frequency distribution, and it can satisfy the time-frequency edge. In reference [106], a 

methodology based on LMD and WVD is proposed to get more reliable bearing fault diagnosis 

based on vibration signals. WVD has the advantages of excellent resolution and localization in 

time-frequency domain. In reference [107], a novel fractional-order smoothed pseudo Wigner-

Ville distribution (FrSPWVD) is proposed to solve the problem of low time-frequency resolution 

when suppressing cross-term interference. In this method, the signals are analyzed by FrSPWVD, 

and the parameters of original signals are accurately extracted according to the corresponding 

appropriate fractional order and fractional frequency of signals. However, the cross term will 

interfere with it when using WVD to analyze the multi-component signals. 

The SDP method can reflect the difference between signals because it can amplify fault 

characteristics. In the literature [108], SDP images are combined with the squeeze-and-excitation 

CNN classification model to visually diagnose the bearing fault. In the literature [109], vibration 

signal components after EMD are represented by SDP images, and image features are calculated 

using the improved Chebyshev distance. These studies have proven that SDP visualizes signals 

and amplifies their differences. 

Although the abovementioned method can realize effective signal processing, the frequency 

components in the acquired engineering vibration signals are slightly different according to 

different operating conditions of rotating machinery. At the same time, the fault characteristics of 

rotating machinery are very different from each fault types. Therefore, it is necessary to research 

appropriate signal processing methods for vibration signals under different working conditions.  

1.3 Research objectives 

  In the vibration signal under the fault state of rotating machinery, there contains a large amount 

of fault characteristics information. However, due to the harsh working environment and variable 

working conditions, the vibration signal acquired by the acceleration sensor contains strong 

background noise, resulting in the submersion of the fault characteristic signal. Therefore, it is of 

great significance to research the signal processing methods in the fault diagnosis of rotating 

machinery. 

1.3.1 Research on signal fault characteristic enhancement method 

The background noise in the vibration signal acquired by the acceleration sensor is strong, 

which makes the regular impact caused by the fault submerged, resulting in the difficulty of 

extracting the fault characteristic frequency in the spectrum. The more serious the interference of 

vibration signal by background noise, the higher the difficulty of fault feature extraction. How to 

effectively suppress the background noise in the vibration signal, improve the SNR and enhance 

the fault characteristics signal is a very key problem in rotating machinery fault diagnosis. 

1.3.2 Research on non-stationary vibration signal filtering method  

The rotating machinery itself and its transmission structure are very complex. The vibration 

signals acquired from the rotating machinery have the characteristics of non-linearity, non-

stationarity, and complexity, resulting in fault impact signal submerged and weak fault 

characteristic signal. How to effectively filter the vibration signal under the complex background 

noise and enhance the fault characteristic is a problem worthy of research. 
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1.3.3 Research on adaptive filtering method specially for engineering signals 

For the rotating machinery vibration signal acquired from engineering field, there is a deviation 

between the actual rotating frequency and the theoretical value. This deviation leads to the 

inability to accurately extract features in the industrial fault diagnosis. How to accurately extract 

the actual rotating frequency and its harmonic from the engineering signal, and to reduce the 

interference of background noise, is the key problem to realize the adaptive filtering of rotating 

machinery. 

1.3.4 Research on signal image conversion method 

In visual fault diagnosis of rotating machinery, the method which can clearly highlight the 

difference between two-dimensional images and increase the identification of fault types is the 

guarantee of diagnosis accuracy. In the existing time-frequency image conversion methods, there 

is a problem that the image discrimination is not obvious. How to effectively extract the fault 

feature information hidden in the vibration signal and avoid the influence of noise in signal 

transformation is a problem worthy of research. 

1.4 Outline of thesis 

This thesis focuses on the key problems of signal processing in rotating machinery fault 

diagnosis, such as the filtering of non-linear and non-stationary vibration signal, enhancing the 

weak impact characteristic based on strong background noise, accurately extracting the actual 

rotating frequency from engineering signal, and increasing fault image discrimination in visual 

fault diagnosis. The main contents of the dissertation are as follows: 

In Chapter 2, it mainly reviews the signal processing methods commonly used in the rotating 

machinery fault diagnosis, including signal filtering method, signal decomposition method, signal 

enhancement method, and signal demodulation method. 

In Chapter 3, aiming at the problem of large background noise and inundation of regular impact 

in the rotating machinery vibration signal, a signal feature enhancement method based on 

weighted kurtosis VMD and improved frequency weighted energy operator is proposed. After the 

raw signal is decomposed by VMD, several IMFs are obtained. Based on the weighted kurtosis 

index, the optimal IMF component with the most fault features is selected as the filtered signal. 

Then, the filtered signal is demodulated by the improved weighted energy operator to further 

suppress the noise and improve the SNR. This method is verified by the low-speed bearing fault 

of rotating machinery. 

In Chapter 4, aiming at the problems of strong non-linearity, non-stationarity, weak fault 

characteristics and large noise interference of vibration signal in rotating machinery, a signal 

filtering method based on reconstruction adaptive determinate stationary subspace filtering (Rad-

SSF) and enhanced third-order spectrum is proposed. For the raw vibration signal, the false 

nearest neighbor method is used to adaptively reconstruct the phase space matrix signal. Based 

on the stationary subspace algorithm, the reconstructed signal is divided into stationary signal and 

non-stationary signal, and the best filtered signal is selected from the non-stationary signal based 

on the maximum kurtosis values to suppress the background noise. Then the third-order 

calculation is integrated into the TEO to demodulate the filtered signal, and the 1.5-dimensional 

energy spectrum is obtained to improve the fault characteristics signal. This method is verified by 

the high-speed bearing fault of rotating machinery. 

In Chapter 5, aiming at the problem that there is a deviation between the actual rotating 

frequency and the theoretical value in the engineering vibration signal, an adaptive multi-band 

filtering algorithm is proposed. The adaptive multi-band filtering can accurately find out the 
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actual rotating frequency of the vibration signal, so as to accurately extract the fault characteristics. 

This method is verified by the rotating machinery abnormal structure faults, including angle 

misalignment, coupling looseness, dynamic imbalance, pedestal looseness, and static imbalance. 

Combined with the intelligent classification algorithm, stack autoencoder, the adaptive diagnosis 

of rotating machinery abnormal structure faults is realized. 

In chapter 6, aiming at the problem that the discrimination of vibration signal transformed 

images is not obvious in the rotating machinery visual diagnosis, an incrementally accumulated 

holographic SDP characteristic fusion method is proposed. The time-domain and frequency-

domain characteristic parameters of vibration signals are extracted successively, and image fusion 

is performed based on SDP to convert one-dimensional vibration signals into two-dimensional 

graphics. This method is verified by the bearing fault of rotating machinery, and the experiment 

result proved that this method can magnify the difference between the signals. 

In Chapter 7, it makes a comprehensive and systematic summary of this thesis, and points out 

the deficiencies in the existing research and areas for improvement. At the same time, it also 

forecasts the work that needs further research in the future. 
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Chapter 2 Review of signal processing methods for rotating 

machinery fault diagnosis 

In this chapter, some signal processing methods used in rotating machinery fault diagnosis are 

summarized, which are mainly divided into four parts: signal filtering method, signal 

decomposition method, signal enhancement method and signal demodulation method. In each 

section, it detailly described the origin and development of some common signal processing 

methods, and their advantages and disadvantages are also summarized. 

2.1 Signal filtering method 

Signal filtering method can suppress noise by selecting effective frequency components, it has 

the advantages of significantly improve the SNR of the signal. The key to the signal filtering 

methods is the setting of the appropriate parameters, such as cut-off frequency and pass-through 

frequency band. This method mainly includes four categories: 1) the methods by manually setting 

the parameters of cut-off frequency and pass-through band, including high-pass filtering, low-

pass filtering, and band-pass filtering; 2) the methods by using the kurtosis value to determine the 

optimal parameters of cut-off frequency and pass-through band, including kurtogram, autogram, 

etc.; 3) the methods based on intelligent algorithm that automatically searches and determines the 

best parameters of cut-off frequency, such as GA and PSO; 4) the methods by reasonably setting 

window functions, such as Kalman filtering and wavelet filtering. 

2.1.1 High-pass filtering, low-pass filtering, and band-pass filtering 

2.1.1.1 High-pass filtering 

High-pass filtering has the characteristics of retaining high-frequency components higher than 

the cut-off frequency, and weakening low-frequency components lower than the cut-off frequency. 

However, the amplitude of suppression and attenuation varies with different filtering procedures. 

High-pass filtering only attenuates the frequency components below the cut-off frequency and 

without phase shift, which is mainly used to eliminate low-frequency noise. In the fault diagnosis 

of rotating machinery, it is often used to filter vibration signals and sound signals. 

2.1.1.2 Low-pass filtering 

Low-pass filtering is the opposite of high-pass filtering. It retains low-frequency components 

and suppresses high-frequency components. It is often used for filtering current signals in rotating 

machinery faults diagnosis. 

2.1.1.3 Band-pass filtering 

Band-pass filtering is used to retain the passing frequency band, and is often used to filter the 

vibration signal in rotating machinery abnormal structural faults. 

Fig. 1 shows the signal comparison after high-pass filtering, low-pass filtering and band-pass 

filtering. 
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(a)

(b) (c) (d)

 

Fig.1 Comparison of the effects of high-pass filtering, low-pass filtering, and band-pass filtering 

2.1.2 Kurtogram 

The concept of kurtogram was originally proposed by Dwyer, and its basic idea is to determine 

the impact frequency band in the signal by calculating the kurtosis value on the spectral line. Fast 

kurtogram and autogram are the filtering methods based on the development of kurtogram. Fig. 

2 shows an application example of kurtogram. 

 

Fig. 2 Example of kurtogram 

2.1.2.1 Fast kurtogram 

Fast kurtogram is a two-dimensional map composed of frequency f, frequency resolution Δf 

and spectral kurtogram value, which is represented by the shade of color. It can determine the 

optimal parameters of band-pass filtering, so as to restore the essence of periodic impact of fault 

signal. The main idea of fast kurtogram algorithm is to calculate the spectral kurtosis of each sub-

band (frequency) by constructing a series of 1 / 3-binary tree band-pass filtering banks with 

different frequency bands, and determine the optimal demodulation frequency band by comparing 

the spectral kurtosis of the sub-band, so as to extract the envelope corresponding to the 

demodulation frequency band. The fast kurtogram can determine the center frequency of the best 

band-pass filtering according to the spectral kurtosis. 
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2.1.2.2 Autogram 

Moshrefzadeh and Fasana proposed the autogram method based on the maximum overlap 

discrete wavelet packet transform (MODWPT). In this method, the spectrum is divided by binary 

tree structure, and the bandwidth of each layer is fixed, so as to obtain a series of demodulation 

frequency bands. It can effectively suppress the influence of aperiodic components on the actual 

fault frequency and improve the accuracy of detecting the optimal frequency band. 

2.1.3 Intelligent algorithm filtering 

The filtering based on artificial intelligence methods such as GA and PSO algorithm mainly 

determines the optimal cut-off frequency through the automatic search principle. 

2.1.3.1 GA filtering 

GA filtering is an intelligent automatic signal filtering method, which can automatically 

suppress noise and extract fault signal. In this method, the acquired raw signal is transformed 

from time domain to frequency domain by fast Fourier transform (FFT), and then matches each 

value of the binary string to each frequency (from low to high frequencies) of the abnormal signal 

spectrum. Then in the found optimal binary string, 0 corresponds to the normal component and 1 

corresponds to the fault component. Finally, after the raw signal is multiplied by the spectrum of 

the binary string, only the filtered fault component will be generated. 

2.1.3.2 PSO filtering 

The PSO filtering uses particles with weight values to approximate the posterior probability 

distribution, and is suitable for non-linear and non-Gaussian noise environments. This filtering 

finds the optimal value by continuously updating the speed and position of the particle in the 

search space, and the particle continuously updates its position and speed by chasing the 

individual and the global optimal value. The method has high prediction accuracy and good 

robustness. 

2.1.4 WT filtering 

The WT filtering determines the filtering bandwidth based on the characteristic frequency of 

typical faults, and uses the fast spectral kurtosis method for reference to find the center frequency 

with the largest kurtosis. By selecting the appropriate basis function to ensure the accuracy of the 

algorithm, it does not have self-adaptability, and there is also the problem of signal energy leakage 

during filtering. Dual-tree complex wavelet filtering is a new development method with many 

excellent characteristics, such as approximate translation invariance, good direction selectivity, 

complete reconstruction, limited data redundancy and efficient computing efficiency. 

(a) (b)

(c) (d)
 

Fig. 3 Example of Wavelet filtering 
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2.1.5 Kalman filtering 

The Kalman filtering is estimated by the minimum variance in the time domain, and each 

calculation only depends on the current monitoring data and the optimal estimated value at the 

previous moment. It is an efficient linear recursive filtering that can estimate the state of a 

dynamic system from a series of incomplete and noisy measurements. On the basis of the linear 

state space representation, the noisy input and observation signals are processed to obtain system 

status or real signal. For the system disturbance and observation error (i.e. noise), as long as some 

appropriate assumptions are made about their statistical properties, the estimated value of the real 

signal with the smallest error can be obtained in the sense of average by processing the 

observation signal containing noise. 

2.2 Signal decomposition method 

The signal decomposition method mainly decomposes the signal according to the time scale 

characteristics of the signal itself, without setting any basis function in advance. It can decompose 

the complex signal into finite IMFs, and the decomposed IMF components contain the local 

characteristic signals of different time scales of the original signal. This kind of method extracts 

the best IMF as the final filtered signal by calculating the kurtosis value and other parameters. 

Such methods include EMD and its improved algorithm, VMD, ITD, LMD, singular value 

decomposition (SVD) and so on. 

2.2.1 EMD and its improved methods 

EMD is a non-linear and non-stationary signal processing method widely used in mechanical 

fault diagnosis. It has good adaptability, but it has serious mode aliasing. Therefore, on this basis, 

researchers have proposed improved methods such as en-semble empirical mode decomposition 

(EEMD), CEEMD, and CEEMDAN. 

2.2.1.1 EMD 

EMD is an adaptive decomposition method for non-linear and non-stationary signals proposed 

by Huang et al. The method adaptively decomposes complex multi-component signals into a 

series of single-component IMFs according to the time scale of the signal itself. Since EMD is 

not limited by the basis function, it can accurately and effectively grasp the small characteristics 

of the raw signal and avoid the diffusion and leakage of signal energy. Therefore, compared with 

wavelet filtering, EMD method has good stability and accuracy. 

 

Fig. 4 Example of EMD decomposition 
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2.2.1.2 EEMD 

EEMD is a noise-assisted signal analysis method. It uses the statistical characteristics of white 

noise with uniform frequency distribution, adds Gaussian white noise of the same amplitude to 

the raw signal, and performs multiple EMD decompositions. The decomposed IMFs are overall 

averaged. This method changes the characteristics of its extreme points and enhances the anti-

aliasing characteristics of the signal. However, the white noise added in the signal decomposition 

can’t be completely neutralized, so the decomposition completeness of this method is poor. 

2.2.1.3 CEEMD 

CEEMD adds positive and negative Gaussian white noise to the raw signal, and then perform 

EMD decomposition respectively. It greatly reduces the residual white noise in the EEMD 

reconstructed signal. The CEEMD method further improves the defect mode aliasing problem of 

EMD method, makes the decomposition result more thorough, and has been widely used. 

2.2.1.4 CEEMDAN 

Based on EEMD, the CEEMDAN is proposed. In this method, adaptive white noise is added 

in each stage of decomposition, and each IMF is obtained by calculating the unique residual signal.  

It effectively solves the problems of mode aliasing of EMD and poor completeness of EEMD. 

2.2.2 VMD 

VMD is an effective decomposition method. VMD can complete the adaptive division of the 

frequency band according to the frequency characteristics of the signal itself, and it is suitable for 

the separation of multi-component non-stationary signals. VMD could decompose a complex 

signal into the sum of its multi-scale components, and it is a non-recursive tool. VMD is a 

generalization of the classical Wiener filtering for adaptive, multiple bands and is somewhat more 

robust to noise. It has the advantages of high precision, fast decomposition speed and strong 

robustness.  

2.2.3 ITD 

The ITD method adopts the form of linear transformation to decompose the signal, it could 

adaptively decompose any complex signal into a sum of several PRCs independent of each other, 

and its instantaneous frequency has physical meaning. The definition of the baseline in the ITD 

method is based on the linear transformation of the signal itself, and there is an evident signal 

distortion starting from the second component. 

2.2.4 LMD 

LMD could self-adaptively decompose a complicated multi-component signal into a set of PF 

components, each of which is the product of an envelope signal and a purely frequency modulated 

signal. But the construction of local mean function and envelope function in the LMD algorithm 

plays an important role in the accuracy of the PF components it extracts. The local mean function 

and envelope function are calculated by the moving averaging method according to the local 

extreme points.  

2.2.5 SVD 

SVD can clearly and effectively detect mutation information in strong noise background, and 

has achieved good results in feature information separation and weak signal extraction. The SVD 

component signal in Hankel matrix mode has the characteristics of linear superposition. By 

selecting the components of interest for superposition, the signal feature information can be 
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extracted. Due to its good stability and invariance, SVD technology is widely used in periodic 

component extraction and noise reduction of mechanical fault vibration signals. It has the 

advantages of zero phase shift, small waveform distortion and high signal-to-noise ratio. 
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Fig. 5 The principle of SVD 

2.3 Signal enhancement method 

Under the strong background noise, the weak fault characteristic is often submerged and 

difficult to extract. Therefore, when performing signal processing on weak signals, it is necessary 

not only to filter the background noise, but also to enhance the fault characteristic. Commonly 

used methods to enhance characteristic signals include TEO and its improved methods, such as 

SDAEO, FWEO. 

2.3.1 TEO 

TEO is an effective non-linear energy operator developed by Kaiser. The operator estimates the 

total energy required by the signal source to produce a dynamic signal through the non-linear 

combination of the time-varying value of the signal and its differential. TEO can estimate the sum 

of kinetic energy and potential energy of signal, so it can extract relatively weak fault features, 

and has the advantages of strong timeliness and high time resolution. TEO is an effective signal 

feature enhancement method, and it could analyze the signal time-frequency characteristics, it is 

often used to analyze and track the narrowband signal energy. This method could effectively 

improve the signal impulse, and it has the advantages of simple algorithms and response quickly. 

2.3.2 SDAEO 

The SDAEO combines the ideas of TEO, Hilbert transform and symmetric difference, which 

can reflect the local variation characteristics of signal and effectively enhance the fault 

characteristics. In the SDAEO, Hilbert transform is used to replace the first-order differential 

operation in TEO to improve the transient frequency characteristics of the signal and improve the 

resolution of the algorithm. At the same time, the symmetrical difference method is used to 

smooth the signal, reduce the background noise and improve the demodulation efficiency. 

2.3.3 FWEO 

The FWEO is proposed by John on the basis of TEO. The intermediate difference method is 

used to calculate the derivative, so that there is no meaningless negative value in the calculation 

result. This method realizes signal demodulation by calculating the envelope of signal derivative, 

and has stronger anti-interference characteristics. However, when the center frequency of the 

demodulated signal is low, the values of its adjacent sampling points are similar, resulting in small 

FWEO amplitude and inundation of fault information by noise. 
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2.3.4 Power spectrum 

Power spectrum is defined as the signal power in the unit frequency band and represents the 

change of signal power with frequency. The power spectrum is a description based on the signal 

energy or power distribution, including the self-power spectrum and the cross-power spectrum. 

The self-power spectrum and the amplitude spectrum contain the same amount of information, 

but under the same conditions, the self-power spectrum is clearer than the amplitude spectrum. 

The classical spectral estimation method assumes that the unknown data outside the data work 

area is zero, which is equivalent to data windowing. 

(a) (b)

(c) (d)
 

Fig. 6 Examples of TEO, SDAEO, FWEO and power spectrum 

2.4 Signal demodulation method 

The signal demodulation method is mainly to move the spectrum carrying characteristic 

information near the carrier to the baseband, and then filter out the baseband signal with the 

corresponding filtering. It can weaken the influence of background noise and extract the weak 

fault characteristic information. Compared with other methods, it has the advantages of 

amplification, selectivity, proportionality, low frequency, correspondence, and broadening. 

Common demodulation methods include resonance demodulation, Hilbert transform, envelope 

spectrum, 1.5-dimensional spectrum, energy spectrum and so on. 

2.4.1 Resonance demodulation 

The basic principle of resonance demodulation technology is that the rotating machinery fault 

will cause the impact sharp pulse signal. Because these impact sharp pulses have a wide frequency 

band, they will produce resonance after being received by the sensor, and output a reduced 

amplitude oscillation signal whose frequency is close to the natural frequency of the sensor. Then 

the band-pass filtering with high center frequency is used to effectively separate the impact fault 

information from the low-frequency interference signal and improve the signal-to-noise ratio. 

Finally, the filtered signal is demodulated, such as calculating the absolute value and taking the 

envelope, so as to obtain the low-frequency resonance demodulation signal. 

2.4.2 Hilbert transform 

Hilbert transform plays a very important role in signal processing. The vibration signal is 

processed by Hilbert transform, the amplitude of each frequency component remains unchanged, 

but the phase will shift by 90°. Through Hilbert transform, it is possible to define and calculate 

the instantaneous parameters of short signal and complex signal, and can realize the extraction of 

instantaneous signal in the real sense. Compared with the traditional amplitude spectrum, the 

spectrum obtained by this method is more concise in the spectral line distribution component, 
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which can directly find the fault frequency component of vibration signal, and improve the 

efficiency and accuracy of fault diagnosis process. 

2.4.3 Envelope spectrum 

Envelope analysis is one of the widely used vibration signal fault feature extraction method. 

The key of envelope analysis is to determine the appropriate filtering center frequency and 

bandwidth. The envelope demodulation can demodulate the fault-related information from the 

high-frequency modulated signal, and it has become a common method to extract the fault 

characteristics of rotating machinery. Envelope demodulation analysis is the most commonly used 

diagnostic method, but its difficulty is to find the optimal demodulation frequency band. 

Hilbert 

Transform

Fourier 

Transform

Moduling

 

Fig. 7 The principle of envelope spectrum  

2.4.4 Energy spectrum 

Energy spectrum represent the distribution of signal energy at each frequency point, it is the 

square of the modulus of the signal amplitude spectrum. The energy of the signal can be obtained 

by integrating the energy spectrum in the frequency domain. The spectrum reflects the distribution 

of the amplitude and phase of the signal with frequency, which describes the frequency domain 

characteristics of the signal, and the energy spectrum can be used to describe the frequency 

domain characteristics of the signal. 

2.4.5 1.5-dimensional spectrum 

The 1.5-dimensional spectrum is developed from the high-order spectrum method. It can not 

only extract the quadratic non-linear coupling characteristics in the signal and effectively 

eliminate the influence of noise, but also overcome the disadvantages of large amount of 

calculation of high-order spectrum. The vibration signal will show strong non-linear 

characteristics and secondary phase coupling, but the power spectrum can’t identify the coupling 

characteristics in the fault signal because it will suppress the phase information. The 1.5-

dimensional spectrum makes up for the deficiency of the power spectrum, it retains the amplitude 

and phase information, and can effectively suppress the Gaussian white noise and strengthen the 

fundamental frequency component. 

2.5 Problems with signal processing methods 

High-pass, low-pass, and band-pass filtering have been well applied in engineering signal 

processing, however, researchers need to fully understand the fault characteristic frequency to 

accurately set the cutoff frequency for signal filtering. The spectral kurtosis filtering method can 

help select the best center frequency, but this approach cannot work efficiently when a higher 

impulse is present. Although the artificial intelligent filtering methods does not require extensive 

experience, this method is computationally expensive, difficulty in parameter adjustment, and can 
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easily fall into the local optima. 

Signal decomposition methods decompose the signal into multiple IMFs and extract the best 

IMF with the largest fault characteristic. Although the noise can be filtered out, it also inevitably 

weakens the energy of useful signals, and finally the SNR is lower, which affects the fault 

diagnosis accuracy. Besides, the EMD uses cubic spline interpolation to fit the envelope, which 

has obvious shortcomings such as over-envelope, under-envelope, end effect and mode mixing; 

EEMD and its improved methods could alleviate the above deficiencies, they still introduce new 

problems, such as the white noise cannot be completely neutralized and resulting in false 

components, therefore, the fault feature extraction is still seriously affected under strong 

background noise; VMD has certain limitations, including breakpoint effects and modal aliasing; 

LMD have shortcomings that the moving averaging method may cause phase error of the functions 

after several iterations, which has an adverse effect on the accuracy of PF components; the 

definition of the baseline in the ITD method is based on the linear transformation of the signal 

itself, and there is an evident signal distortion starting from the second component.  

TEO has the advantage of enhancing the signal impulse, it also has the disadvantages of low 

demodulation accuracy and substantial noise interference. FWEO as an improved TEO method, it 

can assess instantaneous energy, and improve the analytic performance, but it still imperfect when 

signals have strong noise. 

Signal demodulation method can improve the energy of impact signal, but it still needs to be 

further improved for strong noise background and weak fault signal.
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Chapter 3 Signal processing method based on weighted 

kurtosis VMD and improved FWEO 

3.1 Introduction 

Rotating machinery has complex structure and poor working environment, the vibration signal 

acquired by the acceleration sensors often contains strong background noise [110, 111]. These 

noises submerged the signal impulse generated by the fault so that it is difficult to extract the fault 

feature from the signal to realize fault diagnosis. Hence, this chapter proposed a fault signal 

processing method based on improved VMD and frequency weighted energy operator. 

VMD can complete the adaptive division of the frequency band according to the frequency 

characteristics of the signal itself, and it is suitable for the separation of multi-component non-

stationary signals. Therefore, this chapter employs the VMD to decompose fault signal, and based 

on the weighted kurtosis indictor to extract the decomposed component which carries abundant 

fault information to reconstruct the signal. The signal reconstructed by VMD could extract the 

impulse signal. However, the extracted signal impulse also has some noise, and the impulse signal 

should be enhanced, so it needs further processing methods.  

TEO is an effective signal feature enhancement method, and it has the advantages of simple 

algorithms and response quickly. FWEO as an improved TEO method, it can assess instantaneous 

energy, and improve the analytic performance, but it still imperfect when signals have strong noise. 

According to the third-order cumulant mentioned in [112, 113] could effectively improve the SNR, 

this chapter introduced it into FWEO to improve the performance, the improved FEWO (IFWEO) 

method is presented to analyze VMD reconstructed signal for enhancing rotating machinery fault 

impulse.  

To verify the effectiveness of the method presented in this chapter, a low-speed bearing inner 

race fault simulation analytical model is established, and engineering signals are acquired for 

experiments. The results prove that this method could effectively extract the signal impulse from 

the strong background noise and enhance the fault characteristic frequency value, realizing low 

speed bearing fault diagnosis. 

3.2 Weighted kurtosis VMD 

VMD completes the frequency band adaptive subdivision according to the frequency domain 

characteristics of the signal itself. By solving the constrained variational model in the variational 

framework, several bandpass signal components are obtained to realize the decomposition of the 

signal. VMD has perfect mathematical principles and better noise robustness, and it could 

effectively suppress mode mixing and end effect, and is suitable for the separation of multi-

component non-stationary signals [114, 115]. 

3.2.1 Principle of VMD 

For the one-dimensional non-stationary signal ( )x t , define the VMD intrinsic mode function 

components are the amplitude modulation-frequency modulation signal ( )ku t : 

 ( ) ( )cos( ( ))k k ku t A t t=  (1) 

where ( )kA t  is the instantaneous amplitude and ( )k t  is the instantaneous frequency.  

Assuming that the signal ( )x t  is decomposed into k   IMF components, the constructed 
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constrained variational model equation is given by: 
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where    1 2, , ,k ku u u u=  is VMD decomposed k   IMFs;    1 2, , ,k k   =   is the frequency 

center of each IMFs; ( ( ) ) ( )k

j
t u t

t



+   is the one-sided spectrum obtained by the Hilbert transform 

of the signal ( )x t . 

Introducing the quadratic penalty factor  and Lagrange operator ( )t , and transforming Eq. 

(2) into a non-constrained variational problem, the extended Lagrange operator is as shown in 

follows: 
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Using the multiplication operator alternating direction method to find the optimal solution, and 

through Eq. (4), Eq. (5), and Eq. (6) to update 
1n
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, 
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kx u      + += + −  (6) 

According to the convergence conditions Eq. (7) to end the decomposition and complete the 

IMFs extraction. 
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3.2.2 Weighted kurtosis index 

Ensuring to select the best signal component from the VMD IMFs, the weighted kurtosis is used 

to evaluate the IMFs. The weighted kurtosis ( WK  ) combines kurtosis ( Kur  ) and correlation 

functions ( Corr ), it is given by: 

 WK Kur Corr=   (8) 
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where Kur  is Kurtosis of each component, Corr is the correlation coefficient between each sub-

mode and the original signal, and N is the signal length. 

3.2.3 IMF selection 

The weighted kurtosis could both characterize the correlation coefficient between each sub-

／
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mode with the original signal and the impact of the original signal, Fig. 8 shows the method for 

selecting effective IMFs. In this method, the signal is decomposed into different layers, and the 

weighted kurtosis of each IMFs is calculated to find the best decomposition layer and the optimal 

IMF based on the biggest weighted kurtosis value. 

K = 2

K = 3

K = n

… … 

… 

WK1 WK2

WK1 WK2 WK3

WK1 WK2 WK3 WK4 WKn

 

Fig. 8 Effective IMF selection based on weighted kurtosis 

3.3 Improved FWEO  

The FWEO takes the derivative function as a filtering and introduces the instantaneous 

frequency weight, by calculating the envelope of the signal derivative to calculate the modulated 

signal instant energy [116]. FWEO has stronger robustness under background noise and other 

frequency component interference. At the same time, the third-order cumulant method could 

effectively improve the SNR and better enhance the impulse signal feature. 

3.3.1 TEO principle  

TEO has good time-frequency resolution, it could express the signal instantaneous energy, and 

enhance the signal impulse. The TEO is as follows: 

 
( ) ( ) ( ) ( )2x t x t x t x t = −  

 (11) 

where ( ) ( ) /x t dx t dt= and ( ) ( )2 2/x t d x t dt= .  

3.3.2 IFWEO principle  

For the selected signal ( )y t   based on weighted kurtosis VMD, it contains periodic impulse 

( )s t  and Gaussian random noise ( )n t , as shown in follows: 

 ( ) ( ) ( )y t s t n t= +  (12) 

According to the high-order cumulant definition, the third-order cumulant of the signal ( )y t  

can be given as: 

  

   

1 2 1 2

1 2 1 2

( , ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c cum y t y t y t

E s t s t s t E n t n t n t

   
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= + +

= + + + + +

 (13) 

where 1  and 2  are the delay parameter, and E is the expectation calculate method.  

Because the high-order cumulant of ( )n t  is always equal to 0, and at the same time, make 

1 2 =  to reduce the computational complexity, the 1.5-dimensional slice of the third-order 

cumulant is given by: 

  2

3( ) ( , ) ( ) ( )yc t R E y t y t  = = +  (14) 

Using the analytical signal form to define the demodulated signal ( )c t as follows: 

  ( ) ( ) ( )C t c t jH c t= +  (15) 

where  ( )H c t is the Hilbert transform of ( )c t . The signal energy is determined by the square of 

I 
I I 

I I I I 
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the signal amplitude, and is given by: 

 ( ) ( ) ( )
2

S c t c t jH c t= +        (16) 

where  S   is the envelope operator equation. 

Therefore, introducing the TEO concept and define the frequency-weighted energy operator as: 

 ( ) ( ) ( ) ( ) ( )
2 22+c t c t jH c t c t H c t = = +            (17) 

To derive the discrete signal, the symmetric difference method used is as follows: 
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where IFWEO discrete equation is given by: 
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 (19) 

3.4 Rotating machinery fault diagnosis process  

For the problem that it is difficult to accurately extract the rotating machinery fault 

characteristics frequency under the complex background noise, this chapter proposes a method 

based on weighted kurtosis to select the effective VMD IMFs and using IFWEO to enhance feature 

to realize the fault diagnosis. Fig. 9 shows the detailed steps and flowchart of this method. 

Step1 Acquiring the vibration signal of the rotating machinery under different faults states; 

Step2 Applying VMD to adaptively decompose the vibration signal, and set the initial 

decomposition layer K=2, extract the IMFs. The K plus one each time, and calculate the 

corresponding IMFs; 

Step3 Calculating the weighted kurtosis of each IMFs under different decomposition layers K, 

and select the sensitive IMF which containing the most fault information. Reconstruct 

the signal with the selected signal 

Step4 Using IFWEO to demodulate the reconstructed signal to obtain the envelope spectrum; 

Step5 Dominant frequency in envelope spectrum compared with the fault characteristic 

frequency to realize rotating machinery fault diagnosis. 

Take bearing fault as an example, the fault characteristic frequency calculation equation is as 

follows: 

 (1 cos )
2

o rm

Z d
f f

D
= −  (20) 

 (1 cos )
2

i rm

Z d
f f

D
= +  (21) 

 
2

2

2
(1 cos )b rm

D d
f f

d D
= −  (22) 

where fo is the bearing outer race fault characteristic frequency; fi is the inner race fault 

characteristic frequency; fb is the roller fault characteristic frequency; Z is the number of rolling 

elements; frm is rotating frequency; d is the rolling element diameter; D is the pitch diameter;  is 

the contact angle. 

. . I . 
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Fig. 9 Weighted kurtosis VMD and IFWEO fault diagnosis flow chart 

3.5 Experimental verification  

  In order to verify the effect of the weighted kurtosis VMD and IFWEO methods proposed in 

this chapter in the removal of vibration signal background noise and the enhancement of fault 

feature information, this chapter uses low-speed bearing faults that are common in rotating 

machinery fault types for verification. The experimental verification is divided into two parts, 

simulation verification and engineering experimental verification. 

3.5.1 Simulation analysis  

To verify the effectiveness of weighted kurtosis VMD and IFWEO in low-speed bearing fault 

diagnosis under complex background noise, this chapter simulates an inner race fault signal 

analysis model, the sampling frequency is 12000 Hz, and the number of sampling points is 4096. 

3.5.1.1 Simulation model establishment 

The analytical model is as follows [26]: 

 ( ) (1 cos(2 )) ( ) ( ) ( )rm kf t A B f t U t KT x t n t 


−

= −  − − +  (23) 

 
( )

( ) cos(2 ( ))kc t KT

n kx t e f t KT
  − − −

= − −
 (24) 

where rmf  is the rotating frequency, and the value is 10 Hz; T is the feature cycle and the value 

is 1/120; k  is the tiny fluctuation of the k-th shock and the value 0.000001; c  is the signal 

damped exponent and the value is 1000; nf is the resonance frequency and the value is 5000 Hz; 
( )n t .is the noise signal. 

The simulation signal result is shown in Fig. 10(a), and Fig.10(b) is the corresponding envelope 

spectrum. In Fig. 10(a) the time-domain signal, the periodic impulse of bearing inner race fault is 
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entirely submerged by noise. In Fig.10(b) there are more interference noises, and the effective 

information is covered. The fault characteristic frequency and its harmonics could not be extracted. 

 

(a) 

 

(b) 

Fig. 10 Bearing inner race fault simulation time-domain signal and its spectrum: (a) time-domain signal; 

(b) spectrum 

3.5.1.2 VMD verification 

The VMD is used for signal decomposition, according to existing experience and references 

[117], set the initial center frequency (ICF) by uniform distribution and the quadratic penalty factor 

to 2000. And firstly, the initial decomposition layer is set to K=2, decomposing the IMFs and 

calculating the corresponding weighted kurtosis. Increase the value of K each time, and calculate 

the corresponding weighted kurtosis of IMFs, the result is shown in Fig. 11. It can be seen that 

when the decomposition layer is 3, the weighted kurtosis value of IMF3 is the largest, indicating 

that the IMF3 carries the best fault feature information. Fig. 12 shows the IMF3 time-domain signal 

and its spectrum. There are some fault impulses in the time-domain signal, and the noise is also 

partially suppressed. Although the fault characteristic frequency and harmonics have been 

improved in the original envelope spectrum, the fault characteristic frequency and 2nd harmonic 

are conspicuous. However, the 3rd harmonic and the higher harmonic can’t be found out, there is 

still noise interference. 
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Fig. 11 The weighted kurtosis distribution 

 

(a) 

 

(b) 

Fig. 12 Optimal IMF time-domain signal and its spectrum: (a) time-domain signal; (b) spectrum 

3.5.1.3 IFWEO verification 

For the optimal signal extracted by VMD decomposition, the third-order cumulant is calculated, 

and Fig.13 shows its frequency spectrum. In the calculation, the sample length of data is 4096, the 

estimated maximum delay is 2048, the data overlap percentage is 0, and fixed delay is 1. Fig.13 

shows that the noise is significantly reduced after the third-order cumulant processed, and the fault 

characteristic frequency is improved. It proves that the third-order cumulant method can effectively 

remove the background noise, and the characteristic frequency can be better extracted. 
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Fig.13 The third-order cumulant comparison 

The IFWEO is applied to demodulate the reconstructed signal via weighted kurtosis VMD, and 

Fig. 14 shows the corresponding envelope spectrum. In the envelope spectrum, the fault 

characteristic frequency values and its harmonics have been significantly enhanced, and the noise 

is significantly reduced. Therefore, the simulation experiment results proved that the low-speed 

bearing fault diagnosis method presented in this study is effective; it could enhance the fault feature, 

suppress the background noise, and improve the signal SNR. 

 

Fig. 14 The simulated signal IFWEO spectrum 

3.5.2 Engineering experiment  

  This chapter carries out diagnosis research based on the bearing fault of rotating machinery 

low-speed rotating equipment, and verifies the accuracy of the method proposed in this chapter 

through the actual engineering signal. 

3.5.2.1 Experiment platform 

The low speed bearing fault experiment platform and the bearing fault types are shown in Fig. 

15, and the bearing specific parameters are shown in Tab. 1. The bearing works at speed 100 RPM 

with load, and the load is setting to 0.5T. The vibration signal is acquired by the acceleration 

sensor, and the sampling frequency is 100000 Hz. On the bearing inner race, outer race, and 

rolling elements, a groove with a depth of 0.3 mm and a width of 5.0 mm is processed by wire 

cutting. 
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Fig. 15 Low speed bearing fault experiment platform and bearing fault types 

Tab. 1 Bearing specific parameters 

Parameter Value 

Rolling elements number 12 

Rolling elements diameter 18 mm 

Bearing pitch diameter 100.25 mm 

Contact angle 0 

According to Eq. (20), Eq. (21) and Eq. (22), the bearing fault characteristic frequency is shown 

in Tab. 2. 

Tab. 2 Low speed bearing fault characteristic frequency 

Type Outer race Inner race Roller 

Frequency 8.20 Hz 11.79 Hz 8.98 Hz 

3.5.2.2 Outer race fault 

Fig. 16 (a) shows the vibration signal of the normal bearing, and the outer race fault bearing. It 

can be seen that the normal bearing vibration signal is stable and the amplitude variation range is 

small. But in the outer race fault vibration signal, the amplitude fluctuates greatly, and the impulse 

occurs significantly. However, due to excessive background noise, the periodic impulse features 

caused by the outer race fault is submerged, the regular and complete periodic impulse cannot be 

found in the time domain signal. In the Fig. 16 (b) signal envelope spectrum, although the fault 

characteristic frequency could not be found conveniently, the value is too low, and it is greatly 

affected by background noise. Therefore, it is necessary to further processing the signal to reduce 

background noise, improve the SNR, and enhance the fault impulse feature. 
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(b) 

Fig. 16 Bearing outer race fault time-domain signal and its spectrum: (a) time-domain signal; (b) spectrum 

The original signal is decomposed by VMD, and using the weighted kurtosis to select the best 

optimal IMF under different decomposition layers. In VMD algorithm, the initial center frequency 

(ICF) is set by uniform distribution and the quadratic penalty factor is set to 2000. The weighted 

kurtosis distribution is shown in Fig. 17. It can be seen that when the decomposition layer is 4, 

the IMF3's weighted kurtosis value is the largest, and the signal carry the fault information is the 

best. Fig. 18 shows the IMF3 time-domain signal and its envelope spectrum. In the Fig. 18(a), it 

can be seen that the signal background noise is obviously reduced and the regular and complete 

periodic impulse is strengthened, but in the Fig. 18(b) envelope spectrum, the fault characteristic 

frequency and harmonics value are weak, it still needs to be enhanced. 

 

Fig.17 The weighted kurtosis distribution 
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(b) 

Fig.18 The IMF3 time-domain signal and its envelope spectrum: (a) time-domain signal; (b) spectrum 

  Using the IFWEO to process the optimal signal and Fig. 19 shows the corresponding envelope 

spectrum. In the calculation of third-order cumulant, the sample length of data is 262144, the 

estimated maximum delay is 131072, the data overlap percentage is 0, and fixed delay is 1. It can 

be seen that the impulse feature is obviously, the fault characteristic frequency value, and its 2nd, 

3rd, 4th harmonics are much higher than other frequencies. The noise is effectively suppressed, 

and the SNR is significantly improved. The result proved that the method presented in this paper 

is effective. 

 

Fig.19 The IFWEO spectrum of outer race fault 

3.5.2.3 Inner race fault 

Verified the effectiveness of the method for the diagnosis of inner race faults, and the results 

are shown in Fig. 20. In Fig. 20 the inner race fault envelope spectrum, the fault characteristic 

frequency, and its harmonics are significantly higher than other frequencies, and the impulse is 

obvious. 

 

Fig. 20 The IFWEO spectrum of inner race fault 
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Therefore, this method also effective for inner race fault; it could enhance the fault feature so 

that to accurately extract the fault characteristic frequency and realize fault diagnosis. 

3.5.2.4 Roller fault 

Verified the effectiveness of the method for the diagnosis of inner race faults, and the results 

are shown in Fig. 21. In Fig. 21 roller fault envelope spectrum, shows that the fault characteristic 

frequencies are also effectively extracted.  

 

(b) 

Fig. 21 The IFWEO spectrum of roller fault 

Therefore, this method also effective for inner race fault and roller fault; it could enhance the 

fault feature so that to accurately extract the fault characteristic frequency and realize fault 

diagnosis. 

3.5.3 Comparative experiment  

To verify that this method has better diagnostic performance, the comparisons were carried out 

from three aspects that are decomposition method, weighted kurtosis methods and the IFWEO 

methods. In the comparison experiment, the type of fault is the outer race fault, and the speed is 

100 RPM. 

3.5.3.1 Decomposition method comparison 

In bearing fault diagnosis, extracting the effective feature information from the vibration signal 

is the key to accurately identifying the fault. To verify the decomposition effect of VMD under 

strong noise background, the EMD, LMD, and ALIF are used as comparison method, Fig.22 

shows the IFWEO spectrum corresponding to the optimal characteristic signals extracted by the 

four methods. It is clearly that the four methods can effectively extract the characteristic frequency 

of the outer race fault, however, compared with the EMD, LMD, and ALIF, the noise of the 

optimal signal extracted by VMD is the smallest. It proves that VMD has the best decomposition 

effect under strong noise background and is most suitable for bearing fault diagnosis. 

 
Fig. 22 IFWEO spectrum comparison of the four decomposition methods 
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3.5.3.2 Weighted kurtosis comparison 

The kurtosis is sensitive to the impulse of the bearing fault vibration signal, but it only depends 

on the distribution density of the impact signal, and it may ignore the large amplitude and scattered 

components. Correlation coefficient could characterize the correlation between the reconstructed 

signal and the original signal, but it is susceptible to noise interference. Therefore, combines the 

advantages of the kurtosis and correlation coefficient, the weighted kurtosis could more accurately 

evaluate the signal. Hence, to verify the effectiveness of the weighted kurtosis, the kurtosis and 

correlation coefficient are selected as comparison indexes respectively. Set the VMD 

decomposition layer is 2, and sequentially increase decomposition layers, and calculate the values 

of the three indexes according to each IMFs. The results are shown in Fig. 23(a) and (b). In Fig. 

23(a) the kurtosis distribution, the optimal decomposition layer is 6, the IMF3 has the largest 

value with 85.2, and in Fig.23(b) the correlation coefficient distribution, the optimal 

decomposition layer is 5, the IMF5 has the largest value with 54592.5. 

  Combine with Fig. 17, select the optimal IMFs under the three indexes, and extract the fault 

characteristic frequency, the envelope spectrum is shown in Fig. 23(c). Compare the fault 

characteristic frequency value, and it can be seen that the weighted kurtosis selected signal is the 

highest. At the same time, in the envelope spectrum, the weighted kurtosis selected signal has the 

most prominent impulse, and the background noise filtered is obviously better than the kurtosis 

and correlation coefficient. Therefore, the weighted kurtosis is best for the signal selected. 
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(c) 

Fig. 23 Kurtosis, correlation coefficient and weighted kurtosis comparison: (a) Kurtosis distribution; (b) 

correlation coefficient distribution; (c) the spectrum of optimal IMF selected by three methods 

3.5.3.3 Energy operator comparison 

For comparing the effectiveness of TEO, FWEO, and IFWEO, to extract the fault characteristic 

frequency of the optimal signal, and the comparison result is shown in Fig.24. It can be seen that 

all three methods could effectively extract the fault characteristic frequency, and it further proves 

that the weighted kurtosis presented in this paper could effectively extract the optimal IMF. At 

the same time, combined with the fault characteristic frequency values shown in Fig. 25 (to better 

compare the results, the values are normalized to [-1,1]), the IFWEO has the highest value and 

the smallest background noise. Therefore, the IFWEO proposed in this paper has the best 

performance on the enhancement of the fault features. 

 

Fig. 24 Energy operator comparison 

 

Fig. 25 Fault characteristic frequency values of IFWEO, FWEO and TEO 

Combining all the above experiments, it is verified that the weighted kurtosis VMD and the 

IFWEO presented in this study could not only accurately extract the characteristic frequencies of 

the low speed bearing faults, but also the best compare with the similar methods. All of the results 
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show that the proposed method can effectively extract and accurately diagnose the low speed 

rolling bearing. 

3.6 Conclusion  

This chapter is for the problems of rotating machinery fault signal with strong background 

noise and difficult to diagnosis faults, presented a method based on weighted kurtosis VMD and 

IFWEO to filtered noise and enhance fault feature. The VMD is employed to decompose signal, 

and the weighted kurtosis is applied to select the optimal IMFs which carry abundant fault 

information. The third-order cumulant is introduced into the FWEO to improve the analysis 

performance, and then the IFWEO is used to further improve the signal SNR and enhance the 

signal impulse. The simulation analysis and engineering experiment results verified that this 

method could effectively realize the low speed bearing fault diagnosis. Through the method 

presented in this study, the low speed bearing fault feature is improved obviously, the fault 

characteristic frequency is easily extracted from the envelope spectrum, and the low bearing fault 

could be effectively diagnosed.
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Chapter 4 Signal processing method based on Rad-SSF and 

1.5-dimensional third-order energy spectrum 

4.1 Introduction 

Raw vibration signals poorly perform in industrial rotating machinery fault diagnosis because 

the impulse features are damped and masked by disturbances and noises. The fact that the fault 

features are weak makes the fault diagnosis more challenging. This work presents a signal filtering 

and fault characteristic enhancement method based on reconstruction adaptive determinate 

stationary subspace filtering (Rad-SSF) and 1.5-dimensional third-order energy spectrum to 

address the above-mentioned problems. 

However, the impulse is often weakened compared with the fault source due to other vibration 

interferences caused by the complex structure of the equipment. Worse, an excitation exists 

among other components, and the fault impact characteristic often suppressed when coupled with 

the industrial working noise [118]. Previous studies have shown that the background noise must 

be filtered, and the impact characteristic of the vibration signal must be enhanced to effectively 

realize rotating machinery fault diagnosis. Stationary subspace analysis (SSA) [119] is an effective 

blind source separation method, and it could effectively decompose the high-dimensional signal 

into stationary and non-stationary ones. 

In this chapter, Rad-SSF reconstructs an adaptive self-determined and decomposed vibration 

signal trajectory matrix to obtain the non-stationary signals. Thereafter, the filtered signal with 

the best fault characteristics is extracted according to the kurtosis. Meanwhile, a 1.5-dimensional 

third-order energy spectrum is performed to enhance the fault characteristics by strengthening the 

fundamental frequency and eliminating non-coupling harmonics. Finally, the dominant frequency 

in the spectrum is contrasted to recognize fault diagnosis, referring to the theoretical fault 

characteristic frequency. 

To verify the effectiveness of the method presented in this chapter, a bearing outer race fault 

simulation analytical model is established, and engineering signals are acquired for experiments. 

The results prove that this method could effectively extract the signal impulse from the strong 

background noise and enhance the fault characteristic frequency value, realizing bearing fault 

diagnosis. 

4.2 Rad-SSF principle 

In rotating machinery fault diagnosis, the vibration signal is divided into fault impulse and 

background noise. If the fault impulse can be extracted using the signal separation method, then 

the signal will be effectively filtered, and the SNR will be improved [120]. The Rad-SSF method 

can adaptively expand the vibration signal to a high-dimensional one and decompose it into 

stationary and non-stationary signals to realize the extraction of the best fault characteristic signal. 

This mechanism is an effective signal filtering method.  

4.2.1 Phase space matrix  

The vibration signal  1 2, , Nx x x=X  is dimensionally expanded to reconstruct a d-dimensional 

trajectory matrix: 

... 
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d
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X

 
(25)

 

where 
( ) 1, ,i i i N d i

x x x+ − −
=X  is the ith phase point, and it represents a vector in the trajectory 

matrix. 

4.2.2 False nearest point  

In each vector 
iX , a nearest neighbor NN

iX  is within a certain distance, and the distance is: 

 NN

d i iR = −X X  (26) 

When the dimensionality of the trajectory matrix increases from d to d+1, the distance between 

iX  and NN

iX  changes: 

 2 2

1

NN

d d i d i dR R  + + += + −X X  (27) 

If 
d+1R   is much larger than 

dR   because two non-adjacent points in the high-dimensional 

become adjacent when projected onto the low-dimensional, then NN

iX   is the false nearest 

neighbor of 
iX  [121]. Definition: 

 
d d d( , ) NN

i ia i d R + += −X X  (28) 

 

d

1

1
( ) ( , )

d

1( ) ( 1) / ( )

N

i

E d a i d
N

E d E d E d





−

=


=

−
 = +

  
(29)

 

In the vibration signals, 1( )E d  gradually increases. The best embedding dimension is when 

1( )E d  slowly changes because the reconstructed trajectory matrix has completely recovered from 

the time sequence. 

4.2.3 Improved stationary subspace analysis  

SSA is used for trajectory matrix decomposition, as in Fig. 26. 
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Fig. 26 SSA main idea 

The d-dimensional trajectory matrix X  can be decomposed into m-dimensional stationary 
s

S  

and n-dimensional (n=d-m) non-stationary n
S  [122, 123]: 
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  1 2, , ,n

m m d+ +=S S S S  (31) 

Invertible matrix A  is satisfies the following transformation: 

  
s

s n n

 
=  

 

S
X A A

S
 (32) 

where 
sA ’s column vector is called stationary space ( s − ), 

nA ’s column vector is called non-

stationary space ( n − ). 

The core of the SSA is to find a linear transformation matrix 1ˆˆ −=B A  , which is used to 

distinguish between stationary and non-stationary, as follows: 

 
ˆ ˆ

ˆ
ˆ ˆ

s s

nn

   
= =   

     

S B
BX X

BS
 (33) 

where ˆ s
S  is an estimated stationary, ˆ n

S   is an estimated non-stationary, ˆ s
B   is an estimated 

stationary space projection, ˆ n
B  is an estimated non-stationary space projection, and 

1ˆ −
A  is an 

inverse matrix of the estimated invertible matrix 
ˆ ˆ ˆ

s n
 =
 

A A A . 

Kurtosis can well represent the impulse feature of the vibration signal in bearing fault diagnosis. 

The kurtosis of each non-stationary signal is calculated, and the ˆ in
S  with the largest kurtosis as 

the filtered signal is selected. 
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( ) ( )
4

1

ˆarg max

1
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N
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i

g

g x x x
N


=

= −

S

 (34) 

4.2.4 Mechanism of Rad-SSF  

Tab.3 shows the Rad-SSF algorithm steps, which mainly include three parts: trajectory matrix 

adaptive determinate reconstruction; stationary subspace analysis extracts the non-stationary 

signal to filter out background noise; and the best filtered signal containing bearing fault 

characteristic is selected according to the maximum kurtosis. 

Tab. 3 Rad-SSF algorithm  

Algorithm 1 Reconstruction adaptive determinate stationary subspace filtering method (Rad-

SSF) 

Input: The acquired one dimensional vibration signal  1 2, , Nx x x=X  and ˆ( )sL B , ˆ( )nL B  

Output: The Rad-SSF filtered signal  1 2, , Nx x x=X  

For i  from 1 to  d do  

Reconstruct trajectory matrix 
iX  and calculate 2 2

1

NN

d d i d i dR R  + + += + −X X , according to the 

Criteria to decide the embedding dimension d . 

End for 

Reconstruct the matrix 
dX  and calculate the mean ˆ

i  and standard deviation ˆ
i  

While 
maxi i  and ˆ ˆ( ) ( )s sf LB B  do  

―/ 
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For a random initial ˆ s
B ，Calculate each time period stationary source estimation signal mean 

value
,

ˆˆ ˆs

s i i =B , covariance matrix 
,

ˆˆ ˆs

s i i = B , distribution 
, ,

ˆˆ( , )s i s iNorm    and the sum 

of Kullback Leibler (KL) divergence to construct the objective function 

( ), ,
ˆ ˆˆ( ) ( , ) 0,

L
s

KL s i s i

i

f D Norm Norm I = 
 B

 

End while  

According to the minimum ˆ( )sf B , the optimal stationary space projection ˆ s
B  is obtained, and 

then the stationary source estimation signal ˆ s
S  is obtained.  

While 
maxi i  and ˆ ˆ( ) ( )n nf LB B  do 

For a random initial ˆ n
B ，Calculate each time period stationary source estimation signal mean 

value
,

ˆˆ ˆn

s i i =B , covariance matrix 
,

ˆˆ ˆn

s i i = B , distribution 
, ,

ˆˆ( , )s i s iNorm    and the sum of Kullback 

Leibler (KL) divergence to construct the objective function  

( ), ,
ˆ ˆˆ( ) ( , ) 0,

L
n

KL n i n i

i

f D Norm Norm I = 
 B

 

According to the minimum ˆ( )nf B , the optimal stationary space projection ˆ n
B  is obtained, and 

then the stationary source estimation signal ˆ n
S  is obtained. 

End while  

Accord to the Eq. (10) to choose the best ˆ in
S  as the filtered signal for fault diagnosis  

Fig. 27 shows the illustrations of the calculation steps for the Rad-SSF. The fault impulse in 

the filtered signal is more obvious compared with the raw vibration signal, demonstrating that this 

Rad-SSF can effectively filter out background noise. 
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Fig. 27 Illustrations of the calculation steps for the Rad-SSF 

4.3 1.5-dimensional third-order energy spectrum 

The improved demodulation method of 1.5D third-order energy spectrum is applied to enhance 

the impact signal feature caused by bearing fault for its advantages of strengthening the 

fundamental frequency, and eliminating the non-coupling harmonic components. 

4.3.1 Third-order TEO  

The TEO is defined as follows for continuous time signals [124, 125]: 

   2( ) ( ) ( ) ( )x t x t x t x t = −  (35) 
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where ( )x t  and ( )x t  are the first and second derivatives, respectively. 

The expression for discrete sampling signals is as follows: 

   2( ) ( ) ( 1) ( 1)x n x n x n x n = − − +  (36) 

The traditional TEO only performs the second derivative on the fault vibration signal with 

strong background noise, causing the result to be seriously disturbed by noise. In the third 

derivative [126], the number of symmetric sample data used is 5, which can better distinguish the 

instantaneous changes in terms of time resolution. Therefore, the TEO is extended to the third-

order TEO to ensure the mathematical symmetry, and the discrete form is as follows: 

 
     

 

3 2

2

( ) ( ) ( 1) ( 1)

( 1) ( 1) ( ) ( 2) ( 2)

x n x n x n x n

x n x n x n x n x n

 = + + − −

+ − − − +

 (37) 

Fig. 28 shows a schematic of the third-order TEO. In comparison with the original signal and 

TEO, the impact is greatly improved because of the third derivative. 
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Fig. 28 Schematic diagram of the third-order TEO 

4.3.2 1.5-dimensional spectrum  

The third-order cumulant diagonal tangent has the advantages of suppressing the Gaussian 

white noise, strengthening the fundamental frequency, and eliminating the non-coupling harmonic 

components [127]. The third-order cumulant diagonal tangent for  ( )x n   is calculated as 

follows: 

      ( ) ( ) ( ) ( )C E x n x n x n      = + +   (38) 

where   is the delay parameter, and E is the expectation. 

Fourier transform is performed on ( )C  , and the 1.5-dimensional third-order energy spectrum 

is as follows: 

 ( ) ( ) j nC C e d  


−

−
=   (39) 

4.4 Method flow chart 

A rotating machinery signal processing method based on Rad-SSF and 1.5-dimensional third-

order energy spectrum is illustrated in this work. This method can effectively filter the background 

noise of industrial vibration signal and enhance fault impulse characteristics. The implementation 

steps are as follows: 

Step 1: Place the acceleration sensor to acquire the vibration signal. 

Step 2: Adaptively reconstruct the trajectory matrix based on the Rad-SSF method to 

decompose it into non-stationary, and the best filtered signal is selected on the basis of kurtosis; 

Step 3: Calculate the 1.5-dimensional third-order energy spectrum of the filtered signal. 
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Step 4 Extract the dominant frequency from the 1.5-dimensional third-order energy spectrum, 

and compare it with the theoretical fault characteristic frequency to realize fault diagnosis. 

The specific framework is shown in Fig. 29, and it is takes bearing fault as an example. 
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Fig. 29 Bearing fault diagnosis framework based on Rad-SSF and 1.5D third-order energy spectrum 

4.5 Experimental verification 

In order to verify the effect of Rad-SSF and 1.5-dimensional third-order energy spectrum 

method proposed in this chapter on non-stationary extraction of vibration signal and enhancement 

of fault characteristic, this chapter uses medium and high-speed bearing faults common in rotating 

machinery fault types for verification. The experimental verification is divided into two parts, 

simulation verification and engineering experimental verification. 

4.5.1 Simulation analysis  

This work establishes a bearing outer race fault simulation model according to Eq. (40) to verify 

the practicability of the proposed method in terms of signal filtering and fault feature enhancement. 

4.5.1.1 Simulation model establishment 

The model includes two parts: the specific fault impulse and the noise. The random noise is in 

the range of (0, 1). Tab. 4 shows the main parameters of the model, where ( )n t  is the simulated 

background noise, which is a random number that follows the normal distribution, 
0

N  is RPM. 

 
0

0 01 0 0 02 0

2

0 0

2 ( / ) 2 ( / )
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f t i f f t i f
i

t i f
f t n t

f e f e
   

 

− − − −
=

 − − 
 = +
 + 

  (40) 

Tab. 4 Specific parameters of simulation model 

Parameter Value 

Period NO=41 

carrier centers frequencies 

f01=2000 Hz 

f02=5200 Hz 

damping ratio ζ0=0.02 

characteristic frequency FO=50 Hz 
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Fig. 30(a) shows the fault impulse signal without noise, and the signal is regular and periodic. 

Fig. 30(b) shows the spectrum without noise signal, and the dominant frequency is 50 Hz, which 

is consistent with the setting in the model. Fig. 30(c) shows the signal with random noise, and the 

fault impulse is submerged. In the spectrum shown in Fig. 30(d), no dominant frequency is found 

at 50 Hz; thus, the fault characteristic frequency could not be extracted. 

(a) (b)

(c) (d)

 

Fig. 30 Simulated signal and its spectrum under noisy and noise-free 

4.5.1.2 Rad-SSF verification 

The trajectory matrix of the simulation signal is adaptively reconstructed on the basis of the 

Rad-SSF method. Fig. 31(a) shows the E1(d) value with the increase in the embedding dimension. 

If the embedding dimension is small, then the false adjacent points will be large in the trajectory 

matrix; if it is large, then the calculation will be complex. When the embedding dimension is 

greater than six, E1(d) slowly increases. Fig. 31(b) shows the 6D signal of the trajectory matrix.  
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(b) 

Fig. 31 E1(d) value changes and reconstructed trajectory matrix signal: (a) The E1(d) value at different 

embedding dimension; (b) 6D signal of the trajectory matrix 

Fig. 32 shows that the trajectory matrix signal is divided into stationary and non-stationary, and 

a part of the signal is analyzed for probability distribution. In Figs. 32(a), 32(b), and 32(c) 

(stationary signal), the signal probability distributions are basically in line with the normal 

] :.::I 。 名至月a ゚""' "' I 
I spectrum without noise 

001 

-5 

゜
0.1 0.2 50 100 150 200 

10 0.03 
Frequency (Hz) 

l且。 名>己002
001 

-10 

゜
0.1 0.2 0,3 0.4 0.5 0,6 0. 7 0,8 50 100 150 200 

Time(s) Frequency (Hz) 

5

0

 ゚

uo~µodo.1d 

2 3 4 5 I 6 I 7 L 8 9 
_J  

Embedding dimension 

0

5

0

5

0

 

1

-

］
 

:}Ptl+!Jdwy 

゜



41 

distribution. Meanwhile, Figs. 32(d), 32(e), and 32(f) (non-stationary signal) show a different 

distribution. The bearing fault impulse has a non-stationary characteristic.  

(a)

(b)

(c)

(d)

(e)

(f)

Stationary  signal Signal probability distribution Non-stationary  signal Signal probability distribution

 

Fig. 32 Stationary subspace analysis and its signal probability distribution 

Tab. 5 illustrates the kurtosis of the signals in Fig. 32(a) - (f). The maximum kurtosis (5.582) 

corresponds to the second non-stationary signal. Therefore, Fig. 32(e) is the best filtered signal 

that contains the optimal fault characteristic. 

Tab. 5 Kurtosis of stationary and non-stationary signal 

stationary signal kurtosis non-stationary signal kurtosis 

1 3.351 1 4.607 

2 3.249 2 5.582 

3 3.186 3 3.660 

4.5.1.3 1.5-dimensional third-order energy spectrum verification 

The 1.5-dimensional third-order energy spectrum of the filtered signal to enhance the fault 

impulse characteristics is shown in Fig. 33. In the energy spectrum, the dominant frequency is 

consistent with the fault characteristic frequency set in the simulation model. In comparison with 

Fig. 30(d), the dominant frequency and its harmonics are prominent, and the noise is significantly 

filtered. 
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Fig. 33 1.5D third-order energy spectrum of the filtered signal 
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Tab. 6 Specific parameters of the bearings 

 Parameter Value 

Bearing parameters  

number of rollers (Zn) 10 (or 11) 

roller diameter (d) 6.5 mm 

pitch diameter (D) 32.25 mm 

contact angle (α) 0 

Fault degree 

(depth*width) 

Small 0.05 mm*0.3 mm 

Middle 0.15 mm*0.5 mm 

Big 0.25 mm*0.7 mm 

The bearing fault characteristic frequency refers to the specific inherent component in the 

spectrum, which corresponds to the bearing fault types. It is only related to bearing parameters 

and rotating frequency. Equations. 20 - 22 are used to calculate the bearing fault characteristic 

frequency, and Tab. 7 shows the specific characteristic frequency in this experiment. 

Tab. 7 Bearing fault characteristic frequency  

RPM 
Fault characteristic frequency 

FO FI FE 

500 33.2 Hz 55.7 Hz 39.6 Hz 

1000 66.5 Hz 110.1 Hz 79.3 Hz 

1500 99.8 Hz 165.2 Hz 118.9 Hz 

4.5.2.2 Outer race fault experiment 

In this experiment, the vibration signals are acquired at 500, 1000, and 1500 RPM, the sampling 

frequency is 100 kHz, and the signal length is 65,536. Fig. 36 shows the vibration signal and its 

envelope spectrum. The fault impulse is submerged by strong background noise. In the envelope 

spectrum, the fault characteristic frequency (FO) cannot be extracted.  

RPM：1500 RPM：1000 RPM：500

FO

2*FO

3*FO FO
2*FO 3*FO

FO
2*FO 3*FO

RPM：1500 RPM：1000 RPM：500

 

Fig. 36 Vibration signal and its envelope spectrum 

Fig. 37 shows that the E1(d) value as the embedding dimension expands during trajectory 

matrix reconstruction when using the Rad-SSF method to filter the signal. In Fig. 37, the E1(d) 
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distribution in all three states is similar. When the embedding dimension is 5, the E1(d) increase 

gradually slows down, and the value at 8 is close to the value at 9. Therefore, embedding 

dimension 8 is the best for the trajectory matrix. 

Optimal 

dimension

Dimension(9)RPM Dimension(8)
500

1000
1500

0.9726
0.9706
0.9731

0.9746
0.9748

0.9750

 

Fig. 37 E1(d) distribution as embedding dimension increase 

The natural vibration generated by machinery operation and the background noise have 

stability properties for industrial bearing fault signal, and the fault impulse is non-stationary. Fig. 

38 shows the SSA result of the vibration signal, and the regular impulse caused by the outer race 

fault can be seen in the non-stationary signals. The scatter plot with signals is drawn (x-axis: non-

stationary signal; y-axis: stationary signal), with the distribution of the scatter points on the x-axis 

being more dispersed, and that on the y-axis being more concentrated. Those rules are the same 

as the probability distribution; the stationary signals follow the Gaussian normal distribution, and 

the non-stationary signals are different. This study has proven that the method in this work can 

effectively extract the non-stationary fault impulse from the background noise. 
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Fig. 38 SSA result of vibration signal, scatter plot figure and signal probability distribution 

Fig. 39 shows the kurtosis of stationary and non-stationary signals at 500, 1000, and 1500 RPM; 

numbers 1- 4 correspond to the stationary signals, and 5 - 8 denote the non-stationary signals. The 

6th kurtosis is much higher in the 500 RPM state than those in the other components. Meanwhile, 

the 5th kurtosis is maximum in the 1000 and 1500 RPM. Hence, the best filtered signal is selected 

as the fault characteristic signal according to the maximum kurtosis. 
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Maximum 

kurtosis

 

Fig. 39 Kurtosis of stationary signals and non-stationary signals 

A 1.5-dimensional third-order energy spectrum is used to enhance the fault impulse 

characteristics of the Rad-SSF filtered signal, and the result is shown in Fig. 40. The spectrum is 

normalized to between [−1,1]. In the comparison of the fault characteristic frequencies in Table 

7, the difference between the dominant frequency extracted from the energy spectrum and the 

theoretical value is small (within the allowable range of error) at all three speeds. The above 

results proved that the proposed method can effectively filter out background noise, enhance the 

fault impulse characteristics, and realize bearing outer race fault diagnosis. 
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RPM：1500FO
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(c) 

Fig. 40 1.5-dimensional third-order energy spectrum: (a) Outer race fault at 500 RPM; (b) Outer race fault 

at 1000 RPM; (a) Outer race fault at 1500 RPM 

Experiments were carried out with bearing small, middle, and big faults at 1500 RPM to verify 

the diagnostic effect of this method for weak faults. Fig. 41(a) shows the corresponding vibration 

signal and its FFT spectrum. It described that the weaker the fault and the smaller the impact in 

vibration signal, the more difficult to extract the fault characteristic frequency in spectrum. The 

Rad-SSF 1.5D third-order energy spectrum are shown in Fig. 41(b), and the dominant frequencies 

extracted from each spectrum are 100.7, 102.2, and 100.7 Hz, and they are consistent with the 

theoretical fault characteristic frequency (99.8 Hz). It proves that the spectrum distribution is only 

related to the bearing fault type, and the fault characteristic frequency under different fault degree 

is consistent. Meanwhile, the dominant frequency and its harmonic are prominent, and the noise 

is small, verifying that the method can effectively realize the bearing fault diagnosis under 

different fault degrees. 
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(b) 

Fig. 41 Outer race fault diagnosis results under different fault degree: (a) Original signal and its spectrum; 

(b) Rad-SSF 1.5D third-order energy spectrum 

4.5.2.3 Inner race fault experiment 

The experiments were carried at three RPMs to verify the effectiveness of this method in the 

diagnosis of inner race faults. Tab. 8 shows the optimal embedding dimension and maximum 

kurtosis in the Rad-SSF method.  

Tab. 8 Experiments parameters and Rad-SSF results 

Parameters Value 

Sampling frequency 100 kHz 

Data length 65536 

Embedding dimension 6 

Number of non-stationary states 3 

Kurtosis (Maximum) 

RPM: 500 22.1 

RPM: 1000 95.9 

RPM: 1500 225.8 

Fig. 42(a) is the vibration signal and its FFT spectrum corresponding to the inner race fault. It 

shows that the impact caused by the bearing fault is submerged by background noise, and the fault 

characteristic frequency cannot be accurately extracted from the spectrum. Fig. 42(b) shows the 

corresponding Rad-SSF 1.5-dimensional third-order energy spectra. In comparison with Tab. 7, 

the deviation of the dominant frequency extracted from each energy spectrum and the theoretical 

is within the allowable range. Thus, the method given in this work can accurately diagnose the 

bearing inner race and roller faults. 
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(b) 

Fig. 42 Diagnosis result of inner race fault: (a) Original signal and its spectrum; (b) Rad-SSF 1.5D third-

order energy spectrum 

4.5.2.4 Roller fault experiment 

The experiments were carried at three RPMs to verify the effectiveness of this method in the 

diagnosis of roller faults. Tab. 9 shows the optimal embedding dimension and maximum kurtosis 

in the Rad-SSF method.  

Tab. 9 Experiments parameters and Rad-SSF results 

Parameter Value 

Sampling frequency 100 kHz 

Data length 65536 

Embedding dimension 6 

Number of non-stationary states 3 

Kurtosis (Maximum) 

RPM:  500 7.43 

RPM: 1000 12.48 

RPM: 1500 23.26 
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Fig. 43(a) is the vibration signal and its FFT spectrum corresponding to the roller fault. It shows 

that the impact caused by the bearing fault is submerged by background noise, and the fault 

characteristic frequency cannot be accurately extracted from the spectrum. Fig. 43(b) shows the 

corresponding Rad-SSF 1.5-dimensional third-order energy spectra. In comparison with Tab. 7, 

the deviation of the dominant frequency extracted from each energy spectrum and the theoretical 

is within the allowable range. Thus, the method given in this work can accurately diagnose the 

bearing inner race and roller faults. 
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Fig. 43 Diagnosis result of roller fault: (a) Original signal and its spectrum; (b) Rad-SSF 1.5D third-order 

energy spectrum 

4.5.3 Comparing experiments  

In this section, the outer race fault signal is acquired at 1500 RPM. The comparative 

experiments were carried out from three aspects, namely, embedding dimension, filtering 

algorithm, and envelope spectrum. 

4.5.3.1 Embedding dimension comparing 

Experiments carried out at embedding dimensions 4 - 8 to verify the influence of the embedding 

dimension on the background noise filtering. Fig. 44(a) shows the kurtosis of stationary and non-

stationary signals at different embedding dimensions, while Fig. 44(b) depicts the 1.5-
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dimensional third-order energy spectrum of each best filtered signal. In Fig. 44(a), the maximum 

kurtosis gradually increases with the increase in the embedding dimension. In Fig. 44(b), the noise 

in the spectral energy is the smallest when the embedding dimension is 8. Therefore, the adaptive 

determinate trajectory matrix reconstruction in Rad-SSF is effective. 

Stationary Non-stationary

 Max

(45.80)

 Max
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 Max

(57.51)

 Max

(61.38)

 Max

(57.68)

 

(a) 

 

(b) 

Fig. 44 Compare result of embedding dimension: (a) Kurtosis of stationary and non-stationary signals at 

different embedding dimensions; (b) Best filtered 1.5D third-order energy spectrum at different 

embedding dimensions 

4.5.3.2 Filtering method comparing 

High-pass filtering, WT, EMD, VMD, and LMD are used in this comparative experiment to 

verify the superiority of the Rad-SSF. Fig. 45 shows the envelope spectrum of the six algorithms. 

Although these six methods extracted the fault characteristic frequency, the Rad-SSF method has 

the smallest noise, and the dominant frequency and its harmonics have the strongest impact, 

affirming that the method has the best filtering effect on background noise. 
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Fig. 45 Compare results of different filtering 

  The spectrum impairment (SII) and spectral variation (SVI) indices [56] are quoted to evaluate 

the effects of the RAD-SSF, and the computational time are counted, the results are shown in Tab. 

10. The SII and SVI larger, the fault characteristic frequency and its harmonic components on the 

envelope spectrum more obvious, and the better the filtering effect. Although the calculation time 

of RAD-SSF is slightly higher, it is within the acceptable range for engineering applications. 

Tab. 10 Evaluate results of different methods 

Method SII SVI Time (s) 

Rad-SSF 40.68 2.93 78.52 

HPF 11.29 1.48 1.58 

WT 5.88 1.21 4.36 

EMD 15.13 1.58 17.78 

LMD 23.28 1.80 45.56 

VMD 36.98 2.23 167.75 

4.5.3.3 Spectrum method comparing 

Comparative methods, such as the envelope spectrum, TEO, and third-order TEO, are used to 

verify the advantages of a 1.5-dimensional third-order energy spectrum in enhancing fault impulse 

characteristics. The dominant frequency and its harmonics have the largest amplitude in the 1.5-

dimensional third-order energy spectrum, proving that the method is more effective in feature 

enhancement, as illustrated in Fig. 46. 
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4.5.3.4 Low-speed bearing fault diagnosis comparing 

Vibration signals of low-speed rotating machine are acquired to verify the bearing fault 

diagnosis effect of the method in this study, in terms of background noise filtering and fault feature 

enhancement. As shown in Fig. 15 (3.5.2 Engineering Experiment), the bearing has an outer 

race fault, and the acceleration sensor is placed directly above it. 

The original signal as shown in Fig. 47(a) was acquired at 50 RPM with a sampling frequency 

of 96 kHz, and the fault characteristic frequency in the FFT spectrum is submerged by background 

noise. In Fig. 47(b), the comparison results of FIR, WT, and other filtering, the Rad-SSF and 1.5-

dimensional third-order energy spectrum has the best performance because of the highest fault 

characteristic frequency value, smallest background noise, and most evident harmonic component. 
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(b) 

Fig. 47 Low-speed outer race fault diagnosis: (a) Original signal and its spectrum; (b) Compare results of 

different filtering 

4.6 Conclusion 

A signal processing method based on Rad-SSF and 1.5-dimensional third-order energy 

spectrum is proposed in this chapter. The method employs the Rad-SSF to extract the best bearing 

fault signal and 1.5-dimensional third-order energy spectrum to enhance the fault characteristics. 

The dominant frequency is compared with the theoretical fault characteristic frequency to detect 

fault diagnosis. The feasibility and effectiveness of the proposed method are demonstrated by 

different experiments. The results show that the proposed method can effectively filter noise and 

enhance the fault characteristic to bearing fault diagnosis.  
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Chapter 5 Signal processing method based on adaptive multi-

band filtering  

5.1 Introduction 

The key to precisely diagnosing rotating machinery structural faults is to accurately extract the 

rotating frequency and its harmonics in the vibration signal. However, given that engineering 

vibration signals contain a large amount of background noise, improving the SNR of the raw signal 

is a prerequisite for accurate diagnosis.  

The multi-band filtering [128] is specifically designed for filtering the vibration signal of 

rotating machinery structure faults and only retains the rotating frequency and its harmonics. 

However, the traditional multi-band filtering takes the theoretical rotating frequency as the cutoff 

frequency and is usually unable to extract the actual rotating frequency and its harmonics in 

engineering applications because of deviations. 

To solve the problem where the actual rotating frequency and its harmonics cannot be 

accurately extracted in engineering applications, an improved adaptive multi-band filtering 

method is designed. This method takes the theoretical rotating frequency as the search center, 

extracts the maximum within the positive and negative deviation as the actual rotating frequency, 

and sets a threshold according to the actual value to realize multi-band filtering. This method can 

effectively remove background noise and accurately extract the actual rotating frequency and its 

harmonics.  

In this chapter, rotating machinery structural faults, such as pedestal looseness, angular 

misalignment, and static imbalance, were carried out to verify the effectiveness and superiority of 

this method. 

5.2 Principle of adaptive multi-band filtering 

The traditional multi-band filtering sets the cutoff frequency based on the theoretical rotating 

frequency, which usually cannot work well in engineering applications. Therefore, an adaptive 

multi-band filtering is designed to extract the actual rotating frequency and its harmonic based on 

a reasonable setting deviation coefficient. 
For the vibration signal 

1 2 3( , , ) ~ ( )nv v v v f vV  , the following Fourier transform is initially 

applied: 

 
2-1

0

( ) ( ) , 0,1,2, 1
n j ki

n

i

F f f v e k n


−

=

= = −  (41) 

Afterward, the actual rotating frequency '

rF  is computed as  

 ' max( )r rF F =   (42) 

where   is the search threshold that is set according to the engineering signal, and 
rF  is the 

theoretical rotating frequency calculated by the RPM as shown in Eq. (43): 

 
60

r

RPM
F =  (43) 

The deviation
rf  between '

rF and 
rF  can then be calculated as 
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 '

r r rf F F = −  (44) 

Afterward, the multi-band parameters are set as follows: 

 ' ( ) ( ( ) )r rF f F k F f =    (45) 

where    is the deflection coefficient that is designed to effectively extract the harmonics 

components. This coefficient usually ranges from 0 Hz to 3 Hz. 

The inverse Fourier transform (IFFT) is eventually used for the extracted signal, and the adaptive 

multi-band filtering is completed. 

 
21

'

0

1
( ) ( ) , 0,1,2, 1

n j ki
n

i

f v F f e k n
n

−

=

= = −  (46) 

Fig. 48 shows the framework of the traditional multi-band filtering and adaptive multi-band 

filtering. In the raw spectrum, there have a deviation
rf  between the actual rotating frequency 

'

rF  and the theoretical rotating frequency 
rF   . The traditional multi-band filtering cannot 

effectively extract harmonic components (after '2 rF ) when the deviation reaches a certain value. 

However, the adaptive multi-band filtering can accurately extract the rotating frequency and its 

harmonics. 
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Fig. 48 The framework of the adaptive multi-band filtering and traditional multi-band filtering 

5.3 Structural faults background 

Couplings, connecting shafts, bolts, and support bases are critical mechanical parts of a rotating 

machinery. When faults appear in these mechanical structures, especially in high-precision 

equipment, the machinery will be damaged in serious cases. In rotating machinery structure faults, 

an obvious impulse is detected at the rotating frequency and its harmonic [129]. Fig. 49(a) shows 

a simplified model of a rotating machinery, whose common structural faults include coupling 

looseness, angular misalignment (Fig. 49(b)), dynamic load imbalance (Fig. 49(c)), static load 

imbalance (Fig. 49(d)), and pedestal looseness. 

▲

-

▲

- ぃ
9999i

:＇□

99

い
:＇□

99:99
1
 

9
□

999:

＇己

9

口9

ロ
k------…---~ 
i i 

巳 ~
 



55 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 49 Simplified model of rotating machinery and its typical structural faults: (a) simplified model; (b) 

angular misalignment fault; (c) load dynamic imbalance fault; (d) load static imbalance fault 

In the vibration spectrum, those characteristics that represent rotating machinery structure faults 

are obviously detected in the low frequency (less than 1 kHz). Less than 20 times of the rotating 

frequency are usually extracted in structural fault diagnosis. Fig. 50 shows the spectrum of angular 

misalignment and pedestal looseness faults. In the structural fault spectrum, shocks occur at the 

rotating frequency and its harmonics, and the captured impulse obviously differs from that captured 

for other fault types. 

 

(a) 

 

(b) 

Fig. 50 Vibration spectrum of rotating machinery structure faults: (a) angle misalignment fault; (b) 

pedestal looseness fault 

5.4 Method flow chart 

This chapter proposes an adaptive multi-band filtering and verified by rotating machinery 

structural faults intelligent diagnosis. Meanwhile, the stacked autoencoder (SAE) is used as the 

classifier to identify fault types. 
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5.4.1 SAE classification model  

SAE is an unsupervised neural network based on deep learning that usually comprises multiple 

autoencoders stacked in series. The feedback of the output data is realized via back-propagation 

algorithm [130, 131]. SAE can automatically extract the in-depth characteristics of the input 

signal in order for the output to achieve a better signal reproduction. Fig. 51 shows the typical 

autoencoder (AE) structure, which contains an encoder represented by ( )f=h x   and a 

reconstructed decoder represented by ( )g=y h . The input signal ( )1 2 3= , , nx x x xx  is mapped to 

the output ( )1 2 3, , , ny y y y=y  through the hidden layer ( )1 2 3, , mh h h h=h , where m n . 

Input Output 

Hidden layer

( )f=h
x

( )g=y
h

Error

h

x y
 

Fig. 51 Principle of autoencoder 

The AE specific principle is defined as follows. 

First, the signal ( )1 2 3= , , nx x x xx   is inputted into the AE model, and the hidden layer 

( )1 2 3, , mh h h h=h  can be expressed as 

 ( )h hf= +h ω x b  (47) 

Second, the hidden layer h   is mapped to the original high-dimensional space, and the 

reconstructed output data ( )1 2 3, , , ny y y y=y  are obtained as 

 ( )y yg= +y ω h b  (48) 

where 
hω  and yω  are the weight matrices, and 

hb  and yb  are the bias terms. 
hω  and 

hb  

work for the input and hidden layers, respectively, whereas yω  and yb  work for the hidden and 

output layers, respectively. Both ( )f x  and ( )g h  are activation functions called Sigmoid that 

can be computed as 

 
1

( )=
1+

f
e−x

x  (49) 

The parameters are updated constantly until the reconstruction error ( , )e x y   reaches the 

minimum value. 

The SAE classification model is stacked by multiple autoencoders in series [132], which means 

that the hidden layer of the previous autoencoder is used as the input layer of the next autoencoder 

as shown in Fig. 52. The adaptive multi-band filtered spectrum is used as the input data of the 

first encoder, and ( )h N  represents the Nth hidden layer information. 
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Fig. 52 The principle of SAE classification model 

5.4.2 Diagnostic method architecture  

The detailed diagnosis process is shown in Fig. 53, and the specific diagnosis steps are 

described as follows: 

Step 1: Acquire the vibration signal by using the accelerometer under the normal state of the 

rotating machinery. 

Step 2: Acquire the vibration signals under different structural faults, and the sampling 

frequency and sampling time are the same as those under the normal state. 

Step 3: Filter the vibration signals using the adaptive multi-band filtering and extract the 

rotating frequency and its harmonic components (less than 20 times of the rotating frequency).  

Step 4: Divide the samples into training and testing samples. 

Step 5: Build and train a SAE classification model based on training samples. 

Step 6: Input the test samples to diagnose the rotating machinery structural fault types. 

Vibration signal acquisition

Normal 
state

Structure 
Faults

Using adaptive multi-band 
filtering for signal processing 

Dividing the signal into train 
samples and test samples

Train 
samples

Test 
samples

Building SAE classification 
model 

Unsupervised training SAE 
classification model

Whether achieved the 
expected target

Diagnosis the rotating 
machinery structural faults 

Begin

End

No

Yes

spectrum (less than 20 times 
of the rotating frequency )

 

Fig. 53 The automatic diagnosis process of rotating machinery structural faults 
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Tab. 11 shows the detailed algorithm steps of the rotating machinery structural faults automatic 

diagnosis. 

Tab. 11  Rotating machinery automatic diagnosis algorithm  

Adaptive multi-band filtering and SAE automatic diagnosis algorithm: 

Input: Original signal of different fault  1 2, , , Nv v v=V . 

1. Adaptive multi-band filtering: 

For: i=1: N 

(1) ( ) ( )  i it FFT fV V  

(2) ' max( )r rF F =  , 60rF RPM=  

(3) '

r r rf F F = −  

(4) '( ) ( ( ) )i i r rf k F f =   V V  

End 

2. SAE diagnosis model 

(1) ( )' '

1 2 3( ) ( ) , ,i i nf f x x x x= =X V , 

  [1,0, ,0],[0,1, ,0], ,[0,0, ,1]Y   

(2) ( ) ( ) ( )( )' ' ',  train testf f f→X X X , ( ) ( )( ),  train testY Y f Y f→  

(3) For i =1: epochs 

( )( )' ,  Y    train train diagf SAE Training SAEX  

End 

(4) ( )( )' ,  Y   Ytest test diag diagf SAEX  

Output: Accuracy rate of test samples. 

5.5 Experimental verification 

In order to verify the effect of the adaptive multi-band filtering method proposed in this chapter 

in extracting the frequency conversion and adaptive filtering of vibration signals, this chapter uses 

the common structural abnormal faults of rotating machinery for verification. The experimental 

verification is divided into two parts: engineering experimental verification and comparative 

experimental verification. 

5.5.1 Engineering experiment  

5.5.1.1 Experiment platform 

To verify the effectiveness of the proposed method, the experimental platform shown in Fig. 

54 is used for acquiring vibration signals. This experimental platform mainly includes shafts, 

support elements, couplings, counterweight plates, attachment bolts, bearings, and bearing bases. 

 

Fig. 54 Rotating machinery experimental platform 

／
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Fig. 55 shows the rotating machinery structural faults, including angle misalignment (AM), 

coupling looseness (CL), dynamic imbalance (DI), pedestal looseness (PL), and static imbalance 

(SI), for the experiment. The laser alignment instrument is used in the angular misalignment 

experiment to set the coupling misalignment angle. Meanwhile, weights are added in one of the 

counterweight plates in the dynamic imbalance experiment and in both two counterweight plates 

in the static imbalanced experiment. For the coupling and pedestal looseness experiments, the 

bolts are all loose. 

α° 

(a) (b) (c)

(d) (e)  

Fig. 55 Rotating machinery structural faults experiments: (a) angular misalignment; (b) coupling 

looseness; (c) dynamic imbalance; (d) pedestal looseness; (e) static imbalance 

5.5.1.2 Performance evaluations 

To evaluate the effect of the proposed automatic diagnosis method, a rotating machinery 

structure faults experiment is carried out under 1800 RPM. The accelerometer is used to acquire 

the vibration signals, and Tab. 12 presents specific information. 

Tab. 12 Experimental conditions and parameters 

Parameter Values 

RPM 1800 

Rotation frequency 30 Hz 

Sampling frequency 5000 Hz 

Sampling points 25600 

Fig. 56 shows the raw vibration signals (in red) and their spectrums (in blue) under normal 

states and the five fault states. In the vibration signal, given that the background noise floods the 

impact of the structural fault, distinguishing the rotating machinery status is impossible. In the 

spectra, although the characteristics at the rotating frequency and its harmonics differ across six 

states, the background noise still affects the fault diagnosis. 
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Fig. 56 The vibration signal (in red) and spectrum (in blue) 

The diagnosis accuracy rates of the raw vibration signal and its original spectrum are compared 

based on the SAE classification model. Tab. 13 shows 3 hidden layers (Layer1 to Layer3) in the 

SAE model. The other specific parameters are described as follows. 

Tab. 13 SAE classification model parameters 

Types 

Parameters 

Values Activation function Learning rate 

Hidden layer 1 100 Sigmoid 0.9 

Hidden layer 2 50 Sigmoid 0.8 

Hidden layer 3 20 Sigmoid 0.8 

The diagnosis results are presented in Fig. 57. The diagnosis accuracy rate is recorded 10 times 

to avoid contingency. Fig. 57 shows that the diagnosis accuracy rate of the raw signal is low and 

that the average accuracy rate is only 15.83%. Although the accuracy rate of the spectrum 

increased significantly with an average value of 91.83%, this rate cannot meet the ideal 

requirements in engineering applications. 
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Fig. 57 SAE diagnosis results of raw vibration signal and its spectrum 

Therefore, to improve fault diagnosis accuracy, the signal should be filtered before inputting 

into the SAE classification model. Fig. 58 shows the spectrum filtered by the adaptive multi-band 

filtering. Compared with the original spectrum shown in Fig. 56, the background noise was 

removed effectively, and the rotating frequency and its harmonic components were accurately 

extracted. 

 

Fig. 58 The filtered spectrum by adaptive multi-band filtering 

As shown in Tab. 14, the spectrums under the normal and structural faults states were divided 

into train and test samples. Fig. 59 shows that the SAE diagnosis accuracy rate is 100%, thereby 

confirming that the proposed method can accurately diagnose faults. 

Tab. 14 SAE automatic diagnosis parameters 

Types Train samples Test samples Sample label 

N 40 10 1 

AM 40 10 2 

CL 40 10 3 

DI 40 10 4 

PL 40 10 5 

SI 40 10 6 
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Fig. 59 SAE diagnosis results 

5.5.1.3 Diagnosis result under different RPMs 

To verify the accuracy of the proposed method at different RPMs, experiments were performed 

under 700, 900, and 1100 RPM. Fig. 60 shows the original spectrum and adaptive multi-band 

filtered spectrum. Compared with the original spectrum, the background noise in the filtered 

spectrum was removed, and the actual rotating frequency and its harmonics were accurately 

extracted. 
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Original Spectrum Adaptive multi-band filtered spectrum

 

(b) 

Original Spectrum Adaptive multi-band filtered spectrum

 
(c) 

Fig. 60 The original and adaptive multi-band filtered spectrum: (a) 700 RPM; (b) 900 RPM; (c) 1100 

RPM 
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Fig. 61 shows the diagnostic accuracy rate of the adaptive multi-band filtered spectrum and 

original spectrum under different RPMs. In these experiments, to avoid contingency of 

identification, the final diagnosis accuracy rates were computed as the average of 10 

measurements. For the adaptive multi-band filtered diagnosis, the accuracy rates recorded under 

700 RPM and 900 RPM were 98.49% and 99.16%, respectively, whereas those recorded under 

1100 RPM and 1800 RPM were both 100%. The variance among the measurements were 

relatively smaller than those captured in the original spectrum, thereby further confirming the 

effectiveness of the proposed automatic diagnosis method. 

 

Fig. 61 Diagnosis results at different RPMs 

5.5.2 Comparative experiment  

5.5.2.1 Comparison of different filtering methods 

To verify the effectiveness of adaptive multi-band filtering methods, the raw vibration signal 

was filtered by low-pass and multi-band filtering for comparation. Tab. 15 shows the parameter 

settings of the three filtering. 

Tab. 15 Filtering related parameter  

Filtering Parameters 

Low-pass Cut-off frequency: 1000 Hz 

Multi-band Deflection coefficient: 3 Hz 

Adaptive multi-band Deflection coefficient: 3 Hz 

Fig. 62 shows the original spectrum and the three filtered spectra. In the original spectrum, the 

actual rotating frequency was 32.26 Hz, which deviates from the theoretical rotating frequency 

(30 Hz) by 2.26 Hz. Meanwhile, in the low-pass filtered srectrum, the noise is still obvious, which 

affects the rotating frequency and its harmonic extraction; In the traditional multi-band filtered 

spectrum, the harmonic components cannot be accurately extracted after the second harmonic. 

The adaptive multi-band filtering can accurately extract the rotating frequency and its harmonic 

components. 
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32.62Hz30Hz 65.24Hz 97.86Hz
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32.62Hz30Hz 65.24Hz 97.86Hz

 

Fig. 62 Comparison of multi-band filtering and adaptive multi-band filtering 

Fig. 63 shows the 10 SAE multi-classification model diagnosis results captured for the original 

spectrum and the three filtered spectra. The average accuracy rates of the low-pass and multi-

band filtering were 86% and 89.67%, respectively, both below 90%, thereby proving that the 

adaptive multi-band filtering can effectively remove background noise, accurately extract the 

rotating frequency and its harmonics characteristic components, and greatly improve the rotating 

machinery structural fault automatic diagnosis accuracy rate. 

 

Fig. 63 Comparison of different filtering 

5.5.2.2 Comparison of different classification models 

In the classification model comparison, the BP neural network, radial basis function (RBF) 

neural network, and extreme learning machine (ELM) neural network were used to establish 

automatic diagnosis models. Fig. 64 presents the results. Among the three classification models, 

SAE obtained the highest diagnostic accuracy rate and the smallest variance for the of 10 

measurements, thereby indicating that the SAE multi-classification model has the best stability 

among all compared models. Meanwhile, among the four classification models, the accuracy rate 

of adaptive multi-band filtered spectrum was significantly improved compared with that of the 

original spectrum, and all of these models obtained accuracy rates of greater than 98.5%. 

Therefore, the proposed automatic diagnosis method is further proven to be effective. 
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Fig. 64 Comparison of the corresponding diagnosis results of different classification models 

5.6 Conclusion 

This chapter proposed an adaptive multi-band filtering specially for the problem of 

inconsistency between the engineering actual rotating frequency and the theoretical value. The 

engineering experiments and comparisons prove that comparing with traditional multi-band 

filtering, the proposed filtering method, which was improved by setting reasonable search 

thresholds and deviations, can accurately extract the actual rotating frequency and its harmonic 

in engineering experiments. At the same time, the comparison with different filtering methods 

further validated the effectiveness of the proposed adaptive multi-band filtering.
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Chapter 6 Signal processing method based on incremental 

accumulation holographic SDP 

6.1 Introduction 

Aiming at the problem that the image discrimination is not obvious when one-dimensional 

vibration signal is transformed into two-dimensional image in the process of visual fault diagnosis 

of rotating machinery, this chapter proposes a method based on incremental accumulation of 

vibration signal characteristics and holographic symmetrical dot pattern (SDP) fusion. In this 

study, the time- and frequency-domain characteristics are simultaneously extracted by the 

incremental accumulation method to avoid inconspicuous difference and small discrimination 

generated by a single signal. Subsequently, the extracted characteristics are merged into a 2D 

graph based on the SDP method to amplify the differences between the signals.  

SDP can reflect the difference between the signals because it can observe the fault 

characteristics more. In combination with the incremental accumulation method, the vibration 

signal time- and frequency-domain characteristics are extracted simultaneously. Based on the SDP 

method, the characteristics are merged into a graph to enlarge the difference between fault types.  

In order to verify the effectiveness of the methods in this chapter, the bearing fault is used for 

verification. Simulations and engineering experiments are proved that the method can effectively 

fuse the characteristics and realize the division enhancement. 

6.2 SDP principle 

The SDP is a signal conversion method that transforms 1D signal into a 2D polar coordinate 

image, where the difference between the signals is reflected by the shape distribution. The 1D 

vibration signal can be expressed as: 

 1 2 1[ , , ]i i Nx x x x x+=X  (50) 

Hence, it can be converted to a polar coordinate system by Equations (51) - (53): 

 
min

max min

( )= ix x
r i

x x

−

−  (51) 

 
min

max min

( )= + ix x
i

x x

  + −

−
 (52) 

 min

max min

( )= ix x
i

x x

  + −
−

−
 (53) 

where ( )r i  is the polar diameter,   is the rotation angle of the mirror symmetry plane, which 

controls the number of shapes in the SDP image, ( )i  is a clockwise rotation angle along the 

initial line  , ( )i  is a counterclockwise rotation angle,   is the angle magnification factor, 

which controls the distribution angle of the shape, and   is the delay parameter, which controls 

the degree of shape distribution. 

Fig. 65 shows the SDP diagram. The signal X  is converted by polar coordinates to form a 

petal-shaped pattern ( ( )r i , ( )i ). Then, according to Eq. 53, ( ( )r i , ( )i ) is formed by the mirror 

symmetry of ( ( )r i , ( )i ). Therefore, SDP image can be formed according to the rotation angle 

 . 
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According to the bearing fault vibration signal distribution changes, the following time-domain 

characteristic parameters are selected: 

(1) Kurtosis: A characteristic index for detecting the breadth of vibration signals, highly sensitive 

to changes in amplitude, and suitable for surface damage fault detection. 
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1
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(58) 

(2) Skewness: The asymmetry of positive and negative amplitudes, which is equivalent to zero, 

thus vibration signal is symmetrically distributed. The larger the skewness value, the stronger the 

asymmetry. 
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(59) 

(3) Root mean square (RMS): The degree of data dispersion. The greater the RMS value, the 

higher the degree of dispersion. 
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P x
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=   (60) 

(4) Peak-to-peak value: The fluctuation range of the vibration signal. The larger the peak-to-

peak value, the larger the signal fluctuation range, the more severe the fluctuation, and the more 

unstable signal. 

 
4 max( ) min( )i iP x x= −  (61) 

6.3.3 Frequency-domain characteristic parameters  

Using Fourier transform, the signal X is converted to the spectrum, and the ( ), 1, 2iF f i I=

is the spectral component at frequency 
if  . The following frequency-domain characteristic 

parameters are selected: 

(5) Average frequency: The magnitude of vibration energy in the spectrum. The larger the 

average frequency value, the greater the energy of the spectrum. 
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 (62) 

(6) Center frequency: The change of the main energy peak position of the power spectrum. 
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where sf  is the sampling frequency. 

(7) Ricean frequency: The distribution of dominant components in the spectrum. 
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(8) Frequency standard deviation: The degree of dispersion of the spectrum. 
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 (65) 

Fig. 67 shows the SDP images corresponding to the eight characteristic parameters. The said 

SDP images differ in shape distribution and distinctions. 

(a) Kurtosis (b) Skewness  (c) Root mean square (d) Peak-to-peak

(e) Average frequency (f) Center frequency (g) Ricean frequency (h) Frequency standard deviation  

Fig. 67 The SDP images corresponding to the 8 characteristic parameters 

6.4 Holographic SDP fusion method architecture 

To address the problem on rotating machinery faults visual diagnosis, the difference between 

the SDP images converted by vibration signal is not obvious. Thus, this chapter proposes an 

incremental cumulative holographic SDP characteristic fusion method. Fig. 68 shows the specific 

flow chart of this method and are stated below: 

1) Acceleration sensor is used to collect the vibration signals under normal and faulty states. 

2) The optimal signal segment length n is calculated according to RPM and sampling frequency. 

The incremental accumulation method is used to extract the time- and frequency-domain 

characteristics. 

3) SDP parameters, mirror symmetry rotation angle, angle amplification factor, time delay 

parameters, etc. are set. Information fusion is performed on eight characteristic parameters based 

on SDP. 

4) Taking rotating machinery bearing fault as an example, its fault diagnosis is realized upon 

the combination of SDP image similarity. 

 

ー

,,,., .. . 
<:・.. , .. . 

...' •, 
．` 

,• ．． 



71 

Start

End

Input vibration signal X[x1,x2...xN] 

Setting parameters of incremental 

accumulation method 

60 sfn
RPM



[ ]
N

d
n

=

Extract time-domain and frequency-

domain characteristic parameters

P1 P2 P7 P8

Input to SDP algorithm

Setting  SDP parameters 

Output SDP image 

 

Normal 

Outer race fault

Inner race fault

Roller fault

Similarity calculation 

( , )
( , )

[ ] [ ]

Cov X Y
r X Y

Var X Var Y
=

SDP images

Bearing fault diagnosis

 

Fig. 68 Flowchart of the incremental accumulation holographic SDP 

To reduce the complexity of fault identification, the polar coordinates are divided into 8 regions 

based on the rotation angle  , and the characteristic parameters are fused into an SDP image. Fig. 

69 shows that SDP image is the fusion result of eight characteristic parameters, thus differences 

between each parameter are obvious. 
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Fig. 69 The holographic SDP image 

6.5 Experimental verification 

In order to verify the effect of the incremental cumulative holographic SDP characteristic fusion 

method proposed in this chapter on increasing the discrimination after the vibration signal is 

transformed into two-dimensional image, this chapter uses the common bearing faults of rotating 

ニc==Jc==J 
I I I I --------------------------—• --------------------------」
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machinery for verification. The experimental verification is divided into two parts: simulation 

verification and engineering experimental verification. 

6.5.1 Simulation analysis  

To verify the effect of this method in characteristic parameters visual display, a bearing outer 

race fault simulation model was established. The simulation model is the same as Eq. (40). 

(4.5.1.1 Simulation model establishment). 

6.5.1.1 SDP images 

Fig. 70 shows the simulation signal and SDP images. Fig. 70(b) corresponds to noise-free signal 

SDP image, Fig. 70(c) corresponds to random noise SDP image, and Fig. 70(d) corresponds to 

with-noise signal SDP image. Fig. 70(a) shows that the regular impact caused by the bearing outer 

race fault is relatively strong, but the impact characteristics are submerged after the background 

noise is added. Fig. 70(b) illustrates that the points are relatively concentrated, while relatively 

scattered in Fig.70(c). Fig. 70(d) also shows that the bearing fault impact is submerged by the 

noise, and the distribution of ( )f t and ( )n t in the SDP is similar. 
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(d) 

Fig. 70 Simulation signal and its SDP images: (a) Simulation signal; (b) Noise-free signal corresponding 

SDP image; (c) Random noise corresponding SDP image; (d) with-noise signal corresponding SDP image 

6.5.1.2 Holographic SDP images 

Fig. 71 shows the results from the extracted characteristics of simulation signal, where the 

incremental accumulation extracted parameters can better represent the volatility of data changes. 

However, the difference between each characteristic parameter is not obvious. 

Time domain feature Frequency domain feature

 

Fig. 71 Characteristic parameters based on incremental cumulative extraction method 

Fig. 72 shows the holographic characteristic fusion of SDP image, thus difference between each 

parameter significantly increased. 
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Fig. 72 Holographic characteristic fusion SDP 
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6.5.1.3 Similarity recognition 

According to Eq. 66, the similarity between the noise-free and the with-noise signals is 

calculated.  

 
( , )

( , )
[ ] [ ]

Cov X Y
r X Y

Var X Var Y
=  (66) 

where Cov represents the covariance of X (noise-free signal) and Y (with-noise signal) and Var 

represents the variance.  

Tab.16 shows that the similarity between the original signals is low, and improved between the 

holographic SDP images. Because the characteristic parameter tends to be stable and are relatively 

less affected by noise, the holographic SDP fusion can amplify the difference between the signals. 

Tab. 16 Comparison of similarities 

 r(X1,Y1) r(X2,Y2) r(X3,Y3) r(X4,Y4) 

Raw signal 0.1394 0.1417 0.1423 0.1402 

Holographic SDP 0.5033 0.5080 0.5451 0.5404 

6.5.2 Engineering experiment  

This chapter carries out diagnosis research based on the bearing fault of high-speed rotating 

machinery, and verifies the accuracy of the method proposed in this chapter through actual 

engineering signal. 

6.5.2.1 Experiment platform 

To verify the effectiveness of the proposed bearing fault diagnosis method, experiments were 

carried out with the bearing fault simulation experiment platform, as shown in Fig. 31 (4.5.2.1 

Experiment Platform) and the bearing as shown in Fig. 32. 

6.5.2.2 Applications 

The vibration signal is acquired by the acceleration sensor with a sampling frequency of 100 

kHz at 1,500 RPM, as shown in Fig. 73. Fig. 73(a) - (d) correspond to the bearing normal state 

(N), outer race fault (O), inner race fault (I), and roller fault (R). Fig. 73 also illustrates that the 

impact caused by the bearing fault is submerged due to the background noise. 
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(c) 

 

(d) 

Fig. 73 Bearing vibration signal under normal and fault states: (a) Normal state; (b) Outer race fault state; 

(c) Inner race fault state; (d) Roller fault state 

Fig. 74 shows the SDP images corresponding to the vibration signal. Tab. 17 shows the results 

from the extraction of the axis length (R), saturation (D), center space (d), and the deflection (θ) 

of the SDP image, thus SDP images have relatively small difference. 
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Fig. 74 SDP images under bearing normal and fault state: (a) Normal state; (b) Outer race fault state; (c) 

Inner race fault state; (d) Roller fault state 

Tab. 17 Parameters extracted from SDP images   

Bearing 

state 

Parameters 

R (cm) D (cm) D (cm) Θ (º) 

N 7.1 1.9 1.25 8.9 

O 7.1 2.1 1.1 8.1 

I 7.1 2.0 1.25 8.5 

R 7.1 2.05 1.15 8.5 

0.1 0.2 0.3 0.4 0.5 0.6 

Time (s) 



7
6
 

A
cco

rd
in

g
 to

 E
q

. 6
6
, calcu

latin
g

 th
e sim

ilarity
 b

etw
een

 th
e v

ib
ratio

n
 sig

n
al co

rresp
o
n
d
ed

 w
ith

 

S
D

P
 im

ag
es. T

ab
. 1

8
 sh

o
w

s th
at th

e ro
ller fau

lt (R
) w

as m
isid

en
tified

, an
d
 th

e n
o
ise in

 th
e 

v
ib

ratio
n

 sig
n
al h

as an
 im

p
act o

n
 th

e b
earin

g
 d

iag
n
o
sis. 

T
ab

. 1
8

 C
o

m
p

ariso
n

 o
f sim

ilarity
 

 
N

_
2

 
O

 _
2
 

I _
2
 

R
 _

2
 

N
_

1
 

1
.0

0
0
0
 

0
.8

8
3
6
 

0
.9

7
2
8
 

0
.8

8
1
5
 

O
 _

1
 

0
.8

9
9
3
 

1
.0

0
0
0
 

0
.9

4
7
1
 

0
.9

5
4
5
 

I _
1
 

0
.9

7
4
6
 

0
.9

3
4
5
 

1
.0

0
0
0
 

0
.9

2
3
3
 

R
 _

1
 

0
.8

9
7
2
 

1
.0

0
0
0
 

0
.9

4
4
2
 

0
.9

6
6
1
 

F
ig

. 7
5
 sh

o
w

s th
e resu

lt o
f in

crem
en

tally
 an

d
 cu

m
u
lativ

ely
 ex

tractin
g
 o

f th
e v

ib
ratio

n
 sig

n
al 

tim
e- an

d
 freq

u
en

cy
-d

o
m

ain
 ch

aracteristic p
aram

eters. 
 

O
u
ter race fau

lt
In

n
er race fau

lt
R

o
ller fau

lt
N

o
rm

al

T
im

e 

d
o
m

ain
 

featu
re

F
req

u
en

cy
 

d
o
m

ain
 

featu
re

 

F
ig

. 7
5

 T
h

e in
crem

en
tal accu

m
u

latio
n

 ex
tracted

 ch
aracteristic p

aram
eters u

n
d

er b
earin

g
 n

o
rm

al an
d
 fau

lt 

states 

T
ab

. 1
9
 sh

o
w

s th
e p

aram
eters ex

tracted
 b

y
 p

art o
f v

ib
ratio

n
 sig

n
al in

 th
e fo

u
r states. U

n
d
er th

e 

sam
e p

aram
eter, th

e v
alu

es o
f fo

u
r states are d

ifferen
t, an

d
 th

e d
ifferen

ces are o
b
v
io

u
s. T

h
u
s, eig

h
t 

p
aram

eters are reaso
n

ab
le an

d
 can

 effectiv
ely

 d
istin

g
u
ish

 th
e ty

p
es o

f b
earin

g
 fau

lts. 

T
ab

. 1
9

 C
h

aracteristic p
aram

eters ex
tracted

 fro
m

 a sectio
n

 o
f v

ib
ratio

n
 sig

n
al 

B
earin

g
 state 

F
eatu

res p
aram

eters 

P
1  

P
2  

P
3  

P
4  

P
5  

P
6  

P
7  

P
8  

N
 

2
.1

3
9

 
0

.0
8

4
 

2
.5

9
5
 

1
4

.3
4
8
 

8
.0

6
7
 

0
.0

4
4
 

0
.1

1
5
 

4
6

2
3
6

.8
9
9

 

O
 

2
.3

4
0

 
-0

.0
1
0
 

4
.5

3
4
 

2
9

.4
8
1
 

1
2

.6
2
8
 

0
.0

6
1
 

0
.1

3
5
 

8
5

5
3
7

.9
9
4

 

I 
3

.5
9

6
 

0
.0

2
7
 

4
.6

1
7
 

4
5

.3
7
5
 

1
2

.5
3
7
 

0
.0

6
0
 

0
.1

3
5
 

8
4

6
6
5

.2
9
3

 

R
 

2
.7

9
3

 
0

.0
5

8
 

4
.6

0
1
 

3
7

.9
5
4
 

1
3

.3
1
4
 

0
.0

5
4
 

0
.1

1
6
 

7
7

1
3
6

.5
6
0

 

F
ig

. 7
6
 sh

o
w

s th
at th

e th
at th

e d
ifferen

ces in
 h

o
lo

g
rap

h
ic ch

aracteristic fu
sio

n
 S

D
P

 im
ag

es are 

o
b
v
io

u
s. 

―

一
[
-

kt

、P
、

9:4,ri1:B

'¥;
9
 
l,,¥,t1
 

ii
 

9[＇'
{
ぅ
冬
‘

'雀-y.
h
9

柔
」＇キ，

p
l

-

〗

＿

二
'
‘
を
こ；
名
：

r五
71:t
 
:f

,'•
,'h

1 •1:

-,
,
,.,
,,

. ,i /•i
ii 

;
,}
/,,,,'.'!
 :t
 :f

，
ち
ク
ー
↓
9
,

エ.＿p2
-

Am

->'

[

- Am,

5
 

"

一〗
'
[

-[

t
ェ，

し

一―[
]

一[-北ヽ

9:-E.Lsiヤ

9:

-
、9
プ

9
:l,
:

de 

面
°
ダ

l

ph 

-
Am,5 

―
二
〗

ニ
エ'
5

Am

-Am,5 

亡
:
こ
」- ，[
-
I
-

[＇¢
っ‘ L

,
J:r
,

＇j
三
〗
。；ど
：
／＿．． 

r＇
，e
,
；
＇
ァ

，ヽ ' i
-；
-

～ [J.9
L
占J
，

・ lミ
翠

．べ
和ぎ'
.
‘
え
ぐ
＇

で
~
こ---u
:,9-

‘
l

:
．
，含‘J
9
·と
、
、
9
i
／
ら
、
ゞ
ャ

年：

-

[
t

q
、

A{5-9[
｀

-9

¥
¥
i
i
 
J
,,
 .,
'
.
!
I
 
i
 

I
_:
 
f
 

,:
1
 

``

9

p
5-

d
e

-〗o
-A'ー、'
b
:
：

こ
〗
、冒
〖

‘P~

:-
手

―

二
〗}
と
な

＇、ミ
な， ヽ

・ロ9:

ph 
Am

-Am,5

-Am,5 

1

『

，̀
．9
:
v
2
ェ
，

●-三〗0[·
ンt冒

H,9
q；
乏“ -

三
『
一J~

て
t
,:

-

'『]

Am

-Am,'

I
 
Am,5 

de

->

-
>

-
ii

一〗

―
〗

―〗

>



7
7
 

N
o

rm
al

P
1

P
2

P
3

P
5

P
6

P
7

P
8

P
4

 

O
u

ter race fau
lt

P
1

P
2

P
3

P
5

P
6

P
7

P
8

P
4

 

(a) 
(b

) 

In
n

er race fau
lt

P
1

P
2

P
3

P
5

P
6

P
7

P
8

P
4

 

R
o

ller fau
lt

P
1

P
2

P
3

P
5

P
6

P
7

P
8

P
4

 

(c) 
(d

) 

F
ig

. 7
6

 h
o

lo
g

rap
h

ic S
D

P
 im

ag
es: (a) n

o
rm

al; (b
) o

u
ter race fau

lt; (c) in
n

er race fau
lt; (d

) ro
ller fau

lt 

B
ased

 o
n

 th
e h

o
lo

g
rap

h
ic S

D
P, b

earin
g
 fau

lts are id
en

tified
 b

ased
 o

n
 sim

ilarity. T
h
erefo

re, T
ab

. 

2
0
 sh

o
w

s th
at th

e fo
u

r states can
 ach

iev
e o

n
e-to

-o
n
e co

rresp
o
n
d
en

ce an
d
 id

en
tify

 b
earin

g
 fau

lts 

accu
rately. T

h
e p

ro
p
o

sed
 m

eth
o

d
 can

 effectiv
ely

 en
h
an

ce th
e d

ifferen
ce b

etw
een

 sig
n
als an

d
 

realize b
earin

g
 fau

lt d
iag

n
o
sis. 

T
ab

. 2
0

 C
o

m
p

ariso
n

 o
f sim

ilarity
 b

ased
 o

n
 h

o
lo

g
rap

h
ic S

D
P

 

 
N

_
2

 
O

_
2

 
I _

2
 

R
 _

2
 

N
_

1
 

1
.0

0
0
0
 

0
.9

0
3
0

 
0

.9
1

3
2
 

0
.8

7
4
3
 

O
 _

1
 

0
.8

4
3
9
 

1
.0

0
0
0

 
0

.9
4

0
1
 

0
.9

5
2
1
 

I _
1

 
0

.6
9

3
3
 

0
.8

2
0
9

 
1

.0
0

0
0
 

0
.9

5
7
1
 

R
 _

1
 

0
.7

3
6
6
 

0
.8

5
5
2

 
0

.9
3

2
7
 

1
.0

0
0
0
 

6
.5

.3
 C

o
m

p
a

ra
tiv

e ex
p

erim
en

t 
 

In
 o

rd
er to

 v
erify

 th
e effectiv

en
ess o

f th
is m

eth
o
d
, co

m
p
arativ

e ex
p
erim

en
ts b

ased
 o

n
 C

ase 

W
estern

 R
eserv

e U
n

iv
ersity

 d
ata an

d
 im

ag
e co

n
v
ersio

n
 m

eth
o
d
s are carried

 o
u
t resp

ectiv
ely. 

6
.5

.3
.1

 C
ase W

estern
 R

eserv
e U

n
iv

ersity
 d

ata co
m

p
ariso

n
 

B
ased

 o
n

 th
e b

earin
g

 d
ata o

f C
ase W

estern
 R

eserv
e U

n
iv

ersity, th
e effectiv

en
ess o

f th
is m

eth
o
d
 

is v
erified

. T
h

e sim
ilarity

 reco
g

n
itio

n
 resu

lts are sh
o
w

n
 in

 T
ab

. 2
1
. It p

ro
v
es th

at th
e in

crem
en

tally
 

accu
m

u
lated

 h
o
lo

g
rap

h
ic S

D
P

 m
eth

o
d
 in

 th
is stu

d
y
 can

 accu
rately

 id
en

tify
 b

earin
g
 fau

lts. 

 

．．
 -
．．
 

/

[
 

••• 

f
 
•• 

，竺
．．
 
齢守．．．

へ、

．．
．
炉
．斎
寝
・費
又

ぷ炒．虐
知．`

賃
5
3

憲
ュ

9
r

ー

ー

＇

J
 
..• 

1

急
な．

虚`
ャ
“

9
U
‘.•. 

出
力.̀
” 苔．
、9

，
ぶ

1

喉．，．
ン・”

.. 

・`ャ

．．
 ℃
/
 

..

‘-

—̀i •• 
¢..“

/
 

、

.....
・‘}
・

s

.

.

.

/
／
．
 

、

-

”
s.... _
 
．
．
 ／ 

ヽ

．．
 -・
 

ヽ



78 

Tab. 21 Similarity recognition results of Case Western Reserve signal 

 N_2 O_2 I _2 R _2 

N_1 1.0000 0.9108 0.9456 0.9725 

O _1 0.9029 1.0000 0.9577 0.9778 

I _1 0.9366 0.9340 1.0000 0.9659 

R _1 0.9035 0.9344 0.9044 1.0000 

6.5.3.2 Comparison of image visualization methods 

At present, short-time Fourier transform (STFT), continuous wavelet decomposition (CWT), 

and Wigner-ville distribution (WVD) are the three common time-frequency feature imaging 

methods in the field of bearing visual diagnosis research. The definitions, advantages, and 

disadvantages are shown in Tab. 22. 

Tab. 22 Time-frequency feature imaging methods 

Methods Literature Formula Characteristic 

Short-time 

Fourier 

transform 

[133], 

[134] 
  2( , ) ( ) ( *) ikSTFT f f t e d     −=  −   

High-frequency signals are 

better reflected in the time-

domain, while low-frequency 

signals in the frequency-

domain. 

Continuous 

wavelet 

decomposition 

[135], 

[136] ,( , ; ) ( ) ( )a bW a b x t t dt 


−
=   

The selection of wavelet basis 

is difficult, and different 

wavelet basis has different 

results 

Wigner-ville 

distribution 

[137], 

[138] 
2( , ) ( ) *( )

2 2

j fW t f x t x t e d  



−

−
= + −

 
It will be interfered by the 

cross term when analyzing 

multi-component signals 

Fig.77 shows the bearing vibration signal time-frequency images under normal and fault states 

using three methods. Images generated by the STFT and the CWT show that the difference 

between the four states is very minimal and difficult to distinguish. To verify the effects of these 

three methods in bearing fault diagnosis, the results based on similarity are shown in Tab. 23(1), 

(2), and (3). 
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Short-time Fourier transform Continuous wavelet transform Wigner-ville transformation 

 

Fig. 77 Bearing vibration signal time-frequency images under normal and fault states by three methods 

In Tab. 23(1) and 23(2), both the inner race (I) and roller (R) faults have been misdiagnosed, 

indicating that the STFT and CWT cannot effectively distinguish the changes in the time-

frequency image. In Tab. 23(3), the roller fault (R) was misidentified. Although in Fig. 77, the 

WVD images are quite different, the similarity results cannot meet the diagnosis requirements. 

Tab. 23(1) Similarity comparison based on STFT 

 N_2 O _2 I _2 R _2 

N_1 1.0000 0.9981 0.9984 0.9985 

O _1 0.9988 1.0000 0.9983 0.9980 

I _1 1.0000 0.9998 0.9989 0.9995 

R _1 1.0000 0.9998 0.9998 0.9991 
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Tab. 23(2) Similarity comparison based on CWT 

 N_2 O _2 I _2 R _2 

N_1 1.0000 0.9997 0.9995 0.9998 

O _1 0.9995 1.0000 0.9994 0.9997 

I _1 1.0000 0.9996 0.9998 0.9994 

R _1 1.0000 0.9998 0.9997 0.9999 

Tab. 23(3) Similarity comparison based on WVD 

 N_2 O _2 I _2 R _2 

N_1 1.0000 0.6789 0.5735 0.5821 

O_1 0.7636 1.0000 0.6471 0.6363 

I _1 0.9168 0.8793 1.0000 0.7620 

R_1 1.0000 0.9812 0.9572 0.6764 

Based on the above analysis, the incremental accumulation holographic SDP characteristic 

fusion method can effectively extract the characteristic of vibration signals, increase the 

discrimination between signals, and realize accurate diagnosis of ship propulsion shaft bearing 

faults. 

6.6 Conclusion 

This chapter proposed an incrementally accumulated holographic SDP characteristic fusion 

method, which is used in the fault visual diagnosis research of rotating machinery. To address the 

problem on distinguishing the bearing fault vibration signals, the characteristic parameters in 

time- and frequency-domains were extracted to describe the change trend of vibration signals and 

its spectrum. In addition, the incremental accumulation method is adopted to extract the 

characteristic parameters, so that the changes can be displayed in time. Based on the SDP method, 

1D parameters are simultaneously fused to a 2D image, which magnified the difference between 

the signals and laid the foundation for the fault diagnosis of the bearing.
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Chapter 7 Conclusions and future works 

7.1 Conclusions 

The research on rotating machinery fault diagnosis is of great significance to ensure the safe 

operation of equipment, reduce the cost of regular maintenance and avoid malignant accidents. In 

this thesis, the rotating machinery vibration signal containing rich characteristic information is 

selected as the research object, and the signal processing research is carried out for key problems 

such as strong background noise, weak fault characteristics and complex interference frequency 

of vibration signal in rotating machinery diagnosis. The noise suppression and feature 

enhancement methods of weighted kurtosis VMD and improved frequency-weighted energy 

operator are studied; A method of non-stationary vibration signal separation and feature 

enhancement based on reconstruction adaptive determinate stationary subspace filtering and 1.5-

dimensional third-order energy operator is constructed; An adaptive multi-band filtering method 

for accurately extract the actual rotating frequency in engineering signal is designed; The 

application of successive incrementally accumulated holographic SDP signal conversion method 

in rotating machinery fault visual diagnosis is studied. The main conclusions of this thesis are 

summarized as follows: 

1) Aiming at the problems of strong background noise and weak fault characteristics in 

vibration signal in rotating machinery fault diagnosis, a signal processing method of weighted 

kurtosis VMD and improved FWEO is proposed. The VMD is employed to decompose signal, 

and the weighted kurtosis is applied to select the optimal IMFs which carry abundant fault 

information. The third-order cumulant is introduced into the FWEO to improve the analysis 

performance, and then the IFWEO is used to further improve the signal SNR and enhance the 

signal impulse. 

2) In order to effectively filter the complex interference frequency components in the vibration 

signal and improve the fault characteristics, a bearing fault feature enhancement method of Rad-

SSF and 1.5-dimensional third-order energy operator is proposed. An adaptive Rad-SSF method 

is developed for constant speed equipment non-stationary vibration signals with the characteristic 

of strong background noise and weak bearing fault impulse signal. Rad-SSF can adaptively self-

determined reconstructs a trajectory matrix and decompose it into stationary and non-stationary 

signals to realize the extraction of the weak fault characteristic signal optimally. The improved 

demodulation method of 1.5D third-order energy spectrum is applied to enhance the impact signal 

feature caused by rotating machinery fault for its advantages of strengthening the fundamental 

frequency, and eliminating the non-coupling harmonic components. 

3) In view of the difference between the actual rotating frequency and the theoretical value in 

the vibration signal of rotating machinery, an adaptive multi-band filtering is proposed to 

accurately extract the rotating frequency and its harmonics. In the adaptive multi-band filtering, 

a search threshold is designed to accurately extract the actual rotating frequency, and the 

deflection coefficient is set to ensure that the harmonics are within the optimal extraction range. 

4) Aiming at the problem that the discrimination of different images is not obvious when the 

one-dimensional vibration signal is converted into a two-dimensional image, an incremental 

accumulation characteristic parameter extraction method is proposed to comprehensively record 

the characteristic change trend of vibration signals. Then, a holographic SDP characteristic fusion 

method is proposed to realize the image conversion of vibration signals. By fusing the 

characteristic parameters into one SDP image, discrimination between bearing fault vibration 

signals is increased. 



82 

7.2 Future works 

In this thesis, the signal processing methods such as background noise suppression and fault 

feature enhancement of vibration signals in rotating machinery faults diagnosis are studied, and 

applications have been made in low-speed bearings, high-speed bearings, structural abnormalities, 

bearing visual diagnosis and so on. If conditions permit, future research needs to be further carried 

out in the following aspects: 

1) This thesis mainly studies the processing method of vibration signal of rotating machinery 

at constant speed. For more complex operating conditions such as variable speed and variable 

load, it needs to be further studied. 

2) This thesis mainly studies the single fault type of rotating machinery. For the compound fault 

of multi part coupling, the application effectiveness of the method studied in this paper needs to 

be further studied.
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