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Abstract 

Effectively identifying the health status of rolling bearings can reduce the maintenance 

costs of rotating mechanical components. With the development and improvement of various 

signal processing theories, the mode of extracting fault information from the frequency domain 

has gradually replaced the mode from the time domain. In this paper, by optimizing the single-

level spectral segmentation methods such as analytical mode decomposition, frequency slice 

wavelet transform, empirical wavelet transform, and quaternion, the corresponding multi-level 

spectral segmentation method and variable tower boundary distribution diagram and feature 

screening index are designed. The detailed research content is as follows: 

(1) An adaptive Ailinggram that uses variable spectral segmentation framework to optimize 

analytical mode decomposition to automatically decompose the mode information in rotating 

machinery signals was proposed. The framework relies on the variability of the window width 

and envelope estimation characteristics of order statistics filter to increase the diversity of the 

center frequencies and bandwidth. A novel harmonic correlation index is designed to identify 

the characteristics of rotating machinery faults from various levels of results, and to improve the 

usability in mechanical equipment fault diagnosis. The method can be applied to fault diagnosis 

of rotating machinery under high speed/dynamic load conditions. 

(2) Fast Entrogram was proposed to segment the spectrum and accurately filtering fault 

information from the frequency domain. The fluctuation state of the Fourier spectrum is of key 

importance in distinguishing the distribution of different components in the signal at each 

frequency. After the Fourier transform of the spectrum is intercepted and reconstructed, the 

minimum points of the new sequence can separate different components in the signal. 

Subsequently, the frequency slice function is used to extract each frequency band to obtain 

better filtering effects than the finite impulse response filter. Finally, the proposed novel 

correlation spectral negentropy is sensitive to periodic pulses and can be used to screen the 

component that contains the most fault information. The simulation results show that the 

proposed Fast Entrogram can effectively extract periodic pulses. It is verified by experimental 

signals that the method can be applied to fault diagnosis of rotating machinery under low 

speed/heavy load conditions. 

(3) The power spectral density will be calculated and used to segment the spectrum, which 

can reduce the number of extreme points and the dependence on them. According to the 

variability of the PSD window width, a tower boundaries distribution diagram (W-Autogram) 

and weighted unbiased autocorrelation would be used to extract specific information is 

proposed. Simulation signals and experimental results verify that the proposed method can be 

applied to the fault diagnosis of rolling bearings in rotating machinery. 

(4) In order to extract the periodic pulse information in the signal and weaken the influence 

of the interference signal, we proposed Harmonic spectral kurtosis which can extract the 

harmonic information in the envelope spectrum, quantify the periodic pulses in the signal, and 

suppress the influence of interference such as random pulse. The simulation signal shows that 

the proposed method is accurate and effective. The data of bearing inner ring, outer ring and 

compound faults prove that the method can be applied to bearing fault diagnosis. 

(5) Quaternion analytical mode decomposition (QAMD) is proposed to process multiple 
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acoustic signals and extract fault information in industrial machinery systems with high 

sampling frequency, low speed, and heavy load. QAMD can separate characteristic information 

from frequency domain and extend it to the fault diagnosis of rotating industrial machinery. The 

multi-signal fusion method based on quaternion can process multiple sets of longer digital 

signals at the same time, which provides a new idea for the synchronous processing of big data. 

The proposed quaternion Fourier trend spectral segmentation method can not only automatically 

obtain bisecting frequencies and divide the signal into several frequency bands, but also realize 

the fusion and modal decomposition of multiple sets of digital signals in frequency domain. 

Experimental results show that the proposed method can effectively extract useful information 

from acoustic signals and apply it to bearing fault diagnosis. 

Keywords: analytical mode decomposition, rotating machinery, order statistics filter, harmonic 

correlation index, Entrogram, correlation spectral negentropy, power spectral density, weighted 

unbiased autocorrelation, Harmonic spectral kurtosis, Quaternion. 
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Chapter 1 

Introduction 

1.1 Background 

In recent years, industries around the world have basically achieved interconnection. 

Industrial globalization is inseparable from the rapid development of science and technology 

and the iterative upgrade of large-scale electromechanical equipment [1-2]. "Industry 4.0" and 

"Made in China 2025" have put forward higher requirements for information technology to 

promote industrial transformation [3-5]. The digitalization and intelligence of industrial 

production will become the main theme of the future industry. With the rapid development of 

science and technology around the world, large-scale electromechanical equipment not only 

occupies a dominant position in the industrial system, but also has a wide range of applications: 

transportation, medical care, industry, agriculture, national defense, etc. The use method and 

operating state of the equipment become more complicated [6]. The high-precision automatic 

control system not only ensures the automatic operation of the equipment, but also avoids the 

harm and threat to people in the harsh working environment. The labor cost is reduced and the 

production efficiency is increased [7-9]. However, when the equipment is operated under heavy 

load and high temperature for a long time, it is easy to damage parts and increase the failure 

rate. If equipment fails, timely maintenance will result in huge economic losses, and failure to 

maintain timely may result in casualties [10,11]. Under this premise, the development of 

equipment condition monitoring system and equipment fault diagnosis system has important 

economic significance and social value [12]. 

The equipment condition monitoring system in the traditional sense needs to have  signal 

acquisition system and simple statistical index calculation system. The equipment fault 

diagnosis system not only has signal acquisition module, but also needs signal processing 

module and fault identification module [13,14]. The traditional signal processing process 

includes time-frequency analysis, signal decomposition, mode extraction and so on. Correctly 

distinguishing the interference and fault information in the signal is the difficulty and focus of 

signal processing. The current research objects are rich and advanced: intelligent manufacturing 

products represented by robotic arms [15], rail transit equipment represented by high-speed rail 

and locomotives [16-18], high-tech equipment represented by aero-engines[19], sustainable 

energy machinery represented by wind turbine, etc. [20]. As modern equipment gradually tends 

to be complex, overloaded, large-scale, high-speed, and high-precision, which means that 

traditional signal processing methods are difficult to be universal and need to be updated 

iteratively [21]. 

Bearings, as one of the most widely used important mechanical parts, are popular in the 

field of signal processing [22]. When industrial equipment is under high temperature, heavy 

load, high speed and other conditions, the bearing may work in this environment for a long time. 

The harsh environment will not only damage the bearing, but may also bring complex 

interference information [23,24]. How to locate the damaged bearing and predict the time when 

the bearing may be damaged requires high accuracy of the condition monitoring system and 

fault diagnosis system to avoid major failures of the equipment [25]. Therefore, constantly 

exploring new signal processing methods and applying them to fault diagnosis is the focus of 

scholars' attention and research. The proposal of the new method and the application of the new 

technology not only enrich the theoretical basis of the field of mechanical fault diagnosis, but 
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also promote the further development of the mechanical fault diagnosis technology. 

1.2 Modern signal decomposition methods 

Modern signal decomposition methods include many classical algorithms, which can be 

classified into time-domain/frequency-domain signal decomposition methods, and time-

frequency analysis methods. Traditional signal decomposition methods generally need to 

manually adjust parameters and extract components, such as short-time Fourier transform, 

Wigner-Ville distribution, wavelet analysis, etc. [26-28]. Empirical mode decomposition (EMD) 

proposed by Huang N E [29] makes the adaptive signal processing method a new hot topic. The 

equipment status online monitoring system collects the vibration acceleration signal or acoustic 

signal of the vulnerable parts, which can detect the equipment abnormality in time. Since the 

vibration signal during the operation of mechanical equipment often presents non-stationary and 

nonlinear characteristics, the difficulty of extracting signal features from the time domain is 

easily disturbed by the environment such as noise [30,31]. This paper is devoted to the research 

and promotion of processing modes for extracting signals from the frequency domain, such as 

analytic mode decomposition, empirical wavelet transform and frequency slice wavelet 

transform. 

Analytical mode decomposition (AMD) extracts component from the Fourier spectrum by 

searching for useful modes [32]. It is characterized by manual selection of frequencies to be 

separated and filtering out high-frequency noise or low-frequency interference. This method 

does not require finding outliers in the time domain waveform or calculating the mean value, 

and can avoid interference from extreme points in the waveform. Compared with empirical 

mode decomposition, AMD can suppress mode aliasing and end-point effects [33,34]. AMD's 

application first appeared in the field of construction. Wang [35] used AMD to reconstruct the 

components of the Synchrosqueezing wavelet transform to attenuate the influence of wavelet 

function parameters. The Multiple AMD proposed by Qu [36] utilizes the free vibration 

response and nonlinear oscillator, and defines the besecting frequency with reference to velocity 

and displacement, which can identify stiffness and damping coefficients. Wu [37] created a 

time-frequency domain digital scintillation meter using AMD and applied it to wind farms. 

When collecting vibration signals from electrical or mechanical equipment in operation, a large 

amount of unpredictable information is generated, and the Fourier spectrum becomes complex. 

Therefore, manual selection of the besecting frequency is not only difficult but also error-prone, 

which motivated Wang [38] to replace it with an autoregressive power spectrum. Changing the 

spectrum does not solve the problem of signal decomposition under non-stationary or strongly 

noisy signals. The variety of signals will make the selection of frequency bands difficult. It is 

necessary to study and explore this to find the most suitable besecting frequency to segment the 

useful frequency band and interference and add adaptability to the algorithm. 

Similarly, Gilles [39] proposed a spectral segmentation method based on Meyer wavelet 

and named it empirical wavelet transform (EWT). EWT divides the signal in the spectrum. The 

maximum and minimum of the spectrum are used to distinguish useful modes. In earlier 

versions, the midpoint or minimum of adjacent maxima was used as the boundaries [40-42]. 

Then, EWT was quickly applied after it was proposed. Premjith [43] uses EWT for Audio Data 

Authentication. Jiang [44] used EWT to separate the part of the bearing signal containing inner 

ring fault and outer ring fault, and then used the duffing oscillator to identify the fault 

information. EWT is also used to judge internal fault current and inrush current in a power 

transformer [45]. Chen [46] combined clustering and EWT to suppress strong noise in seismic 
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signals. In addition, EWT is also applied to hyperspectral image classification [47], inspecting 

debonding defects [48], and so on. It is widely used in rotating equipment such as wind turbine 

[49], motor bearing [50], bearing with varying speeds [51], and railway axle bearing [52]. 

Kedadouche [53] proved through simulation and experimental signals that EWT is more 

effective than EMD in processing bearing fault. The above methods have good results when 

processing clean or stationary signals, but it is difficult to successfully segment complex signals 

[54]. In order to reduce parameter input and increase the adaptability of EWT, Gilles [55] 

proposed a parameterless method based on scale-space in 2014 to find useful modes from 

histograms. Otsu’s method and k-means method are used as reference for readers. After this 

method was proposed, it was quickly and successfully applied to bearing fault diagnosis [56] 

and rotor rubbing fault diagnosis [57]. Pan [58] found a suitable scale space curve with pre-

determined scale parameter through a large number of experiments. Pearson's correlation 

coefficient is cited to filter components with fault information [56,58]. Amezquita - Sanchez 

[59] uses multiple signal classification to calculate the new spectrum, and treats the minimum 

value near the maximum value as the boundaries after zeroing the part below the threshold. 

Research on the rules for allocating frequency bands is constantly being updated. Faced with 

more complex signals, more general spectral segmentation algorithms are worth studying. 

Given that the frequency slice wavelet transform (FSWT) proposed by Yan [60, 61] has 

strong time-frequency identification properties and cleaner filtering properties, we explore the 

application value of FSWT in the field of spectral segmentation. The method analyzes the 

FSWT by frequency resolution and Dirac function and selects a new scaling function to specify 

the observation frequency to extract useful information[62]. Liu [63] used this method of 

decomposing signals from the time/frequency domain and improved the positioning accuracy of 

the beam damage. Duan [64] combined FSWT and kurtosis to apply this method to the 

diagnosis of rolling bearing damage and achieved certain results. Guo [65] performs detailed 

feature analysis on the specified frequency slice interval based on the full-band time-frequency 

energy distribution of FSWT and uses it for feature extraction of blasting vibration signals. In 

addition, Yan [66] explored the modal signals separation and damping identification. 

After the above analysis methods are introduced into the field of mechanical fault 

diagnosis, the non-stationary and nonlinear vibration signal processing and fault feature 

extraction technology has been developed rapidly. 

1.3 Kurtogram and component selection indicators 

With the development of decomposition methods, various statistical indicators also have 

more applications. Dwyer [67] proposed the spectral kurtosis (SK) to represent the non-

Gaussian components in the signal and their location in the frequency domain. SK is a very 

powerful statistical tool used in place of power spectral density. Pagnan and Ottonello [68] 

revised the definition of spectral kurtosis and used short-time Fourier transform to optimize 

spectral kurtosis to recover random signals corrupted by steady-state noise. Geoff [69] proposed 

the Maximum correlated Kurtosis deconvolution to detect periodic and impulsive vibration 

behavior in gears and bearings. Capdevielle[70] used the theory of higher order statistics and 

gave a more formal definition on the theoretical basis. Although this definition cannot 

effectively obtain the feature components of non-stationary signals, it has inspired many 

scholars to conduct in-depth research on it. Borghesani [71] explored the relationship between 

squared envelope spectrum, kurtosis and cepstrum pre-whitening, providing a theoretical 

starting point for deriving new metrics. He[72] successfully identified multiple faults in rotating 
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machinery after combining minimum entropy deconvolution with spectral kurtosis. Meanwhile, 

multiple fault detection methods based on spectral kurtosis and minimum entropy deconvolution 

have also been proposed [73]. After the concept of spectral kurtosis was proposed, it has been 

widely used in the fields of bearings and gears [74]. Xiang [75] combined probabilistic principal 

component analysis and spectral kurtosis to effectively suppress noise and low-frequency 

interference. After combining SK and autoregressive AR models, Cong [76] eliminated the 

interference frequency components, providing theoretical verification for early fault diagnosis. 

Arivazhagan [77] uses the SK and Teager Kaiser energies of the optimal Gabor subband to 

identify ship targets. Barszcz [78] used spectral kurtosis to detect cracks in wind turbine 

planetary gear teeth. When studying the correlation performance of the four-way reversing 

valve, Wang [79] introduced SK to separate the FIV pulse signal from the background noise. In 

order to improve the theory of spectral kurtosis, Antoni[80,81] elaborated the relevant theory of 

spectral kurtosis in detail, and formally gave the mathematical definition of spectral kurtosis. 

The spectral kurtosis is defined as the energy-normalized fourth-order spectral cumulant. 

Antoni [82] not only proved that the new definition of SK has good effect on feature 

detection of non-stationary signals in noise, but also proposed the Fast Kurtogram (FK) method. 

Fast Kurtogram uses 1/3-binary tree filter bank to segment the spectrum and extracts each 

frequency band through finite impulse response (FIR) filters and calculates its spectral kurtosis. 

This method has been widely used since its appearance [83]. Fast Kurtogram was used by 

Zhang [84] to estimate the fault frequency band. The obtained frequency band would be input 

into the genetic algorithm to reduce the calculation time and make the final results have better 

demodulation effect. Wang [85] adopted the method of dividing the spectrum equally to 

construct the boundary of the filter, which improved the computational efficiency. This new 

technique based on dual-tree complex wavelet transform and Kurtogram still has drawbacks. 

The meaning of the center frequency and frequency conversion bandwidth obtained by dividing 

the spectrum equally cannot be explained theoretically, which means that the results cannot 

reflect the real situation. In order to improve the limitation of FIR filter, Similarly, Peter [86] 

and Wang [87] introduced wavelet packet transform (WPT) and calculated the sparsity 

measurements of the power spectra from the envelopes of the wavelet packet coefficients to 

determine resonant frequency bands. The improved IESFOgram by Mauricio [88] did not 

change the basic framework of Kurtogram, but replaced it with new indicators. Although 

kurtosis is sensitive to non-stationary characteristics, it is vulnerable to noise. In view of this, 

Antoni [89] proposed Infogram based on spectral negentropy (SNE) in 2015. The proposed 

spectral negentropy, similar to spectral kurtosis, is more sensitive to periodic pulses and more 

resistant to noise. Spectral negentropy was applied by Feng [90] to planet bearing fault 

diagnosis. Wang [91] calculated Fast Kurtogram of fault signal and health signal respectively, 

then extracted fault frequency band by spectral kurtosis ratio, and applied this method to planet 

bearing fault detection. The common feature of the above improved method is the average 

spectrum segmentation. Although this method can improve the operation efficiency, it reduces 

the accuracy and has limitations. Moshrefzadeh [92] made more improvements on this basis. 

First, the Maximal Overlap Discrete Wavelet Packet Transform is used to replace the FIR filter 

in the Kurtogram. The kurtosis of the unbiased autocorrelation of the squared envelope of each 

component is used to upgrade the kurtosis.  

Some authors have made a series of improvements to the problem of spectrum 

segmentation: Wang and Liang [93] adopted the average segmentation method. The method 

adaptively determines the bandwidth and center frequency of the filter by incorporating a right 
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expansion window to maximize the filtered signal kurtosis. Although it is very difficult to preset 

the window width, it breaks the conventional thinking mode. However, the method of merging 

windows does not change the disadvantage of average spectrum segmentation. Sweeping mode 

is very complex and takes a long time. T. Barszcz [94] obtained the center frequency by pre-

estimating the optimal bandwidth and scanning the whole band, which is closer to the real one. 

Another adaptive spectral kurtosis method used Morlet wavelet to construct filter banks, and the 

center frequency was defined by wavelet correlation filtering [95]. In order to optimize 

spectrum segmentation, Xu suppresses the diagnostic error caused by spectrum segmentation by 

sweeping [96] and order statistics filter [97]. Feng [98] used maximum correlation kurtosis 

deconvolution to preprocess the signal, which can enhance the periodic pulse component of the 

vibration signal. In fact, the process has a large uncertainty, and this step has a high possibility 

of weakening the useful information in the signal. Obviously, the above methods all have their 

limitations. Neither replacing the filtering structure nor changing the filtering metrics have 

fundamentally improved the basic framework of Fast Kurtogram [99]. In view of this, it is 

necessary to explore more reasonable adaptive spectral segmentation methods in the field of 

multi-level spectral segmentation similar to Fast Kurtogram. 

1.4 Signal fusion method 

When performing condition monitoring or fault diagnosis of equipment, it is a common 

method to use multi-sets of sensors to collect vibration acceleration signals in multiple 

directions. But for many devices, the contact-less method for data acquisition is not only safer 

than multi-channel sensors, but can also avoid problems such as power supply difficulties, 

installation difficulties, and data transmission. Therefore, although it is difficult to process 

acoustic signals, it can solve the problems of many common sensors. Adam Glowacz [100] 

applies acoustic signal fault detection methods to three-phase induction motor and stator faults 

of the single-phase induction motor [101]. This non-contact signal processing method provides 

researchers with new ideas and enlightenment. Subsequently, Lu [102] and Hu [51] used the 

non-contact acoustic signal detection method to successfully diagnose the rolling bearing fault, 

which broadened the field of it. In addition, the acoustic signal fault detection method has also 

been extended to centrifugal pump [103] by scholars. 

For high-speed bearing signals, short data may contain a large amount of fault information, 

while a low-speed heavy-duty acoustic signal not only contains a long amount of data, but also 

contains a lot of noise which brings more challenges to fault diagnosis. There are many fault 

diagnosis methods for a single set of data. The operating signals of mechanical equipment are 

complex, which may include vibration information of parts, modulation signals, noise generated 

by collisions between materials, and strong environmental noise. These noises can cause great 

distress to sinle-level spectral segmentation method which needs to determine the important 

frequency. For analytical mode decomposition, the number and location of the bisecting 

frequency determine the quality of the final result. The median frequency of adjacent important 

frequencies will be defined as bisecting frequency. Through iteration, bisecting frequencies will 

divide the spectrum into several frequency bands and each frequency band is corresponds to a 

result. In order to reduce the difficulty of manually selecting bisecting frequency, Zhao [104] 

uses chaotic particle swarm optimization algorithm and auxiliary signal to calculate the best 

cutoff frequency. Rikam [105] used periodogram estimation of the power spectral density of the 

three-phase current space vector to detect and diagnose bearing faults in three-phase 

asynchronous equipment. 
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These are good ideas, but they did not solve the problems of synchronization of multiple 

groups of long data and adaptive spectrum segmentation. Bendoumia [106] tried a two-channel 

acoustic signal processing method and obtained good results. Jeon [107] uses multi-channel 

distributed speakers to optimize production and localize vibration. Hamdan [108] designed the 

Multichannel crosstalk cancellation system on the basis of singular value decomposition. 

Subsequently, more channels of signal fusion methods appeared. Salah [109] uses Quaternion 

discrete Fourier transform to process audio watermarking. Martins [110] avoids avionics 

curvature parametric rotation locking with the help of quaternions. Yi [111] uses the phase space 

reconstruction method to form the signals of the four channels into their own Hankel matrix to 

obtain the quaternion trajectory matrix, which realizes the fault diagnosis of mechanical 

equipment. Ma [112] combined symplectic geometry, SSA and Quaternion to capture the 

characteristic frequency of faults in gear fault diagnosis. It can be seen that Quaternion can play 

a very important role in the process of multi-channel or multi-group signal 

synchronization[113]. 

1.5 Structure of the Thesis 

Bearings in rotating equipment usually run at a constant speed. When the bearing is 

damaged, we can extract the information containing the fault characteristics in the signal to 

diagnose the fault location. There are serious mode aliasing and redundancy in traditional one-

dimensional signal processing methods and single-level spectral segmentation methods. In this 

paper, after studying the analytical mode decomposition, frequency slice wavelet transform, 

empirical wavelet transform and quaternion, the fixed spectral segmentation framework in the 

traditional Kurtogram algorithm is upgraded to a variable spectral segmentation framework. 

Subsequently, the bearing inner ring and outer ring data are used to verify the effectiveness of 

the proposed algorithm. The main contents of the paper mainly include the following: 

Chaper 1 expounds the background, research significance and research status of the topic, 

including modern signal decomposition, multi-level spectral segmentation methods, etc., which 

provides a theoretical basis for the improvement of the method and the experimental 

verification. 

Chaper 2 proposed Ailinggram to optimize analytical mode decomposition. The 

framework relies on the variability of the window width and envelope estimation characteristics 

of order statistics filter to increase the diversity of the center frequencies and bandwidth. A 

novel harmonic correlation index is designed to identify the characteristics of rotating 

machinery faults from various levels of results, and to improve the usability in mechanical 

equipment fault diagnosis.  

Chapter 3 constructs the tower-shaped boundary distribution diagram through the 

fluctuation of the Fourier spectrum.The frequency slice function is used to extract each 

frequency band to obtain better filtering effects than the finite impulse response filter. Finally, 

the proposed novel correlation spectral negentropy is sensitive to periodic pulses and can be 

used to screen the component that contains the most fault information. 

Chapter 4 proposes W-Autogram and weighted unbiased autocorrelation based on the 

variability of the PSD window width to extract specific information. Simulation signals and 

experimental results verify that the proposed method can be applied to the fault diagnosis of 

rolling bearings in rotating machinery. Then this chapter proposed Harmonic spectral kurtosis 

which can extract the harmonic information in the envelope spectrum, quantify the periodic 

pulses in the signal, and suppress the influence of interference such as random pulse. 
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Chapter 5 proposed quaternion analytical mode decomposition (QAMD) to process 

multiple acoustic signals and extract fault information in industrial machinery systems with high 

sampling frequency, low speed, and heavy load. QAMD can separate characteristic information 

from frequency domain and extend it to the fault diagnosis of rotating industrial machinery. 

Chapter 6 made the conclusions and provided insights into future work for the intelligent 

fault diagnosis. 
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Chapter 2 

Multilevel spectral segmentation method based on order 

statistics filter and analytical modal decomposition and its 

application in bearing fault diagnosis under high speed and 

dynamic load conditions [33, 34] 

2.1 Introduction 

Since the signal of electrical or mechanical equipment is more complex than that of 

buildings, it may contain modulation information, material impact vibration, strong 

environmental noise, etc. This is a huge challenge for analytical modal decomposition (AMD), 

and it has received very few applications in past research. The core of AMD is correctly 

determining useful components or bisecting frequencies, which will affect the success rate of 

feature extraction. AMD needs to manually observe the Fourier spectrum and then define 

specific frequency bands or high-amplitude frequencies as useful components. The median 

frequency of adjacent useful components is the bisecting frequency which can divide the signal 

into high-frequency part and low-frequency part. The mode is similar to using a low-pass filter 

to remove noise.  

This chapter proposed a novel variable spectral segmentation method to optimize AMD 

and distinguish modes. The proposed method uses order statistics filter to automatically identify 

useful modes from the spectrum, which means that the original observation method will be 

discarded. The basic modes are unevenly distributed in the spectrum, and the computational 

efficiency and accuracy are improved. Further, multi-level spectral segmentation framework 

called Ailinggram is designed to expand low-pass filter in the original AMD into multiple sets 

of band-pass filters. Ailinggram draws on the ideas of the traditional Fast Kurtogram 

construction framework but supplements and corrects its shortcomings. Different from the fixed 

frame in the traditional Fast Kurtogram, Ailinggram focus on the variability of order statistics 

filter and envelope estimation characteristics which can be used to construct signal-related 

variable spectral segmentation framework. The calculation process of Ailinggram provides 

multiple center frequencies and flexible bandwidths for the subsequent screening steps. The 

adaptability of the algorithm is improved, and the noise can be separated in multiple stages. The 

new variable frame inherits the strategy of the traditional Kurtogram and makes up for the 

shortcomings of the fixed frame, providing more flexible possibilities for signal processing and 

fault diagnosis. This chapter introduces a novel harmonic correlation index (HCI) for 

identifying feature information from the results of each level and improving the usability of 

Ailinggram in non-stationary signal processing and mechanical equipment fault diagnosis. 

2.2 Traditional analytical mode decomposition method 

2.2.1 Basic definition of analytical mode decomposition 

Different form the data-driven decomposition method, AMD extracts the signal from the 

spectrum. For the signal 𝑥(𝑡) which consists of two components: 

𝑥(𝑡) = 𝑥𝑐1(𝑡) + 𝑦𝑐2(𝑡)                                                (2.1) 

Among them, the frequencies of 𝑥𝑐1(𝑡) and 𝑥𝑐2(𝑡) are important frequencies: ωc1, ωc2 , 

which can be seen in Fig.1. Reference [32] takes the average of adjacent important frequencies 
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as the bisecting frequency: ωb =
ωc1+ωc2

2
. If 𝑋̂(𝜔) is used to represent the Fourier transform of 

𝑥(𝑡), then (|ωc1| < ωb < |ωc2|). Let sk(t) denotes a sine or cosine function whose frequency 

is equal to the bisecting frequency. When k = c , sk(t) = sc(t) = cos⁡(ωbt) ; k = s , sk(t) =

ss(t) = sin⁡(ωbt) . The Hilbert transform (H[·]) of 𝑠𝑘(𝑡)𝑥(𝑡)  can be expressed by the 

following formula:  

𝐻[𝑠𝑘(𝑡)𝑥(𝑡)] = 𝐻[𝑠𝑘(𝑡)𝑥𝑐1(𝑡)] + 𝐻[𝑠𝑘(𝑡)𝑥𝑐2(𝑡)]                        (2.2) 

According to the Bedrosian theorem, Eq.2.2 can be rewritten as: 

𝐻[𝑠𝑘(𝑡)𝑥(𝑡)] = 𝑥𝑐1(𝑡)𝐻[𝑠𝑘(𝑡)] + 𝑠𝑘(𝑡)𝐻[𝑥𝑐2(𝑡)]                        (2.3) 

Substituting c and s into Eq.2.3 respectively can be obtained: 

{
𝐻[𝑠𝑐(𝑡)𝑥(𝑡)] = 𝑥𝑐1(𝑡)𝐻[𝑠𝑐(𝑡)] + 𝑠𝑐(𝑡)𝐻[𝑥𝑐2(𝑡)]

𝐻[𝑠𝑠(𝑡)𝑥(𝑡)] = 𝑥𝑐1(𝑡)𝐻[𝑠𝑠(𝑡)] + 𝑠𝑠(𝑡)𝐻[𝑥𝑐2(𝑡)]
                          (2.4) 

Then, 

{
𝐻[𝑥𝑐2(𝑡)] =

𝐻[𝑠𝑐(𝑡)𝑥(𝑡)]−𝑥𝑐1(𝑡)𝐻[𝑠𝑐(𝑡)]

𝑠𝑐(𝑡)

𝐻[𝑠𝑠(𝑡)𝑥(𝑡)] = 𝑥𝑐1(𝑡)𝐻[𝑠𝑠(𝑡)] + 𝑠𝑠(𝑡)
𝐻[𝑠𝑐(𝑡)𝑥(𝑡)]−𝑥𝑐1(𝑡)𝐻[𝑠𝑐(𝑡)]

𝑠𝑐(𝑡)

               (2.5) 

So such results can be obtained: 

{
𝑦𝑐1(𝑡) =

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)𝑦(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)𝑦(𝑡)]

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)]

𝐻[𝑦𝑐2(𝑡)] =
𝐻[𝑠𝑐(𝑡)]𝐻[𝑠𝑠(𝑡)𝑦(𝑡)]−𝐻[𝑠𝑠(𝑡)]𝐻[𝑠𝑐(𝑡)𝑦(𝑡)]

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.6) 

Since the Hilbert transform of ss(t) is H[ss(t)] = −cos⁡(ωbt), the Hilbert transform of 

sc(t) is H[sc(t)] = sin⁡(ωbt), and ss(t)H[sc(t)] − sc(t)H[ss(t)] = 1. Therefore, Eq.2.6 can be 

simplified to: 

{
𝑦𝑐1(𝑡) = 𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)𝑦(𝑡)] − 𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)𝑦(𝑡)]

𝐻[𝑦𝑐2(𝑡)] = 𝐻[𝑠𝑐(𝑡)]𝐻[𝑠𝑠(𝑡)𝑦(𝑡)] − 𝐻[𝑠𝑠(𝑡)]𝐻[𝑠𝑐(𝑡)𝑦(𝑡)]
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.7) 

Finally, yc2(t) can be calculated by Eq.2.1. 

In AMD, how to determine the "important frequency" or "bisecting frequency" is the most 

difficult step. At present, only a few scholars have conducted in-depth research on the selection 

of important frequency. Moreover, the manual selection of important frequency by means of 

observation has a great obstacle to the application of the method in the condition monitoring 

system. 
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Fig.2.1 Schematic diagram of the AMD method. 

2.2.2 Pitfalls and inadequacies of AMD 
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Fig.2.2 The wavelet of simulated signal. 
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In order to simulate the failure of the rotating machine, a simulation signal was 

constructed. 

{
 
 

 
 𝑠𝑐1 = 𝐴1𝑒

−𝑔×2𝜋𝑓𝑛𝑡 × sin(2𝜋𝑓𝑛𝑡 × √1 − 𝑔
2)⁡⁡⁡

𝑠𝑐2 = 𝐴2 sin(2𝜋𝑓1𝑡) sin(2𝜋𝑓2𝑡 + sin(2𝜋𝑓3𝑡))

𝑠𝑐3 = 𝐴2 sin(2𝜋𝑓1𝑡) sin(2𝜋𝑓4𝑡 + sin(2𝜋𝑓3𝑡))
𝑠1 = 𝑠𝑐1 + 𝑠𝑐2 + 𝑠𝑐3 + 𝜁

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.8) 

where the damping coefficient 𝑔 = 0.07 , 𝑓1 = 50 Hz, 𝑓2 = 1000 Hz, 𝑓3 = 100 Hz, 𝑓4 =

4000Hz. The natural frequency of the periodic pulse information is 𝑓𝑛 = 2500Hz. The 

amplitude A1 = 5m/s2, A2 = 2m/s2, 𝜁 = SNR(3dB). The waveform is shown in Fig.2.2. 

The first step in AMD is to segment the spectrum, five frequencys [488Hz, 1435Hz, 

3574Hz, 4473Hz] can be set as "bisecting frequency". So, five AMs would be extracted and 

shown in Fig.2.3. AM-1 and AM-5 are noises; AM-2 and AM-4 are amplitude modulated signals 

corresponding to components sc2 and sc3; the periodic pulse information in AM-3 is obvious, 

corresponding to component sc1. 
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Fig.2.3 The results decomposed by AMD. 

In order to verify the superiority of the extraction method, a traditional adaptive modal 

decomposition method (empirical mode decomposition, EMD) is introduced here. EMD 

decomposed the signal into 12 IMFs. The first 4 components have more than 90% of the energy, 

while the 5th and subsequent components are concentrated in the low frequency portion, which 

are invalid components. By superimposing the invalid components on IMF-5, the waveforms 

and spectra of IMF-1 to IMF-5 can be shown in Fig.2.4. IMF-1 contains sc3 , which also 

contains part of sc1; IMF-2 contains not only most of the energy of sc1 but also part of sc2 and 

sc3. Therefore, there is modal aliasing between IMF-1 and IMF-2. 
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Fig.2.4 The results decomposed by EMD. 
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In order to measure the difference among the components extracted by the two methods, 

the root mean square(RMS) was used.  

RMS = √
1

N
∑(sn − so)

2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                   (2.9) 

where so is the component of the original signal and sn is the component extracted by AMD or 

EMD. 

The comparison of the errors of primary components extracted by the two methods was 

shown in Fig.2.5. The error of EMD is larger than that of AMD.  

(a) Sc2: fc=1000Hz (b) Sc1: fc=2500Hz (c) Sc3: fc=4000Hz
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Fig.2.5 Comparison of the error of three components. 

Simulation of sc1 for periodic pulses, AM-3 for AMD and IMF-2 for EMD are plotted in 

Fig.2.6. The repetition between AM-2 and sc1 is higher and can be confirmed in the details. The 

three parts of [0-0.008s], [0.03s-0.038s] and [0.17s-0.178s] were extracted and displayed. In [0-

0.008s], IMF-2 has endpoint effect and a mutation at 0.0035s. But the endpoint of AM-3 is 

convergent. In [0.03s-0.038s], IMF-2 has energy loss and large error. But AM-3 has almost no 

energy loss. At 0.176s in Fig.2.6b, IMF-2 has a mutation. The energy of each pulse obtained by 

AM-3 is balanced, without many singularities. The main reason for the above is the difference 

in filtering. EMD relies on extreme points to extract high frequency components from the 

signal. AMD can split the high and low frequencies from the Fourier spectrum and weaken the 

modal aliasing. The representative filter that calculates the mode from the spectrum is the finite 

impulse response (FIR) filters, which can be used to verify the effectiveness of AMD in 

filtering(Fig.2.7). 
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Fig.2.6 Comparison of the results decomposed by AMD and EMD. 
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Fig.2.7 The filtering effects of (a) AMD and (b) FIR. 

The leakage ratio of the two methods is 2.72% and 3.95%, as shown in Fig.2.8a. At the 

position of part B near the left boundary, AMD has almost no energy leakage, and FIR has a 

small amount of leakage. For part C, AMD has almost no energy leaks, but FIR has it. The 

leakage ratio of the two methods is 1.13% and 4.86%, as shown in Fig.2.8b. The results 

obtained by the two methods also have a small amount of energy loss in part B. After 

calculation, the energy loss of AMD was 3.07% and the FIR was 5.49%. It can be seen that 

AMD leaks less energy in part A and part C, losing less energy in part B. Therefore, the 

proposed method has a better filtering effect than the traditional FIR filter. 
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Fig.2.8 Comparison of FIR and AMD filtering effects. 

2.3 Variable spectral segmentation analytical mode decomposition  

2.3.1 Order statistics filter 

Order statistics filter is a statistical estimation method that can be used to estimate the 

upper, lower, or median of the data. This section proposed an OSF-based trend spectrum 

estimation method. The maximum value filter is more susceptible to the influence of the peak 

value; the minimum value filter is more susceptible to the influence of the valley value; the 

average value filter is closer to the signal trend. In this section, the data processed by the filter is 

the spectrum. The value in the spectrum is positive, and there is more useful information in the 

peak, so this article uses the maximum filter. Take a =

[2,8,9,12,8,13,10,8,6, 5,7,8,5,9,6,4,3,2,1,3,5,6,3,2] as an example (Fig.2.9a). The data length is 

24, and 5 peaks are gathered in three frequency bands. OSF can obtain the upper envelope of the 

data by calculation. The data in the first window is [2,8,9], and the maximum value 9 should be 

extracted. The second group is [8,9,12], the maximum value is 12. The maximum value in each 
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window should be extracted to form a new sequence: 

⁡[2,9,12,12,13,13,13,10,8,7,8,8,9,9,9,6,4,3,3,5,6,6,6,2]. As shown in Fig.2.9b. The fluctuations 

in the original data have 5 peaks and 4 valleys. The new sequence has 5 flat tops and 2 valleys. 

The trend spectrum estimation method uses the valley values as the demarcation points. The 

boundaries are set at the 10th point and the 19th point. The signal will be divided into three 

parts. This method can be applied to find the important frequencies in the spectrum. 
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Fig.2.9 Trend spectrum estimation method based on OSF. 

The waveform is shown in Fig.2.10a. This is an amplitude modulation signal. The 

amplitude of the signal varies greatly. The upper envelope and lower envelope obtained by OSF 

have fewer extreme points than the original signal. The mean of the envelope approximate the 

trend of the signal. Then, the spectrum of the signal is shown in Fig.2.10b. The signal contains 

several low frequency components. The OSF-based trend spectrum estimation method adds a 

"flat top" above the spectrum. The valley between the flat tops divides the spectrum into several 

independent components. By amplifying the frequency band between 100 Hz and 160 Hz, the 

component with lower amplitude can also be divided, which means that the amplitude of the 

signal has less influence on the OSF. Amplitude can affect OSF, but OSF can also detect small 

amplitude components. The OSF has reliable envelope capability and filtering characteristics. 
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Fig.2.10 The simulated signal decomposed by OSF. 

2.3.2 Single-level spectral segmentation based on OSF and AMD 

Analytical mode decomposition can identify effective information from the Fourier 

spectrum. This section proposed a variable spectral segmentation method to optimize AMD  

which is mainly reflected in the design and selection of bisecting frequency. The complex 

Fourier spectrum contains rich information, especially the characteristic information hidden in 

the noise will not be filtered out. Different from the simulated signal, the collected signal may 

contain modulation of the drive module, environmental noise, pulses caused by accidental 

interference, fault information, etc. They interfere with each other and are difficult to 

distinguish, and may also appear in any frequency band. Noise often exists in the entire 

spectrum, the energy of other components is concentrated near the nature frequency, and more 

than 95% of the energy is contained in a certain bandwidth. AMD manually defines different 
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center frequencies, which wastes time and causes errors. Since each component in the signal 

may appear in any frequency band, this section uses order statistics filter (OSF) with statistical 

estimation characteristics to roughly calculate the location and quantity of the bisecting 

frequency. If x(t) is used to represent the signal, xi represents the i-th component contained in 

the signal. The signal can be written as: 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)
𝑀
𝑖=1                                                   (2.10) 

Let 𝑋̂(𝜔)  represents the Fourier spectrum of 𝑥(𝑡) . The important frequency or center 

frequency of 𝑥𝑖(𝑡) can be defined as ωci. The position between important frequencies is called 

bisecting frequency, which is represented by ωbi. The bandwidth is ∆𝜔𝑖 = 𝜔𝑏𝑖 −𝜔𝑏(𝑖−1). The 

component located in this interval can be described as 𝑥𝑖(𝑡; 𝜔𝑐𝑖, ∆𝜔𝑖)  in time domain. 

Therefore, Eq.2.10 can be rewritten as: 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡; 𝜔𝑐𝑖, ∆𝜔𝑖)
𝑀
𝑖=1                                           (2.11) 

All bisecting frequencies are redefined as boundaries: 

{
 
 

 
 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡|ωc1| < ωb1
⁡⁡⁡⁡⁡⁡ωb1 < |ωc2| < ωb2
⁡⁡⁡⁡⁡⁡ωb2 < |ωc3| < ωb3

⁡⁡⁡⁡⁡…
ωb(M−1) < |ωcM|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                        (2.12) 

Acoording to Eq.2.6 and Eq.2.7，the results can be written as: 

{
⁡⁡𝑥1(𝑡) =

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)𝑥(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)𝑥(𝑡)]

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)]

𝐻[𝑥𝑅𝑒𝑠1(𝑡)] =
𝐻[𝑠𝑐(𝑡)]𝐻[𝑠𝑠(𝑡)𝑥(𝑡)]−𝐻[𝑠𝑠(𝑡)]𝐻[𝑠𝑐(𝑡)𝑥(𝑡)]

𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)]−𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)]

                   (2.13) 

{
𝑥1(𝑡) = 𝑠𝑠(𝑡)𝐻[𝑠𝑐(𝑡)𝑥(𝑡)] − 𝑠𝑐(𝑡)𝐻[𝑠𝑠(𝑡)𝑥(𝑡)]

𝐻[𝑥𝑅𝑒𝑠1(𝑡)] = 𝐻[𝑠𝑐(𝑡)]𝐻[𝑠𝑠(𝑡)𝑥(𝑡)] − 𝐻[𝑠𝑠(𝑡)]𝐻[𝑠𝑐(𝑡)𝑥(𝑡)]
          (2.14) 

Therefore, the first component can be extracted by ωb1: 

{

⁡⁡⁡⁡⁡⁡⁡𝑥1(𝑡) = sin(𝜔𝑏1𝑡)𝐻[cos(𝜔𝑏1𝑡) [𝑥(𝑡)]]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− cos(𝜔𝑏1𝑡)𝐻[sin(𝜔𝑏1𝑡) [𝑥(𝑡)]]

⁡⁡⁡⁡𝑥𝑅𝑒𝑠1(𝑡) = 𝑥(𝑡) − 𝑥1(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                     (2.15) 

After that, ωb2 is used to extract the second component:  

{

⁡⁡⁡⁡⁡⁡⁡𝑥2(𝑡) = sin(𝜔𝑏2𝑡)𝐻[cos(𝜔𝑏2𝑡) [𝑥𝑅𝑒𝑠1(𝑡)]]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− cos(𝜔𝑏2𝑡)𝐻[sin(𝜔𝑏2𝑡) [𝑥𝑅𝑒𝑠1(𝑡)]]

𝑥𝑅𝑒𝑠2(𝑡) = 𝑥𝑅𝑒𝑠1(𝑡) − 𝑥2(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                   (2.16) 

The i-th component can be calculated by the following formula: 

{
 
 

 
 ⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑖(𝑡) = sin(𝜔𝑏𝑖𝑡)𝐻 [cos(𝜔𝑏𝑖𝑡) [𝑥𝑅𝑒𝑠(𝑖−1)(𝑡)]]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− cos(𝜔𝑏𝑖𝑡) 𝐻 [sin(𝜔𝑏𝑖𝑡) [𝑥𝑅𝑒𝑠(𝑖−1)(𝑡)]]

𝑥𝑅𝑒𝑠𝑖(𝑡) = 𝑥𝑅𝑒𝑠(𝑖−1)(𝑡) − 𝑥𝑖(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

           (2.17) 
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Fig.2.11 Decomposition steps of variable spectral segmentation method 
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The original signal can be expressed as the sum of several analytical modes and one 

residual: 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)
𝑀−1
𝑖=1 + 𝑥𝑅𝑒𝑠𝑖(𝑡)                                     (2.18) 

where xResi(t) is the residual component with highest frequency. The cyclic extraction process 

is described in Fig.2.11: 

2.3.3 Variable multi-level spectral segmentation framework 

This section designs a multi-level spectral segmentation framework that utilizes the 

envelope estimation feature on OSF. The multi-level operation construct the framework can 

enrich the distribution and quantity of the bisecting frequency, which will affect the results of 

the obtained components. The process of OSF is like a window sliding from the beginning to 

the end of the data, which means the window width 𝜛 needs to be set. ϖ is an odd number that 

greater than 3. The window separates the signal into 𝑁 −𝜛 + 1  groups, i-th group is 

[𝑋̂(𝑖), 𝑋̂(𝑖 + 1), 𝑋̂(𝑖 + 2), … , 𝑋̂(𝑖 + 𝜛 − 1)], 1 ≤ 𝑖 ≤ 𝑁 −𝜛 + 1. When ϖ is at the beginning 

of the data, the previous ϖ data will be wrapped, and the maximum value will be extracted and 

stored in the new sequence. Move the window step by step to the end of the data, and a new 

sequence named ⁡𝑌(𝑛) with a length of 𝑁 −𝜛𝑖 + 1 will be obtained. Obviously, (𝜛𝑖 + 1)/2 

data are missing in 𝑌(𝑛). We use the average of the data in the first window to add (𝜛𝑖 − 1)/2 

points before 𝑌(𝑛), we use the average of the data in the last window to add (𝜛𝑖 − 1)/2 points 

after 𝑌(𝑛). The length of the new sequence 𝑌(𝑛) is the same as the original data 𝑋(𝑛). 𝑌(𝑛) is a 

positive value which can not only reduce the number of extreme points, but also suppress noise 

and enhance the modes in the spectrum. If 𝑌(𝑛) is smooth enough, the minimum points can 

divide the spectrum into several parts. Subsequently, the boundaries can be applied to 

decompose the signal into several analytical modes (AMs). 

The core of the multi-level spectral segmentation framework proposed in this section is to 

increase the variability of ϖ. Let 𝜛𝑗 denote the window width of the j-th level, and 𝑌𝑗(𝑛) is the 

corresponding sequence. A large 𝜛𝑗  can obtain a smoother upper envelope curve with less 

extreme points, which is more like the fluctuation trend of the spectrum. A small 𝜛𝑗 can obtain a 

more complex upper envelope curve with plenty of extreme points, which is closer to the 

prototype of the spectrum. In this section, 𝜛𝑗 is set to a gradually increasing variable value with 

an initial value. Of course, 𝜛𝑗 is fixed at each level. The initial ϖ1 needs to be defined by the 

generalized extreme point spacing 𝑑𝑂𝑆𝐹: 

𝑑𝑂𝑆𝐹 =
𝑁

𝑛𝑒𝑔
                                                      (2.19) 

where 𝑛𝑒𝑔 is the number of maximum or minimum values in the discretized Fourier spectrum 

X(n), and ϖ1 is set to be the smallest odd number greater than dOSF. Obviously, the initial ϖ1 

may be a small value. Adding variability to this value can add more possibilities for spectral 

segmentation. This section sets 𝜛𝑗 = 𝜛𝑗−1 + 2. Of course, this cumulative increase of 𝜛𝑗 is not 

the only way. The accumulated value needs to be adjusted according to data of different lengths. 

When the amount of data is large, the change span of the window width can be appropriately 

increased. Then, the minimum values of 𝑌𝑗(𝑛) can be calculated and their positions will be 

defined as boundaries. A smaller ϖj  corresponds to a larger number of boundaries and a 

narrower frequency band. Narrow frequency bands are generally not useful for signal 

processing. When the number of boundaries is less than 20, the acquired boundaries start to be 

recorded. With the increase of 𝜛𝑗, 𝑌𝑗(𝑛) may become a monotonously changing curve, and the 
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number of boundaries may be zero, which means that the multi-level spectral segmentation 

framework is successfully established. This new method is named Ailinggram 

Following simulated signals are designed to show the framework mentioned above. s1 is a 

cosine at 30 Hz; s2 is a modulation interference signal; the center frequency of interference s3 is 

1200 Hz; s4 is periodic pulses whose center frequency is 2400 Hz and the bandwidth is 20 Hz. 

{
  
 

  
 
s1 = 3cos(2π ∙ 30t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

s2 = cos(2π ∙ 4t) × cos(2π ∙ 400t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

s3 = 5 sin(2π ∙ 35t) × sin(2π ∙ 1200t + sin(2π ∙ 100t))

+0.8 cos(2π ∙ 2t) × cos(2π ∙ 50t)

s4 = ∑ 4e−g×2πfn
i t × sin(2πfn

i t × √1 − g2)M
i=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

s = s1 + s2 + s3 + s4⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.20) 

where the damping coefficient  is 𝑔 = 0.006, natural frequency is 𝑓𝑛 = 2400 Hz, the period of 

pulses is 𝑇 = 0.05 s. The waveforms and Fourier spectra are shown in Fig.2.12. 

s1 s2

s3 s4

(a) Components (b) Spectrum

s1

s2
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s4

 
Fig.2.12 Signals and Fourier spectrum 
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Fig.2.13 Variable multi-level spectral segmentation method 
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Fig.2.14 The proposed Ailinggram 

The energies of components are concentrated around their center frequencies. The 
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bandwidth of s1 and s2 is narrow, the energy of s3 is concentrated between 1000 Hz and 1500 

Hz, and the energy of s4  is concentrated between 2300 Hz and 2500 Hz. The multi-level 

spectral segmentation method needs to continuously update the value of ϖj  to construct the 

framework. This section adds noise with SNR=8dB to Eq.2.20 and designs four sets of ϖ. The 

upper envelope curves and the number of boundaries obtained by the four sets of ϖ  are 

different. In Fig.2.13, the curve of ϖ1 is smooth, which contains 4 minima, which divides the 

spectrum into 5 parts. When ϖ2=99, the curve fluctuates, and the number and position of the 

minimum values change. When ϖ3=41, more frequency bands are obtained between s3 and s4, 

but their own frequency bands are narrowed, which means that the noise contained in s3 or s4 

has been reduced. When ϖ4=31, there are 15 boundaries. Record the position of boundaries 

after changing the window width, a series of variable spectral segmentation groups can be 

constructed into a new frame. Fig.2.14 is used as an example to show the "Ailinggram" 

framework proposed in this section. The position and number of boundaries of each level from 

Lv-1 to Lv-4 are the same as in Fig.2.13. 

2.3.4 Feature screening index based on bearing fault simulation 

The method can be applied to processing vibration, sound, electrical pulse and other 

signals, and can also be applied to the fields of electrical, construction, and machinery. This 

chapter not only proposed a signal decomposition method, but also looks forward to expanding 

the method to play roles in more fields. The fault data of this type of rotating equipment often 

has certain rules. Aiming at these characteristics, this section designs a new indicator and uses 

simulation signals to demonstrate and verify its effectiveness. 

The periodicity of uniform rotating machinery or its parts is usually fixed, which provides 

a structural basic model for the establishment of new indicators. Whether it is a bearing or gear 

failure, its periodicity can be predicted. The damage models of bearings are shown in Fig.2.15. 

The vibration signal usually contains many pulses. Whether looking for pulses in the signal or 

looking for "cyclostationary" features, existing methods expect that the final result obtained will 

contain less noise or interference and contain more feature information. How to quantify feature 

information is the main function of various indicators. The performance of the fault 

characteristic in time domain is periodic pulses. In the frequency domain, there are many 

sidebands near the center frequency. The fault characteristics in the signal and Fourier spectrum 

can be easily masked by various interference or noise contained in the signal. The most 

convenient and commonly used method is to calculate the Hilbert envelope spectrum of the 

signal and observe the fault characteristic frequency and its harmonics. Considering that the 

fault features in the envelope spectrum are more stable and referable, this section introduced a 

new harmonic correlation index (HCI) to filter the fault frequency band in Ailinggram. 

(a) Inner ring fault

w d dw

(b) Outer ring fault

w:width

d:depth

 
Fig.2.15 Inner ring or outer ring fault and the size of the damage 
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For electrical or mechanical equipment that may occur damage, the specific information of 

the bearing model is known. Although it is hard to find the period from the actual collected 

signal, it is relatively easy to find characteristic frequencies or harmonics from the Hilbert 

envelope spectrum. HCI does not require all information of bearing, and only needs the fault 

characteristic frequency to simulate the time domain data of the bearing fault. The Hilbert 

envelope spectrum of each component becomes the objective function to be analyzed. The 

correlation between the envelope spectrum of the collected signal and the component would be 

compared. When their correlation is high, there are high-amplitude fault characteristic 

frequencies and harmonics in the Hilbert envelope spectrum of the collected signal, which 

contains a large amount of fault information. When their correlation is low, there is no high-

amplitude fault characteristic frequency or corresponding harmonic in the Hilbert envelope 

spectrum of the collected signal. HCI can avoid the complicated steps of the observation method 

and provide more possibilities for big data processing. 

Eq.2.21 provides a basic model of bearing failure: 

𝑠(𝑡) = ∑ 𝐴𝑒−𝑔×2𝜋𝑓𝑛
𝑖𝑡 × 𝑠𝑖𝑛(2𝜋𝑓𝑛

𝑖𝑡 × √1 − 𝑔2)𝑀
𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.21) 

where 𝑓𝑛 is the natural frequency; 𝑔 is the damping coefficient. Since the object of calculating 

the correlation is the envelope spectrum, and the natural frequency and the damping coefficient 

will not interfere with the envelope spectrum, the values of these two parameters can be 

empirically taken without calculation. 

Use 𝑠̂(𝑡) to represent the Hilbert transform of the signal: 

𝑠̂(𝑡) =
1

𝜋
∫

𝑠(𝜏)

𝑡−𝜏
𝑑𝜏

+∞

−∞
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.22) 

Remove the trend item: 𝑢(𝑡) = |𝑠̂(𝑡)| − |𝑠̂(𝑡)|̅̅ ̅̅ ̅̅ ̅. If the Fourier transform of 𝑢(𝑡) exists, the 

data will be: 

𝑢̂(𝜔) = 𝐶𝐹𝑇[𝑢(𝑡)] = ∫ 𝑢(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
                                     (2.23) 

The Hilbert envelope spectrum can be expressed as: 

𝑣(𝜔) = |𝑢̂(𝜔)|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.24) 

The simulated fault signal only contains fault information, and there is no noise in its 

Hilbert envelope spectrum. The collected signal may contain various interferences or strong 

noises. For similar but slightly different two sets of signals, the Pearson product-moment 

correlation coefficient (Pearson's correlation coefficient) can be used to measure the linear 

correlation. Pearson's correlation coefficient is located in [-1,1]. In view of its characteristics, 

changes in the positions and scales of the two variables will not affect it. The amplitudes of the 

two envelope spectra to be compared can be normalize to [0,1]. 

Set V = v̂(ω)  denote the envelope spectrum of the simulated fault, let U  denote the 

envelope spectrum of the collected signal. Their Pearson's correlation coefficient is defined as 

the product of the covariance of the two variables divided by their standard deviations: 

ρU,V =
cov(U,V)

σUσV
=

E[(U−μU)(V−μV)]

σUσV
                                          (2.25)  

where E[∙]  represents the expectation of the signal, and the sample Pearson's correlation 

coefficient can be expressed as: 

rUV =
∑ (Ui−U̅)(Vi−V̅)
n
i=1

√∑ (Ui−U̅)
2n

i=1 √∑ (Ui−U̅)
2n

i=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.26) 

where U̅ represents the mean value. In order to better show the algorithm proposed in this paper, 

Fig.2.16 provides a flowchart. 
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(b) Ailinggram

Set the initial window width of OSF

Obtain a set of analytical mode 

components through VAMD
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Fig.2.16 The flowchart of Ailinggra 

2.4 Verification 

2.4.1 Simulation signal verification 

A simulated signal of a bearing inner ring and outer ring compound fault is shown in 

Eq.2.27. The outer ring fault simulation signal is a set of periodic pulses. The inner ring fault 

simulated signal contains not only periodic pulses, but also amplitude modulation information 

and rotation frequency information, so it is more complicated. 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑠𝑂(𝑡) = ∑ 𝐴1𝑒

−𝑔1×2𝜋𝑓𝑛1
𝑖 𝑡 × sin(2𝜋𝑓𝑛1

𝑖 𝑡 × √1 − 𝑔1
2)𝐿

𝑖=1

𝑠𝐼1(𝑡) = ∑ 𝐴2𝑒
−𝑔2×2𝜋𝑓𝑛2

𝑖 𝑡 × sin(2𝜋𝑓𝑛2
𝑖 𝑡 × √1 − 𝑔2

2)𝑀
𝑖=1

𝑠𝐼2(𝑡) = cos(2𝜋𝑓𝑟𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠𝐼2
′ (𝑡) = {

𝑠𝐼2(𝑡),⁡⁡⁡⁡⁡𝑠𝐼2(𝑡) ≥ 0

⁡⁡⁡⁡0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑠𝐼2(𝑡) < 0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠𝐼3(𝑡) = 𝐴3√(𝑠𝐼2
′ (𝑡))

3
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑢(𝑡) = {
1,⁡⁡⁡⁡⁡𝑡 = 0.01𝑛
0,⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑠⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠𝐼(𝑡) = (𝑠𝐼3(𝑡) × 𝑠𝐼2
′ (𝑡) × 𝑢(𝑡)) ∗ 𝑠𝐼1(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠(𝑡) = 𝑠𝑂(𝑡) + 𝑠𝐼(𝑡) + 𝜂⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

        (2.27) 

where the amplitude A1=1, A2=0.5, A3=3; the nature frequency is fn1=1000 Hz, 𝑓𝑛2=3500 Hz; 

the damping coefficient 𝑔1 = 0.05, 𝑔2 = 0.02; 𝐿 = 17, 𝑀 = 6; rotation frequency 𝑓𝑟=12 Hz; 

n = 1,2,3, … ,50; 𝜂 is noise with SNR = −2dB. 

The model constructed by Eq.2.27 is shown in Fig.2.17, including the waveforms of the 

outer ring and inner ring, the Fourier spectrum of each component, and the envelope spectrum. 

Although the intensity of the noise is small, the time-domain waveform of the outer ring fault 

has been buried. Although the frequency domain waveform of the inner ring fault is buried, the 

frequency of rotation and the characteristic frequency of the inner ring fault can be found from 

the envelope spectrum. The variable multi-level spectral segmentation framework and the 

harmonic correlation index proposed in this chapter are used to process the signal, and the 
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characteristic frequencies of the outer ring and inner ring fault are input respectively.  

fIfr

sO sI sO+sI

Spectra

Envelope spectrum

 

Fig.2.17 Composite fault data and spectra of outer and inner ring 

(a) Ailinggram-1 (b) Ailinggram-2 (c) Fast Kurtogram  
Fig.2.18 Fault data processed by Ailinggram and Fast Kurtogram 

Fig.2.18a-b shows the results of Ailinggram that extracts the faults of outer/inner ring. The 

frame will be divided into 7 levels, and the window width of OSF is increased from 25 to 37. 

The difference between them is the distribution of HCI. In Fig.2.18a, the large HCI is 

concentrated around 3477 Hz. The largest HCI is located at OSF=31, Ailinggram divided the 

spectrum into 11 frequency bands, and the 8th has the largest HCI. In Fig.2.18b, the large HCI is 

concentrated around 889 Hz, the largest HCI is located at OSF=25, Ailinggram divided the 

spectrum into 19 frequency bands, and the 4th has the largest HCI. The bandwidth is 642 Hz. 

Fig.2.18c shows the results obtained by the classic blind source Fast Kurtogram. The largest 

kurtosis located in the sixth component of level 3 with the center frequency of 3437 Hz, which 

is related to bearing inner ring fault. The bandwidth is 642 Hz. 

(a) Boundary distribution of Ailinggram-1-lv4 (b) Boundary distribution of Ailinggram-2-lv8  

Fig.2.19 Boundaries and HCI distribution of Ailinggram 

The boundaries and HCI distribution of Ailinggram can be seen in Fig.2.19. The frequency 

band with a center frequency of 3500 Hz in Fig.2.19a, 1000 Hz in Fig.2.19b has the largest HCI, 

while other frequency bands are much smaller than it. Reconstruct the time-domain waveform 
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of these frequency bands and calculate their envelope spectra (Fig.2.20). Although the 

amplitude of the pulses in the time-domain waveform is low, these pulses are obviously 

periodic. The envelope spectrum of the component (blue) and the simulated inner/outer ring 

fault (red) are in good agreement. The characteristic frequency and harmonics of the outer 

ring/inner ring of the bearing have a high degree of conformity with the simulation 

characteristics. 

(a) Inner ring feature extraction (b) Outer ring feature extraction

fI

Harmonics
fO

Harmonics

 

Fig.2.20 Components with the largest HCIs and their envelope spectra 

2.4.2 Bearing fault signal verification 

2.4.2.1 Bearing inner ring fault data 

This section uses the data collected by the bearing failure test bench of Mie University to 

verify the application of the proposed Ailinggram in fault diagnosis system of rotating 

machinery which is shown in Fig.2.21. The bearing type is NU204. The bearing inner ring has a 

width of 0.3 mm and a depth of 0.05 mm, the bearing outer ring has a width of 0.3 mm and a 

depth of 0.05 mm which is shown in Fig.2.21c.  

(a) Bearing test bench (b) Sensors (c) Ring fault  
Fig.2.21 Bearing failure test bench 

The bearing in operation bears a dynamic load of 0-300kg, and the speed of the motor is 

1000 r/min. The inner ring fault characteristic frequency is 𝑓𝐼 = 110 Hz, the period is 𝑇𝐼 =

0.0091 s. Fig.2.22 shows the waveform and Fourier spectrum of the data. The pulses in the 

waveform have been buried by the strong environmental noise.  

This section uses Ailinggram to design the multi-level spectral segmentation frame and 

filter the bearing inner ring fault information; the first component obtains the largest HCI. The 

center frequency is 2617 Hz. It can be found that although the window width is increased from 

113 to 155, the width of the first frequency band is hardly divided, which is the characteristic of 
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the proposed Ailinggram. The large HCIs obtained are all located in this frequency band. 

Calculate the component and its Hilbert envelope spectrum, the results are shown in Fig.2.23.  

Fault data

Spectrum

 

Fig.2.22 Collected bearing inner ring fault data 

(a)Ailinggram (b) Component and its envelope spectrum

fI

 
Fig.2.23 Inner ring fault extracted by Ailinggram and HCI distribution 

(b) Envelope spectrum (c) STFT-Based Fast Kurtogram (a) FIR- Based Fast Kurtogram 

fI

fI

 
Fig.2.24 Inner ring fault extracted by Kurtogram 

Although the amplitude of the waveform is reduced, many pulses with similar spacing 

appear. Compared with the original signal, the noise in this component is weakened and the 

impulse information is enhanced. In the Hilbert envelope spectrum, there are inner ring fault 

characteristic frequencies and their harmonics whose amplitude decreases in steps. There are 

sidebands near the harmonics, which is consistent with the characteristics of the bearing inner 

ring failure. The traditional Fast Kurtogram is used to process the signal to verify the advantages 

of Ailinggram. The FIR-based method obtained 7 levels of spectral segmentation groups, and 

the 7th component get the largest kurtosis in level 7. The STFT-based method obtained 9 levels 

of spectral segmentation groups, and the 8th frequency band of Level 7.6 get the largest 

kurtosis. The envelope spectra of these two components would be extracted and shown in 

Fig.2.24. Although the fault characteristic frequency can be found from them, the corresponding 

harmonic information cannot be found. Therefore, it is impossible to determine whether there is 
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a bearing inner ring fault here. Compared with the typical Fast Kurtogram, the proposed 

Ailinggram has better adaptability and diagnostic efficiency. 

In this section, the calculation speeds of the traditional Fast Kurtogram, Autogram and the 

Ailinggram proposed in this chapter are tested and shown in Table 1. The traditional Fast 

Kurtogram still has the fastest speed, which can hardly be replaced. The calculation speed of 

Autogram is very slow. Although the Ailinggram proposed in this chapter is slower than Fast 

Kurtogram, it can still obtain results faster. 

Table 1 Statistics of experimental results 

 Fast Kurtogram Autogram Ailinggram 

Time consuming 0.437s 297.145s 12.486s 

2.4.2.2 Bearing outer ring fault data 

When collecting the fault data of the outer ring, the bearing in operation bears a dynamic 

load of 0-300 kg, and the speed of the motor is 1500 r/min. The outer ring fault characteristic 

frequency is 𝑓𝑂 = 100 Hz, the period is 𝑇𝑂 = 0.01 s. Due to the strong noise, the time-domain 

waveform of the data collected in Fig.2.25 has little impulse information. Using Ailinggram to 

process the signal, the signal is decomposed into 6 levels. In all levels, the part less than 10,000 

Hz has large HCI. Extract the level with the largest HCI and display the boundary distribution in 

Fig.2.26b. The Fourier spectrum is divided into 6 parts and the first frequency band with 

HCI=0.08 theoretically contains the most fault information. After reconstructing this frequency 

band, the noise in the is significantly reduced. The existence of the characteristic frequency and 

harmonics of bearing outer ring fault proves that the bearing outer ring fault exists in the signal. 

The Ailinggram can be applied to bearing fault diagnosis. 

Fault data

Spectrum

 

Fig.2.25 Bearing outer ring fault data and its Fourier spectrum 

(a)Ailinggram
(b) Boundaries distribution, the component and its 

envelope spectrum

fO

 
Fig.2.26 Outer ring fault extracted by Ailinggram and HCI distribution 

Fast Kurtogram will get different results when processing this signal. The FIR-based 
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method obtained 7 levels and STFT-based method obtained 9 levels. Extracted the components 

with the largest kurtosis and shown the envelope spectra in Fig.2.27. Although the outer ring 

fault characteristic frequency can be found from it, the corresponding harmonic information 

cannot be found. 

(a) FIR- Based Fast Kurtogram (b) Envelope spectrum (c) STFT-Based Fast Kurtogram 

fO

fO

 
Fig.2.27 Outer ring fault extracted by Kurtogram 

2.4.2.3 Bearing compound fault data 

Shanghai Jiao Tong University provided data for this experiment. Fig.2.28 shows the 

bearing fault simulator and compound fault model. The motor rotation frequency is 30Hz, the 

motor rotation speed is 1800r/min, and the bearing model is 6200 deep groove ball bearing. The 

compound fault of the bearing includes the damage of the inner ring and the outer ring. There 

are three vibration acceleration sensors in the vertical, horizontal and axial directions of the 

faulty bearing. There is a fourth sensor in the vertical direction away from the faulty bearing.  

 

Fig.2.28 The bearing fault simulator 

Fault data

Spectrum

Envelope 

Spectrum

 

Fig.2.29 Collected signal, Fourier spectrum and envelope spectrum 

Inner Ring Fault

Outer Ring Fault
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(d) Boundaries distribution, the component and 

its envelope spectrum(c)Ailinggram-Outer ring fault extract

(b) Boundaries distribution, the component and 

its envelope spectrum(a)Ailinggram-Inner ring fault extract

fI

fO

 

Fig.2.30 Inner and outer ring fault extracted by Ailinggram 

(a) FIR- Based Fast Kurtogram 

(d) Component and its envelope spectrum(c) STFT-Based Fast Kurtogram 

(b) Component and its envelope spectrum

fI

fI

 
Fig.2.31 Inner and outer ring fault extracted by Kurtogram 

The inner ring fault characteristic frequency is 𝑓𝑖 = 148.6  Hz; the outer ring fault 

characteristic frequency is 𝑓𝑜 = 91.8 Hz. The signal in Fig.2.29 has a single pulse, which may 

interfere with traditional indicators such as kurtosis. The Fourier spectrum is complex which 

proves that there are many types of information in the signal. The motor rotation frequency and 
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its multiples existed in the envelope spectrum, and it is necessary to continue processing the 

signal to diagnose the fault. 

The results of Ailinggram extracting the bearing compound faults can be found in Fig.2.30. 

Large HCIs are distributed in different areas. When the bearing inner ring is faulty, the large 

HCI is distributed around 16000 Hz; when the bearing outer ring is faulty, the large HCI is 

distributed around 11000 Hz. The boundary and HCI distribution in the Level where the largest 

HCI is located in the two figures prove that the proposed method has higher adaptability. In the 

decomposition process, although the noise is suppressed, the single pulse has not been 

eliminated. The fault characteristics of the bearing inner and outer rings in the signal were 

successfully identified. 

Fast Kurtogram will get different results when processing this signal. The FIR-based 

method obtained 5 levels and STFT-based method obtained 7 levels. Extracted the components 

with the largest kurtosis and shown the envelope spectra in Fig.2.31. FIR Based Fast Kurtogram 

can extract the fault of the bearing inner ring, but not the outer ring. STFT-Based Fast 

Kurtogram extracts information with a bandwidth of about 2130Hz near the center frequency of 

17600Hz. Although the characteristic frequency of the inner ring fault can be found, the 

harmonics and the outer ring fault characteristic do not exist. 

The above experiments verified that the proposed Ailinggram can successfully locate and 

extract the fault information of the inner ring and the outer ring The HCI is sensitive to pulse 

information with specific periodicity. 

2.5 Conclusion 

A novel framework of multi-level spectral segmentation (Ailinggram) were proposed. 

Ailinggram relies on OSF's window width variability and envelope estimation characteristics to 

achieve multi-level spectral segmentation, which replaces the manual selection of bisecting 

frequency and provides adaptability for AMD. The variable multi-level spectral segmentation 

framework increases the diversity of the center frequency and bandwidth, and suppresses the 

noise and interference in the reconstructed component. In order to filter the feature from the 

analytical modes of each level, this chapter proposes harmonic correlation index (HCI) for 

feature recognition and improves the usability of Ailinggram in the field of non-stationary signal 

processing and mechanical equipment fault diagnosis. The simulated and experimental signal 

proved that the proposed method is effective and can successfully extract the bearing faults. 

Compared with Kurtogram, Ailinggram is more practical for rotating machinery. Although 

there is a slight difference between theory and practice, it does not affect the feature extraction 

process and the fault identification. Experiments have proved that when the frequency band 

with the largest HCI is extracted, the probability of fault information in the envelope spectrum is 

greater than that of spectral kurtosis. 
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Chapter 3 

Multilevel spectral segmentation method based on optimized 

frequency slice wavelet transform and its application in 

bearing fault diagnosis under low speed and heavy load 

conditions [62] 

3.1 Introduction 

In this chapter, Fast Entrogram is proposed as a new method for separating components 

from the frequency domain and accurately filtering fault information. This method distinguishes 

the distribution of different components in each frequency band by the fluctuation 

characteristics of the spectral amplitude. We find that after the Fourier transform of the spectrum 

is intercepted, the reconstructed new sequence is directly related to the fluctuation 

characteristics of the spectral amplitude. The minima points of the sequence can be used to 

segment the spectrum and then separate different components. The frequency slice function 

would be used to extract components in each frequency band. By comparing with the finite 

impulse response filter, the component leakage energy extracted by the frequency slice function 

is less. In order to filter the periodic pulse information from all components, this section 

proposed correlation spectral negentropy (CSNE). The simulation results showed that the 

proposed Fast Entrogram method can effectively extract periodic pulses. The experimental 

signals verified that the method can be applied to fault diagnosis of bearing inner and outer 

rings. 

3.2 Fast Kurtogram 

3.2.1 A brief introduction to Fast Kurtogram 

Fast Kurtogram has two forms of expression to represent the spectral kurtosis of the signal 

on the (f, ∆f)  plane. Firstly, the center frequency f  and the corresponding bandwidth ∆f  are 

defined in the plane. The Fast Kurtogram based on the 1/3-binary tree of filter-banks is shown 

in Fig.3.1a. The center frequency determines the position of the component to be extracted in 

the spectrum; the bandwidth determines the amount of information contained in the frequency 

band to be extracted.  

In Fast Kurtogram based on FIR, dichotomy and trichotomy are nested. In Fig.3.1a, Level 

0 is the spectrum of the original signal and he frequency band is ∆f ∈ [0, π/2]. The red arrow 

indicates the dichotomy: the frequency band in Level 0 is divided into two parts, low frequency 

[0, π/4]  and high frequency [π/4, π/2] , and this part is named Level 1. The blue arrow 

indicates the trichotomy: Level 0 is divided into three parts: low frequency [0, π/6] , 

intermediate frequency [π/6, π/3], and high frequency [π/3, π/2]. Then, the low frequency 

[0, π/4] and high frequency [π/4, π/2] in Level 1 can be decomposed into Level 2 by the same 

method, more and narrower frequency bands would be obtained. In Level n, the spectrum will 

be divided into 2n parts by dichotomy and 3 × 2n−1 parts by trichotomy. The corresponding 

bandwidth is 1 2n+1⁄  and 1 (3 × 2n)⁄ . The 1/3-binary tree of filter-banks is an optimization and 

supplement to the STFT-based Fast Kurtogram. The spectrum representation of STFT-based 

Fast Kurtogram is similar to that of dichotomy, as shown in Fig.3.1b. 
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Fig.3.1 Frequency-band division methods: (a) FIR based Fast Kurtogram; (b) STFT based Fast 

Kurtogram 

STFT and FIR are used to filter the signal. Take dichotomy as an example: two filters will 

be constructed: a low-pass filter 𝑓𝑙(𝑛) and a high-pass filter 𝑓ℎ(𝑛) 

{
𝑓𝑙(𝑛) = 𝑓(𝑛)𝑒

𝑗𝑛𝜋

4 ⁡⁡= 𝑓(𝑛) [𝑐𝑜𝑠 (
𝑛𝜋

4
) + 𝑗𝑠𝑖𝑛 (

𝑛𝜋

4
)]⁡⁡⁡⁡

𝑓ℎ(𝑛) = 𝑓(𝑛)𝑒
𝑗3𝑛𝜋

4 = 𝑓(𝑛) [𝑐𝑜𝑠 (
3𝑛𝜋

4
) + 𝑗𝑠𝑖𝑛 (

3𝑛𝜋

4
)]

                              (3.1) 

where f(n) is a low pass FIR filter with a cutoff frequency 𝑓𝑐 = 1/8 + 𝜀.  

Spectral kurtosis (SK) is defined as the energy-normalised fourth-order spectral cumulant 

which represents the peak of the probability density function 

𝐾 =
〈|{𝑓𝑐,∆𝑓}|

4〉

〈|{𝑓𝑐,∆𝑓}|
2〉2
− 2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.2) 

where {𝑓𝑐, ∆𝑓} denotes the frequency band with center frequency of 𝑓𝑐 and bandwidth of ∆𝑓. 

3.2.2 Shortcomings of Fast Kurtogram 

This section introduces some details that Fast Kurtogram can be optimized: 

a) Kurtogram is a framework and will be preset. The center frequency and bandwidth that 

may be obtained are related to the sampling frequency, so they are specific values which tends 

to cause the center frequency to be inappropriate or the bandwidth to be wide or narrow. The 

segmentation mode is fixed, so the obtained center frequency may offset when compared with 

the real situation. When the offset value is large, the effect of envelope demodulation will be 

affected. In addition, the obtained bandwidth is inversely proportional to the level of 

segmentation. For bearing fault signals, the narrow bandwidth may sometimes cause difficulties 

in diagnosis. This fixed mode brings limitations to Fast Kurtogram. When the center frequency 

is near 𝑘 2𝑛+1⁄  or 𝑘 (3 × 2𝑛)⁄ , it is difficult to find a suitable bandwidth. If a suitable 

bandwidth is selected preferentially, only a limited number of center frequencies are associated 

with it. For example, when the center frequency of the component to be extracted is exactly at 

π/4, it is only appropriate to obtain the frequency band [π/6, π/3] after Level 0 is processed by 

trichotomy in FIR Based Fast Kurtogram. The width of this frequency band is fixed. 

b) Energy leakage exists in FIR filters. 

c) Kurtosis is very sensitive to random shocks, which makes the algorithm vulnerable to 

noise. 

3.3 Proposed method of Fast Entrogram 

When the rolling bearing in the rotating machine is damaged, the collected signal would 

contain fault information. Usually, these fault information will be concentrated in specific 

frequency bands on the spectrum. However, due to different bearing types and installation 
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positions in different equipment, the natural frequency will be different, so the center frequency 

representing the location of the fault information needs to be found. In this chapter, Fast 

Entrogram is proposed to find frequency bands that contain fault information in the spectrum. 

Since noise exists in both low and high frequencies, it is important to make the extracted 

component contain more fault information and less noise as the main task of the algorithm. For 

this reason, this chapter uses the trend spectrum----extracting the fluctuation trend of the 

spectrum from the Fourier transform function of the spectrum----to segment the spectrum, 

which can separate the parts where the amplitudes of the spectrum are concentrated from each 

other. Unlike Fast Kurtogram, which divides the spectrum evenly, this method performs division 

based on the characteristics of the amplitude fluctuation of the spectrum. The obtained results 

are related to the components in the signal. After successfully separating the spectrum into 

several frequency bands, this chapter uses the frequency slice function to extract each 

component. By comparing with the finite impulse response filter, the component leakage energy 

extracted by the frequency slice function is less. Considering the characteristics of periodic 

pulse signals, and in order to filter out the one that contains more fault information from many 

components, this chapter proposes correlation spectral negentropy. The specific steps are as 

follows: 

Section 3.3.3

Fast Entrogram

Start

End

Fast Kurtogram

Load the signal and calculate the spectrum

Calculate the key functions of the spectrum 

Calculate the trend spectrum and divide the 

spectrum into several frequency bands.

Perform frequency slice wavelet transform on 

components of different frequency bands, and 

reconstruct the obtained signals into time 

domain waveform

Calculate the CSNE of each frequency slice 

component

Perform Hilbert envelope demodulation on the 

largest frequency slice component of CSNE to 

diagnose faults

Start

End

Load the signal and calculate the spectrum

Dividing the spectrum equally using the 1/3-

binary tree method.

Constructing FIR filter banks based on 

boundaries

Processing signals with different FIR filter 

banks or STFT

Calculate the Kurtosis of each component

Perform Hilbert envelope demodulation on the 

largest component of Kurtosis to diagnose 

faults

Section 3.3.2

Section 3.3.1

 

Fig.3.2 The flowcharts of Fast Kurtogram and Fast Entrogram. 

Step 1: Collect the signal; calculate the Fourier transform of the spectrum to obtain the key 

function and set the initial interception length. 

Step 2: According to the interception length, a part of the key function should be 

reconstructed to obtain the trend spectrum. Calculate the minimum points of the trend spectrum 

and divide the spectrum into several frequency bands. 

Step 3: Use frequency slice function to extract each frequency band, a series of frequency 

slice components (FSCs) would be obtained. 

Step 4: Increase the interception length and repeat steps 2 to 3 several times. Correlation 

spectral negentropy could be calculated for each group of FSCs. 

Step 5: Arrange the frequency bands obtained under different interception lengths 
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according to the position of the center frequency of each frequency band. A new Entrogram can 

be obtained by identifying each band according to its bandwidth and the CSNE of the 

reconstructed component. 

Fig.3.2 shows the flowchart of the above steps. 

3.3.1 A novel spectral segmentation method 

The collected signal often contains several kinds of unknown information, such as the 

characteristic information of the equipment during normal operation, the characteristic 

information of the faulty parts, and the environmental noise. If the equipment in normal 

operating conditions has not been severely disturbed by the outside world, its vibration signal 

may contain non-faulty modulation information and unavoidable environmental noise. In 

addition, when materials and equipment collide or random pulse signals generated by noisy 

environments may also be collected by sensors. When bearings, gears or other rotating parts in 

the equipment fail, collision may occur between balls and the inner or outer ring of the bearing, 

and may also occur between the normal gear and the damaged gear. The collision produces a 

pulse signal. Although the pulse signal will gradually weaken, repeated collisions at a steady 

speed will make the pulse signal periodic. 

 

Fig.3.3 Four signals and their key functions: (a) signals; (b) spectra; (c) key functions. 

Fig.3.3 simulates the modulation signal, pulse signal, periodic pulse signal and noise. 

These four signals have the same amplitude, which is 5m/s2 . If these four signals are 

superimposed into one complex signal, it is very difficult to separate them from the time 

domain. After calculating the Fourier spectrum of each signal separately, it can be found that 

although these signals are difficult to be distinguished in the time domain, they could be 

distinguished from the frequency domain because the center frequencies representing their 

vibration characteristics are located in different frequency bands. The characteristic frequency 

of the modulated signal in Fig.3.3 is lower than 300Hz, and the shape is two straight lines. The 

waveform of the pulse signal is an attenuated signal, but it is an arched curve in the frequency 

domain, and its energy is concentrated near the center frequency of 500 Hz. The center 

frequency of the periodic pulse signal is located at 1000 Hz, and there are lots of sidebands near 

the center frequency. Although the sidebands are spread all over the band, most of the energy is 

concentrated near the center frequency. In addition, noise can be found throughout the entire 

frequency band. If only the information of a certain frequency band is extracted, the noise in the 

obtained component will be small, but it is very difficult to separate all the noise. When the 

above signals are superimposed into one complex signal, the position of the original 

components in the spectra will not change. If the information between 750Hz and 1250Hz is 

extracted, the modulation signal, pulse signal and most noise will not be included, and most of 

the energy of the periodic pulse signal will be obtained. Based on this characteristic, this paper 
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proposed a spectral segmentation method based on the key function and trend spectrum to 

distinguish the components in the spectrum. 

If the Fourier transform f̂(ω) of the signal f(t) exists, it can be calculated by the following 

formula: 

𝑓(𝜔) = ∫ 𝑓(𝑡)
+∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.3) 

The spectrum |f̂(ω)| does not contain imaginary parts, and it is discretized as a new signal. 

Let g(n) = |f̂(n)|, n = 0,2,3,… , L − 1. L is the length of the new signal. It can be found that 

g(n) is a discrete set of non-negative sequences. Calculate its discrete Fourier transform by 

Eq.3.4: 

𝑔(𝑢) = ∑ 𝑔(𝑛)𝑒−𝑖
2𝜋

𝐿
𝑢𝑛𝐿−1

𝑛=0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.4) 

Similar to the Fourier transform of the signal, ĝ(u) contains real and imaginary parts. 

|ĝ(u)|  is called the key function in this paper. Fig.3.3c shows the relationship among key 

functions, signals and spectra. The key functions of the different signals are in different forms. 

If a part of ĝ(u) is used to perform the inverse discrete Fourier transform, a new spectral 

function similar to the Fourier spectrum can be obtained. Using ĝp(u) to represent the part of 

ĝ(u), that can be used for calculation. The trend spectrum can be expressed as: 

𝑇(𝑓) = ∫ 𝑔𝑝(𝑢)𝑒
𝑖2𝜋𝑢𝑓𝑑𝑢

+∞

−∞
                                                  (3.5) 

where T(f) is the trend spectrum. 

Use Eq.3.3-3.5 to calculate the trend spectrum of the above three stationary signals. 

Compared with the Fourier spectrum, the amplitude of the trend spectrum is lower. The high-

frequency part of the modulation signal is 200Hz, and the peak of the trend spectrum is also 

located at this position; the peak of the trend spectrum of the pulse signal coincides with the 

peak of its Fourier spectrum; so is the periodic pulse signal. In addition, the trend spectrum of 

the periodic pulse signal is similar to the upper envelope of its Fourier spectrum. It can be found 

that the trend spectrum contains information related to the fluctuation of the amplitude of the 

Fourier spectrum. The trend spectrum is also large where the amplitude of the spectrum is high. 

This regular phenomenon can be further used to segment different components in complex 

signals. 

For a single signal, the trend spectrum has the above characteristics. For combined signals, 

the characteristics of the trend spectrum are worth exploring. Fig.3.4 shows that the center 

frequency of signal 1 is located at 200Hz, the center frequency of signal 2 is located at 500Hz, 

and the center frequency of signal 3 is located at 1000Hz. If signal 1 and signal 3 are combined, 

the Fourier spectrum and trend spectrum can be found in Fig.3.5a. The Fourier spectrum 

contains a lot of minimum points, but the trend spectrum has fewer minimum points. It is easy 

to separate the parts representing signal 1 and signal 3 from 260 Hz. If signal 2 and signal 3 are 

combined, the Fourier spectrum and trend spectrum can be found in Fig.3.5b. Signal 2 is a 

single pulse, and its energy is very small in the Fourier spectrum and hard to be found. The part 

of the trend spectrum that represents a single pulse can be detected. It is easy to separate the 

parts representing signal 2 and signal 3 from 750 Hz. If the three signals are combined, the 

Fourier spectrum and trend spectrum can be found in Fig.3.5c. These three components can be 

separated from 260 Hz and 750 Hz. The most critical part in the process of reconstructing the 

trend spectrum is how to determine the number of reconstruction points. Fig.3.6 shows the trend 

spectrum corresponding to different values. Small value means rough trend spectrum and fewer 

minimum points; the spectrum can be split into a small number of frequency bands. Large value 
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corresponds to complex trend spectrum and more minimum points and the spectrum will be 

split into a large number of frequency bands. This feature can be extended to the application. 

 

Fig.3.4 The relationship between Fourier spectrum and Trend spectrum: (a) signal 1: modulation signal; 

(b) signal 2: pulse signal; (c) signal 3: periodic pulse signal. 

 

Fig.3.5 The Fourer spectrum and Trend spectrum of the superimposed signal: (a) Signal 1+3; (b) Signal 

2+3; (c) Signal 1+2+3. 

 

Fig.3.6 Trend spectrum corresponding to different values: (a) Value=5; (b) Value=25; (c) Value=300. 
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Fig.3.7 The proposed spectrum segmentation method. 

If the initial value of the number of reconstruction points is 5, the trend spectrum has one 

minimum value, such as Lv1 in Fig.3.7. The spectrum is divided into two parts. When the value 

increases to 25, the number of boundaries increases to 4, as in Lv5. The spectrum is divided into 

five parts. It can be found that the number and position of the boundary will change as the value 

increases; sometimes the number of boundary does not change but the position changes. It 

should be noted that when the value is too large, too many boundaries will cause the frequency 

band to be narrow. Such segmentation results are meaningless and may increase the 
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computation time, so it is necessary to control the number of segmentation bands to be no more 

than 20. 

3.3.2 Filtering characteristics of frequency slice wavelet transform 

This section introduces the frequency slice function to fit the frequency band obtained in 

Section 3.3.1. The frequency slice wavelet transform can be expressed as: 

𝑊𝑓(𝑡, 𝜔, 𝜆, 𝜎) =
1

2𝜋
𝜆 ∫ 𝑓(𝑢)

+∞

−∞
𝑝̂∗ (

𝑢−𝜔

𝜎
) 𝑒𝑖𝑢𝑡𝑑𝑢                          (3.6) 

where the scale factor σ ≠ 0, t, ω, and u are the observation time, the observation frequency, 

and the evaluation frequency; λ can be set as a constant; p̂(ω) is a frequency slice function 

(FSF); ∗ represents the conjugate. The time domain expression of Eq.3.6 is: 

𝑊𝑓(𝑡, 𝜔, 𝜎) = 𝜎𝑒
𝑖𝜔𝑡 ∫ 𝑓(𝜏)𝑒−𝑖𝜔𝑡

+∞

−∞
𝑝∗(𝜎(𝜏 − 𝑡))𝑑𝜏                        (3.7) 

Yan explained that when p(t) and p̂(ω) take special values, FSWT can be transformed into 

traditional methods such as fast Fourier transform, short-time Fourier transform, and so on. It 

shows that FSWT is a generalized transformation method that can parse signals in the frequency 

domain.  

Let σ ∝ ω and κ = ω/σ, then: 

𝑊𝑓(𝑡, 𝜔, 𝜅) =
1

2𝜋
∫ 𝑓(𝑢)
+∞

−∞
𝑝̂∗ (𝜅

𝑢−𝜔

𝜔
) 𝑒𝑖𝑢𝑡𝑑𝑢⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.8) 

At this time, κ is defined as the relative resolution related to the observation frequency and 

the evaluation frequency. Eq.3.7 can be expressed as:  

Wf(t,ω, κ) =
1

κ
ωeiωt ∫ f(τ)e−iωt

+∞

−∞
p∗(

ω(τ−t)

κ
)dτ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.9) 

Let Δωp be the frequency window width of the FSF. Consider the bandwidth-frequency 

ratio characteristic of the frequency slicing function, the frequency resolution of the FSF ηp =

σ∆ωp/ω = ∆ωp/κ; the frequency resolution of the signal ηp = ∆ωs/ωs. Usually, ηp ≪ 1, so 

ηp  can be adjusted by κ to achieve multi-resolution. If p̂(ω) satisfies p̂(0) = 1, the original 

signal or component can be reconstructed according to the following formula:  

𝑓(𝑡) =
1

2𝜋
∫ ∫ 𝑊𝑓(𝜏, 𝜔, 𝜅)

+∞

−∞

+∞

−∞
𝑒𝑖𝜔(𝑡−𝜏)𝑑𝜏𝑑𝜔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.10) 

It can be seen from Eq.3.10 that the inverse frequency slice wavelet transform is only 

related to κ, and can be arbitrarily selected in the time-frequency interval of f(t) to extract the 

required signal components. The following conditions need to be noted when constructing a 

frequency slicing function, but not all of them:  

a) ∫ |p̂(ω)|2
+∞

−∞
dω < ∞；      b) p̂(0) ≠ 0 or p̂(0) = 1； 

c) p̂(±∞) = 0；                     d) |p̂(ω)| ≤ |p̂(0)| or |p(t)| ≤ |p(0)|. 

According to the above conditions, the following slicing function group can be 

constructed: 

FSF-1: p̂(ω) = e−
1

2
ω2

, p(t) = e−
1

2
t2

;   FSF-2: p̂(ω) =
1

1+ω2
, p(t) = e−|t|; 

FSF-3: p̂(ω) = e−|ω|, p(t) =
1

1+t2
;      FSF-4: p̂(ω) =

sin⁡ω

ω
, p(t) = {

1⁡⁡⁡⁡|t| ≤ 1
0⁡⁡⁡⁡|t| > 1

; 

FSF-5: p̂(ω) = {
1⁡⁡⁡⁡|ω| ≤ 1
0⁡⁡⁡⁡|ω| > 1

, p(t) =
sin⁡ t

t
; 

where, p̂(ω) =
1

1+ω2
 and p(t) = e−|t| are the most commonly used slicing functions. At this 

time, the frequency window width Δωp = √2/2  of the frequency slicing function, the 

frequency resolution ηp = ηs = 0.025, and the scale κ = 28.28 can be calculated.  
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A simulation signal s1  is constructed to demonstrate the filtering characteristics of the 

FSWT. The signal consists of periodic pulses sc1, modulated signal sc2 and random noise:  

{
𝑠𝑐1 = 𝐴1𝑒

−𝑔×2𝜋𝑓𝑛𝑡 × 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑡 × √1 − 𝑔
2)

𝑠𝑐2 = 𝐴2 𝑠𝑖𝑛(2𝜋𝑓1𝑡) 𝑠𝑖𝑛(2𝜋𝑓2𝑡 + 𝑠𝑖𝑛(2𝜋𝑓3𝑡)) + 𝐴3 𝑐𝑜𝑠(2𝜋𝑓4𝑡) 𝑐𝑜𝑠(2𝜋𝑓1𝑡)
𝑠1 = 𝑠𝑐1 + 𝑠𝑐2 + 𝜁

⁡⁡⁡⁡⁡⁡⁡(3.11) 

where, the nature frequency fn = 800  Hz, damping coefficient g = 0.07 , f1 = 50  Hz, f2 =

3000 Hz, f3 = 100 Hz, f4 = 2 Hz, amplitude A1 = 4 m/s2, A2 = 2 m/s2, A3 = 0.8 m/s2, ζ =

SNR(−15dB). The waveform of the signal and its spectrum are shown in Fig.3.8. 

 

Fig.3.8 The first simulated signal: (a) waveform; (b) spectrum. 

 
Fig.3.9 Filtering effect of three methods. 

Taking 800 Hz as the center frequency and the frequency band of 625 Hz to 937 Hz can be 

extracted for comparison. The filtering effects of FIR filter, wavelet packet transform (WPT) 

and FSWT are shown in Fig.3.9. Among them, Light blue are the spectra of the original signal; 

black are the results. Red is the left boundary and blue is the right. The boundaries divide the 

spectrum into three parts of A, B and C. The optimal filtering effect should be: The frequencies 

of bands A and C are infinitely close to zero; in band B, there is no energy loss in the spectrum. 

It can be found that the FIR filter and WPT have serious energy leakage in both A and C. After 

zooming in on the details around the boundaries, it can be noticed that FIR and WPT have a lot 

of energy leakage at A but FSWT has almost no leakage. The same situation exists at C. In 

addition, at B, the spectrum obtained by FIR and WPT differs from the spectrum of the original 

signal in this band, but FSWT is the same as the original signal. Therefore, in terms of filtering 
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the selected frequency band, FSWT is more helpful than FIR filters and WPT. 

Since FSWT introduces the concept of frequency resolution, the most important research at 

present is time-frequency analysis. Calculate the time-frequency representation and then select 

the frequency band for extraction analysis. For signal s2: 

{
 
 

 
 𝑠𝑐1 = 𝐴1𝑒

−𝑔×2𝜋𝑓𝑛𝑡 × sin(2𝜋𝑓𝑛𝑡 × √1 − 𝑔
2)

𝑠𝑐2 = 𝐴2 sin(2𝜋𝑓1𝑡) sin(2𝜋𝑓2𝑡 + sin(2𝜋𝑓3𝑡))

+𝐴2 sin(2𝜋𝑓1𝑡) sin(2𝜋𝑓4𝑡 + sin(2𝜋𝑓3𝑡))
𝑠2 = 𝑠𝑐1 + 𝑠𝑐2 + 𝜁

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.12) 

where the sampling frequency 𝑓𝑠 = 10000  Hz, the natural frequency 𝑓𝑛 = 2500  Hz, which 

means that the center frequency of the fault signal is located in the center of the frequency band. 

Damping coefficient 𝑔 = 0.07 , ⁡𝑓1 = 50  Hz, 𝑓2 = 1000  Hz, 𝑓3 = 100  Hz, 𝑓4 = 4000  Hz, 

amplitude A1 = 4 m/s2, ⁡A2 = 2 m/s2, ζ = SNR(−2dB).  

The waveform of the signal and its spectrum are shown in Fig.3.10a.The component with 

the central frequency of 2500Hz carries fault information. The components of the central 

frequency at 1000Hz and 4000Hz include the side band, which belongs to the interference 

information. These three components were displayed in Fig.3.10b after being processed by 

FSWT. At present, the methods proposed by scholars can only determine the left and right 

boundaries of the three components by means of manual selection after observation, which 

would prone to large errors. The darkest part is ω3, followed by ω1. The band ω2 has a large 

width. The results of manually extracting the above three frequency bands are shown in 

Fig.3.11. In fact, the second band is the part that should be extracted. Sectiong 3.3.1 provides a 

new idea for frequency band division, but how to select the frequency band containing the most 

periodic pulse information from each frequency band becomes the main problem to be solved. 

 

Fig.3.10 The second simulated signal: (a) the signal and its spectrum; (b) the time-frequency distribution 

 

Fig.3.11 Components (a)ω1, (b)ω2 and (c)ω3 obtained by the manual selection method. 
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Vibration signals of rotating machinery in normal operation can be considered as system 

balance. When parts of rotating equipment such as bearings or gears fail, pulses will appear in 

the vibration signals, and they would be periodic. The pulse generated by the previous impact 

must have similarity and correlation with the pulse generated by the next impact. Processing the 

signal in a correlated manner can amplify information with periodic characteristics. In addition, 

it is almost impossible to find similar components from the signal with random noise and 

accidental impact, and the autocorrelation is poor. The newly added impact information due to 

the fault will break the balance of the original system, and the entropy of the signal after 

correlation processing will be significantly reduced. Therefore, similar to kurtosis, entropy can 

be used to test for unbalanced disturbances in the system. 

If the signal is y(t), its spectrum Y(f) can be calculated using the Fourier transform. The 

minimum point of the trend spectrum T(f) divides the spectrum into M bands, i = 1,2,3…M. 

The boundary of the ith band can be expressed as [bi−1; bi]. The center frequency in the interval 

[bi−1; bi] is ωi, and the bandwidth is ∆ωi. Then the interval [bi−1; bi] can also be expressed as 

[ωi − ∆ωi/2;⁡ωi + ∆ωi/2]. Then the square envelope in the frequency band is |Y(f; ωi, ∆ωi)|
2, 

and its time domain expression is |y(t;ωi, ∆ωi)|
2. 

The unbiased Autocorrelation is computed on the squared envelope of any one of the bands 

can be expressed as: 

𝑅̂𝑦𝑦(𝜏;𝜔, ∆𝜔) =
1

𝑁−𝑞
∑ ∑ |𝑦(𝑡𝑗; 𝜔𝑖, ∆𝜔𝑖)|

2
|𝑦(𝑡𝑗; 𝜔𝑖, ∆𝜔𝑖)|

2𝑁−𝑞
𝑗=1

𝑀
𝑖=1             (3.13) 

where τ = q/fs is the delay factor, q = 0,1,2,3…N − 1. 

The complex envelope of the optimized signal component in the frequency band [ωi −

∆ωi/2;⁡ωi + ∆ωi/2]  is R̂YY
′
(f; ω, ∆ω) . The instantaneous flow of energy returned by the 

squared envelope can be expressed as: 

𝜀𝑅(𝑓;𝜔, ∆𝜔) = |𝑅̂𝑌𝑌
′
(𝑓;𝜔, ∆𝜔)|2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.14) 

The "Correlation spectral negentropy (CSNE)" can be defined as: 

∆𝐼𝜀(𝜔; ∆𝜔) = −𝐻𝜀(𝜔; ∆𝜔) = −{− 〈
𝜀𝑅(𝑓;𝜔,∆𝜔)

2

〈𝜀𝑅(𝑓;𝜔,∆𝜔)
2〉
𝑙𝑛

𝜀𝑅(𝑓;𝜔,∆𝜔)
2

〈𝜀𝑅(𝑓;𝜔,∆𝜔)
2〉
〉}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.15) 

Taking Eq.3.12 as an example, we already know that ω1  and ω3  are interference, ω2 

contains periodic pulse information, and the residual component is considered as noise. 

Kurtosis, Spectral Negentropy, Entropy, Sparsity and the CSNE proposed in this paper are used 

to calculate the above four components.  

 

Fig.3.12 Sensitivity of each indicator to periodic pulses. 

For the four components of ω1, ω2, ω3 and noise, the indicate will have a large value if it 

is sensitive to it. Since ω2 contains periodic pulse information, our desired indicator needs to be 

more sensitive to this signal than to other signals, and to be highly resistant to interference and 
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noise. It can be found from Fig.3.12 that Kurtosis and Spectral negentropy are sensitive to 

periodic pulses and resistant to interference, but will be interfered by noise. Entropy suffers 

from greater interference and is less resistant to noise. Although Sparsity is highly resistant to 

noise, it is susceptible to interference. The sensitivity of the CSNE processing results to the four 

signals is significantly different from the first four methods. CSNE is sensitive to periodic 

impact information and has strong anti-interference and anti-noise capabilities. 

3.4 Verification 

3.4.1 Simulation signal verification 

3.4.1.1 Case study 1 

A simulation signal s2 is constructed to simulate faults with periodic pulses. The signal 

consists of periodic pulses sc1, modulated signal sc2 and random noise:  

{
 
 

 
 𝑠𝑐1 = 𝐴1𝑒

−𝑔×2𝜋𝑓𝑛𝑡 × sin(2𝜋𝑓𝑛𝑡 × √1 − 𝑔
2)

𝑠𝑐2 = 𝐴2 sin(2𝜋𝑓1𝑡) sin(2𝜋𝑓2𝑡 + sin(2𝜋𝑓3𝑡))

+𝐴3 cos(2𝜋𝑓4𝑡) cos(2𝜋𝑓1𝑡)
𝑠2 = 𝑠𝑐1 + 𝑠𝑐2 + 𝜁

                           (3.16) 

where, the nature frequency fn = 800  Hz, damping coefficient 𝑔 = 0.07 , 𝑓1 = 50  Hz, 𝑓2 =

3000 Hz, 𝑓3 = 100 Hz, 𝑓4 = 2 Hz, amplitude A1 = 4 m/s2, A2 = 2 m/s2, A3 = 0.8 m/s2, ζ =

SNR(−8⁡dB). The repeated cycle is T = 0.01⁡s. The characteristic frequency is 𝑓𝑞 = 100 Hz. 

 

Fig.3.13 (a) The signal without noise and its spectrum; (b) the signal with noise and its spectrum 

The waveform of the signal and its spectrum are shown in Fig.3.13a. The periodic pulse 

characteristics in the waveform are obvious. Fig.3.13b is the simulated signal and its spectrum 

after noise is added. The periodic pulse characteristics in the waveform are masked by noise. 

The component with the natural frequency of 800 Hz is periodic pulse information; the 

component with the natural frequency of 3000 Hz is interference information. We need to 

adaptively separate the component with the center frequency of 800Hz from the other 

components in the spectrum.  

In view of the tediousness and non-adaptability of the original manual extraction method, 

this paper uses the adaptive traditional Fast Kurtogram to compare with the proposed Fast 

Entrogram. First, the signal is processed using Fast Entrogram. As the number of reconstruction 

points increases, the signal is divided into five levels, and the spectrum is divided into several 

frequency bands in each level. The color in the frequency band represents the value of CSNE. 

When the color in the frequency band is red, it means that there is more periodic pulse 

information in this band. When the color in the band is blue, it means that there are many other 
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components in the band. It can be found from Fig.3.14a that the largest CSNE component in all 

frequency bands is located in Level 5(A). Details of the spectral segmentation and trend 

spectrum of this Level are shown in Fig.3.14b. In this Level, the 10 boundaries at the minimum 

of the trend spectrum divide the spectrum into 11 parts. The CSNE of the second band is the 

largest, with the center frequency of 793Hz, which is very close to 800Hz; the bandwidth is 

679Hz, CSNE = 0.52. The method in Section 3.3.2 can be used to extract the component in the 

second frequency band (Fig.3.14c) and calculate its envelope spectrum (Fig.3.14d). The 

components contain pulses, and these pulses are periodic. The characteristic frequency of 100 

Hz and its harmonics appear in the envelope spectrum. Therefore, the method proposed in this 

chapter is effective in extracting periodic pulse information. 

 

Fig.3.14 Results decomposed by (a) Fast Entrogram; (b) Trend spectrum, boundaries and CSNE of Level 

5; (c) Component B with maximum CSNE; (d) the envelope spectrum of Component B. 

Then, this signal is processed by Fast Kurtogram based on FIR filter (Fig.3.15a), and the 

spectrum is divided into 4 levels. The component of maximum kurtosis is located in the last 

frequency band in Level 4, and its center frequency is 4843Hz, which is different from 800Hz. 

Although this frequency band contains a small amount of periodic pulse information, it also 

contains a lot of noise, so it is not enough to extract fault features. This is not the frequency 

band that needs to be extracted. At last, process the signal by Fast Kurtogram based on STFT 

(Fig.3.15b) and the spectrum is divided into 6 levels. The component of maximum kurtosis is at 

Level 6. The center frequency is 3437Hz. The periodic pulse information contained in this band 

is not enough for feature extraction. 

 

Fig.3.15 The results decomposed by: (a) FIR based Fast Kurtogram; (b) STFT based Fast Kurtogram. 
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3.4.1.2 Case study 2 

This section explores the effect of bandwidth on extraction results. Construct a periodic 

pulse signal without noise: 

𝑠𝑐 = 𝐴𝑒
−𝑔×2𝜋𝑓𝑛𝑡 × 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑡 × √1 − 𝑔

2)                                   (3.17) 

where the natural frequency 𝑓𝑛 = 2500 Hz. Damping coefficient 𝑔 = 0.07, amplitude 𝐴 = 4 

m/s2. After calculation, the width of the sideband is 100Hz, characteristic frequency 𝑓𝑞 = 100 

Hz.  

The spectrum is shown in Fig.16. In the spectrum, the periodic pulse information is 

unevenly distributed throughout the frequency band and most of the energy is concentrated near 

the center frequency. The signals collected in the application often contain interference and 

noise, selecting more frequency bands near the center frequency for extraction can obtain more 

effective information. This experiment set three sets of boundaries. B1 = 200 Hz contains only 

two sidebands, B2 = 600Hz contains 6 sidebands and B3 = 1400 Hz contains 14 sidebands. The 

signals within the three groups of boundaries are extracted and their envelope spectra are 

calculated. Fig.3.16b shows their envelope spectra. When the frequency band contains only 2 

sidebands, there is the characteristic frequency in the envelope spectrum without harmonics; 

when the frequency band contains 6 sidebands, there is characteristic frequency and a few 

harmonics in the envelope spectrum; when the frequency band contains 14 sidebands, there is 

characteristic frequency and a large number of harmonics in the envelope spectrum. For the 

above fault simulation signal, the fault information contained in the two sidebands near the 

center frequency is small; the information in the 6 sidebands is easily masked by noise. For the 

signal shown in Fig.3.16, most of the signal's information is already available in the 14 

sidebands, so 1400 Hz can be regarded as a reasonable bandwidth in this signal. 

 

Fig.3.16. The spectrum of the simulated signal and the envelope spectrum of each component. 

Subsequently, two interference signals are added to the simulation signal, the center 

frequency of the first interference signal is 1000 Hz, and the center frequency of the second 

interference signal is 4000 Hz, as shown in Eq.3.12 and Fig.3.10a. The spectra of the 

constructed interference signals are similar to the original signal, and they also contain 

sidebands. We need to find and extract periodic pulse information with a center frequency of 

2500 Hz and a bandwidth of about 1400 Hz from the new signal. First, the new signal is 

processed using the Fast Entrogram method proposed in this paper, and the results are shown in 

Fig.3.17. The process of drawing Entrogram is to increase the number of reconstruction points 

in the obtained trend spectrum. As the level increases, the number of reconstruction points 

increases to 45, and the spectrum is divided into 7 levels. The number of boundaries is 

positively related to the number of reconstruction points, and the bandwidth becomes narrower 

as the boundary increases. Narrow bandwidth may interfere with the accuracy of the diagnosis. 
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At Level 5-7, the information around the center frequency of 2500 is divided into several parts, 

but at Level 2-4, the information is complete and the largest CSNE appears at Level 3. The 

center frequency of this band is 2514 Hz, which is only 0.56% different from expected. The 

bandwidth is 1240Hz and includes 12 sidebands. In order to show the relationship between the 

spectrum and the selected frequency band, the spectrum is placed in Level 1 of Fast Entrogram. 

The information in this frequency band is extracted, and its waveform and envelope spectrum 

are shown in Fig.3.17c. Periodic pulses can be easily observed from the waveform of this 

component. Although there is still a small amount of noise that has not been removed, it does 

not affect the peak value of the pulses. In addition, the characteristic frequency of 100 Hz and 

its harmonics appear in the envelope spectrum, which proves that the above conclusion is 

correct. Therefore, the proposed Fast Entrogram method can extract periodic pulse information 

in signals containing interference information and noise. 

 
Fig.3.17 Result decomposed by (a) Fast Entrogram; (b) Boundaries corresponding to reconstructed points; 

(c) Component with maximum CSNE and its envelope spectrum. 

 
Fig.3.18 Result decomposed by (a) Fast Kurtogram; (b) Component with maximum Kurtosis and its 

envelope spectrum. 

If Fast Kurtogram is used to process this signal, the result is shown in Fig.3.18. The center 

frequency is 2500 Hz which is located at the center of the Kurtogram. In all division methods, 

only the center frequency of the second frequency band of Level 1.6 is 2500Hz, and its 

bandwidth is 1667Hz. The calculation results show that Kurtosis in this band is very small. The 

largest Kurtosis is at Level 3.6. Its center frequency is 2291Hz and its bandwidth is 416Hz. 

Although the bandwidth is close to the optimal bandwidth, the noise in the signal has a huge 

impact on Kurtosis, which leads to deviations in the selection of the frequency band. Extract the 

component with the center frequency of 2291Hz and calculate the envelope spectrum. Although 

there are pulses in the waveform of this component in Fig.3.18b, the periodicity of these pulses 

is difficult to calculate. The characteristic frequency and its double frequency appear in the 
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envelope spectrum, but the amplitude is low. A bandwidth of 416Hz can only contain three 

sidebands. The noise contained in such a narrow bandwidth easily masks effective information. 

The center frequency offset rate (ro ) and the bandwidth error rate ( re ) are used to 

demonstrate the accuracy of the two algorithms. After the device is successfully assembled, its 

natural frequency does not change when a fault occurs and periodic pulse information is 

generated. The center frequency offset ratio is the ratio of the center frequency offset natural 

frequency of the extracted band. When ro is positive, the center frequency is shifted to the right; 

when ro is negative, the center frequency is biased to the left:  

𝑟𝑜 =
𝑓𝑐−𝑓𝑛

𝑓𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.18) 

The bandwidth error rate is the difference rate between the extracted bandwidth Bw and the 

optimal bandwidth. Its calculation formula is as follows: 

𝑟𝑒 =
|𝐵𝑤−𝐵𝑜|

𝐵𝑜
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.19) 

Calculate the center frequency offset rate and bandwidth error rate of Fast Entrogram and 

Fast Kurtogram, respectively, as shown in Fig.3.19.  

 

Fig.3.19 Center frequency offset rate and bandwidth error rate 

The center frequency of Fast Kurtogram is shifted to the left by 8.36% and the offset rate is 

slightly larger. The center frequency of Fast Entrogram deviates to the right by 0.56% and the 

offset rate is small. The advantages of the method proposed in this paper can also be seen in a 

partially enlarged view. The center frequency obtained by Fast Entrogram is more accurate than 

Fast Kurtogram. The bandwidth obtained by Fast Entrogram is 1240 Hz and can contain 12 

sidebands, so the characteristic frequency and harmonics can be found in the envelope 

spectrum. The Fast Kurtogram obtained a bandwidth of 416 Hz and can only contain 4 

sidebands. The envelope spectrum calculated by extracting only 4 sidebands will contain fewer 

harmonics than the 12 sidebands. Therefore there is no other harmonics in the envelope 

spectrum of Fast Kurtogram. At the same time, the bandwidth error rate of Fast Entrogram is 

11.43%, and that of Fast Kurtogram is 70.29%. It can be proved that the center frequency and 

bandwidth obtained by Fast Entrogram contain more periodic pulse information than Fast 

Kurtogram. This kind of characteristic can play a big advantage in the fault diagnosis of the 

inner and outer rings of the bearing. For the method of using wavelet transform to separate the 

signal, there are some challenges in completely extracting the frequency band with the center 

frequency near k 2n+1⁄ . The center frequency of the periodic pulse information of the simulated 

signal used in this section is located in the center of the spectrum (2500 Hz). Autogram uses 

Maximal overlap discrete wavelet packet transform to process the signal. Similar to Fast 

Kurtogram, Autogram also needs to manually select the level to be obtained. If we choose Level 

5, the result can be found in Fig.3.20a. The component with the largest unbiased autocorrelation 

is the fourth component of Level 3. The center frequency is 2187.5 Hz, which has a certain error 
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with 2500 Hz. There is no case in Autogram's framework where the center frequency is 2500 

Hz, which is inevitable. Extract component A, the waveform and spectrum are shown in 

Fig.3.20b. The light blue line is the spectrum of the original signal, and the dark blue line is the 

spectrum of component A. It is not difficult to find that the energy of component A leaks 

between 2500Hz and 3000Hz, which is also the deficiency of general wavelet transform. If we 

choose the decomposition level to be 7, the Autogram in Fig.3.20c will be obtained. The largest 

component of unbiased autocorrelation is located at Level 7, with a center frequency of 1738 Hz 

and a bandwidth of 39 Hz. This is the disadvantage of the traditional method: it is sometimes 

inconvenient to manually select the number of decomposed levels. 
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Fig.3.20 Result decomposed by (a) Autogram; (b) Component with maximum Kurtosis and its envelope 

spectrum; (c) Autogram with lv-7 

3.4.2 Bearing fault signal verification 

The vibration signal experimental data used in this section comes from Mie University. The 

bearing fault simulator is shown in Fig.3.21. The drive end and the bearing part are connected 

with a pulley. The part where the bearing is installed is very heavy and also bears a load of 

about 500 kg. The rotation speed of the shaft is 70 rpm. At the same time, this experiment uses 

rusty chains to add noise to the system. During the experiment, the vibration acceleration sensor, 

acoustic emission sensor, and Microphone collected signals synchronously. This chapter uses 

the experimental field signal collected by vibration acceleration sensors. The sampling 

frequency of is 100 kHz, the acquisition time is about 20 s. 

Mortor

Sensors

Load

Faulty bearing

Microphone

Chain noise

 
Fig.3.21 The bearing fault simulator 

3.4.2.1 Analysis of bearing outer ring fault data 

In this experiment, a rolling bearing model NTN NU312 was used. The diameter of the 

inner ring is 60mm, the diameter of the outer ring is 130mm, the width is 31mm, the number of 

rollers is 12. The outer ring of the bearing has been manually processed with linear damage with 

a width of 2.0 mm and a depth of 0.6 mm. The specific details are shown in Fig.3.22. 
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(a) Healthy Bearing (b) Faulty Bearing  

Fig.3.22 Healthy bearing and faulty bearing 

The periodic pulses in the waveform are masked by strong noise. The data was processed 

using Fast Entrogram and the results are shown in Fig.3.23. Extract band A which CSNE is the 

largest, then show its waveform and spectrum. The light color line in Fig.3.24b is the spectrum 

of the original signal, and the blue line is the spectrum of the component A.  

waveform
spectrum

 
Fig.3.23 The original signal and its spectrum. 
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A

(b) (c)

fo harmonics

 
Fig.3.24 The results decomposed by Fast Entrogram: (a) Fast Entrogram; (b) Component A and its 

spectrum; (c) Envelope spectrum of A. 

For this bearing outer ring fault data, Fast Entrogram believes that the frequency band with 

a center frequency of 20430 Hz and a bandwidth of 3351 Hz contains bearing fault information. 

The waveform of component A contains periodic pulses. In addition, the envelope spectrum 

contains the bearing outer ring fault characteristic frequency and its harmonics, which proves 

that the signal contains periodic pulse information and the bearing outer ring is damaged. The 

Fast Entrogram proposed in this section can effectively extract periodic pulse information in the 

rolling bearing vibration signal and successfully diagnose the fault. Fast Kurtogram may not be 

able to achieve perfect results when dealing with such signals. Fig.3.25 shows the results of Fast 

Kurtogram. The spectral kurtosis of the signal in the sixth frequency band of Level 6 is the 

largest. This level divides the spectrum into too many parts. The 64 components averaged the 

50000 Hz, and each component has a width of 781 Hz. After extracting the component B, the 

waveform and spectrum are shown in Fig.3.25b. The frequency band extracted by this method is 

too narrow. So, there is no outer ring fault characteristic frequency in the envelope spectrum, 

there are few harmonics. Therefore, the failure of the outer ring of the bearing is not certain. 
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Fig.3.25 The result decomposed by Fast Kurtogram: (a) Fast Kurtogram; (b) Component B and its 

spectrum; (c) Envelope spectrum of B. 

3.4.2.2 Analysis of bearing inner ring fault data 

The faulty inner ring bearing used in this experiment was manually processed with linear 

damage with a width of 2.0mm and a depth of 0.6mm. The specific details of the inner ring of 

the bearing are shown in Fig.3.26a. Fig.3.26b shows the waveform and its spectrum of the 

signal. In the spectrum of the signal, the amplitude of the low frequency part is higher than high 

frequency part.  

waveform

spectrum

(a) (b)

 

Fig.3.26 (a) The inner ring faulty bearing; (b) Original signal and its spectrum. 

The higher amplitude part does not contain a lot of fault information, it cannot be 

determined that the lower amplitude part does not contain fault information. Since the bearing 

inner ring fault information is spread over the full frequency band of the spectrum, the higher 

amplitude of the low frequency part may mask the fault information. At this point, the high 

frequency part might contain more fault information. 

The signal is processed using Fast Entrogram proposed in this section, shown in Fig.3.27. 

The spectrum is divided into 9 levels. Among them, level 4 obtained the most number of 

frequency bands. At level 4, the largest CSNE is obtained. The amplitude of the clusters 

between 5500 Hz and 9500 Hz is low, but the largest CSNE appears here. Extract the frequency 

band A where the largest CSNE is located. The envelope spectrum of the reconstructed 

component is shown in Fig.3.27b. The envelope spectrum has the characteristic frequency of the 

bearing inner ring fault and its harmonics. Therefore, it can be considered that the bearing inner 

ring has failed. The Fast Entrogram proposed in this chapter is suitable for fault diagnosis of the 

inner ring of rolling bearings. Using Fast Kurtogram to process this data, the component with 

the maximum SK is located at Level 6 and the signal is split into 64 parts. Because the 

frequency spectrum is divided evenly, each frequency band is relatively small, which will cause 
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the characteristics of the frequency spectrum to be ignored. Fig.3.28a shows the processing 

results of Fast Kurtogram. The largest SK occurs in the 36th frequency band. Then extract 

component B and show the envelope spectrum in Fig.3.28b. It is difficult to find the fault 

characteristic frequency of the inner ring of the bearing from the envelope spectrum. Therefore, 

it is not certain that the signal contains fault information and whether the device has failed. 

(a)

A

(b)

fi harmonics

 

Fig.3.27 The result decomposed by Fast Entrogram: (a) Fast Entrogram; (b) the envelope spectrum of A. 
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Fig.3.28 The result decomposed by (a) Fast Kurtogram; (b) the envelope spectrum of B 

3.5 Conclusion 

A new Fast Entrogram method for segmenting the spectrum and extracting periodic pulse 

information from the frequency domain was proposed in this chapter. The Fast Entrogram 

method obtains different trend spectrum and boundary positions by changing the number of 

reconstructed points. Then, the frequency slice wavelet transform with better filtering effect 

than the FIR filter and WPT was used to extract the components in each frequency band. In 

order to filter fault information from the components, a novel indicator named correlation 

spectral negentropy that could suppress random pulse and noise and could amplify periodic 

information was proposed. 

The research proves that the proposed method not only increases the adaptability of the 

frequency slice wavelet transform, but also optimizes and improves the boundary segmentation 

method, component filtering effect and feature screening indicator of Fast Kurtogram. The 

simulation signal verifies that the proposed correlation spectral negentropy is sensitive to 

periodic pulses and is not sensitive to random pulse. The offset rate of the center frequency 

obtained by Fast Entrogram is low, but Fast Kurtogram exceeds 5% of the confidence interval. 

The error rate of the bandwidth obtained by the two methods is different, and Fast Kurtogram is 

60% higher than Fast Entrogram. Fast Entrogram is better in extracting periodic pulses and anti-

noise ability and stability. The experimental signal also proves that Fast Entrogram can be 

effectively applied to the fault diagnosis of the inner and outer rings of rolling bearings.  



53 

Chapter 4 

Multilevel Spectral Segmentation Method Based on Improved 

Empirical Wavelet Transform and the Extraction Strategy of 

Bearing Fault Features [40-42] 

4.1 Introduction 

If only extreme points are considered, but the relationship between the spectral fluctuation 

characteristics and the signal is ignored, new problems will appear. With the improvement and 

upgrade of data acquisition equipment, high sampling frequency and big data analysis have also 

developed. Due to the higher complexity of the Fourier spectrum, the number of extreme points 

is greatly affected by the sampling frequency. When analyzing signals with long data, the 

original method will reduce the quality of the components and affect the effectiveness and 

efficiency of diagnosis. In order to reduce the number of invalid components and suppress mode 

aliasing, two concise spectral segmentation methods based on power spectral density are tried to 

optimize the empirical wavelet transform and a new screening index for periodic pulse 

components is designed. 

Firstly, we proposes a new variable spectral segmentation empirical wavelet transform 

(VEWT). Different from the traditional scale-space representation and the existing direct 

segmentation methods, this chapter proposes the selective spectral segmentation (SSS) method. 

This metiod sets the modal determination before the boundary segmentation, and proposes a 

modal estimation method based on Multitaper power spectral density (MPSD). Since MPSD is 

associated with the fluctuation trend of the spectrum, the extreme points obtained by the SSS 

are less than the Fourier spectrum, and the number of modes obtained is relatively less. On the 

basis of Levenberg-Marquardt-Fletcher (LMF), an extended algorithm is proposed and the 

positions of the modes obtained by MPSD in the spectrum are used to calculate the bandwidth 

corresponding to their center frequencies. The information in each frequency band will be 

determined as the final mode. In the process of cyclic extraction, a series of boundaries 

associated with the fluctuations of the spectrum will be obtained. The simulation signal in EWT 

is used to verify the effectiveness of the proposed method. The MIT-BIH Arrhythmia Database 

was used to verify the applicability of the proposed method. The influence of noise on the 

decomposition process can be reduced, and the number of useless components will be reduced. 

The dependence of the original method on the minimum point is avoided, and the frequency 

bands in the same type of information concentration will not be separated. 

Secondly, in order to reduce the number of invalid components and suppress modal 

aliasing, this chapter proposes an adaptive and concise empirical wavelet transform (ACEWT). 

First, the power spectral density of the signal is calculated and used to separate the modes. On 

the one hand, it can reduce the number of extreme points and weaken the dependence on 

extreme points; on the other hand, the fluctuation of PSD corresponds to the concentration of 

different components in the signal, which provides a basis for the process of segmenting the 

spectrum. In order to expand the application of this method, this cchapter implements adaptive 

spectral segmentation by constructing a new tower boundaries distribution diagram. The 

optimized diagram contains different levels of segmentation, and the spectrum would be divided 

into several frequency bands with different widths. Scholars can extract information of interest 

from this diagram according to specific methods. This chapter mainly extracts the periodic pulse 
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information in the signal, and the fault information in the rotating machinery, especially the 

rolling bearing signal, to provide a new method for fault diagnosis. Then, the tower boundaries 

distribution diagram (W-Autogram) proposed in this chapter may have narrow frequency bands 

when the sampling frequency is large. The reconstructed waveforms of such frequency bands 

are likely to contain pulses and affect the sensitivity of unbiased autocorrelation. In addition, the 

fault information of the bearing signal is often concentrated around a center frequency in the 

Fourier spectrum. The more sidebands and less noise the component contains, the easier it is to 

find faults. Narrow frequency bands containing pulses are usually interference information. In 

order to filter the fault information in W-Autogram, this chapter proposes a weighted unbiased 

autocorrelation that correlates the index and the bandwidth. 

Lastly, Harmogram is proposed which belongs to multi-level decomposition method. 

Harmogram avoids the 1/3-binary tree spectral segmentation method and obtains the results of 

multi-level segmentation through different trend components of the spectrum to perform multi-

level decomposition. In order to filter the periodic pulse information in each frequency band of 

each level, a harmonic spectral kurtosis (HSK) with strong anti-noise ability and anti-single 

pulse interference ability is proposed. Finally, the selected frequency bands are filtered by 

scaling function and empirical wavelets constructed based on the variant Meyer wavelet. The 

simulation results and experimental results show that the method has a good effect in the 

analysis of rolling bearing fault diagnosis. 

4.2 Empirical wavelet transform 

4.2.1 Basic concepts of empirical wavelet transform 

The essence of empirical wavelet transform is a set of filters based on Meyer wavelet 

which can decompose the signal into several components. The Fourier spectrum is calculated 

and normalized to [0, π] . A parameterless method based on scale-space representation can 

calculate boundaries that may divide the spectrum into plenty of parts. Each frequency band is 

defined as a useful mode. Provided that the number of useful modes is defined as ⁡N, set ω as 

boundaries calculated by scale-space method among the bands: ω0 = 0, ωN = π. The first and 

second frequency bands can be expressed as Λ1 = [ω0,ω1], Λ2 = [ω1,ω2]. Set n = 1,2,… , N, 

Λn = [ωn−1,ωn], The spectrum can be expressed as: ⋃ Λn = [0, π]
N
n=1 .  

EWT will construct a band-pass filter for each frequency band. There is a transition phase 

between adjacent filters. The transition phase is centered at ω. 2τn  is the width. The basic 

structure of the filter is: the transition phase is a set of mutually orthogonal trigonometric 

functions, and the center of the frequency band is constant. The scaling function ∅̂n(ω) and the 

empirical wavelets Ψ̂n(ω) can be defined as: 

∅̂𝑛(𝜔) =

(

  
 

1; |𝜔| ≤ (1 − 𝛾)𝜔𝑛

cos [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛))] ;

(1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛
0; 𝑜𝑡ℎ𝑒𝑟𝑠

                                        (4.1) 

𝛹̂𝑛(𝜔) =

(

 
 
 
 
 

1; (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1

cos [
𝜋

2
𝛽((|𝜔| − (1 − 𝛾)𝜔𝑛+1)/2𝛾𝜔𝑛+1)] ;

(1 − 𝛾)𝜔𝑛+1 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛+1

sin [
𝜋

2
𝛽((|𝜔| − (1 − 𝛾)𝜔𝑛+1)/2𝛾𝜔𝑛⁡)] ;⁡

(1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛 ⁡
0; ⁡𝑜𝑡ℎ𝑒𝑟𝑠⁡

                                (4.2) 
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where the transition function β(x), the coefficient γ, and the transition phase τn are: 

β(x) = x4(35 − 84x + 70x2 − 20x3)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.3) 

γ < min⁡(
ωn+1−ωn

ωn+1+ωn
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.4) 

τn = γωn⁡, 0 < γ < 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.5) 

Set the Fourier transform as F(∙) , the inverse Fourier transform is F−1(∙) . The detail 

coefficients Wf
ε can be defined as: 

Wf
ε(n, t) = ⁡ 〈f(t), Ψn(t)〉 = ∫ f(τ)Ψn(τ − t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ dτ = F−1(f̂(ω)Ψ̂n(ω))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.6) 

Calculate the approximation coefficients Wf
ε(0, t): 

Wf
ε(0, t) = ⁡ 〈f(t), ∅1(t)〉 = ∫ f(τ)∅1(τ − t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ dτ = F−1(f̂(ω)∅̂1(ω))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.7) 

where f̂(ω), ∅̂1(ω), Ψ̂n(ω) are the Fourier transforms of f(t), ∅1(t), and Ψn(t).  

The signal can be rebuilt as follows: 

f(t) = Wf
ε(0, t) ∗ ∅1(t) + ∑ Wf

ε(n, t)N
n=1 ∗ Ψn(t)⁡ 

= F−1 (Ŵf
ε(0,ω)∅̂1(ω) + ∑ Ŵf

ε(n,ω)N
n=1 Ψ̂n(ω))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.8) 

where Ŵf
ε(0,ω)  and Ŵf

ε(n,ω)  are the Fourier transforms of Wf
ε(0, t)  and Wf

ε(n, t) . The 

empirical mode could be given by: 

{
f0(t) = Wf

ε(0, t) ∗ ∅1(t)⁡

fk(t) = Wf
ε(k, t) ∗ Ψk(t)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.9) 

4.2.2 Boundaries detection and its defects 

EWT proposed by Gilles detects the boundaries through the scale-space representation, and 

needs to search for meaningful modes from the histogram. The scale-space satisfies the 

semigroup characteristics, so iterative convolution is used to find the minimum points at 

different scales, and then obtain the appropriate boundaries. However, in a signal containing 

noise, the number of iterations is not only affected by the number of extreme points, which 

increases the workload but also causes more boundaries and errors. Sometimes EWT cannot 

obtain reasonable boundaries, and sometimes it generates a large number of boundaries. We set 

three cosine signals with different frequencies. They are three lines with different amplitudes in 

the spectrum: 100Hz/150Hz and 300Hz, which is A/B/C in Fig.4.1. The other frequency 

components in the spectrum are noise. Component C at 300 Hz has been successfully separated. 

The components A/B at 100Hz and 150Hz are not separated because they are classified as the 

same component by EWT. In the high frequency part, EWT obtains many invalid boundaries. 

These noises reduce the operating efficiency of the algorithm, affect the success rate of 

decomposition, and bring difficulties to its application. Of course, EWT can sometimes separate 

these three components, but the success rate is very low, and the number of components is still 

large. 
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Fig.4.1 Detected boundaries by EWT 

4.3 Noisy signal processing of an improved EWT 



56 

In order to solve the shortcomings of EWT mentioned, a variable spectral segmentation 

empirical wavelet transform (VEWT) is proposed in this section. The core of this method is the 

selective spectral segmentation method, which is different from the scale-space representation. 

The characteristic of the selective spectral segmentation method is that the determination of the 

modal is set before the determination of the boundaries. On the one hand, the components that 

make up the signal should be successfully separated. Section 4.3.1 introduces the modal 

estimation method based on Multitaper power spectral density (MPSD), and Section 4.3.2 

proposes an extended algorithm based on Levenberg-Marquardt-Fletcher (LMF). The positions 

of the modes obtained by MPSD in the spectrum are used to calculate the bandwidth 

corresponding to their center frequencies. The information in each frequency band will be 

determined as the final mode. In the process of cyclic extraction, a series of boundaries 

associated with the fluctuations of the spectrum will be obtained. The steps of VEWT can be 

described as follows and shown in Fig.4.2: 

1. Load the signal and calculate the power spectral density via Multitaper estimate 

method.. 

2. Propose an extended algorithm based on Levenberg-Marquardt-Fletcher. Use the 

position of the mode obtained by MPSD in the spectrum to calculate the bandwidth 

corresponding to their center frequencies. 

3. Determine each bandwidth as the boundaries 

4. Obtain the Fourier spectrum of the signal by Fast Fourier transform and normalize it to 

the frequency range ⁡[0, π]. The boundaries can divide the same position in the Fourier spectrum 

into several components. 

5. Construct filter bank based on scale function and empirical wavelet function.  

6. Reconstruct the information in each filter. The original signal will be decomposed into 

several components located in different frequency bands. 

Obtain PSD via Multi-taper estimate 

method

Construct filter banks based on scale 

function and empirical wavelet function

Reconstruct each component

Normalize the boundaries

 to [0, pi]

Start

Load the signal

Obtain the Fourier spectrum of the 

signal by FFT

End

Determine each bandwidth as the 

boundaries

Use the extended algorithm based on 

LMF to calculate bandwidth

Selective Spectral Segmentation Method

 
Fig.4.2 Flowcharts of the proposed VEWT method 

4.3.1 Mode estimation method based on multitaper power spectral density 

The Fourier spectrum contains the details in the signal. Compared with Fourier spectrum, 

PSD has fewer details and lower complexity. PSD can not only inherit the fluctuation trend of 

the amplitude of the Fourier spectrum, but also contains fewer extreme points to weaken the 

influence of noise [114]. In this section, Multitaper power spectral density (MPSD) is used to 

estimate the center frequencies of the modes. The method can not only improve the accuracy of 
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PSD estimation, but also reduce the variance. For a zero-mean stationary time signal y(t) with 

unit sampling, t ∈ [0,1,… , N − 1], the Fourier transform is Ŷ(f), it’s spectral density is S(f) and 

the MPSD is S̅(f) which can be calculated by: 

S̅(f) =
1

M
∑ S(m)̂(f)M−1
m=0                       (4.10) 

which is an average of M approximately independent estimates of PSD that can decrease the 

variance of the overall estimate. The important functions in Eq.4.10 can be obtained as follows: 

S(m)̂(f) = |∑ g(m)(t)y(t)e−i2πftN−1
t=0 |

2
            (4.11) 

where g(m)(t) is the mth taper orthogonal to other tapers. 

It can be found from Eq.4.10 and Eq.4.11 that PSD is a positive number greater than zero 

and is a frequency-dependent spectrum. n order to show the details and differences between 

Fourier spectrum and Multitaper PSD, We designed a new complex signal. The new signal 

consists of six components. Signal 1 is a cosine at 100 Hz with amplitude of 5; Signal 2 is a 

modulation signal; Signal 3 is a single pulse with a center frequency of 1500 Hz; Signal 4 is 

interference information with a center frequency of 2500 Hz and a bandwidth of 35 Hz; Signal 5 

is the periodic pulses with a center frequency of 3500Hz and a bandwidth of 100Hz; Signal 6 is 

random noise. Fig.4.3a is the waveform of the six signals, and Fig.4.3b is their Fourier spectra. 

Noise exists in the entire spectrum. Fig.4.3c shows the spectrum and Multitaper PSD of the 

superimposed signal. The Fourier spectrum is complex and contains many details, but it is also 

disturbed by noise. Multitaper PSD suppresses the noise, thereby making it cleaner. The single 

pulse at 1500 Hz is weak in the Fourier spectrum, but it is easy to recognize from the Multitaper 

PSD. In short, the fluctuation trend of MPSD is roughly the same as the Fourier spectrum, but 

there are differences. MPSD is like the upper envelope of the spectrum. 

(a) Five signals (b) Five spectra (c) Multitaper PSD  

Fig.4.3 Fourier spectrum and Multitaper PSD representation 

4.3.2 Bandwidth estimation method based on the extended algorithm of 

Levenberg-Marquardt-Fletcher (LMF) 

In EWT, the scale-space representation is used to divide the Fourier spectrum. The essence 

of this method is to obtain bandwidth. When the signal does not contain noise, the error 

tolerance rate of the obtained boundary position is higher. When the signal contains noise, the 

frequency bands obtained by EWT sometimes contain a lot of noise, because the position of 

boundaries directly determines the quality of the empirical modes. Fig.4.4a is a cosine signal. 

After adding the noise shown in Fig.4.4b to it, the waveform is shown in Fig.4.4c. 
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Fig.4.4 (a) The cosine signal; (b) noise; (c) the signal added noise. 

The spectrum of the noise-added cosine signal is relatively simple: there is higher 

amplitude at 50 Hz, and the other positions are noise. Three pairs of boundaries (Fig.4.5a) are 

set up among which group A has the largest bandwidth. A: [6 Hz, 378 Hz], B: [15 Hz, 165 Hz], 

C: [42 Hz, 57 Hz]. The components obtained from these three sets of boundaries are processed 

by EWT, and the results can be observed in Fig.4.5. The noise in Component A with the largest 

bandwidth seriously affects the waveform. Component B contains a small amount of noise, and 

the waveform is distorted. The bandwidth of component C is the narrowest and its waveform 

recovery is higher. The width of the frequency band is related to the amount of noise in the 

component, and the way of calculating the bandwidth may contain less noise than the way of 

dividing the spectrum. Therefore, this section proposes a bandwidth estimation method based on 

the extended algorithm of LMF to identify the bandwidth of the component in MPSD. 
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Fig.4.5 Three split modes and there components. 

As a parameter recognition technology, LMF was introduced to assist in the design of 

extended algorithm [115]. A narrower bandwidth can be determined, and a smaller number of 

boundaries may be obtained. The steps of the bandwidth estimation method based on extended 

algorithm can be described as follows: 

1. For the signal s(t), its MPSD can be calculated as S̅(f). Then, the maximum sequence of 

MPSD can be expressed as Pmax. The maximum value S̅(f(l1)) and the second largest value 

S̅(f(l2)) in the position of Pmax can be represented by l1 and l2, the corresponding frequencies 

are f(l1) and f(l2). 

2. Define the position of the frequency of 2/3 times the maximum value of f(l1) in the 

high−frequency direction as the initial half−value width b1; Define the position 2/3 times of 

f(l2) as the initial half−value width b2. 

3. The initial half-band width bf
(1)

 of the maximum value and the initial half−band width 
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bf
(2)

 of the second largest value can be calculated: 

{
bf
(1)
= |f(l1) − f(l1 + b1)|

bf
(2)
= |f(l2) − f(l2 + b2)|

                                           (4.12) 

4. Calculate the negative difference between the frequency fx(k)  and the specific 

frequency, k ∈ [0, π]: 

{

r1 = −|fx(k) − f(l1)|
2

r2 = −|fx(k) − f(l2)|
2

r3 = − |fx(k) −
f(l1)+f(l2)

2
|
2
                                          (4.13) 

5. Define the formula: 

Phi = (x) {S̅(f) − [x(1)e

r1

2(x(4))
2
+ x(2)e

r2

2(x(5))
2
+ x(3)e

r3
2(x(6))2]}              (4.14) 

Define the array: 

X0 = [
S̅(f(l1))

2
,
S̅(f(l2))

2
,
S̅(f(l1))+S̅(f(l2))

4
, bf
(1)
, bf
(2)
, 4(f(l1) − f(l2))]             (4.15) 

6. After solving a set of nonlinear equations in the least square sense through the LMF 

algorithm, a new array X1 will be obtained. The new bandwidth is defined as 2.5 ∙ X1(4). For 

specific steps, please refer to [115]. 

4.3.3 Simulation signal verification 

4.3.3.1 Case study 1 

The second signal contains a periodic high frequency component and a cosine: 

{
 
 
 

 
 
 
sc1 = sin⁡(2π ∙ f1t) × (u(t − 0.09)

⁡⁡⁡⁡−u(t − 0.15) + u(t − 0.34)

⁡⁡−u(t − 0.4) + u(t − 0.59)

⁡⁡⁡⁡−u(t − 0.65) + u(t − 0.84)

−u(t − 0.9))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
sc2 = cos⁡(2π ∙ f2t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
s2 = sc1 + sc2 + η⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                    (4.16) 

where ⁡f1 = 200  Hz; f2 = 2  Hz; and η = SNR(−2⁡dB) , u(t)  is the step signal, the sampling 

frequency is 2⁡kHz, collection time t = 1⁡s. The first component has high frequency information 

in the four time periods [0.09s-0.15s] [0.34s-0.4s] [0.59s-0.65s] [0.84s-0.9s], and these high 

frequency information is periodic. The center frequency is located at 200 Hz. The second 

component is the cosine signal at 2 Hz. Other frequency bands are filled with noise. The 

waveform and Fourier spectrum of this signal are shown in Fig.4.6a. Signal s2  will be 

decomposed into several parts by EWT, and noise will affect the results. The details of the 

boundary distribution of this noisy signal after being processed by EWT are shown in Fig.4.6b. 

Due to the complexity of the signal, the spectrum is divided into 12 parts. Too many boundaries 

are obtained, and more workloads arises. Due to the existence of noise, the process of obtaining 

the boundary of EWT is disturbed or even invalid, which brings great trouble to digital signal 

processing. This is the second disadvantage of EWT in processing noise-containing signals: 

many invalid boundaries and components. Although the spectrum is divided into many parts, the 

cosine component and periodic high frequency components are successfully distinguished. 

Component 1 is where the 2 Hz cosine component exists; Component 3 is where the periodic 

high-frequency component exists. Because EWT obtains too many components, Fig.4.6c only 

shows EM-1 to EM-4 of all results. EM-1 is a cosine component and contains too much noise 
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and is not smooth. EM-3 is a high-frequency shock component, but it is difficult to identify 

these characteristics in the waveform. In this example, although EWT successfully separates the 

two components, it also contains a lot of noise. If there is no further noise reduction operation, 

the results obtained by EWT will cause confusion for signal analysis. 
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Fig.4.6 The results decomposed by EWT 

Fig.4.7a shows the boundary distribution of the signal processed by VEWT. In order to 

compare with EWT, this figure uses Fourier spectrum to show the location of boundaries. The 

spectrum is divided into four parts which is only 1/3 of EWT. The bandwidth of Part A is 12.55 

Hz, and the bandwidth of Part C is 19.2 Hz. Narrow bandwidth means less noise, so in Fig.4.7b, 

Part A is as smooth as the original signal, which is different from EWT. The periodic high-

frequency components with a center frequency of 200 Hz are not divided into incoherent parts. 
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Fig.4.7 The results decomposed by VEWT. 

4.3.3.2 Case study 2 

The signal is made with three distinct components.  

{
 
 

 
 sc1 =

1

1.2+cos⁡(2πt)
⁡⁡⁡⁡sc21 =

2

1.5+sin(2πt)
⁡⁡⁡

sc22 = 2cos⁡(2π ∙ f1t + cos(2π ∙ f2t))
⁡sc2 = sc21sc22 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

s4 = sc1 + sc2 + η⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                   (4.17) 

where⁡f1 = 16 Hz, f2 = 32 Hz, and η = −5⁡dB. The sampling frequency is 8192⁡Hz, collection 

time t = 1⁡s. The waveform of the signal and its components are shown in Fig.4.8a. The first 

component increases monotonically before 0.5s, and decreases monotonously after 0.5s. The 

second component is more complicated; its amplitude is modulated and changes over time. 

The boundaries obtained by traditional EWT and VEWT can be found in Fig.4.8b. The 

frequency of sc1 is 1Hz, and the 32Hz component should be part of sc2. But the component A1 

obtained by EWT does not separate the above two components, which causes serious modal 

aliasing. In addition, the high frequency part still contains too much noise. Unlike the above 
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results, VEWT has fewer boundaries. The four parts with higher peaks are separated. Among 

them, A2 is sc1 and B2 is sc2. Fig.4.9 shows the results of the two methods. The modal aliasing 

in EWT is serious, and VEWT can better extract and restore the components in the signal. 
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Fig.4.8 The signal and the boundaries obtained by EWT and VEWT. 
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Fig.4.9 The results obtained by EWT and VEWT. 

4.3.4 Applications of MIT-BIH Arrhythmia Database 

MIT-BIH Arrhythmia Database is data collected and published with the support of the Beth 

Israel Deaconess Medical Center and Massachusetts Institute of Technology [116,117]. The 

database was the first generally available set of standard test material for evaluation of 

arrhythmia detectors, and has been used for that purpose as well as for basic research into 

cardiac dynamics at more than 500 sites worldwide 

(https://www.physionet.org/content/mitdb/1.0.0/). The MIT-BIH Arrhythmia Database contains 

48 half-hour excerpts of two-channel ambulatory ECG recordings. The recordings were 

digitized at 360 samples per second per channel with 11-bit resolution over a 10 mV range. 

20dB noise was added to verify the ability of EWT, EEWT and VEWT to extract main 

information. The aim of this part is to separate original signal from noise. The original signal, 

the noisy signal and the spectrum are shown in Fig.4.10. 

EWT, EEWT and VEWT are used to process the signal separately. EWT can decompose 

the signal into 21 components (see in Fig.4.10b). The higher frequency part can be considered 

as noise, so the number of components obtained by EWT will increase the workload. The part 

below 60 Hz was divided into 5 parts. When the OSF window width is 123, EEWT divides the 

spectrum into 11 parts, and the high complexity of the low frequency part affects the 

segmentation process. VEWT only obtains four components in total. The part below 60 Hz is 

determined as one component, and the part above 60 Hz is divided into three components. 
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Fig.4.10 The signal and boundaries obtained by EWT, EEWT and VEWT. 
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Fig.4.11 The results decomposed by EWT, EEWT and VEWT. 

Fig.4.11a shows the waveforms of EM-A1 to EM-F1 of the EWT. Show the waveform of 

[4s,7s] in EM-B2 and compare it with the original signal. The solid red line is the original 

signal. Although there are periodic pulses in EM-C1, there is also periodic information in EM-

D1, EM-E1 and EM-F1. The pulse position and time interval are the same as EM-C1. Therefore, 

EM-D1, EM-E1 and EM-F1 contain the same information and may be one main component. In 

addition, EM-C1 loses many details, which contain main information about heart disease, which 

is important for medical analysis. EWT's meticulous segmentation method resulted in the loss of 

details. Extract the EM-A2 to EM-D2 marked in Fig.4.11b. Four components will be obtained. 

EM-B2 and EM-C2 contain periodic pulses, and EM-B2 has higher amplitude. EM-C2 contains 

a lot of noise, and the pulse amplitude is low. Show the waveform of [4s,7s] in EM-B2 and 

compare it with the original signal. The solid red line is the original signal. The average value of 

the obtained EM-B2 is near 0, and the low frequency information is lost. The lower frequency 

A2 may be useful information. There is a big error between the result of EEWT and the original 

signal. Fig.4.11c shows the results of VEWT. EM-A3 contains most of the energy in the original 

signal. There is not much periodic impact information in EM-B3. EM-C3 and EM-D3 are noise. 

The figure shows the details of [4.9s, 6.4s]. The red line is the original signal, and the blue line 
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is EM-A3. The error between the red line and the blue line is small, and Em-A3 basically 

matches the original signal. 

Calculate the SNR and RMS of EM-C1, EM-B2 and EM-A3. The details are shown in 

Table 2. EEWT has the weakest noise reduction ability and VEWT has the strongest. The 

components obtained by EWT and EEWT are similar to the original signal, and the error of 

VEWT is the smallest. 

Table 2 SNR and RMS of the component obtained by three methods 

Index EWT EEWT VEWT 

SNR(dB) 0.17936 -0.11117 3.8094 

RMS 0.23241 0.24031 0.15302 

Since the SNR of EWT and EEWT is much smaller than that of VEWT, and the error of 

VEWT is only half of that of EWT and EEWT, the ratio of SNR to RMS shown in Fig.4.12 is 

obviously different. The ratio of the components obtained by VEWT is larger. Therefore, it can 

be determined that the proposed VEWT method has advantages over the original method in 

processing the details of the signal containing noise. 
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Fig.4.12 Decomposition efficiency 
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Fig.4.13 The flowcharts of the proposed methods. 

In the process of calculating the modes, the most critical step is to obtain the boundaries. 

The number and location of the boundaries determine the number and quality of the modes. In 

order to improve EWT, we proposes a mode decomposition method based on PSD. Its flowchart 

is shown in Fig.4.13. In order to expand the application of ACEWT, we propose a new indicator. 

After weighting the unbiased autocorrelation, this indicator becomes more sensitive to periodic 
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pulse information. Further, by combining ACEWT and Weighted unbiased autocorrelation, a 

tower boundaries distribution diagram (W-Autogram) which can be used to extract specific 

information is proposed.  

4.4.1 Mode estimation method based on power spectral density 

This section uses PSD to replace the complex Fourier spectrum to show the distribution of 

components. PSD actually represents the distribution of power with frequency. For the signal 

y(t), the Fourier transform is ŷ(f) , and its average power P can be expressed as: 

P = lim
T→∞

1

2T
∫ y(t)2dt
T

−T
                                                (4.18) 

Provided that the Fourier transform of the signal in the interval [0, T] is: 

ŷT(f) =
1

√T
∫ y(t)e−i2πftdt
T

0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.19) 

Then the power spectral density can be defined as: 

Syy(f) = lim
T→∞

E[|ŷT(f)|
2]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.20) 

It can be found from Eq.4.20 that PSD is a positive number greater than zero and is a 

frequency-dependent spectrum. There are several sets of simulation signals showing the 

relationship between the PSD and the fluctuation trend of the spectrum. 

The first component is a modulation signal: ⁡f1 = 10⁡  Hz, ⁡f2 = 100⁡  Hz. The second 

component is a cosine: f3 = 400 Hz. The third component is the periodic pulses. The natural 

frequency of the pulse is fn = 1600 Hz, the sampling frequency fs = 10000 Hz, the damping 

coefficient g = 0.02  and the repetition period T = 0.03  s. The simulated signal and its 

components are shown in Fig.4.14a. The modulation characteristics and periodic pulse 

information in the composed new signal are masked. 

{
 
 

 
 sc1 = 3cos(2π ∙ f1t) × cos(2π ∙ f2t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

sc2 = 3cos(2π ∙ f3t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

sc3 = ∑ 4e−g×2πfn
i t × sin(2πfn

i t × √1 − g2)M
i=1

s1 = sc1 + sc2 + sc3⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                         (4.21) 

The simulated signal contains three components. If the modulation signal and cosine are 

combined into one signal, then the Fourier spectrum of the new signal has high amplitude in two 

frequency bands within 1000 Hz. The energy of the Fourier spectrum of the third component is 

concentrated around 1600 Hz. The same situation occurs in the Fourier spectrum of the signal 

with three components superimposed. Fig.4.14b shows the Fourier spectrum and PSD of the 

signal. 
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Fig.4.14 (a) Three components and synthesized simulation signal; (b) Spectrum and PSD representation 
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The Fourier spectrum can accurately represent the details of the frequency components in 

the signal, which provides great convenience for the analysis process, but also brings difficulties 

to the most critical step in EWT. The simulated signal does not contain noise, but there are many 

extreme points in the Fourier spectrum. The number of extreme points affects the scale space 

representation method, which is the main factor that causes invalid components and modal 

aliasing. It can be found that PSD is smoother and contains fewer extreme points than Fourier 

spectrum; the modulation signal and cosine signal can be separated; for periodic pulse 

information, PSD contains most of the energy. When all the components are superimposed, they 

can also be separated. As the number of extreme points of the PSD decreases, the part with 

lower energy would be suppressed, and the part with higher energy would be retained. The 

PSD-based method can obtain fewer and more reasonable boundaries. 

Add 5dB Gaussian noise to the signal. Due to the increased noise in the signal, 835 

extreme points appear in the Fourier spectrum. These extreme points will interfere with the 

calculation process of EWT, affect the judgment of the segmentation method and shift the 

position of the boundaries. The PSD used in this section only obtains 19 minimum values, 

retains the larger amplitude components in the original signal, and suppresses noise. Therefore, 

this section proposes an adaptive spectral segmentation method and names it as the adaptive and 

concise empirical wavelet transform. The steps can be described as follows: 

1. Estimate the PSD of the signal based on Welch’s method. 

2. Normalize the PSD of the signal to the frequency range ⁡[0, π]. There are fewer extreme 

points in the PSD. This paper uses the minimum value in the PSD to obtain the boundaries.  

3. Construct filter bank based on empirical scale function and empirical wavelet function. 

Each individual filter in the filter bank represents an independent component. All components 

make up the original signal.  

4. Reconstruct the information in each filter. The original signal will be decomposed into 

several components located in different frequency bands. 

Use the method just mentioned to process the signal that containing noise. It can be found 

from Fig.4.15 that ACEWT can separate the modulated signal (A) and the cosine signal (B), and 

the integrity of the periodic pulse information (C) could be preserved. If the original EWT 

method is used to process the signal, the modulation information and cosine may not be 

separated (D). The frequency band representing the periodic pulses (E) contains more noise. 
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Fig.4.15 The comparison of two spectral segmentation methods. 

In order to verify the accuracy of ACEWT's results, component A and B representing the 

modulation signal and cosine signal are used to compare with the original components. Fig.4.16 

shows the results of ACEWT: component A and component B are extracted. Component A and 

B are similar to Sc1 and Sc2 in Fig.4.14a. After amplifying the component A for 0.13s-0.28s, it 

can be known that they have a high degree of fit. After amplifying the component B for 0.21s-

0.25s, it can be known that it is similar to Sc2. Therefore, the decomposition results of ACEWT 
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are effective. Since component D obtained by EWT does not separate the modulated signal from 

the cosine signal, it will not be further analyzed. 
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Fig.4.16 The results decomposed by ACEWT. 

4.4.2 Weighted unbiased autocorrelation 

ACEWT proposed in this paper will obtain a set of empirical modes when processing noise 

and non-stationary signals. Natural frequencies and their side bands are treated as the same 

component. Therefore, it is necessary to automatically identify the cyclostationary information 

in the results. The unbiased autocorrelation of the squared envelope of the demodulated signal 

proposed by Moshrefzadeh is sensitive to the periodic pulse characteristics, but the single pulse 

can also affect the sensitivity of AC. For the collected signals, noise cannot be completely 

avoided. Random pulses in noise are a test for AC. During the processing of noise and non-

stationary signals, ACEWT may obtain components with a narrow frequency band and 

containing single pulses, which may make it difficult to screen for fault information. Even if the 

narrow frequency band contains the natural frequency (center frequency), it cannot contain 

more side bands, which would cause harmonics to not appear in the process of Hilbert envelope 

demodulation. The extreme points obtained by the PSD-based mode decomposition method 

proposed will accommodate more periodic pulse information, which means that there will be 

almost no narrow frequency band near the center frequency. So the width of the frequency band 

can be used as one of the references for determining how much fault information is contained in 

each frequency band. This section proposes weighted unbiased autocorrelation (WAC) to screen 

fault information in empirical modes. It could combine the advantages of frequency bandwidth 

and unbiased autocorrelation to weaken non-stationary interference such as noise and single 

pulses that are not related to periodic pulse information influences. 

For the signal y(t), the n-th signal within the frequency band: yn(t). The n-th frequency 

band is Λn = [ωn−1,ωn], n = 1,2,… , N, ω0 = 0, ωN = π. Therefore, the width of the frequency 

band after normalization can be expressed as: ηn = ωn − ωn−1. The weight of this band is: 

δn =
ηn

π
                                                                     (4.22) 

The square envelope within Λn is |yn(t)|
2, the square envelope is autocorrelated: 

R̂yy(τ) =
1

L−q
∑ |yn(ti)|

2 ∙ |yn(ti + τ)|
2L−q

i=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.23) 

where τ = q/fs represents the delay factor, q = 0,1, … , L − 1, fs is the sampling frequency, and 

L is the length of the signal.  

The kurtosis of unbiased Autocorrelation in frequency band Λn = [ωn−1,ωn]  can be 

defined as: 
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κn =
∑ [R̂yy(i)−min⁡(R̂yy(τ))]

4L/2
i=1

[∑ [R̂yy(i)−min⁡(R̂yy(τ))]
2L/2

i=1 ]2
                                                  (4.24) 

The definition of weighted unbiased Autocorrelation (WAC) is as follows: 

WACn = δn ∙ κn =
ηn

π
∙
∑ [R̂yy(i)−min⁡(R̂yy(τ))]

4L/2
i=1

[∑ [R̂yy(i)−min⁡(R̂yy(τ))]
2L/2

i=1 ]2
                                 (4.25) 

4.4.3 Introduction to Adaptive Multilevel Spectral Segmentation Framework 

ACEWT calculates the PSD of the discrete-time signal vector via Welch's method. 

Hamming window would be used to estimate the final spectral. After research, the width of the 

Hamming window is related to the fineness of PSD. 

Taking the signal shown in Eq.4.21 as an example, the method proposed in this section is 

used to calculate PSD. If the window width is set to 5, PSD is a monotonically decreasing 

curve. The curve shows that the amplitude of the spectrum decreases with increasing frequency. 

If the window width is set to 20, the initial amplitude of the PSD is high, but two peaks and two 

troughs appear in the curve. The curve shows that the amplitude of the spectrum does not 

decrease continuously as the frequency increases. There are two parts of the energy in the 

spectrum that are concentrated, and the two parts of the energy are bounded by the first trough. 

If the window width is set to 100 or higher, the PSD becomes a more complex curve with more 

peaks and valleys. The curve separates the modulated signal, the cosine signal, and the 

frequency band containing the periodic pulse information with several troughs. The above 

situation is shown in Fig.4.17. It can be see that the choice of the window width directly affects 

the fineness of the PSD, the number of boundaries and the quality of the final empirical modes. 
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Fig.4.17 The relationship between PSD and window width. 

The method proposed in this section treats the minimum points in the PSD as boundaries to 

distinguish different empirical modes, and the size of the window width is related to the number 

and position of the boundaries. This section proposes to obtain different boundary groups by 

changing the window width, and combines all the boundary groups into a tower boundaries 

distribution diagram (W-Autogram). This section proposed W-Autogram based on ACEWT and 

WAC. The segmentation method is related to the signal, so there is no fixed boundary position. 

The number of boundaries is proportional to the window width. 

4.4.4 Application 

The experimental data used in this paper comes from the bearing failure test bench of Mie 

University, Japan, as shown in Fig.2.21. The type of the bearing is NU204. The inner ring of the 

bearing has a width of 0.5 mm and a depth of 0.15 mm. The outer ring of the bearing has a 

width of 0.3 mm and a depth of 0.05 mm. A static load of 150 kg was used in the experiment. 

The speed of shaft rotation is: 1500  rpm/s, the sampling frequency fs = 100  kHz. After 

calculation, the bearing inner ring fault characteristic frequency is fI = 170 Hz, the period TI =

0.0059 s. The bearing outer ring fault characteristic frequency is fO = 100 Hz, the period TO =

0.01 s.  

4.4.4.1 Analysis of Bearing inner Ring Fault Data 
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The bearing inner ring fault data, its spectrum and its envelope spectrum are shown in 

Fig.4.18. There are noticeable pulses in the waveform. After observation, it can be found that 

the interval of the distribution of these pulses is longer, and the interval between different pulses 

is different. It is unrealistic to calculate the period of the signal. Filtering this signal can reduce 

the interference of noise on the fault information, which is equivalent to amplifying the periodic 

pulse information. For the spectrum, it can be seen that the frequency band with a frequency 

lower than 3 kHz has high amplitude. However, the actual situation is complicated; this part 

may not contain more failure information. The frequency band containing the most fault 

information may be masked by noise. 

 
Fig.4.18 The inner ring fault data and its spectrum. 

The results decomposed by Fast Kurtogram can be found in Fig.4.19. The width of the 

frequency band decreases as the number of the level increases. The narrow frequency band is 

only related to the number of division levels, and has nothing to do with all characteristics of the 

signal. The highest kurtosis is located in the third band in Level 5.6. The center frequency of 

this band is 2604 Hz, the bandwidth is 1042 Hz, and the kurtosis is 1.8. 
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Fig.4.19 The results decomposed by Fast Kurtogram. 

Table 3 Time interval between pulses 

Unit: s     

Order 1 2 3 4 

○1  0.0415 0.0415 0.0416 — 

○2  0.0122 0.0118 0.0121 0.0118 

○3  0.0056 0.0060 — — 

Observe the waveform after extracting this band. There are pulses in the waveform, but 

there are several groups of pulses with the same period. The time interval of the marked interval 

in the figure can be searched in Table 3. It can be found that only the third type of time interval 

is the same as the fault period of the bearing inner ring. The number of pulses with the same 

time interval as the third type is small and the amplitude is low. Therefore, the fault information 
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in the extracted components is still strongly disturbed and difficult to be identified. 

W-Autogram is used to process the bearing inner ring fault data. From Fig.4.20, the part 

with frequency less than 10 kHz is regarded as one component in the window width variation 

range (17-69). The WAC in this band is less than 10 and is not the maximum at any window 

width. It can be judged that the fault data contained in it is not as much as Kurtogram. Although 

the amplitude of the spectrum between 10 k-30 kHz is low, W-Autogram still treats this 

frequency band as a component. In Fig.4.20a, the largest WAC appears at Level 3, with a 

window width of 25, a center frequency of 21.6 kHz, and a bandwidth of 24.95 kHz. Fig.4.20b 

displays the relationship between the spectrum and PSD when the window width is 25. There is 

a maximum near 17000 Hz. Since WAC in this band is the largest, it is likely to contain a 

sideband near the maximum value representing the bearing inner ring fault information. Extract 

the largest WAC component and display it in Fig.4.20c. The number of pulses in the signal is 

large and it is easy to discern periodicity. In order to show the periodicity of the pulses, the 

signal between 0.3s and 0.11s can be taken out and observed separately. Although there are no 

obvious pulses between 0.58s and 0.78s, four consecutive equally spaced pulses can be found 

before 0.058s and after 0.078s. The time interval is 0.006s, which is equal to the failure of the 

bearing inner ring. Therefore, it can be judged that the signal contains the bearing inner ring 

fault information, and the bearing inner ring may be faulty. 
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Fig.4.20 The results decomposed by W-Autogram. 

Finally, the computational efficiency of EWT, Fast Kurtogram and W-Autogram is 

calculated. Fig.4.21 shows that Fast Kurtogram is very fast. The W-Autogram proposed in this 

article takes 19.9425s, which is far lower than the original EWT method. 
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Fig.4.21 Time consuming of EWT, Fast Kurtogram and W-Autogram. 

4.4.4.2 Analysis of Bearing inner Ring Fault Data 

The bearing outer ring fault data and its Fourier spectrum are shown in Fig.4.22. The 

interference such as noise is strong, and there is no obvious pulse in the waveform. In the 

Fourier spectrum, the amplitudes of the signals in the entire frequency band are similar. There 

are no significant harmonics in the envelope spectrum. The frequency band containing the fault 
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information is masked by strong noise. 
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Fig.4.22 The outer ring fault data, its spectrum and its envelope spectrum. 

The signal is processed by Fast Kurtogram, the results are shown in Fig.4.23a. The 

component with the highest kurtosis is located at Level 5, the seventh component from the left. 

The center frequency is 10156 Hz and the bandwidth is 1563. Fig.4.23b is the waveform of this 

component, and Fig.4.23c is the envelope spectrum of the component. The width of the 

frequency band is small, and the extracted components exhibit the characteristics of an AM 

signal. 100 Hz can be found in the envelope spectrum, but there are no harmonics. 

0 0.02 0.04 0.06 0.08

-0.01

0

0.01

A
m

p
[m

/s
2
]

Time[s]

0 500 1000 1500
0

0.5

1

x 10
-3

A
m

p
[m

/s
2
]

Fre[Hz]
Frequency [kHz]

le
v
e
l 
k

fir - kurt.2 - Kmax=1.8 @level 5, Bw= 1563Hz, fc=10156Hz

 

 

0 10 20 30 40 50

0  

1  

1.6

2  

2.6

3  

3.6

4  

4.6

5  

5.6

6  
0

0.5

1

1.5

(a) (b)

(c)

 
Fig.4.23 The results decomposed by Fast Kurtogram: (a) Fast Kurtogram; (b) The component with 

maximum Kurtosis; (c) Envelope spectrum of the component. 
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Fig.4.24 The results decomposed by W-Autogram: (a) W-Autogram; (b) The component with maximum 

WAC; (c) Envelope spectrum of the component. 

The signal was processed by W-Autogram; the results are shown in Fig.4.24a. The 

component with the largest WAC is located at Level 10, the window width is 61, the center 

frequency is 10030 Hz, and the bandwidth is 6460 Hz. Fig. 4.24b is the waveform of this 
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component. There are periodic pulses in the waveform of the component, and the period of the 

pulses is 0.01s, which is the same as the failure period of the bearing outer ring. Fig. 4.24c is its 

envelope spectrum. There is obvious fault characteristic frequency and harmonics in the 

envelope spectrum. The method proposed in this paper can effectively extract the fault 

information in the signal of the bearing outer ring. Compared with Fast Kurtogram, the W-

Autogram method proposed in this paper can collect more fault information. 
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Fig.4.25 Time consuming of EWT, Fast Kurtogram and W-Autogram. 

Finally, the computational efficiency of EWT, Fast Kurtogram and W-Autogram is 

calculated. Fig. 4.25 shows W-Autogram proposed in this article takes 4.4086s, which is far 

lower than the original EWT method. 

4.5 The proposed Harmonic spectral kurtosis and its application in 

the multilevel spectral segmentation framework 

When rotating machinery, especially bearings or gears, are damaged, periodic pulse signals 

will appear, which is the most important basis for detecting faults. In a noise-free or weak noise 

environment, the time-domain waveform characteristics of the fault signal include pulses and 

their periodicity, which are easy to be visually recognized. When the fault signal contains noise 

or other interference, the pulse in the fault signal is buried, and scholars can find the fault 

characteristics in the frequency domain. Although the fault information of the bearing inner ring 

or outer ring exists in the full spectrum, most of the energy is concentrated near the natural 

frequency. Noise is likely to conceal fault information far away from the natural frequency. 

Ideally, the single-level decomposition method can divide the signal into several uncorrelated 

components, and one of them may contain the most fault information. Envelope analysis of this 

component may realize the visual display of the fault information in the envelope spectrum. In 

order to quantify the fault information in the envelope spectrum, this section proposed 

Harmonic spectral kurtosis, which is sensitive to periodic pulse information, based on the theory 

of Spectral kurtosis. 

4.5.1 Theory of harmonic spectral kurtosis 

The stationary process described in Frequency domain Wold-Cramer decomposition is: 

y(t) = ∫ ej2πftG(f)dX(f)
+∞

−∞
                                         (4.26) 

where G(f) is the Hilbert transform of g(t), ⁡dX(f) is the spectral process of signal x(t): 

⁡x(t) = ∫ ej2πftdX(f)
+∞

−∞
                                             (4.27) 

Antoni summarizes the non-stationary signal by adding time-varying information: 

y(t) = ∫ g(t, t − τ)x(τ)dτ
t

−∞
                                        (4.28) 
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Its frequency counterpart is: 

y(t) = ∫ ej2πftP(t, f)dX(f)
+∞

−∞
                                       (4.29) 

where P(t, f) can be interpreted as the complex envelope or complex demodulate of y(t) at f. 

Subsequently, the randomized cyclostationary processes can be described as: 

g(t, s) = g(t + T, s) = ∑ gk(s)e
j2πkt/T

k                               (4.30) 

where g(t, s) is the periodic function of time. 

Define the 2n-order instantaneous moment as: 

S2nY(t, f) = E {|P(t, f)dX(f)|
2n
} /df = |P(t, f)|

2n ∙ S2nX                    (4.31) 

2n-order instantaneous moment can measure the energy intensity of the complex envelope 

at t and f. S2nY(t, f) can also be called the instantaneous spectrum or time-frequency energy 

density of y(t). Let n = 1, its spectral moments are: 

S2Y(f) = E{S2Y(t, f)} = E {|P(t, f)dX(f)|
2
} /df = E{|P(t, f)|

2} ∙ S2X           (4.32) 

When characterizing the conditionally non-stationary process, define 2n-order average 

moment: 

〈S2Y(t, f)〉t = lim
T→∞

1/T∫ S2Y(t, f)dt
T/2

−T/2
= S2Y(f)                          (4.33) 

Similarly, instantaneous moment of characteristic time can be defined: 

g0(t, ∆t) = ∑ gn(nt)e
j2πnt/T

n                                         (4.34) 

where g0(t, ∆t) is a function that may have periodic instantaneous pulses intercepted in the area 

(−∆t, ∆t) near nt of ⁡g(t, s). Define the 2n-order harmonic instantaneous moment as: 

S2HY(t, f) = E {|Pn(t, f)dX(f)|
2
} /df = |Pn(t, f)|

2 ∙ S2X                         (4.35) 

S2HY(t, f) can measure the local energy intensity of the complex envelope at t and f. Its 

spectral moments are: 

S2HY(f) = E{S2HY(t, f)} = E {|Pn(t, f)dX(f)|
2
} /df = E{|Pn(t, f)|

2} ∙ S2X             (4.36) 

2n-order harmonic average moment can be described as: 

〈S2HY(t, f)〉t = lim
T→∞

1/T∫ S2HY(t, f)dt
T/2

−T/2
= S2HY(f)                        (4.37) 

The normalized fourth-order harmonic spectral moment of y(t) can be defined as: 

C4HY(f) = S4HY(f); f ≠ 0                                                 (4.38) 

Harmonic Spectral Kurtosis (HSK) is defined as the energy-normalised fourth-order 

harmonic spectral cumulant: 

HSKY(f) =
C4HY(f)

S2Y
2 (f)

=
S4HY(f)

S2Y
2 (f)

; f ≠ 0                                         (4.39) 

HSK can not only suppress the interference of single pulse, random noise, and modulation 

information, but also is sensitive to the fault information of the bearing inner ring and outer 

ring. If the bearing of the equipment is damaged, the fault characteristic frequency of the 

bearing inner ring or outer ring and its harmonics may appear in the envelope spectrum of the 

vibration signal, which can be found in Fig.4.26. There are periodic pulses of similar amplitude 

in the waveform of the fault signal of the outer ring of the bearing, and periodic pulses of 

amplitude modulation in the fault signal of the inner ring. This is the biggest difference between 

the two fault characteristics in the time domain waveform. The spectrum of the two types of 

fault signals includes the center frequency and bandwidth, and the fault information covers the 

entire spectrum. In general, the fault characteristic frequency of the inner ring of the bearing is 

higher than that of the outer ring. The envelope spectrum of the outer ring fault signal has outer 
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ring fault characteristic frequencies and harmonics; the inner ring fault signal has characteristic 

frequencies, harmonics and sidebands. 
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Fig.4.26 The fault simulation signal, spectra and envelope spectra of the inner ring and outer ring of the 

rolling bearing. 

Commonly used envelope demodulation diagnosis methods need to observe whether there 

are fault characteristics and harmonics in the envelope spectrum, which means that the observed 

results will be affected by their amplitudes. For the multi-level decomposition method, the 

signal is usually accumulatively decomposed into dozens of components. It is time-consuming 

and unreasonable to judge each envelope spectrum by observation. If a certain frequency and its 

possible harmonics are superimposed or multiplied, the total energy of the characteristic 

frequency and its harmonics will appear in the new spectrum. Fig.4.27 extracts 62.5Hz, 90Hz 

and 100Hz and their several multiples from the envelope spectrum of the above-mentioned 

inner circle signal and displays them in the new spectrum. Obviously, when the extracted 

frequency is related to fault information, the energy of the new spectrum is higher. When the 

extracted frequency is related to noise, the energy is lower. When processing signals containing 

noise or other interference, the above-mentioned precise extraction methods are difficult to 

achieve the desired effect. The characteristic frequency of the bearing inner ring or outer ring 

fault may be deviated during the calculation process, and even a small deviation may cause the 

final energy to be weakened, as shown in the green part in Fig.4.27. 

HSK extracts the instantaneous moment of characteristic of the envelope spectrum as 

shown in Fig.4.28. The preset characteristic frequency range and its harmonics are extracted and 

formed into new samples, the fault information is retained, and the noise part is discarded. It can 

be theoretically said that useful information will be amplified and useless information such as 

noise will be suppressed, which means that the proposed HSK is insensitive to interference 

information that does not have periodic pulse characteristics such as noise. For the envelope 

spectrum of noise, the difference between the mean value and the peak value of the 

instantaneous moment of characteristic obtained by HSK is very small, and there will be no 

periodic pulses. Similarly, there is no similar bearing fault information in the envelope spectrum 

of single pulse and modulation information. 

 
Fig.4.27 Extract 62.5Hz, 90Hz, 100Hz and several harmonics of the envelope spectrum of the signal, 

show their energy in the new spectrum 
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(b) Instantaneous moment of characteristic(a) Envelope spectrum of bearing outer ring fault data
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Fig.4.28 Instantaneous moment of characteristic of envelope spectrum obtained by HSK 

If the above-mentioned bearing inner ring and outer ring fault simulation data are 

combined, the waveform, spectrum and envelope spectrum can be found in Fig.4.29. The 

envelope spectrum of the compound faults is complex, which may include the rotation 

frequency, the characteristic frequency of the outer ring fault and its harmonics, the 

characteristic frequency of the inner ring fault and its harmonics and sidebands. The fusion of 

all frequency information will bring difficulties to visual discrimination. HSK can separate the 

instantaneous moment of characteristics of the inner ring and outer ring in the envelope 

spectrum.  

(c) Instantaneous moment of characteristic of inner/outer ring

Inner ring

(a) Superimposed signal and its spectrum (b) Envelope spectrum

Outer ring

 
Fig.4.29 Separate the inner ring and outer ring fault information in compound faults by HSK 

4.5.2 Basic properties of harmonic spectral kurtosis 

It is difficult to predict whether the collected signal contains fault information or the type 

of interference information. The characteristic information of the equipment during normal 

operation, the characteristic information of faulty components, and strong environmental noise 

are likely to be hidden in the signal. Even if the device is not damaged, it may be severely 

disturbed by the outside world. For example, the collision between materials and the device, and 

the contact between tools and the device may be collected and recorded by the sensor. Random 

single pulses will bring great trouble to fault diagnosis, especially in the current index system 

even if the pulse energy is very weak. In order to simulate several of information that may exist 

in the normal operation of the equipment, several simulation signals are designed in this section.  

{
 
 
 
 

 
 
 
 

sA = 5cos(2π ∙ 100t)

sB = 5cos(2π ∙ 4t) × cos(2π ∙ 500t)

sC = 150e
−g1×2πfn1

i t × sin(2πfn1
i t × √1 − g1

2)

sD = 5 sin(2π ∙ 35t) × sin(2π ∙ 2500t + sin(2π ∙ 100t))

+0.8 cos(2π ∙ 2t) × cos(2π ∙ 50t)

sE = ∑ 14e−g2×2πfn2
i t × sin(2πfn2

i t × √1 − g2
2)M

i=1

sF = Noise(SNR = 10dB)
s = sA + sB + sC + sD + sE + sF

                   (4.40) 

where the nature frequency is ⁡fn1 = 1500 Hz, fn2 = 3500 Hz. The damping coefficient g1 =

0.1,⁡g2 = 0.02, the repetition period of the periodic pulses is T = 0.01 s. Component A is a 
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cosine at 100 Hz with amplitude of 5; Component B is a modulation signal; Component C is a 

single pulse with a center frequency of 1500 Hz; Component D is interference information with 

a center frequency of 2500 Hz and a bandwidth of 35 Hz; Component E is the periodic pulses 

with a center frequency of 3500 Hz and a bandwidth of 100 Hz; Component F is random noise. 

The waveforms, spectra and envelope spectra are shown in Fig.4.30. 

(b) Spectra(a) Six Signals (c) Envelope spectra
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F

(d) HSK of each component  
Fig.4.30 Sensitivity of harmonic spectrum kurtosis to different components 

The spectrum of A is a single pulse, so that the kurtosis of A calculated from the frequency 

domain may be similar to the result of C calculated from the time domain. The energy in the 

envelope spectrum is so low that it can hardly display any useful information. The spectrum of 

B is two single pulses close to each other, which will have a higher amplitude component in the 

envelope spectrum, but there is no frequency doubling information. The spectrum of single 

pulse C is a curve with very low amplitude, which is difficult to find in the superimposed signal 

but exists. There are no characteristic frequencies or harmonics in the envelope spectrum of C, 

and it is an attenuation curve. C is sensitive to many indicators. The spectrum of D is similar to 

that of periodic pulses, but the center frequency is missing, and there may be fault characteristic 

frequencies in the envelope spectrum. These contents may bring troubles to the direct 

observation method, but its frequency is often smaller than the fault characteristic frequency, 

and the harmonic information is weak. There are center frequencies and several sidebands in the 

spectrum of E, and there are characteristic frequencies and harmonics in the envelope spectrum. 

The SNR of the noise F is -5dB, and there may be random pulses in the time domain. The noise 

is all over the whole spectrum, and there is no obvious characteristic on the envelope spectrum. 

To calculate the HSK of these six components, please pay attention to the abscissa of Fig.4.30. 

When the signal has periodic pulse characteristics, the value of HSK will be very high, and the 

HSK of the other components will be very small.  

 
Fig.4.31 Add different intensities of noise to the components 

In order to verify the HSK anti-noise ability, we added noise with a SNR of [-20dB, 20dB] 

to the above five simulated signals. Fig.4.31 shows the HSK of the five components in different 
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SNR situations. When SNR is higher than -14 dB, HSK is more sensitive to periodic pulses than 

other interferences. When the SNR is lower than -14dB, the sensitivity of the HSK is reduced or 

even failure information may not be extracted. Of course, the environmental noise is difficult to 

reach -14 dB, this extreme environment needs to be discussed in follow-up research. Therefore, 

it can be concluded that the HSK's anti-noise ability is excellent, and theoretically it can realize 

the fault feature extraction in the application. 

4.5.3 Multi-level spectral segmentation method: Harmogram 

The signal usually contains lots of unknown information, and the fault information is also 

hidden in it. The multi-level spectral segmentation method can freely divide the spectrum 

according to the characteristics of the signal and obtain the corresponding center frequency and 

bandwidth. The core of the multi-level decomposition method is to find a resonant frequency 

band for the band-pass filtering process to enhance the weak bearing fault signal in the envelope 

spectrum. Since it is inevitable that the signal contains interference or noise, and both noise and 

fault information exist in the high frequency and low frequency bands at the same time, it is the 

core of Harmogram to extract the frequency band that contains more fault information and less 

noise through a band-pass filter. Therefore, the multi-level decomposition method has become 

the main direction of the application of HSK in this article. In this paper, the Fourier transform 

function of the spectrum is used to extract the trend component inversely as the basis for 

separating the spectrum. By changing the conditions of the inverse transformation, the trend 

components of different fluctuation levels can be stacked to form a tower-shaped boundary 

distribution diagram, which is the basic content of Harmogram. Fig.4.32 shows the flowchart of 

Harmogram. 

Load the signal and calculate the spectrum

Calculate the Fourier transform function of the 

spectrum, set the initial interception length 

Perform the inverse discrete Fourier transform 

to obtain the trend component according to the 

interception length

Compute the minimal point sequence of the 

trend component and divide the spectrum into 

several frequency bands
Calculate the HSK of each empirical mode, a 

multi-level tower-shaped boundary distribution 
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Fig.4.32 The flowcharts of Harmogram. 

The main steps of Harmogram are shown as follows: 

Step 1: Collect the fault data and calculate the Fourier transform of the spectrum, set the 

initial interception length. 

Step 2: Perform the inverse discrete Fourier transform on the intercepted Fourier transform 

function of the spectrum according to the interception length; the trend component will be 

obtained which would be used to calculate the minimum sequence that are regarded as 

boundaries used to divide the spectrum. 

Step 3: Applying scaling function and empirical wavelets to process the center frequency 

and bandwidth of each frequency band, a low-pass filter and a set of band-pass filters will be 

obtained, and each filter will extract a component. 

Step 4: Increase the interception length and repeat steps 2 to 3. A multi-level tower-shaped 

boundary distribution diagram will be created. 
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Step 5: Harmonic spectral kurtosis will be calculated for the envelope spectrum of each 

empirical mode. A new Harmogram can be constructed to identify periodic pulse information in 

the signal. 

4.5.4 Comparison of index performance in multi-level decomposition methods 

The multi-level decomposition method can provide more choices for the screening process 

of various indicators, noise and interference have the opportunity to be discarded, and useful 

information can be retained with greater probability. This section uses the Harmogram to obtain 

the tower-shaped boundary distribution diagram and verify the advantages of HSK. 

Superimpose the components A-E into a new signal and add three levels of noise to it: -3dB/-

5dB/-7dB. When the noise intensity is -3dB, the time-domain waveform and spectrum can be 

found in Fig.10. There is a single pulse with very high amplitude in the waveform, which is 

located at 1500Hz on the spectrum. The periodic pulse information representing the fault is 

located at 3500 Hz on the spectrum. The core and purpose of the multi-level decomposition 

method is to successfully extract Part E in Fig.4.33. 

(b) The spectrum of each component(a)Signal and its spectrum

C

 
Fig.4.33 Superimposed signal and spectrum 
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Fig.4.34 Results of screening using different indicators under the Harmogram framework 
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(b)Envelope spectrum

Characteristic frequency

Harmonic

(a)Component of the frequency band selected by HSK and its spectrum  
Fig.4.35 Component of the frequency band selected by HSK 

(b) Spectrum

Single pulse

(a) FIR based Fast Kurtogram  
Fig.4.36 Results decomposed by Fast Kurtogram 

Some excellent indicators are used to verify the superiority of HSK: Kurtosis, the kurtosis 

of the unbiased Autocorrelation of the squared envelope of the demodulated signal (AC), 

Sparsity, Information Entropy (IE), Negentropy (NE), AC×NE (ANE), Spectral Negentropy 

(SNE) and Correlation SNE (CSNE) are used to calculate the components in the Harmogram. 

Fig.4.34 shows the results of screening using different indicators under the Harmogram 

framework. Kurtosis is sensitive to the single pulse at 1500 Hz, and other components are 

almost ignored. AC can resist the interference of a single pulse in the case of weak noise, but 

cannot resist the temptation of a single pulse in the case of strong noise. Sparsity focuses on the 

location of the modulation information. Both IE and NE are more sensitive to single pulses. 

ANE cannot resist interference in narrow frequency bands. Although SNE avoids the pulse in 

the time domain, it cannot avoid the interference of the information of "pulse in the frequency 

domain and cosine in the time domain". CSNE still does not solve the interference of single 

pulse to the indicator. The screening results of 9 indicators show that only HSK successfully 

locates the center frequency near 3500 Hz. The maximum HSK of Level 3-8 is in this frequency 

band. HSK=759.1, the bandwidth is 730Hz. In theory, 7 sidebands can be intercepted, which is 

helpful for subsequent envelope analysis. The waveform, spectrum, and envelope spectrum of 

this component are shown in Fig.4.35. The envelope spectrum contains characteristic 

frequencies with higher peaks and their harmonics. 

If Fast Kurtogram is used to process the signal, the result is shown in Fig.4.36a. The signal 

is decomposed into 9 levels. The component with the largest Kurtosis is located at the center 

frequency of 1458 Hz and the bandwidth is 416 Hz. Because Kurtosis is sensitive to single 

pulses, periodic pulse information at 3500 Hz cannot be located. Although the energy of a single 

pulse in the frequency spectrum is very low, the result is still disturbed by it. Fig.4.36b shows 

the comparison between the spectrum of the component with the greatest kurtosis and the 

original spectrum. The four visually distinguishable components are not recognized, and the 
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visually difficult single pulse is recognized. Since the 3500Hz component has not been 

extracted, the envelope spectrum is not shown here because it is meaningless. Fast Kurtogram 

may recognize a signal containing only a single pulse as a fault. 
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(c) Envelope spectrum of the component selected 

by HSK: SNR(-5dB)
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(d) Envelope spectrum of the component selected 

by HSK: SNR(-7dB)  
Fig.4.37 Results of screening using different indicators under the Harmogram framework with 

Noise=SNR(-5dB or -7dB) 

Increase the noise intensity and repeat the above experiment. The Harmogram-based 

decomposition method divides the signal into 11 groups. In order to show the processing results 

of each indicator under two noise intensities of -5dB and -7dB, Fig.4.37a-b uses different colors 

to mark the location of the maximum value of each indicator. Among them, Kurtosis is blue and 

HSK is red. When the noise intensity is SNR=-5dB, Kurtosis/AC/NE/ANE/CSNE all recognize 

the single pulse, and only HSK recognizes the periodic pulse. When the noise intensity is 

SNR=-7dB, the same five indicators as before can identify single pulses, and only HSK can 

identify periodic pulses. Calculate the envelope spectrum of the frequency band obtained by 

HSK. When the noise intensity is -5dB, the characteristic frequency and its harmonics can be 

found from Fig.4.37c, and the fault characteristics are obvious. When the noise intensity is -

7dB, the characteristic frequency and its harmonics can be found from Fig.4.37d, and the fault 

characteristics are obvious. 

Fig.4.38a is the processing result of Fast Kurtogram; the signal is decomposed into 9 

levels. The component with the largest Kurtosis is located at the center frequency of 1458 Hz 

and the bandwidth is 416 Hz. The multi-level decomposition process is concentrated around 

1500 Hz where there is a single pulse. Even if the noise intensity has increased to -5dB, the 

single pulse still has a great influence on the results of Fast Kurtogram. Fig.4.38c is the 

processing result of Fast Kurtogram; the signal is decomposed into 9 levels. The component 

with the largest Kurtosis is located at the center frequency of 1484 Hz and the bandwidth is 156 

Hz. The multi-level decomposition process is also concentrated around 1500 Hz where there is a 

single pulse. When the noise intensity is -7dB, the single pulse still has a great influence on the 

result of Fast Kurtogram. Therefore, the HSK proposed in this paper can avoid the interference 

of single pulse and modulation information in both strong and weak noise conditions. The more 
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reasonable multi-level decomposition results obtained by the Harmogram proposed in this paper 

also provide convenience for noise reduction. 

(b) Spectrum

Single pulse

(a) FIR based Fast Kurtogram

(c) FIR based Fast Kurtogram (d) Spectrum

Single pulse

 
Fig.4.38 Results decomposed by Fast Kurtogram with Noise=SNR(-5dB or -7dB) 

4.5.5 Application 

4.5.5.1 Bearing outer ring fault data 

This experiment uses the fault bearing test data collected by the laboratory of Xi'an 

Jiaotong University. The Spectra Quest, Inc test bench is shown in Fig.4.39a. The rated speed of 

the motor is 2850r/min, the number of rotor slots is 34, and the number of stator slots is 24. 

After calculation, the fault characteristic frequency of the outer ring of the bearing is 𝑓𝑞 =

76⁡Hz. Fig.4.39b shows the collected signal and its spectrum. There are many pulses in the 

waveform but its periodicity cannot be judged. In the spectrum, the amplitude of the part whose 

frequency is lower than 1000 Hz is large, and the amplitude of other frequency bands is very 

low. It is difficult to find the center frequency and sidebands of the fault information from it. In 

addition, there is no obvious characteristic frequency of bearing outer ring fault or inner ring 

fault characteristic frequency in the envelope spectrum. 

(a) The Spectra Quest, Inc test bench (b) Signal and Spectrum (c) Envelope Spectrum  
Fig.4.39 The Spectra Quest, Inc test bench. 

Using Harmogram to process the signal, 11 sets of signals will be obtained by the multi-

level decomposition method. After calculating the HSK of each component, the tower-shaped 

boundary distribution diagram is drawn as shown in Fig.4.40a. The component with the largest 

HSK is located at Level 3, with a center frequency of 5341.5 Hz and a bandwidth of 599 Hz. 

The HSK changes of all the components of Level 3 are shown in Fig.4.40b. The spectrum is 
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divided into 7 frequency bands at Level 3, of which the 6th frequency band has the largest HSK. 

The components of this frequency band are extracted, and the waveform and envelope spectrum 

are shown in Fig.4.40c. The characteristic frequency and harmonics can be found, which means 

that there is a bearing outer ring fault in the signal. The proposed HSK is sensitive to periodic 

pulses, and Harmogram can be applied to the fault diagnosis of the bearing outer ring. 

                   (a) Harmogram (b) The distribution of Boundaries and HSK (c) Component and its envelope spectrum
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Harmonic

 
Fig.4.40 The boundaries distribution and envelope spectrum corresponding to the component with the 

largest HSK in the Harmogram 

Fast Kurtogram based on FIR and Fast Kurtogram based on STFT are used to process the 

signal. The center frequency of both methods is around 1500 Hz. Fast Kurtogram based on FIR 

has obtained 9 levels, the component with the largest kurtosis is located in the 9th frequency 

band of Level 5, Kurtosis=2.5. The center frequency is 1593 Hz, and the bandwidth is 187 Hz. 

Due to the narrow bandwidth, even if the position of the center frequency is correct, the narrow 

frequency band cannot contain more than 3 sidebands, which means that it is difficult to obtain 

more periodic pulse information, and there are almost no harmonics in the envelope spectrum. A 

similar situation also appears in the STFT-based Fast Kurtogram. 7 Levels will be obtained, the 

component with the largest kurtosis is located in the 9th band of Level 6, Kurtosis=2.6. The 

center frequency is 1500Hz. The same narrow bandwidth will result in the absence of harmonics 

in the envelope spectrum, which can be observed in Fig.4.41b. 

(b) Envelope spectra                   (a) Fast Kurtogram-FIR (c) Fast Kurtogram-STFT  
Fig.4.41 Fast Kurtogram processing results based on FIR and STFT and the envelope spectrum of the 

component with the largest Kurtosis 

4.5.5.2 Bearing inner ring fault data 

This section adopts the signal of the inner ring fault of the cement mill main motor bearing. 

The cement tube mill is fed at a rate of 200 tons/hour, and a JS150B reducer is used between the 

motor and the mill, as shown in Fig.4.42. The bearing on the load side of the motor is SKF 

23048CC.C3W33.  

The number of rollers is 27, the characteristic frequency of cage failure is fca=5.64Hz, the 

characteristic frequency of roller failure is fb=62.886Hz; the characteristic frequency of outer 

ring failure is fo=152.31Hz; the characteristic frequency of loop fault is fi=185.19Hz. The 

rotation frequency is 12.5 Hz, and the sampling frequency is 22050 Hz. There is a characteristic 

frequency of the inner ring fault in the envelope spectrum, but there is only one 

harmonic(Fig.4.43). 
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Fig.4.42 JS150B reducer structure diagram 

(a) Signal and Spectrum (b) Envelope Spectrum

Characteristic frequency

 
Fig.4.43 Waveform, spectrum and envelope spectrum of the collected signal 

(a) Harmogram (c) Envelope spectrum

Characteristic frequency

Harmonic

(b) Component and its spectrum  
Fig.4.44 Harmogram processing results and the component with the largest HSK, its spectrum and 

envelope spectrum 

Using Harmogram to process the signal, 9 groups of signals will be obtained. After 

calculating the HSK of each component, the tower-shaped boundary distribution diagram is 

drawn as shown in Fig.4.44a. The component with the largest HSK is located at Level 5; with a 

center frequency of 1848.5 Hz and a bandwidth of 1763 Hz. Fig.4.44b shows the waveform and 

spectrum of the component corresponding to the largest HSK. Six periodic pulse information 

and modulation information appear in the waveform. The intercepted part may not contain all 

the fault information, but it contains a lot of fault information. Therefore, the characteristic 

frequency and harmonics can be found in the envelope spectrum of Fig.4.44c, which means that 

there is a bearing inner ring fault in the signal. HSK is sensitive to periodic pulses, and the 

proposed Harmogram can be applied to the fault diagnosis of the bearing inner ring. 

Fast Kurtogram based on FIR and Fast Kurtogram based on STFT was used to process the 

signal. The center frequency of both methods is located near 2067 Hz. The Fast Kurtogram 

based on FIR has obtained 11 levels, and the component with the largest kurtosis is located in 

the fifth frequency band of Level 4.6, Kurtosis=0.4. The bandwidth is 459Hz. There are fault 

characteristic frequencies and a harmonic in the envelope spectrum. In the STFT-based Fast 

Kurtogram, 11 Levels will be obtained, and the component with the largest kurtosis is located in 

the 7th band of Level 5.6, Kurtosis=0.5. The center frequency is 2067Hz. There are fault 

characteristic frequencies in the envelope spectrum, which can be observed in Fig.4.45b. 
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(b) Envelope spectra (c) Fast Kurtogram-STFT                   (a) Fast Kurtogram-FIR

Characteristic frequency

Characteristic frequency

Harmonic

 
Fig.4.45 The envelope spectra of the components with the largest Kurtosis among the two Fast 

Kurtogram processing results 

An excellent algorithm called Autogram will be used to process this complex signal. 

Autogram uses the characteristics of wavelet transform, and its spectrum segmentation 

framework is similar to Fast Kurtogram. At the same time, Autogram applies the maximal 

overlap discrete wavelet packet transform to make the result have a good filtering effect. 

Autogram can decompose the signal into 5 levels. The largest value was obtained in the 4th 

level. Extracting the information in this frequency band, the waveform and envelope spectrum 

are shown in Fig.4.46. It can be found that the envelope spectrum is almost the same as 

Fig.4.45b, and cannot reach the energy intensity of Fig.4.44c. 

(a) Autogram (b) Component and its envelope spectrum  
Fig.4.46 The 5-level spectral segmentation results obtained by Autogram and the obtained component and 

its envelope spectrum 

4.5.5.3 Bearing compound fault data 

The experimental data used in this experiment are from Shanghai Jiao Tong University. 

The bearing fault simulator is shown in Fig.2.28. Fig.4.47 shows the waveform, frequency 

spectrum and envelope spectrum of the signal. Due to the actual length of the acquisition, the 

components in the waveform are more complicated. Because the bearing is predicted to be a 

compound fault, there are bearing inner ring fault information and outer ring fault information 

in the signal. In addition, there is a strong pulse at 16s. After calculating the envelope spectrum 

of the signal, it can be found that although the noise intensity is very weak, the amplitude of the 

rotation frequency is very high. The rotation frequency and its multiplication bring difficulties 

to the judgment of the fault. Even if the characteristic frequency of the bearing inner ring fault 

and its harmonics can be found, the frequency is equal to the multiplier of the rotating 

frequency. It is impossible to determine whether the frequency is a continuation of the multiplier 

of the rotating frequency, and it is not certain that the bearing inner ring is faulty. In addition, 

the fault characteristics of the outer ring of the bearing are difficult to find, and the fault 

information is hidden. 
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(b) Envelope spectrum(a) Signal and spectrum

Rotation frequency

 
Fig.4.47 Waveform, spectrum and envelope spectrum of the collected signal 

Processing the signal under the framework of Harmogram and decomposing it in multiple 

levels, 9 sets of boundary distribution patterns can be obtained. In order to diagnose whether 

there is a bearing inner ring or outer ring fault in the signal, the HSK can be calculated on the 

basis of fo and fi to draw the distribution of two HSKs, which is shown in Fig.4.48. Extract the 

component corresponding to the largest HSK and perform envelope demodulation on it, and the 

fault information can be judged. When fo is used to calculate HSK, the tower-shaped boundary 

distribution diagram drawn is shown in Fig.4.48a. Component with the largest HSK is located at 

Level 9; with a center frequency of 10877.5 Hz and a bandwidth of 1489 Hz. Fig.4.48b shows 

the waveform and spectrum of the component corresponding to the largest HSK. Although there 

is a single pulse in the waveform, its amplitude is lower than the original. It can be found from 

the spectrum that the energy of the extracted frequency band is lower. It can be found in the 

envelope spectrum of Fig.4.48c that the characteristic frequency of the bearing outer ring 

fo=92Hz and its harmonics, which means that there is a bearing outer ring fault in the signal. 

When fi  is used to calculate HSK, the tower-shaped boundary distribution map drawn is as 

shown in Fig.4.48d. The component with the largest HSK is located at Level 4; with a center 

frequency of 22159 Hz and a bandwidth of 3020 Hz. Fig.4.48e shows the waveform and 

spectrum of the component corresponding to the largest HSK. This frequency band belongs to 

high frequency information, and the energy of the extracted frequency band is relatively low. It 

can be found in the envelope spectrum of Fig.4.48f that the characteristic frequency of the 

bearing inner ring is fi=148.6Hz and harmonics, which means that there is a fault in the bearing 

inner ring in this signal. Although the rotation frequency exists in the two envelope spectra, its 

amplitude is very low and does not affect the fault diagnosis. There is also a single pulse in the 

waveform and its amplitude is high, indicating that the natural frequency of the pulse is very 

close to the natural frequency of the inner ring fault. The results show that the proposed HSK is 

sensitive to periodic pulses, and the proposed Harmogram can be applied to the compound fault 

diagnosis of the inner and outer rings of bearings.  

Fast Kurtogram based on FIR and Fast Kurtogram based on STFT was used to process the 

signal (Fig.4.49). The Fast Kurtogram based on FIR has obtained 9 levels, and the component 

with the largest kurtosis is located in the fifth frequency band of Level 2.6, with a center 

frequency of 19200 Hz, Kurtosis=852.9, and a bandwidth of 4266 Hz. There are single pulses 

with higher amplitude in the extracted components, and the characteristic frequencies and 

harmonics of the bearing inner ring fault in the envelope spectrum, which are similar to 

Fig.4.48f. This method can successfully extract the inner ring fault in the signal, but cannot 

capture the outer ring fault information.  
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(a) Harmogram (b) Component and its spectrum

(e) Component and its spectrum

(c) Envelope spectrum
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(f) Envelope spectrum
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(d) Harmogram  
Fig.4.48 The results obtained by Harmogram based on the characteristic frequencies of inner and outer 

ring faults respectively 

(f) Envelope spectrum

(c) Envelope spectrum

Rotation frequency

Inner ring fault 
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Harmonic

(b) Component and its spectrum(a) Fast Kurtogram-FIR

(d) Fast Kurtogram-STFT (e) Component and its spectrum  
Fig.4.49 The result obtained by Fast Kurtogram and the component with the maximum kurtosis, its 

spectrum and envelope spectrum 

(b) Component and its envelope spectrum(a) Autogram  
Fig.4.50 Autogram and the obtained component and its envelope spectrum 

In the STFT-based Fast Kurtogram, 9 levels will be obtained, the component with the 

largest kurtosis is located at Level 6.6, the center frequency is 12400Hz, and Kurtosis=995.8. 

There is a single pulse in the extracted components, and there is a rotation frequency in the 
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envelope spectrum, but there is no fault characteristic of the bearing inner ring or outer ring. The 

results of Autogram are shown in Fig.4.50. It can be found that in the entire frame, only the 

frequency band around 21600 Hz has a larger value, and there is no distinctive value around 

10877 Hz where the bearing outer ring fault exists. The frequency band with a center frequency 

of 21600 Hz and a bandwidth of 1600 Hz is extracted, and its time-domain waveform and 

envelope spectrum are shown as Fig.4.50b. The inner ring fault is easy to find, but the outer ring 

fault characteristics are still buried. In the process of bearing compound fault diagnosis, the 

proposed HSK and Harmogram are advantageous and effective. 

4.6 Conclusion 

In this chapter, two concise spectral segmentation methods based on power spectral density 

are proposed to optimize the empirical wavelet transform and improve the computational 

efficiency and accuracy. 

(a) The method based on variable spectral segmentation empirical wavelet transform 

(VEWT) uses the extreme points of Multi-taper PSD to simplifies the Fourier spectrum and 

reduces the number of extreme points. The bandwidth obtained by the expansion algorithm 

designed on the basis of LMF contains less noise. VEWT is more advantageous for the 

decomposition of signals containing noise. At last, the MIT-BIH Arrhythmia Database is used to 

verify that VEWT is effective. 

(b) The adaptive and concise empirical wavelet transform (ACEWT) that used to reduces 

the original method's excessive dependence on extreme points was proposed. Simulated signals 

verified that the proposed method can extract different components in complex signals. The 

proposed weight unbiased autocorrelation was significantly better than other indicators in a 

strong noise environment, and the resistance to random pulses in noise was greatly increased. 

So it is more sensitive to periodic pulses that represent faults in rotating machinery. In order to 

expand the application of ACEWT, W-Autogram is proposed. The impact of narrow bandwidth 

bands on indicators was reduced. The fault data of bearing inner and outer rings verified the 

effectiveness of the proposed method. 

(c) Harmonic spectral kurtosis (HSK) with strong anti-noise ability and anti-single pulse 

interference to detect periodic pulses was proposed. HSK can accurately extract the harmonic 

information in the envelope spectrum, quantify the periodic pulses, and suppress the influence 

of interference such as random pulses. Harmogram with HSK not only optimizes the spectral 

segmentation method, but also obtains a better center frequency and bandwidth. The filtered 

frequency band can contain more periodic pulse information. The proposed method has greater 

advantages in decomposing signals containing noise. The simulation signal shows that the 

proposed method is accurate and effective. The data of bearing inner ring, outer ring and 

compound faults prove that the method can be applied to bearing fault diagnosis.  
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Chapter 5 

Quaternion-based multi-channel signal fusion method and its 

application in bearing fault diagnosis[113] 

5.1 Introduction 

In this chapter, quaternion analytical mode decomposition (QAMD) method is proposed to 

process multiple acoustic signals and extract fault information in industrial machinery systems 

with high sampling frequency, low speed, and heavy load. QAMD can separate characteristic 

information from frequency domain and extend it to the fault diagnosis of rotating industrial 

machinery. The multi-signal fusion method based on quaternion can process multiple sets of 

longer digital signals at the same time, which provides a new idea for the synchronous 

processing of big data. The proposed quaternion Fourier trend spectral segmentation method can 

not only automatically obtain bisecting frequencies and divide the signal into several frequency 

bands, but also realize the fusion and modal decomposition of multiple sets of digital signals in 

frequency domain. Experimental results show that the proposed method can effectively extract 

useful information from acoustic signals and apply it to bearing fault diagnosis. 

5.2 Proposed quaternion analytical mode decomposition 

Since time domain decomposition methods are prone to modal aliasing or end effects, 

frequency domain decomposition methods have gained more and more development. This paper 

proposes the Spectrum segmentation method based on quaternion Fourier spectrum trend on the 

basis of previous research. The quaternion analytical mode decomposition (QAMD) proposed in 

this chapter is dedicated to the simultaneous analysis and frequency domain fusion of multiple 

sets of acoustic signals to finally achieve modal decomposition. First, a multi-group signals 

fusion method based on quaternion is proposed, which realizes the synchronous analysis of 

three groups of related signals. Secondly, a spectral segmentation method based on quaternion 

Fourier spectral trend is proposed, which realizes the adaptive acquisition of the bisection 

frequency. For the calculation method of trend spectrum, please refer to Eq.3.3-3.5. For the 

extraction of analytical mode, please refer to Eq.2.10-2.18. 

5.2.1 Multiple signal fusion method based on quaternion 

With the development of sensors, multi-channel data synchronous acquisition technology 

and multi-group signal asynchronous acquisition technology have been developed. Relevant big 

data storage technology enables signals to be stored in large quantities and for a long time. As 

the sensitivity of the collector is increased, a large amount of detailed information is stored in 

the signal. This information may be useless noise, or it may contain details of the fault 

information. The length of the weak fault of low-speed and heavy-duty data is very long, and 

the periodic vibration details are hidden in it. Therefore, multi-data or multi-sensor signal fusion 

is helpful to extract weak fault information in the signal. This section uses a quaternion method 

to fuse multiple sets of data signals. 

Hamiltonian [118] proposed a complex number containing one real part and three 

imaginary parts and named it a quaternion. Quaternion is a four-dimensional normed division 

algebra belonging to hyper-complex subgroup which can be described as [119]:  

𝑄 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ ℍ⁡                                                 (5.1) 

where a, b, c, d ∈ ℝ  and i, j, k  are imaginary units which have special properties such as the 
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multiplication rules among them: 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.2) 

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.3) 

Since the product of quaternions is non-commutative, it is difficult to calculate using 

quaternions. In order to achieve the fusion of quaternion signals, this method uses the 

quaternion Fourier transform proposed by Ell [120]. QFT is an extension of classical Fourier 

transform which can be used to process signals with three or four-dimensional samples. The 1D 

right-sided QFT of a quaternion-valued signal f(t) is: 

𝐹𝑅(𝜔) = 𝜅1 ∫ 𝑓(𝑡)𝑒∓𝜇𝜔𝑡𝑑𝑡
∞

−∞
                                                (5.4) 

where −μ represents the forward transform, on the contrary, +μ is the reverse transform, which 

is distinct from their inverse transforms given by Eq.5.5: 

𝑓(𝑡) = 𝜅2 ∫ 𝐹𝑅(𝜔)𝑒±𝜇𝜔𝑡𝑑𝜔
∞

−∞
                                                 (5.5) 

where FR(ω) is spectrum of f(t)  which are functions of quaternion value. μ  is a unit pure 

quaternion and it is not only a norm version of quaternion, but also can be described as the 

rotating axis of quaternion: 

𝜇 =
𝑎

√𝑎2+𝑏2+𝑐2
𝑖 +

𝑏

√𝑎2+𝑏2+𝑐2
𝑗 +

𝑐

√𝑎2+𝑏2+𝑐2
𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.6) 

The scale coefficient satisfies: κ1κ2 = (2π)
−1 . When κ1 = κ2 , this transformation is a 

unitary transformation. The 1D left-sided QFT and its inverse of a quaternion-valued signal f(t) 

can be given by: 

𝐹𝐿(𝜔) = 𝜅− ∫ 𝑒∓𝜇𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

−∞
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.7) 

𝑓(𝑡) = 𝜅+ ∫ 𝑒±𝜇𝜔𝑡𝐹𝐿(𝜔)𝑑𝜔
∞

−∞
                                             (5.8) 

Due to the particularity of quaternion, the fusion among the imaginary parts is very 

difficult. To solve this problem, Sangwine [121] proposed discrete quaternion Fourier transform 

(DQFT) and applied it to color image processing and treat the color space of a point in color 

image as a whole vector with quaternion. However, it is not only enormous but also 

inconvenient to compute according to the formula of DQFT due to the non-commutatively of 

quaternion product. So quaternion fast Fourier transform (QFFT) [122] was proposed to take 

advantage of decomposing the original operation into two traditional complex Fourier 

transforms and use the existing fast Fourier transform to compute QFT.  

Assuming that the quaternion represented in the standard basis {1, 𝑖, 𝑗, 𝑘} is 𝑞 = 𝑎 + 𝑏𝑖 +

𝑐𝑗 + 𝑑𝑘, then a new basis 𝐵 = {1, 𝜇1, 𝜇2, 𝜇1𝜇2} was given which can be expressed as:. 

𝐵 = (

𝜇1𝑖⁡⁡⁡⁡𝜇1𝑗⁡⁡⁡⁡𝜇1𝑘
𝜇2𝑖⁡⁡⁡⁡𝜇2𝑗⁡⁡⁡⁡𝜇2𝑘
𝜇3𝑖⁡⁡⁡⁡𝜇3𝑗⁡⁡⁡⁡𝜇3𝑘

)                                                          (5.9) 

The four numerical components of the quaternion represented on the new basis are:  

{

𝑎′ = 𝑎
𝑏′ = 〈𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 𝜇1〉

𝑐′ = 〈𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 𝜇2〉

𝑑′ = 〈𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 𝜇3〉

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.10) 

where 〈∙〉 represents the scalar product and 𝜇3 = 𝜇1𝜇2 = 𝑉(𝜇1) × 𝑉(𝜇2).  

After changing the basis, the quaternion signal can be used as two complex signals: 

{
𝑧1 = 𝑎

′ + 𝑏′𝐼

𝑧2 = 𝑐
′ + 𝑑′𝐼

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.11) 

where I represents complex root of -1. Thanks to the linear properties of Fourier transform, QFT 

can be decomposed into the sum of two complex Fourier transforms: 

https://www.thesaurus.com/browse/nevertheless
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𝐹(𝑢) = ∑ 𝑒−𝜇2𝜋
𝑛𝑢

𝑁 (𝑎′ + 𝑏′𝜇1 + 𝑐
′𝜇2 + 𝑑

′𝜇3)
𝑁
𝑛=1 ⁡ 

= ∑ 𝑒−𝜇2𝜋
𝑛𝑢

𝑁 (𝑎′ + 𝑏′𝜇1)
𝑁
𝑛=1 + ∑ 𝑒−𝜇2𝜋

𝑛𝑢

𝑁 (𝑐′ + 𝑑′𝜇1)𝜇2
𝑁
𝑛=1 ⁡⁡⁡(5.12) 

The core of this section is to fuse multi-channel signals or multiple sets of related signals 

into the same quaternion signal. Constructing quaternion Fourier spectrum on the basis of QFT 

can provide a more concise objective function for spectrum segmentation. In order to 

demonstrate the multiple signal fusion method based on quaternion, this section constructs a 

simulated signal that has three channels. X-channel and Z-channel are interferences that contain 

modulation information. The center frequency of X-channel is 1000Hz, and the center 

frequency of Z-channel is 4000Hz. Y-channel is a periodic pulse that simulates the failure of the 

outer ring of a bearing, with a center frequency of 2500 Hz. 

{

𝑋(𝑡) = 2 sin(2𝜋 ∙ 50𝑡) × sin(2𝜋 ∙ 1000𝑡 + sin(2𝜋 ∙ 100𝑡))

𝑌(𝑡) = ∑ 6𝑒−𝑔×2𝜋𝑓𝑛
𝑖𝑡 × sin(2𝜋𝑓𝑛

𝑖𝑡 × √1 − 𝑔2)𝑀
𝑖=1

𝑍(𝑡) = 2 sin(2𝜋 ∙ 50𝑡) × sin(2𝜋 ∙ 4000𝑡 + sin(2𝜋 ∙ 100𝑡))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.13) 

where M = 10, damping coefficient g = 0.07,⁡ the period of the pulse is 0.01s. In addition, the 

signals of the three channels have been added with noise with a signal-to-noise ratio of 10dB. 

In order to demonstrate the characteristics of the quaternion Fourier transform, the center 

frequencies of the three channel signals in the frequency domain are set to be far away from 

each other. It can be seen from Fig.5.1 that the signals are successfully fused in the frequency 

domain. The details of each signal are preserved in the new quaternion Fourier spectrum. 

Q(t)=X(t)i+Y(t)j+Z(t)k

X-channel

2

Y-channel Z-channel

quaternion Fourier transform Fusion

1 3

 
Fig.5.1 Multiple signal fusion method based on quaternion 

5.2.2 The calculation process of the QAMD algorithm 

The flowcharts are shown in Fig.5.2 and the steps of QAMD are shown as follows: 

i. Collect signals through multiple or multi-channel synchronization 

ii. Fuse multiple sets of data into a set of quaternion signal 

iii. Perform the quaternion Fourier transform to calculate the Fourier spectrum of the 

fused quaternion signal 

iv. Calculate the trend component of the quaternion Fourier spectrum by the Fourier 

transform of the spectrum 

v. Define the minimum points of the trend spectrum as boundaries to divide the 

quaternion Fourier spectrum 

vi. Set the boundary to the bisecting frequency, and perform modal decomposition 
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iteratively to obtain several components 

Test Rig

Data Acquisition

X(t)

Y(t)

Z(t)

Multiple signals

Use quaternion to fuse multiple sets of data 

into a set of quaternion signals Q(t)=X(t)i+Y(t)j+Z(t)k

Multiple signals

1 2 3 4

Perform the Quaternion Fourier transform 

to calculate the Fourier spectrum of the 

fused signal

Calculate the trend component of the 

quaternion Fourier spectrum by the Fourier 

transform of the spectrum. 

The minimum points of the trend 

component will be defined as boundaries to 

divide the Quaternion Fourier spectrum.

Set the boundary to the bisecting 

frequency, preset the iterative sequence 

from low frequency to high frequency

Perform analytical modal decomposition 

iteratively and decompose the fused 

quaternion signal into several analytical 

modal components

Cut-off points

 
Fig.5.2 The flowcharts of QAMD. 

5.3 Verification 

5.3.1 Simulation signal verification 

In order to show the details and advantages of the multi-channel/multi-group acoustic 

signal decomposition method proposed in this article, this section designs a set of three-channel 

simulation signals. It is assumed that the signal contains low-frequency or high-frequency 

modulation information for normal bearing operation. At the same time, assume that some other 

interference and noise exist. Fig.5.3a shows the four components mentioned above with 

different amplitudes, different center frequencies, and different frequency bands. Due to the 

high frequency of the signal, [0.1s-0.15s] is intercepted here to show the details of each 

component. Fig.5.3b is the Fourier spectrum of each component. The center frequency of S1 is 

1000 Hz, S2 is 4000 Hz, S3 is 2400 Hz, and S4 is 2500 Hz. 

It is worth mentioning that in some cases, not all three channels have obvious fault 

characteristics. Some channels or time-collected signals contain a small amount of fault 

information, and some channels contain a large amount of fault information. In some special 

cases, there is almost no fault information. In view of this, this section constructs three-channel 

simulation based on these components. X-Channel contains a large amount of S1 and a small 

amount of S4; Y-Channel contains a small amount of S4 and a large amount of S2; Z-Channel 

contains S1 and S3, which means there is no fault information. 
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{
  
 

  
 
𝑠𝑋 = 6 sin(2𝜋 ∙ 40𝑡) × sin(2𝜋 ∙ 1000𝑡 + sin(2𝜋 ∙ 100𝑡))

+∑ 6𝑒−𝑔×2𝜋𝑓𝑛
𝑖𝑡 × sin(2𝜋𝑓𝑛

𝑖𝑡 × √1 − 𝑔2)𝑀
𝑖=1

𝑠𝑌 = 4.5 sin(2𝜋 ∙ 40𝑡) × sin(2𝜋 ∙ 4000𝑡 + sin(2𝜋 ∙ 100𝑡))

+∑ 6𝑒−𝑔×2𝜋𝑓𝑛
𝑖𝑡 × sin(2𝜋𝑓𝑛

𝑖𝑡 × √1 − 𝑔2)𝑀
𝑖=1

𝑠𝑍 = 2 sin(2𝜋 ∙ 40𝑡) × sin(2𝜋 ∙ 1000𝑡 + sin(2π ∙ 100t))

+ cos(2𝜋 ∙ 2400𝑡)

             (5.14) 

where the nature frequency 𝑓𝑛 = 2400 Hz. The damping coefficient 𝑔 = 0.07, the repetition 

period of the periodic pulses is 𝑇 = 0.01 s.  

(b) Fourier spectrum of each component

S1

(a) Waveforms of four components

S2

S4

S3

 
Fig.5.3 Four basic components used to construct three-channel signals 

The waveforms contain a lot of noise, and the periodicity of the fault is difficult to 

recognize. It can be vaguely determined from the Fourier spectrum that the fault information 

may exist at 1000Hz, 2500Hz or 4000Hz, because there are center frequencies and sidebands in 

them, and its shape is similar to S4 in Fig.5.3b. According to Eq.5.14, the fault information is 

actually located at 2500 Hz, the sideband is 100 Hz, and the characteristic frequency is 100 Hz. 

The other two frequency bands are interference information. Directly calculate the envelope 

spectrum of the three sets of data as shown in Fig.5.4c. The characteristic frequency of X-

Channel and Z-Channel is 80Hz, and the characteristic frequency of Y-Channel is 60Hz, both of 

which are different from the fault characteristic frequency. Therefore, the preset modulation 

information successfully concealed the fault information in the signal. Fig.5.5 shows the details 

of X-Channel and Y-Channel. The frequency band [2000Hz-3000Hz] is amplified. In the 

Fourier spectrum of these two channels, several pulses with an interval of 100 Hz can be found, 

which contains faults. In order to strip the fault information in the signal from the interference 

and noise, the common method is to divide the spectrum, and then calculate the envelope 

spectrum of the components in each frequency band. 
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(b) Spectra of three signals (c) Envelope spectra of three signals  
Fig.5.4 Waveform, Fourier spectrum and envelope spectrum of the three-channel signal 
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Fig.5.5 Spectra of X-Channel and Y-Channel 

Fig.5.6 shows the boundary distribution obtained after EWT processes the spectra of the 

three channels separately. It can be found that EWT has obtained a large number of tight 

boundaries. In the frequency band [2000Hz-3000Hz], EWT cuts X-Channel into 7 parts and Y-

Channel into 5 parts. If the fault information contained in each frequency band is too little, the 

harmonic information of the characteristic frequency cannot appear in the envelope spectrum, 

which is contrary to expectations. In Fig.5.6, the orange border is the situation where the 

mentioned frequency band is divided. 

(a) Boundaries decomposed by EWT of X-Channel (b) Boundaries decomposed by EWT of Y-Channel (c) Boundaries decomposed by EWT of Z-Channel

Fault Fault

 
Fig.5.6 Boundary distribution obtained by EWT processing multi-channel signals. 

(a) FIR based Fast Kurtogram (b) STFT based Fast Kurtogram  
Fig.5.7 Fast Kurtogram segmentation frame 

Fig.5.7 shows the specific segmentation method. It can be found that when the number of 

decomposition level increases, the number of boundaries increases exponentially. The fault 

frequency band is easily divided into several frequency bands. In addition, this segmentation 

framework is fixed and cannot be adaptively matched to the specific fluctuations of the 

spectrum. In this example, the center frequency of the fault information is 2500 Hz, which is 

exactly the same as the center line of the FK segmentation frame. The above situation means 

that the fault information will inevitably be divided into several parts. 

Different from EWT or Fast Kurtogram, the QAMD proposed in this chapter can obtain a 

trend spectrum similar to the fluctuation trend of quaternion Fourier spectrum. Fig.5.8a shows 

the correspondence between the trend spectrum obtained by QAMD and quaternion Fourier 

spectrum. The fluctuation of the trend spectrum is smoother and has fewer extreme points. The 

boundary distribution is shown in Fig.5.8b. The signal is divided into 8 parts in total. The 

frequency band [2000Hz-3000Hz] is hardly cut. Although some noise is contained, at least 6 

pulses are retained. The waveform information of each frequency band is reconstructed and 

their kurtosis is calculated. The result is shown in Fig.5.8b. Extract the component 

corresponding to the largest kurtosis and shown its waveform, Fourier spectrum, and envelope 

spectrum in Fig.5.8c. Pulses appear in the waveform, indicating that there is an abnormality in 
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the signal. The quaternion Fourier spectrum is concentrated in the selected frequency band, with 

less energy leakage. The fault characteristic frequency and its harmonics appear in the envelope 

spectrum. 

(a) Trend spectrum obtained by QAMD (b) Boundaries and kurtosis decomposed by QAMD (c) Component and its envelope spectrum

Characteristic frequency and 

harmonics

 
Fig.5.8 The results processed by QAMD 

In order to quantify the effectiveness of the boundary distribution, Fig.5.9 shows the 

number of boundaries obtained by EWT processing three signals, FK fourth level and QAMD. 

QAMD has the least boundaries and the highest efficiency. 

 
Fig.5.9 The number of boundaries obtained by five methods. 

The total number of boundaries usually affects the running speed of the algorithm, and the 

number and position of the effective boundaries are the most important factors affecting the 

decomposition results. The fault information exists around 2500Hz, and the sideband is 100Hz. 

This section sets [2000Hz-3000Hz] as the best extraction frequency band. Among them, there 

can be 8 side frequency impacts under ideal conditions. Table 4 shows the number of boundaries 

and effective impacts included in this frequency band. QAMD has the least number of 

boundaries and the most effective impacts. 

Table 4 The number of boundaries and effective impacts included in the frequency band [2kHz-3kHz] 

Number 
EWT 

X-Channel 

EWT 

Y-Channel 

EWT 

Z-Channel 

FK 

Lv4 
QAMD 

Total Boundaries 6 5 2 3 2 

Effective impact 1 1 1 0 6 

 
Fig.5.10 Decomposition efficiency of EWT and QAMD 
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In addition, the number of boundaries in this frequency band is not the only criterion for 

measuring efficiency. The ratio of the frequency range spanning the boundary around 2500 Hz 

to the entire frequency band is the most important factor for verifying the extraction efficiency. 

Fig.5.6 and Fig.5.8 show the number and position of the boundaries. In order to quantify the 

efficiency, Fig.5.10 is drawn. The decomposition efficiency of the three results obtained by 

EWT is less than 20%, and the QAMD reaches 89%. The above situation shows that QAMD 

can fuse the signal and extract the fault information, and its segmentation method is better than 

EWT and Fast Kurtogram. 

5.3.2 Bearing fault signal verification 

The acoustic signal experimental data used in this section comes from Mie University. The 

bearing fault simulator is shown in Fig.3.21. The drive end and the bearing part are connected 

with a pulley. The part where the bearing is installed is very heavy and also bears a load of 

about 500 kg. The rotation speed of the shaft is 70 rpm. At the same time, this experiment uses 

rusty chains to add noise to the system. During the experiment, the vibration acceleration sensor, 

acoustic emission sensor, and Microphone collected signals synchronously. This article uses the 

experimental field signal collected by Microphone. The sampling frequency of Microphone is 

96 kHz, the acquisition time is about 20 s, and the number of acquisitions is 3. The interval 

between each collection is 1 minute to ensure that the environmental noise is different from the 

previous one. 

5.3.2.1 Analysis of bearing inner ring fault data 

In this experiment, a rolling bearing model NTN NU312 was used. The diameter of the 

inner ring is 60mm, the diameter of the outer ring is 130mm, the width is 31mm, and the 

number of rollers is 12. The outer ring of the bearing has been manually processed with linear 

damage with a width of 2.0mm and a depth of 0.3mm. The specific details are shown in 

Fig.5.11. 

(a) Healthy Bearing (b) Faulty Bearing  
Fig.5.11 Healthy bearing and faulty bearing 

(c) Envelope spectra of three signals(b) Spectra of three signals(a) Signals of three channels
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Fig.5.12 Waveform, Fourier spectrum and envelope spectrum of bearing outer fault data 
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In this section, three sets of acoustic signals collected by the microphone are treated as 

three channels. Waveforms, Fourier spectra and envelope spectra of three channel signals are 

shown in Fig.5.12. Since the acoustic signal is characterized by low sensitivity and strong noise, 

it is difficult to find periodic pulses in the waveform of Fig.5.12a. In addition, due to the low 

speed, it is also difficult to find fault information within 20s. After studying the Fourier 

spectrum, it can be found that the information with higher amplitude exists in the frequency 

band below 10 kHz. The amplitude of the high frequency band is low. After calculating the 

envelope spectrum of the signals, it is impossible to observe the characteristic frequency or 

harmonics of the outer ring fault. It is difficult to diagnose faults in this group of signals by 

means of direct analysis. 

First, Fast Kurtogram is used to process the data of the three channels. Since the Fast 

Kurtogram of three sets of data are similar, Fig.5.13a only shows one of them. The component 

with the greatest kurtosis is located in the 15th frequency band of level 5, with a center 

frequency of 21750 Hz and a bandwidth of 1500 Hz. Ideally, this frequency band may contain at 

least 14 sets of sideband frequency pulse information, thereby generating fault characteristic 

frequencies and harmonics in the envelope spectrum. Fig.5.13b-d shows the reconstructed 

components of this frequency band and their envelope spectra of the three channels. There is an 

obvious single pulse in the waveform, but there is no period information. In the envelope 

spectrum, only the Z-Channel has the outer ring fault characteristic frequency, but there are no 

harmonics. 

(a) Fast Kurtogram (b) EWT: X-Channel (c) EWT: Y-Channel (d) EWT: Z-Channel  
Fig.5.13 Results decomposed by Fast Kurtogram 

Traditional AMD needs to manually set important frequencies representing useful 

information and obtain bisecting frequencies after calculation to distinguish different 

components. In this section, the important frequencies are obtained by observation based on the 

amplitude in the Fourier spectrum. It can be found from Fig.5.12b that the spectra of the three 

channels are similar, and the amplitude information exists within 10 kHz. The important 

frequencies of the three signals can be found in Table 5. 

Table 5 Important frequencies of AMD 

Channel Important frequencies (Hz) 

X 653.912 817.415 1307.870 

Y 653.760 817.112 1307.520 

Z 653.608 816.960 1307.170 

Since the signals of the three channels are similar, the important frequencies obtained by 

observation are also almost equal. After calculation, the boundaries of three channels are almost 

equal: [327Hz, 736Hz, 1062Hz] This is shown in Fig.5.14 with the abscissa enlarged to within 5 

kHz. 



96 

 
Fig.5.14 Bisecting frequencies obtained by AMD 

After extracting each component of the three channels, the envelope spectrum of each 

component is calculated, and the result is shown in Fig.5.15. Each channel obtains four 

components, and there is no obvious fault characteristic frequency or harmonic in the envelope 

spectrum. The way of distinguishing modes based on observation is not the mainstream of 

signal decomposition. This low-efficiency and low-success rate approach requires finding new 

alternatives. 
X-Channel Y-Channel Z-Channel

 
Fig.5.15 Envelope spectrum of each component decomposed by AMD 

(a) Quaternion Fourier spectrum (b) Trend spectrum and boundaries obtained by QAMD  
Fig.5.16 Quaternion-based fusion method and spectrum segmentation results 

The QAMD designed in this paper can optimize AMD's modal selection process. QAMD 

first integrated the three-channel signal into a quaternion. The signal fusion method based on 

quaternion Fourier transform can gather useful information together on the one hand, and can 

provide more consistent objects for spectrum segmentation on the other hand. The Fourier 

spectrum of the quaternion is shown in Fig.5.16. Due to the high sampling frequency, there is a 

large gap between the amplitude of the high frequency part and the low frequency part of the 

quaternion Fourier spectrum. The high-amplitude frequency components are concentrated 

within 10 kHz. The spectrum segmentation method proposed in this paper is used to process the 

signal. The part whose frequency is lower than 10 kHz is divided into 8 parts, which can be 

found in Fig.5.16b. 

Extract the information in each frequency band, which will be reconstructed into a time-

domain waveform (Fig.5.17a). A lot of noise still exists in the components, and periodic pulses 

are difficult to identify from the waveform. The envelope spectrum of each component is shown 

in Fig.5.17b, where the characteristic frequency of the bearing outer ring fault and its harmonics 
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appear. The amplitude of the harmonics shows a decreasing trend. These results indicate that 

there is a bearing outer ring fault in the collected signals, and the proposed method can 

effectively extract the fault information in the acoustic signal. 

(b) Envelope spectra

Characteristic frequency and harmonics

(a) Waveforms of components  
Fig.5.17 Results decomposed by QAMD 

5.3.2.2 Analysis of bearing inner ring fault data 

The faulty inner ring bearing used in this experiment was manually processed with linear 

damage with a width of 5.0mm and a depth of 0.3mm. The specific details of the inner ring of 

the bearing are shown in Fig.5.18.  

 
Fig.5.18 Inner ring faulty bearing 

Fig.5.19a shows the waveform of the signal collected three times, and several periodic 

pulses appear. After measurement, the period is about 0.85s and the frequency is about 1.176 

Hz, which is different from the characteristic frequency of the inner ring fault. The shape of the 

spectrum is similar to that of the outer ring, and information with large amplitudes is 

concentrated within 10 kHz. There are no obvious fault characteristic frequencies or harmonics 

in the envelope spectrum. 
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(a) Signals of three channels (b) Spectra of three signals (c) Envelope spectra of three signals  
Fig.5.19 Waveform, Fourier spectrum and envelope spectrum of bearing inner fault data 
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(a) Fast Kurtogram (b) Component and envelope spectrum by EWT of X-Channel  
Fig.5.20 Results decomposed by Fast Kurtogram of X-Channel 

(a) Fast Kurtogram (c) EWT: Z-Channel

(b) EWT: Y-Channel

 
Fig.5.21 Results decomposed by Fast Kurtogram of Y or Z-Channel 

The result of Fast Kurtogram processing X-Channel is shown in Fig.5.20a. The greatest 

kurtosis occurred in the frequency band with a center frequency of 12750 Hz should be 

extracted and calculated its envelope spectrum. There are periodic pulses in the waveform of 

Fig.5.20b, with a period of 2.671 s and a characteristic frequency of 0.374 Hz, which has 

nothing to do with the inner ring fault. The results obtained by Fast Kurtogram processing Y-

Channel and Z-Channel are similar, and only one of them is shown in Fig.5.21a. The component 

with the greatest kurtosis is located in the 24th band of level 5, with a center frequency of 35250 

Hz and a bandwidth of 1500 Hz. At the same time, this frequency band in Fig.5.20a also has 

larger kurtosis. Fig.5.20b-c shows the reconstructed components of the frequency band of the 

two channels. There are obvious pulses in both waveforms, but there is no period information. 

 
Fig.5.22 Trend spectrum and boundaries obtained by QAMD 

The QAMD designed in this paper is used to process the signal. Similar to Section 4.1, this 

section only shows frequency bands within 10 kHz. The high-amplitude frequency components 

are concentrated within 10 kHz. The spectrum segmentation method proposed in this paper is 

used to process the signal. The part whose frequency is lower than 10 kHz is divided into 9 

parts, which can be found in Fig.5.22. 
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Characteristic frequency and harmonics

 
Fig.5.23 Results decomposed by QAMD 

Extracting the information in each frequency band, several time-domain waveforms are 

reconstructed and their envelope spectra are shown in Fig.5.23. The characteristic frequency of 

the bearing inner ring fault and its harmonics appear in the envelope spectra of components 4-8. 

The results show that there is a fault in the bearing inner ring in the collected signals, and the 

proposed method can effectively extract the fault information in the acoustic signal. 

5.4 Conclusion 

This chapter proposed a new quaternion analytical mode decomposition (QAMD) method 

to process multiple acoustic signals and identify the fault information hidden in it. The proposed 

quaternion-based multiple signal fusion method can make AMD suitable for simultaneous 

processing of several sets of long acoustic signals. After the multi-channel acoustic signal is 

constructed as a quaternion signal, the fault information will be gathered and enhanced. The 

proposed quaternion Fourier spectrum trend segmentation method can automatically obtain 

bisecting frequencies and divide the signal into several frequency bands, and realize the fusion 

and modal decomposition of multiple sets of acoustic signals in the frequency domain. The 

simulation signal verifies that QAMD can capture more sideband frequency shocks representing 

fault information while obtaining fewer boundaries, and has the highest decomposition 

efficiency. Experimental results show that the proposed method can effectively extract useful 

information from acoustic signals and apply it to bearing fault diagnosis. 
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Chapter 6 

Conclusions and Further Work 

6.1 Conclusions 

This paper introduces several optimization methods based on analytic mode 

decomposition, frequency slice wavelet transform, empirical wavelet transform and quaternion 

and their application in bearing fault diagnosis under high-speed dynamic load, low-speed 

heavy load and other working conditions. Finally, the conclusions of this paper can be 

summarized as follows: 

(1) A novel framework of multi-level spectral segmentation (Ailinggram) were proposed. 

Ailinggram relies on OSF's window width variability and envelope estimation characteristics to 

achieve multi-level spectral segmentation, which replaces the manual selection of bisecting 

frequency and provides adaptability for AMD. The new framework increases the diversity of the 

center frequency and bandwidth, and suppresses the noise and interference in the reconstructed 

component. In order to filter the feature from the analytical modes of each level, this chapter 

proposes harmonic correlation index (HCI) for feature recognition and improves the usability of 

Ailinggram in the field of non-stationary signal processing and mechanical equipment fault 

diagnosis. The simulated and experimental signal proved that the proposed method is effective 

and can successfully extract the bearing faults. Compared with Kurtogram, Ailinggram is more 

practical for rotating machinery. Experiments proved that when the frequency band with the 

largest HCI is extracted, the probability of fault information in the envelope spectrum is greater 

than that of spectral kurtosis. 

(2) A new Fast Entrogram method for segmenting the spectrum and extracting periodic 

pulse information from the frequency domain was proposed in this chapter. Fast Entrogram 

obtains different trend spectrum and boundary positions by changing the number of 

reconstructed points. Then, the frequency slice wavelet transform with better filtering effect 

than the FIR filter and WPT was used to extract the components in each frequency band. In 

order to filter fault information from the components, a novel indicator named correlation 

spectral negentropy that could suppress random pulse and noise and could amplify periodic 

information was proposed. The research proves that the proposed method not only increases the 

adaptability of the frequency slice wavelet transform, but also optimizes and improves the 

boundary segmentation method, component filtering effect and feature screening indicator of 

Fast Kurtogram. The simulation signal verifies that the proposed correlation spectral negentropy 

is sensitive to periodic pulses and is not sensitive to random pulse. The experimental signal also 

proves that Fast Entrogram can be effectively applied to the fault diagnosis of the inner and 

outer rings of rolling bearings. 

(3) The method based on variable spectral segmentation empirical wavelet transform 

(VEWT) uses the extreme points of Multi-taper PSD to simplifies the Fourier spectrum and 

reduces the number of extreme points. The bandwidth obtained by the expansion algorithm 

designed on the basis of LMF contains less noise. VEWT is more advantageous for the 

decomposition of signals containing noise. At last, the MIT-BIH Arrhythmia Database is used to 

verify that VEWT is effective. 

(4) The adaptive and concise empirical wavelet transform (ACEWT) that used to reduces 

the original method's excessive dependence on extreme points was proposed. Simulated signals 

verified that the proposed method can extract different components in complex signals. The 
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proposed weight unbiased autocorrelation was significantly better than other indicators in a 

strong noise environment, and the resistance to random pulses in noise was greatly increased. 

So it is more sensitive to periodic pulses that represent faults in rotating machinery. In order to 

expand the application of ACEWT, W-Autogram is proposed. The impact of narrow bandwidth 

bands on indicators was reduced. The fault data of bearing inner and outer rings verified the 

effectiveness of the proposed method. 

(5) Harmonic spectral kurtosis (HSK) with strong anti-noise ability and anti-single pulse 

interference to detect periodic pulses was proposed. HSK can accurately extract the harmonic 

information in the envelope spectrum, quantify the periodic pulses, and suppress the influence 

of interference such as random pulses. Harmogram with HSK not only optimizes the spectral 

segmentation method, but also obtains a better center frequency and bandwidth. The filtered 

frequency band can contain more periodic pulse information. The proposed method has greater 

advantages in decomposing signals containing noise. The simulation signal shows that the 

proposed method is accurate and effective. The data of bearing inner ring, outer ring and 

compound faults prove that the method can be applied to bearing fault diagnosis. 

(6) Quaternion analytical mode decomposition (QAMD) was proposed to process multiple 

acoustic signals and identify the fault information hidden in it. Quaternion-based multiple signal 

fusion method can make AMD suitable for simultaneous processing of several sets of long 

acoustic signals. After the multi-channel acoustic signal is constructed as a quaternion signal, 

the fault information will be gathered and enhanced. Quaternion Fourier spectrum trend 

segmentation method can automatically obtain bisecting frequencies and divide the signal into 

several frequency bands, and realize the fusion and modal decomposition of multiple sets of 

acoustic signals in the frequency domain. The simulation signal verifies that QAMD can capture 

more sideband frequency shocks representing fault information while obtaining fewer 

boundaries, and has the highest decomposition efficiency. Experimental results show that the 

proposed method can effectively extract useful information from acoustic signals and apply it to 

bearing fault diagnosis. 

Through the optimization of the single-level spectral segmentation method, this paper 

attempts multi-level spectral segmentation in each chapter and successfully constructs the 

corresponding tower-shaped boundary distribution diagram, showing the upgrade process and 

application value of the fixed frame to the dynamic frame. 

6.2 The Future Work 

Based on the characteristics of quaternions, we look forward to conducting in-depth 

research on this basis: 

(1) Analysis and diagnosis based on current characteristics can not only avoid many 

inconveniences of the sensor, but also avoid the influence of environmental noise on the 

measurement results. Applying the three phases of the current to the imaginary part of the 

quaternion may enhance weak fault signatures. 

(2) Although the multi-level spectral segmentation method brings more possible results to 

the diagnosis process, it increases the time-consuming. Therefore, it is necessary to design the 

initial and termination conditions of the framework in terms of sampling frequency or 

computational bandwidth.  
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