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SUMMARY
Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process
following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dy-
namics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context
remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcrip-
tome dynamics in the putative B/NK progenitor region by dry and wetmethods. By converting splicing kinetics
intodiffusiondynamics inadeepgenerativemodel,ouroriginal computationalmethodology revealsstrongfluc-
tuation atB/pDCbifurcation in IL-7Ra+ regions, and LFA-1 fluctuates positively in the pDCdirection at the bifur-
cation. Theseexpectancies are validatedby thepresenceofB/pDCprogenitors in the IL-7Ra+ fractionandpref-
erential expression of LFA-1 in pDC-biased progenitorswith a niche-like culture system.Weprovide amodel of
fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other
developmental systems.
INTRODUCTION

The hematopoietic systemhas dynamic processes throughwhich

hematopoietic stem cells self-renew or generate various lineages

of cells bymultistep differentiation in response to fluctuating envi-

ronmental conditions. Hematopoietic stem/progenitor cells

(HSPCs) were thought to bifurcate into lineage-committed com-

mon myeloid and lymphoid progenitors (CLPs) that subsequently

branch into variousmyeloid or lymphoid lineages (BlomandSpits,

2006; Doulatov et al., 2012; Seita andWeissman, 2010). However,

the concept of human lymphopoiesis based on the tree-like hier-

archy model of hematopoiesis has been challenged by the

following two aspects (Karamitros et al., 2018; Laurenti and Gött-

gens, 2018; Macaulay et al., 2016; Velten et al., 2017).

First, T-lineage-committed lymphoid progenitors were found to

retain the differentiation potential for monocytic cells, which were

generally thought to bemyeloid-lineage cells (Bell andBhandoola,

2008; Kawamoto and Katsura, 2009; Wada et al., 2008). Similarly
This is an open access article und
e
i-
to mice, human CD34+CD38�CD45RA+CD10+ multilymphoid

progenitors (MLPs),which correspond to the immaturepopulation

of CLPs (Galy et al., 1995), possess the differentiation potential for

dendritic cells (DCs) andmonocytic cells in addition to various lin-

eages of lymphoid cells (Doulatov et al., 2010; Helft et al., 2017).

However, the human lymphoid pathway and bifurcation points

for DC/monocytic lineage remain incompletely defined.

Second, comprehensive profiling and clustering of hematopoi-

etic progenitors at the single-cell level by single-cell RNA

sequencing (scRNA-seq) has revealed the heterogeneity of indi-

vidual cells among common hematopoietic progenitors and the

continuous lineage-priming feature of hematopoietic differentia-

tion (Buenrostro et al., 2018; Haas et al., 2018; Karamitros et al.,

2018; Laurenti and Göttgens, 2018; Loughran et al., 2020; Pellin

et al., 2019; Velten et al., 2017). However, these concepts were

based on scRNA-seq analysis of a static snapshot. Hence, tran-

scriptome dynamics during differentiation and their role in cell

fate decision have not been explored from these perspectives.
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La Manno et al. (2018) first focused on splicing kinetics obtained

from scRNA-seq data and provided a perspective on lineage

direction by recovering the dynamics of the single-cell transcrip-

tome as RNA velocity, and Bergen et al. (2020) developed a

methodology estimating RNA velocity without steady-state

assumption. Lange et al. (2020) calculated the uncertainty of

RNAvelocity asa varianceof theestimatedRNAvelocity to appro-

priately evaluate the cell fate probability, but they did not focus on

the uncertainty itself because of the difficulty in distinguishing the

biological uncertainty from observation noise. Several studies

have revealed fluctuations in transcriptome dynamics during the

time course of cell differentiation using a powerful mathematical

framework called the ‘‘advection-diffusion model,’’ which de-

scribes the dynamics of uncertainty by average dynamics (advec-

tion) and fluctuation (diffusion) (Fischer et al., 2019; Hashimoto

et al., 2016). Fischer et al. (2019) further found that the estimated

diffusion dynamics are more dominant than advection dynamics

at b selection during T cell maturation. Nevertheless, they did

not evaluateor identifymolecular factors that underlie thediffusion

and did not leverage the dynamics information based on splicing

kinetics obtained from scRNA-seq analysis. Thus, existing

computationalmethodologies havedifficulties in analyzing the un-

certainly or fluctuation of single-cell transcriptome dynamics,

which were not well considered in the establishment of the

concept that describes hematopoietic differentiation as a contin-

uous process.

Toovercomethese limitations,weused twooriginallydeveloped

dry/wet approaches. First, we used an advanced lymphoid cocul-

ture system that supports the differentiation of human HSPCs into

proT cells, proB cells, natural killer (NK) cells, plasmacytoid DCs

(pDCs), and monocytic cells under the same culture conditions

(Minami et al., 2017; Nakamori et al., 2012). This culture system

has allowed us to comprehensively and simultaneously analyze

the differentiation potential and tendency of lymphoid progenitors.

Second, we developed an original computational methodology

that converts single-cell splicing kinetics into an advection-diffu-

sionmodel in a latent cell state space using deep-learning technol-

ogy. The variational autoencoder (VAE)-based architecture in our

methodology has allowed us to decode the diffusion in the latent

cell state spaceascoordinated fluctuations ingeneexpressiondy-

namics and to specify the cell state with a large fluctuation in gene

expression dynamics. After challenging the expediency of our

method in the endocrine development system of the pancreas,

we applied this methodology to dissect the human lymphoid DC

pathway in thepopulation thatwaspreviously thought tobehuman

B/NK progenitors (Doulatov et al., 2012; Galy et al., 1995; Karami-

tros et al., 2018; Kawamura et al., 2017) and identified a B/pDC

bifurcation as a highly fluctuating transcriptome state in associa-

tion of lymphoid function-associated antigen 1 (LFA-1) expression

dynamics with pDC differentiation.

RESULTS

Proliferative and differentiation potentials of lymphoid
progenitors change drastically along with an alteration
in c-kit expression
To clarify the lineage branching points of lymphoid progenitors,

we used an approach to examine the expression profile of cyto-
2 Cell Reports 40, 111260, August 30, 2022
kine receptors in various lymphoid progenitors and to specify the

points at which the proliferation and differentiation potential

dynamically change with alterations in receptor expression. We

found that the expression profile of c-kit, a receptor for stem

cell factor (Rojas-Sutterlin et al., 2014), varied in lymphoid-

primed multipotent progenitors (LMPPs), CD7+ MLPs, and

CD7� MLPs in the CD34+CD38�CD45RA+CD19� immature

lymphoid population as well as CD7�CD10� double-negative,

CD7+CD10� single-positive (CD7+ SP), CD7�CD10+ single-pos-
itive (CD10+ SP), and CD7+CD10+ double-positive progenitors in

the CD34+CD38+CD45RA+CD19� relatively mature lymphoid

population. Most proB cells were negative for c-kit (Figure 1A).

To compare the proliferative and differentiation potentials of

c-kit+ and c-kit� fractions in CD7+ MLPs, CD7� MLPs, CD7+

SPs, and CD10+ SPs, each fraction was cultured on stromal

cells. After 11–17 days of culture, higher numbers of cells were

generated from the c-kit+ fraction of immature lymphoid progen-

itor CD7+ or CD7� MLPs as well as CD7+ or CD10+ SP relatively

mature lymphoid progenitors compared with the corresponding

c-kit� fraction (Figure 1B). Moreover, various lineage of cells,

which included proB cells, NK cells, proT, pDCs, monocytic

cells, and cDC2, had developed from the c-kit+ fractions of not

only CD7+ and CD7� MLPs, but also CD7+ and CD10+ SP cells.

Low numbers of CD141+CLEC9A+ cDC1 were also generated,

mainly from c-kit+ fractions (Figures 1C and S1). The c-kit� frac-

tions of CD7+ and CD7� MLPs produced lower percentages of

NK cells than c-kit+ fractions, and c-kit� fractions of CD7+ and

CD10+ SP cells differentiated to significantly higher percentages

of proB, but a lower percentage or absence of NK and proT cells,

and pDCs. The generation of cDC2 and monocytic cells was not

remarkably different between c-kit+ and c-kit� fractions in all

populations, except for a few or no monocytic cells generated

from the c-kit� fraction of CD10+ SP cells (Figure 1C). Thus,

c-kit+ fractions of CD38� cells and the CD38� lymphoid popula-

tion possessed highly proliferative and multilymphoid, DC,

monocytic potentials, while the c-kit� fraction of the CD38+ pop-

ulation exhibited a differentiation tendency toward B rather than

T, NK, or pDC lineages. An observed association of c-kit

negativity with B-lineage differentiation bias in the relatively

mature lymphoid population was also suggested, based on the

inverse relationship between c-kit and CD10 expression in

CD34+CD38+CD45RA+ populations and the partial expression

of cyCD79a, an early marker of B-lineage cells, and CD19 in their

c-kit� fraction (Figure 1D). These data revealed that the prolifer-

ation and differentiation potentials of lymphoid progenitors

change drastically with the alteration of c-kit expression, espe-

cially in the CD34+CD38+CD45RA+ lymphoid population, and

lymphoid progenitors differentiate toward B rather than T, NK,

and pDC lineages along with c-kit downregulation.

Development of a computational methodology that
quantitatively captures the fluctuation of cell state
dynamics during pancreatic endocrine cell
differentiation
To capture the fluctuation of transcriptome dynamics during cell

differentiation quantitatively, we assumed that the cell state dy-

namics could be described as the summation of the determin-

istic transition (advection) and fluctuation (diffusion), which is
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Figure 1. Classification of lymphoid progenitors by c-kit

(A–C) (A) c-kit expression in various lymphoid progenitors. c-kit+ and c-kit� fractions of CD7+ MLP, CD7� MLP, CD7+ SP, and CD10+ SP cells (>95% pure) were

cultured for 11–17 days. Graphs show (B) the total cell number and (C) percentage of proB cells (day 17), NK cells (day 11), proT cells (day 17), and pDCs among

CD45RA+ cells (day 14), and monocytic cells and cDC2 among CD45+ cells (day 14). Error bars represent ±SEM of three independent experiments (unpaired t

test; *p < 0.05).

(D) Flow cytometry showing the relationship among c-kit, CD10, cyCD79a, and CD19 in CD34+CD38�CD45RA+ and CD34+CD38+CD45RA+ populations.

See also Figure S1.
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Figure 2. Identification of fluctuating cell state dynamics in pancreas endocrine development

(A) Schematic overview of the advection-diffusion model in the latent cell state space. Transcriptome dynamics in the latent cell state space decomposed into

advection (averaged dynamics) and diffusion (fluctuation).

(B) Overview of the AI-based methodology to estimate single-cell transcriptome dynamics with fluctuation from spliced and unspliced transcript abundances.

(C) Flow of estimated transcriptome dynamics. The arrow direction represents the direction of the future latent cell state in UMAP embedding.

(D) Fluctuation and advection of transcriptome dynamics at single-cell resolution.

To prevent the effect of ectopic values from visualization, 1% of the smallest and largest values were forced to be 1% and 99% quantile values. See also

Figures S2 and S3.
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mathematically termed as the advection-diffusion model (Fig-

ure 2A).We developed a computational methodology, variational

inference of cell state dynamics with fluctuation (VICDYF), to es-

timate the advection-diffusion model of the molecular cell state

by spliced and unspliced transcript abundances. In this method-

ology, we optimized the dynamics of the latent cell state, which is

encoded from the spliced transcriptome by VAE, so that the time

change in the spliced transcriptome decoded from stochastic

cell state dynamics is consistent with the unspliced transcrip-

tome under a mathematical model of RNA-splicing kinetics (Fig-

ure 2B). To examine the contribution of each gene to the diffusion

in the latent cell state space, we decoded the estimated cell state

diffusion into the fluctuation of the expression change for each

gene using the bidirectional conversion feature of VAE.

To validate the computational methodology, VICDYF, we first

applied this methodology to a public scRNA-seq dataset of

pancreas endocrine development at embryonic day 15.5

(E15.5) (Bastidas-Ponce et al., 2019; GSE132188). The esti-

mated directionality of cell state dynamics was consistent with
4 Cell Reports 40, 111260, August 30, 2022
the expected flow from endocrine progenitors toward different

types of pancreatic endocrine cells such as a, b, d, g, or ε cells

(Figure 2C). Our methodology revealed that the estimated fluctu-

ation of transcriptome dynamics was the highest in the Ngn3high

endocrine progenitor (EP) cluster (Figure 2D) in which cell lineage

diversification toward endocrine lineages was expected to

occur. The estimated advection of transcriptome dynamics

was relatively increased in the population more differentiated

into each lineage than the population with a large fluctuation

(Figures 2D and S2A).

To clarify the influence of technical factors, such as total

unique molecular identifiers per cell and average gene expres-

sion levels, on estimating the fluctuation of dynamics, we applied

VICDYF to the simulated single-cell transcriptome dataset dur-

ing the cell differentiation process, which was generated by

SERGIO (Dibaeinia and Sinha, 2020). While VICDYF succeeded

in reconstructing the correct cell differentiation direction from

cell type 0 to 1, we found that the estimated fluctuations in dy-

namics were large at the boundary between cell type 0 and 1,
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and did not exhibit associations with the total counts (Fig-

ure S2B). These results suggest that the technical noise due to

the observation sparsity had a small contribution to the esti-

mated fluctuation of dynamics.

To confirm whether the unspliced transcriptome, which re-

flects the future cell state, was indeed relatively variable at the

branching point, we evaluated the ratio between the variances

of unspliced transcriptomes among k nearest neighbors (k =

30) in the latent space and those of spliced transcriptomes.

We found that the relatively higher variance of unspliced tran-

scriptomes was also observed in the Ngn3high EP population

(Figure S2C). This finding was consistent with the estimated

large fluctuation at the lineage diversification point because un-

spliced transcriptomes are expected to reflect the later cell state

compared with spliced transcriptomes. We confirmed that the

fluctuation was more correlated to the variance ratio between

spliced and unspliced transcripts (Pearson’s r = 0.59) than the

mean ratio between them (Pearson’s r = 0.45) (Figure S2D). We

found that the variance ratio exhibited large values specifically

for Ngn3high EP and pre-endocrine cells as well as the fluctua-

tion, while themean ratio had large values not only for these pop-

ulations but also for more mature cell populations, including a, b,

and d cells. We also applied VarID (Gr€un, 2020) to the pancreas

dataset and analyzed the differential variability between clusters

with large fluctuation and the other clusters (Figure S2E). We

found that the variability difference of VarID was consistent

with the fluctuation difference of VICDYF (Figure S2F). This sug-

gests that our methodology also captures the fluctuation of gene

expression independent from variability-mean dependence.

Computational methodology, VICDYF, extracts lineage
drivers based on fluctuation directionality
To clarify the lineage bifurcation and estimated large fluctuation,

we estimated cell fate based on the estimated cell state dy-

namics and compared the estimated fate probabilities with those

estimated by other methodologies, CellRank (Lange et al., 2022)

and Palantir (Setty et al., 2019). VICDYF assigned the largest

fate probability to b cells for Ngn3high EPs, while some fractions

were estimated to be committed to other lineages (Figure S3A).

These results are consistent with the existing biological knowl-

edge and the estimation of an existing methodology and

CellRank (Figure S3B), while Palantir assigned the largest fate

probability to ε cells in the population (Figure S3C). However,

we found that the downstream cell population with a large fluc-

tuation was estimated to be more committed than those up-

stream. This suggests that the increase in the fluctuation of the

population contributes to the fate decision between these cell

lineages, while themajority of the cell population is differentiating

into b cells.

To dissect the fluctuation into various lineages, we clustered

the population with the largest 20% of fluctuation into five clus-

ters from the fluctuation patterns of genes with high reconstruc-

tion accuracy of expression and dynamics, cs > 0.3and cr > 0.1

(Figure S3D). To evaluate the coordinated fluctuation across

various genes in fluctuation cluster 2 close to a and b cells (Fig-

ure S3D), we calculated the deviation of sampled stochastic

gene expression changes from the averaged changes for 50

times iterative sampling of cell state dynamics in the latent cell
state of each single cell. By comparing this coordinated fluctua-

tion and the difference in gene expression profiles between a

and b cells, we scored the fluctuation directionality of each

gene between a and b cells as the a-b score, which is higher

when the fluctuation of a gene correlates with that of genes

with higher expression in b cells. We found that the aristaless-

related homeobox (Arx) gene had the eighth lowest score and

pancreas duodenum homeobox 1 (Pdx1) had the sixth highest

score in fluctuation cluster 2 (Figure S3E). These results are

consistent with previous reports showing that ARX is crucial for

a cell identity and survival, that ARX inactivation induces the

a-to-b cell reprogramming in pancreatic progenitor cells or

mature a cells (Courtney et al., 2011, 2013), and that PDX1 is a

critical transcription factor for pancreatic development including

b cell maturation and functions (Jara et al., 2020; Zhu et al.,

2017). We also compared the lineage driver estimations of

VICDYF and CellRank. In contrast to the high scoring of

VICDYF for Arx (eighth in a cell fate) and Pdx1 (fifth in b cell

fate), CellRank highlighted Nkx6-1 (sixth in b cell fate) and Irx2

(sixth in a cell fates) (Figure S3F), both of which are related to

the development of each lineage (Aigha and Abdelalim, 2020).

These results showed that both methods captured the lineage

determination factors, whereas the extracted factors were

largely different. Taken together, these results demonstrated

that our methodology had the ability to quantitatively capture

the fluctuation in cell state dynamics with deviation of gene

expression changes at single-cell levels.
Highly fluctuating transcriptome dynamics at a B/pDC
bifurcation with IL-7Ra expression
The culture data described above showed that the CD10+ SP

population, which has been thought to comprise B/NK progeni-

tors, was a heterogeneous population in which lineage diversifi-

cation from multilymphoid progenitors toward lymphoid and

DCs was suspected to occur. We therefore focused on this

CD10+ SP population and applied our computational methodol-

ogy to dissect the lymphoid pathway in CD10+ SP cells (n =

23 104) to capture the transcriptome dynamics of individual cells

during differentiation. We found that each cluster determined by

40-dimensional principal component analysis (PCA) coordinates

of scaled expression of highly variable genes was distinctively

distributed in uniform manifold approximation and projection

(UMAP) (McInnes et al., 2018) embeddings of 10-dimensional

latent cell state coordinates (Figure S4), which demonstrated

that our VAE-based methodology efficiently embedded the sin-

gle-cell transcriptome into the latent cell state space as well as

the existing VAE-based methodology for dimensional reduction

(Lopez et al., 2018). To determine the putative subpopulation to-

ward each cell fate, we evaluated the similarity of denoised

expression profiles, which were decoded from latent cell states,

to those of all cell types in a public peripheral bloodmononuclear

cell (PBMC) scRNA-seq dataset (Ding et al., 2020). Notably, the

region with similarity to the B lineage was adjacent and overlap-

ped with the region with similarity to pDCs, while partial overlap-

ping was observed between B and monocytic lineages, mono-

cytic and cDC2 lineages, and T and NK lineages (Figures 3A

and 3B). The estimated dynamics are directed to the trajectory
Cell Reports 40, 111260, August 30, 2022 5



Figure 3. Single-cell RNA sequencing of the CD10+ SP population

(A)Most similar cell types among B cells, NK cells, T cells, pDCs,monocytes, and cDCs in theUMAP representation of latent cell states.We evaluated similarity by

comparing the reconstructed expression profile of each cell with the mean expression profile of annotated clusters derived from the peripheral bone marrow cell

dataset in the Seurat package.

(B) Similarity of single cells to designated cells.

(C) Direction of transcriptome dynamics in the UMAP representation.

(D) Cell fate probability from estimated cell state dynamics. Each pie chart of each single cell represents the composition of cell fate probabilities for designated

cells.

(E) Fluctuation and advection of transcriptome dynamics at single-cell resolution.

(F) Reconstructed expression of IL-7R and KIT.

(G) Reconstructed expression profile of SFMBT2.

To prevent the effect of ectopic values from visualization, 1% of the smallest and largest values were forced to be 1% and 99% quantile values. See also

Figures S4 and S5.
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toward various lineagessuchasB/pDC/monocytic, cDC2/mono-

cytic, and T/NK cell lineages (Figure 3C).

To estimate the potential of each cell type, we chained the sto-

chastic dynamics of each cell in latent cell space 1,024 times and

estimated the fate probability of each single cell for each cell

type, as the probability that the expression profile of the cell

type was the most similar to that of the single cell after iterative

cell state transition (Figure 3D). This estimation allowed us to
6 Cell Reports 40, 111260, August 30, 2022
identify a cell population with the potential for both B and pDC

lineages (Figure 3D, enlarged figure) and that this population

was enriched in the cell state region where fluctuation, but not

advection of gene expression dynamics, was particularly higher

than in surrounding regions (Figure 3E). These data suggested

that B/pDC bipotent progenitors exhibited large fluctuation of

transcriptome dynamics. We further found that expression of

interleukin-7Ra (IL-7Ra) was highly enriched in putative B/pDC
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common progenitors, while kit expression was gradually sup-

pressed toward B-lineage progenitors (Figure 3F). Of note, Poly-

comb group gene SFMBT2, which plays a regulatory role in

mediating chromatin remodeling (Miri et al., 2013; Tang et al.,

2019), was specifically expressed in the B/pDC bifurcation re-

gion (Figure 3G). Single-cell multiome analysis of theCD34+ pop-

ulation revealed that the differentially accessible chromatin re-

gions of B cells and pDCs were simultaneously accessible in

the cell population with a large fluctuation of transcriptome dy-

namics (Figure S5), suggesting that the estimated large fluctua-

tion is associatedwith transient simultaneous accessibility of loci

characterizing the difference between two lineages.

Identification of B/pDC common progenitors at IL-7Ra+

fraction by single-cell culture
On the basis of the transcriptome analysis, we examined the

relationship between the c-kit/IL-7Ra expression profile and dif-

ferentiation potential, especially for B and pDC lineages, in our

culture. Expression of IL-7Ra (CD127) was negative in immature

lymphoid progenitors asMLPs (data not shown), but positive in a

proportion of c-kit+ or c-kit� fractions of CD10+ SP cells. Thema-

jority of the IL-7Ra+ fraction expressed cyCD79a, which indi-

cated that the IL-7Ra+ fraction was biased to the B lineage to

some extent (Figure 4A). When c-kit+IL-7Ra�, c-kit+IL-7Ra+,

and c-kit�IL-7Ra+ fractions of CD10+ SP cells were cultured,

the c-kit+IL-7Ra+ fraction produced a significantly higher per-

centage of proB cells than the c-kit+IL-7Ra� fraction. Moreover,

the differentiation potential of the c-kit+IL-7Ra+ fraction of pDCs

was as high as that of the c-kit+IL-7Ra� fraction (Figure 4B).

Accordingly, the c-kit+IL-7Ra+ fraction gave rise to significantly

high percentages of proB cells and pDCs. Relative to the c-ki-

t+IL-7Ra+ fraction, the c-kit�IL-7Ra+ fraction produced an even

higher percentage of proB cells but significantly lower percent-

ages or no NK cells, proT cells, NK cells, pDCs, and monocytic

cells (Figure 4B). To examine the timing between loss of c-kit

and gain of IL-7Ra expression, c-kit+IL-7Ra�CD10+ SP cells

were cultured and analyzed for expression of c-kit and IL-7Ra.

As shown in Figure 4C, most cells became positive for IL-7Ra,

while most remained positive for c-kit� after 48 h of culture

and c-kit expression was downregulated later (data not shown).

These data indicated that c-kit+IL-7Ra�CD10+ SP cells differen-

tiated toward c-kit�IL-7Ra+ B-biased progenitors via a c-kit+IL-

7Ra+ stage with a high B cell and pDC differentiation potential.

To determine the differentiation potential of individual cells in

each fraction more precisely, we performed single-cell culture of

cells in each fraction. As shown in Figure 4D, thec-kit+IL-7Ra� frac-

tion contained various types of progenitors with variable combina-

tions of differentiation potentials for B cells, NK cells, pDCs, cDCs,

and/ormonocyticcells,which included immatureprogenitorswitha

multilineage differentiation potential for B cells, pDCs, and other

lineage cells. Compared with the c-kit+IL-7Ra� fraction, the IL-

7Ra+population, suchasc-kit+IL-7Ra+andc-kit�IL-7Ra+ fractions,
was composed mainly of more mature progenitors with a differen-

tiation potential for less than two lineages, and more importantly,

B/pDC common progenitors were identified (Figures 4D and 4E).

The c-kit�IL-7Ra+ fraction consisted mainly of B-committed pro-

genitors (Figure 4D). Of note, B/NK bipotent progenitors were not

detected. These findings demonstrated that the differentiation po-
tential for B cells and pDCswas drastically changed in accordance

with alterations in c-kit and IL-7Ra expression.

Association of LFA-1 expression with pDC lineage bias
at B/pDC bifurcation revealed by computational pre-
diction and culture
To dissect the molecular mechanisms associated with pDC- or

B-lineage differentiation at the B/pDC bifurcation, which was

identified as a hotspot with largely fluctuated cell state dynamics

by transcriptome analysis, we clustered single cells of the CD10+

SP population with the largest 20% of the fluctuation into eight

clusters from the fluctuation patterns of genes with high recon-

struction accuracy of expression and dynamics, cs > 0.3 and

cr > 0.1 (Figure 5A). We then calculated the B/pDC score of

each gene in fluctuation clusters that largely overlapped with

the putative B/pDC common (fluctuation clusters 2 and 5) and

B progenitors (fluctuation cluster 7) in the same manner as the

a-b score in the previous section (Figure S3E).We found that crit-

ical B-lineage transcription factor, PAX5 (Cobaleda et al., 2007)

and B-lineage-associated gene, CD24 (Fang et al., 2010) ex-

hibited first and third highest score in fluctuation cluster 7,

respectively, which had higher similarity to B cells (Figure 5B).

Furthermore, B cell antigen receptor complex-associated pro-

tein a chain, CD79A, exhibited the second and seventh highest

B/pDC score in fluctuation clusters 2 and 5. On the other hand,

ID2, which negatively regulates B cell differentiation (Wu and

Shao, 2019), had the lowest B/pDC scores in fluctuation clusters

2, 5, and 7. Additionally, interferon regulatory factor 8 (IRF-8),

which is a critical transcription factor for human pDC develop-

ment (Bigley et al., 2018; Collin and Bigley, 2018; Sichien et al.,

2016), had the ninth lowest B/pDC score only in fluctuation clus-

ter 5, indicating that IRF8 plays a stage-specific role in pDC

development. Additionally, other B-lineage-associated genes

(ZCCHC7 [Hystad et al., 2007], POU2AF1 [Levels et al., 2019],

and BLNK [Minegishi et al., 1999]) and pDC-associated genes

(NFKBIA [Bottero et al., 2006] and RUNX3 [Dicken et al., 2013])

were found in the top ten genes in B/pDC scores of fluctuation

clusters 2 and/or 5 (Table S1). Notably, we found that LFA-1

had the fourth and third lowest B/pDC scores in fluctuation clus-

ters 2 and 5. Comparison between expression and fluctuation of

genes showed that LFA-1 was broadly expressed except for

B-like region-expressing B-lineage-associated gene PAX5, but

the fluctuation of LFA-1 was specifically high in the population,

which corresponded to the B/pDC progenitor region (Figure 5C).

These results demonstrated that the fluctuation-based scoring

highlighted the genes associated with lineage commitment and

that LFA-1 expression fluctuated positively in pDC-directed cells

at the B/pDC bifurcation.

To analyze the expression profile of LFA-1 in accordance with

the alteration of lymphoid, DC, and monocytic differentiation po-

tentials, the relationship between LFA-1 and c-kit expression on

the surface of various cell populations was examined by fluores-

cence-activated cell sorting analysis. Compared with HSPCs,

the expression levels of LFA-1 were relatively higher in LMPPs

and MLPs but did not significantly differ between c-kit+ and

c-kit� fractions. However, a broad range of LFA-1 expression

was observed in CD10+ SP cells in which LFA-1 expression

was high in the c-kit+ fraction but low or negative in some of
Cell Reports 40, 111260, August 30, 2022 7
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Figure 4. Identification of B/pDC common progenitors in the IL-7Ra+ fraction

(A) Relationship among c-kit, IL-7Ra, and cyCD79a expression in CD10+ SP cells.

(B) c-kit+IL-7Ra�, c-kit+IL-7Ra+, and c-kit�IL-7Ra+ fractions of CD10+ SP cells (>95% pure) were cultured for 14 days and analyzed for the percentages of proB

cells, NK cells, proT cells, and pDCs among CD45RA+ cells, and monocytic cells and cDC2 among CD45+ cells. Error bars represent ±SEM of three independent

experiments (unpaired t test; *p < 0.05).

(C) c-kit+IL-7Ra� fraction in CD10+ SP cells was cultured on stromal cells and analyzed for expression of c-kit and IL-7Ra at 48 h.

(D) Individual cells of c-kit+IL-7Ra�, c-kit+IL-7Ra+, and c-kit�IL-7Ra+ fractions of CD10+ SP cells were cultured for 14 days, and cultures that containedmore than

ten non-adherent cells (c-kit+IL-7Ra� [n = 86], c-kit+IL-7Ra+ [n = 19], c-kit�IL-7Ra+ [n = 7]) were assessed for generation of designated cells.

(E) Representative culture data of single-cell culture of a c-kit+IL-7Ra+ cell, which gave rise to only IL-3Ra+CD304+ pDCs and CD19+ proB cells.
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the c-kit� fraction (Figure 6A). LFA-1 was highly expressed by

mature pDCs, NK cells, cDC2, and monocytic cells, but almost

negative in proB cells (Figure 6B). To assess the relationship be-

tween LFA-1 expression and the B/pDC differentiation potential

in the CD10+ SP population, c-kit+IL-7Ra� and c-kit+IL-7Ra+
8 Cell Reports 40, 111260, August 30, 2022
fractions were separated into LFA-1-high and -low populations,

and the c-kit�IL-7Ra+ fraction was separated into LFA-1-high,

-low, and -negative populations (Figure 6C). Each fraction was

cultured and a significant difference was not observed between

LFA-1high and LFA-1low fractions of the c-kit+IL-7Ra� population.
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Figure 5. Association of LFA-1 expression dynamics with pDC differentiation

(A) UMAP representation of fluctuation clusters. The fluctuation clusters were derived from clustering cells with the top 20% largest fluctuations. The clustering is

based on the fluctuation of selected genes.

(B) B-pDC score and fluctuation of genes with cs > 0.3 and cr > 0.1. A high B-pDC score of a gene represents a high correlation of the fluctuation with those of

B-enriched genes, whereas a low B-pDC score of a gene represents a high correlation of the fluctuation with those of pDC-enriched genes. Red dots represent

the top ten highest-scoring genes and blue dots represent the top ten lowest-scoring genes.

(C) Reconstructed fluctuation and expression of LFA1 and PAX5.

To prevent the effect of ectopic values from visualization, 1% of the smallest and largest values were forced to be 1% and 99% quantile values.
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However, in the c-kit+IL-7Ra+ fraction, the LFA-1high population

had a higher percentage of pDCs than proB cells, while the

LFA-1low population produced a higher percentage of proB cells

than pDCs (Figure 6D). In the c-kit�IL-7Ra+ fraction, the LFA-

1high population differentiated into pDCs, monocytic cells, and

cDC2, but not proB cells. Conversely, the LFA-1low/� population

exclusively differentiated into proB cells and lost their pDC differ-

entiation potential (Figure 6D). These data revealed that LFA-1

was broadly expressed in most c-kit+ lymphoid progenitors

with a pDC differentiation ability, but in the c-kit+IL-7Ra+ fraction,

higher levels of LFA-1 expression were closely associated with a

differentiation bias toward the pDC lineage rather than the B line-

age, which was consistent with the findings of scRNA-seq anal-

ysis. To further elucidate the relationship between LFA-1 expres-

sion and B/pDC differentiation bias in a more B/pDC-enriched

fraction, we examined the relationship in the c-kitlowIL-7Ra+ frac-

tion of CD10+ SP because the data in Figure 4B suggested that

NK, T, and monocytic potentials were more drastically sup-

pressed than the pDC potential by downregulation of c-kit

expression in c-kit+IL-7Ra+CD10+ SP. We observed that the

c-kitlowIL-7Ra+ population mainly gave rise to proB cells and

pDCs, and that the LFA-1high fraction had a higher percentage

of pDCs and a lower percentage of proB cells than the LFA-

1low fraction in the B/pDC-enriched population (Figure S6).

DISCUSSION

An advection-diffusion model is a fundamental model that has

been used to describe a wide range of phenomena that includes
cell differentiation. The several methods to estimate transcrip-

tome dynamics as the advection-diffusion model are intended

to convert the population shift of the scRNA-seq observation

to the directionality of cell differentiation (Fischer et al., 2019; Ha-

shimoto et al., 2016). Here, we estimated the advection-diffusion

model from spliced and unspliced transcriptome abundances,

which is expected to have abundant information about cellular

dynamics, and linked the large diffusion in the latent cell space

to cell lineage bifurcation. These estimations were validated by

knowledge of the pancreatic development system and our

advanced culture system.

The VAE-based architecture of artificial intelligence (AI) tech-

nology has been used to construct latent cell state space

behind a single-cell transcriptome profile and denoise the

gene expression profile by decoding compressed cell states

(Eraslan et al., 2019; Lopez et al., 2018). Furthermore, recent

studies have shown that the additive operation in the latent

cell state space corresponds to the additive change in actual

cells (i.e., drug treatment) (Lotfollahi et al., 2019). Here, we

defined stochastic cell state dynamics as the additive operation

in the latent cell state space and fitted the dynamics to the

observed unspliced transcriptome in combination with the

equation of RNA velocity. This approach enabled us to decode

the stochasticity of the dynamics as quantitative transcriptome

fluctuation and to estimate the directionality of cell state dy-

namics. This study estimated stochastic dynamics in the latent

cell state space with VAE architecture as an effective approach

to analyze the dynamics behind asynchronous observation of

numerous single cells.
Cell Reports 40, 111260, August 30, 2022 9
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Figure 6. Relationship between LFA-1 expression levels and B versus pDC differentiation

(A) Expression of c-kit and LFA-1 in HSPCs, LMPPs, MLPs, and CD10+ SP cells.

(B) Histograms of LFA-1 expression levels in pDCs, proB cells, NK cells, cDC2, and monocytic cells in cord blood.

(C) Sorting strategy based on LFA-1 expression.

(D) Each fraction of cells (sorting purity: >90%) was cultured for 14 days and then assessed. Error bars represent ±SEM of four independent experiments (un-

paired t test; *p < 0.05). See also Figure S6.
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Our computational methodology revealed a hotspot of large

fluctuation at a B/pDC bifurcation in the human lymphoid

pathway. This estimation was consistent with our observations

that B cell and pDC differentiation potentials changed drastically

with alterations in c-kit and IL-7Ra expression and B/pDC com-

mon progenitors were present in the IL-7Ra fraction of CD10
+SP cells. These findings are consistent with recent studies in

mice, which found that the IL-7Ra+ fraction of CLPs contained

B/pDC common progenitors by scRNA-seq (Dress et al., 2019;

Herman et al., 2018; Rodrigues et al., 2018). IL-7-deficient mice

have low numbers of pDCs and B cells with reduced numbers

of IL-7Ra+ CLPs (Vogt et al., 2009). In humans, a case report

has described two patients with loss of B cells, NK cells, and

pDCs accompanied by a lack of lin�CD34+CD38+CD10+IL-7Ra+

progenitors (Takada et al., 2009). These findings imply that a com-

mon pathway of B cells and pDC exists in the IL-7Ra+ fraction and

plays a critical role in generating B cells and pDCs in not onlymice
10 Cell Reports 40, 111260, August 30, 2022
but also humans. Furthermore, our methodology revealed that

LFA-1 expression dynamics fluctuated and were related to pDC

differentiation tendencyat theB/pDCbifurcation. This assumption

was in accordance with culture observations showing that LFA-1

was broadly expressed in c-kit+ lymphoid progenitors with a pDC

differentiation ability, but its expression levels changed drastically

and were involved in pDC over B-lineage choice in the c-kit�IL-
7Ra+ fraction. It has been reported that LFA-1-dependent homo-

typic cell adhesion and adhesion to various cell types including B

cells plays a critical role in interferon-a (IFN-a) production bypDCs

(Bencze et al., 2021; Berggren et al., 2012; Reizis, 2019; Saitoh

et al., 2017; Tomasello et al., 2018; Ye et al., 2020). Moreover,

studies have revealed that crosstalk between pDCs and B cells

via cell-to-cell contacts and IFN-a induces subsequent B cell dif-

ferentiation toward plasma cells (Jego et al., 2003; Menon et al.,

2016; Poeck et al., 2004). These findings imply that the B/pDC

bifurcation point is susceptive to cellular crosstalk or extrinsic
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factors to promptly adjust to immunological conditions, and that

LFA-1 is involved in this process. Elucidation of the regulatory

mechanism of B/pDC bifurcation will enhance our understanding

of the pathophysiology of virus infection and immune-mediated

diseases and aid in the development of therapeutic strategies.

Recent scRNA-seq analyses have revealed the heterogeneity

of the gene expression profile and continuous and gradual line-

age priming at the single-cell level in immature hematopoietic

progenitors (Laurenti and Göttgens, 2018). Our data imply that

there are critical hotspots in the hematopoietic system, where

fluctuated transcriptome dynamics occur and cell lineage choice

of hematopoietic progenitors is highly susceptible to intrinsic

stochastic events or extrinsic signals. This observation is consis-

tent with single-cell analysis of the dynamic transcriptional state

during differentiation (Mojtahedi et al., 2016; Richard et al.,

2016). Although our methodology could not resolve the molecu-

lar mechanism underlying the fluctuating dynamics, our AI-

based analysis of the B/pDC bifurcation population showed

that Polycomb group gene SFMBT2 was specifically expressed

in the B/pDC bifurcation region. Single-cell multiome analysis

further suggested that the estimated large fluctuation is associ-

ated with transient simultaneous accessibility of loci character-

izing the difference of pDCs and B cells. Further study is required

to understand the molecular mechanism of highly fluctuating dy-

namics at the cell bifurcation point. Thus, by orchestrating bio-

logical and computational methods, this study proposes a para-

digm of a cell differentiation model based on comprehensive

genetic profiling and provides the potential for application to

various developmental and differentiation systems.

Limitations of the study
To avoid biological differences and obtain enough target cells,

many samples of frozen cord blood were mixed and used for ex-

periments. In particular, more than 30 samples of frozen cord

blood were used for scRNA-seq of CD10+ SP cells. Yet our

experimental designs may come with a limitation because we

utilized limited resources on assessment of the CD10+ SP pop-

ulation. cDC1 potential was not fully evaluated owing to limited

generation in our culture system. Additionally, our computational

methodology assumed that the splicing and degradation rate of

each transcript was constant across all cells, similarly to other

RNA velocity estimation methods (the default estimation in Ber-

gen et al., 2020; La Manno et al., 2018), while existing research

suggested varying degradation rates during cell differentiation

by combining labeling technology with single-cell transcriptome

(Battich et al., 2020). Hence, our estimation of transcriptome dy-

namics would be improved by considering dynamic splicing and

the degradation rate. Another limitation of our computational

methodology is the difficulty in decomposing the estimated fluc-

tuation of transcriptome dynamics into the intrinsic stochasticity

and the uncertainty of environmental factors. We expect that this

will be overcome by extending our computational algorithm to

incorporate environmental factors in future.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE/Cyanine 7 Mouse anti-CD34 BioLegend Cat. No. 343515; RRID AB_1877252

APC/Cyanine 7 Mouse anti-CD38 BioLegend Cat. No. 356615; RRID AB_2562576

BV510 Mouse anti-CD45RA BioLegend Cat. No. 304141; RRID AB_2561384

PE/Dazzle Mouse anti-CD10 BioLegend Cat. No. 312227; RRID AB_2565877

PE Mouse anti-CD127 BioLegend Cat. No. 351303; RRID AB_10719960

APC Mouse anti-CD117 BioLegend Cat. No. 313205; RRID AB_314984

BV421 Mouse anti-CD7 BD Cat. No. 562635; RRID AB_2736907

FITC Mouse anti-LFA1 BD Pharmingen Cat. No. 555383; RRID AB_395784

FITC Mouse anti-CD14 BioLegend Cat. No. 367115; RRID AB_2571928

PE Mouse anti-CD56 BioLegend Cat. No. 318305; RRID AB_604093

APC Mouse anti-CD10 BioLegend Cat. No. 312209; RRID AB_314920

BV510 Mouse anti-CD45 BioLegend Cat. No. 304035; RRID AB_2561383

BV605 Mouse anti-CD45RA BioLegend Cat. No. 304133; RRID AB_11126164

FITC Mouse anti-HLA-DR BD Pharmingen Cat. No. 555811; RRID AB_396145

PE Mouse anti-CD123 BioLegend Cat. No. 306005;

RRID AB_314579

PE/Cyanine 7 Mouse anti-CD304 BioLegend Cat. No. 354507; RRID AB_2561556

APC Mouse anti-CD303 Miltenyi Biotec Cat. No. 130-113-190; RRID AB_2726017

Alexa Fluor 488 Mouse anti-CD14 BioLegend Cat. No. 367129; RRID AB_2721359

BV421 Mouse anti-CD11c BioLegend Cat. No. 301627; RRID AB_10898313

FITC Mouse anti-CD66b BioLegend Cat. No. 305103; RRID AB_314495

PE Mouse anti-CD141 Miltenyi Biotec Cat. No. 130-113-880; RRID AB_2726094

BV421 Mouse anti-CD1c BioLegend Cat. No. 331525; RRID AB_10933249

PE Mouse anti-CD123 BioLegend Cat. No. 306013; RRID AB_755989

Chemicals, peptides, and recombinant proteins

GM-CSF PeproTech 300–03

FLT3L PeproTech 300–19

TPO PeproTech 300–18

SCF PeproTech 300–07

Critical commercial assays

Chromium Single Cell 30 Gel

Bead and Library Kit

10X Genomics 120235, 120234, 120236, and 120262

Deposited data

single cell RNA-seq of CD10+SP This study JGAS000551

Single Cell Multiome ATAC and gene expression data

of human umbilical cord blood CD34

This study JGAS000528

Single cell RNA-seq of pancreas Bastidas-Ponce et al., 2019 GSE132188

Software and algorithms

VICDYF This study https://github.com/kojikoji/vicdyf

https://doi.org/10.5281/zenodo.6890408

Cell Ranger 10X Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

what-is-cell-ranger
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Cell Ranger ARC 10X Genomics https://support.10xgenomics.com/single-cell-

multiome-atac-gex/software/pipelines/latest/

what-is-cell-ranger-arc

kallisto | bustools Melsted et al. (2021) https://www.kallistobus.tools

velocyto La Manno et al. (2018) http://velocyto.org

Python Python Software Foundation https://www.python.org/

Pytorch PyTorch community https://pytorch.org/

R R Development Core Team https://www.r-project.org/

Seurat Butler et al., 2018 http://satijalab.org.seurat/

Signac Stuart et al., (2021) https://satijalab.org/signac/index.html

scanpy Wolf et al., 2018 https://scanpy.readthedocs.io

UMAP McInnes et al., (2018) https://umap-learn.readthedocs.io/en/latest/

Leiden algorithm Traag et al., (2019) https://leidenalg.readthedocs.io/en/stable/

VarID Gr€un, 2020 https://github.com/dgrun/VarID_analysis

CELLRANK Lange et al., (2022) https://cellrank.readthedocs.io/en/stable/

Palantir Setty et al., (2019) https://github.com/dpeerlab/Palantir
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the lead contact Kohshi

Ohishi (koishi@clin.medic.mie-u.ac.jp).

Materials availability
This study did not generate new unique reagents.

Data code and availability
Single Cell Multiome ATAC and gene expression data of human umbilical cord blood CD34+ cells and single cell RNA-seq of

CD10+SP cells have been deposited in the Japanese Genotype-phenotype Archive (https://www.ddbj.nig.ac.jp/jga) which is hosted

by the Bioinformation and DDBJ Center, under accession number JGAS000528 and JGAS000551, respectively. Computational

methodology for variational inference of cell state dynamics with fluctuation (vicdyf) is available on GitHub (https://github.com/

kojikoji/vicdyf). A version recode for the GitHub repository has been archived at Zenodo. A DOI for the codes is listed in the key re-

sources table.

Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human umbilical cord blood samples were collected from full-term deliveries after obtaining informed consent in accordance with a

protocol approved by the Ethics Committee of Mie University Hospital (approval number 341).

METHOD DETAILS

Isolation of hematopoietic precursors
CD34+ cells were separated from mononuclear cells using CD34 immunomagnetic beads (Miltenyi Biotec, Auburn, CA, USA) in

accordance with the manufacturer’s instructions. To avoid biological differenced and obtain enough target cells, frozen cord blood

weremixed and used for experiments. Aftermixture of frozen cord bloodCD34+ cells, cells were stainedwith antibodies andHSPCs

(CD34+CD38�CD45RA�CD7�CD10�), MLPs (CD34+CD38�CD45RA+CD10+), LMPPs (CD34+CD38�CD45RA+CD10�CD7�), CD7+

SP cells (CD34+CD38+CD45RA+CD10�CD7+CD19�), and CD10+ SP cells (CD34+CD38+CD45RA+CD10+CD7�CD19�) were iso-

lated. Cell sorting was performed with a FACSAria II cell sorter (BD Biosciences, San Jose, CA, USA), which excluded Zombie

NIR+ dead cells.
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Flow cytometric analysis
Surface staining for flow cytometry was performed using the following murine mAbs: anti-CD14 FITC (BioLegend, San Diego, CA,

USA), anti-CD45 FITC (BioLegend), anti-HLA-DR FITC (BD Biosciences), anti-CD10 PE (BioLegend), anti-IL-7Ra PE (BioLegend),

anti-IL3Ra PE (BD Pharmingen, San Diego, CA, USA), anti-CD19 APC (BioLegend), anti-CD303 (BDCA2) APC (Miltenyi Biotec),

CD14 Alexa Fluor 700 (BioLegend), anti-CD7 Brilliant Violet 421, anti-CD11c Brilliant Violet 421, and anti-CD45RA Brilliant Violet

510 (BioLegend). IgG1 FITC, IgG2a FITC, IgG1 PE (all from BioLegend), IgG2a PE (BD Pharmingen), IgG2b PE, IgG1 PerCP-

Cy5.5, IgG1 APC, IgG1 APC-Cy7, IgG1 PECy7, IgG1 Alexa Fluor 700, IgG1Brilliant Violet 421 (all fromBioLegend), and IgG2bBrilliant

Violet 510 (BD Biosciences) were used as isotype controls. Cells were blocked with FcR Blocking Reagent (Miltenyi Biotec) and then

incubated with antibodies for 30 min at 4�C. Dead cells were excluded by staining with 7-aminoactinomycin D (BD Biosciences) or

Zombie NIR.

For cytoplasmic staining, cells were incubated with various Abs against surface Ags and Zombie NIR for 30 min at 4�C. After
washing, the cells were permeabilized and fixed with PermeaFix (Ortho, Raritan, NJ, USA) for 20 min at room temperature, washed

again, and then incubated with anti-CD79a APC (BD Biosciences) for 30 min at 4�C. Dead cells were distinguished by positive stain-

ing for Zombie NIR (Ohishi et al., 2002).

Flow cytometric analysis was performed using FACSCanto II and BD LSRFortessa flow cytometers (BDBiosciences). All data were

analyzed using BD FACSDiva software (BD Biosciences) or Fortessa flow cytometers (BD Biosciences), and processed by FlowJo

software (TreeStar, San Carlos, CA, USA).

Cultures
First, stromal cells were plated in a 25-cm2 cell culture flask (Corning, Corning, NY, USA) or 24- or 48-well tissue culture plates (Nunc,

Roskilde, Denmark) with aMEM (Life Technologies-Invitrogen, Grand Island, NY, USA) that contained 12.5% horse serum, 12.5%

FCS (both from Invitrogen, Carlsbad, CA, USA), and 1 mMhydrocortisone (Sigma-Aldrich, St Louis, MO, USA). Confluent stromal cells

were washed with aMEM and isolated target cells (95% pure) were seeded on a confluent monolayer of stromal cells in aMEM sup-

plemented with 20%FCS (HyClone Laboratories, Logan, UT, USA), 50 U/mL penicillin, and 50 mg/mL streptomycin in the presence of

four growth factors (SCF + Flt3L + TPO + GM-CSF).

Single-cell culture assay
Briefly, hTERT stromal cells were cultured in 96-well plates (Nunc, Roskilde Denmark) with aMEM that contained 20% FCS and

growth factors (SCF + Flt3L + TPO +GM-CSF). Each well was assessed at 21 days. Then, flow cytometry was conducted for positive

wells.

Single-cell RNA and ATAC sequence analysis
We conducted scRNA-seq of CD10+ SP and single cell gene expression chromatic accessibility analysis of CD34+ cells. CD10+ SP

and CD34+ cells were isolated from human umbilical cord blood as described above. All samples had high mean viability of approx-

imately 95%after cell sorting. Single-cell RNA-sequencing (scRNA-seq) andmultiome sequencing libraries were generated using the

Chromium Single Cell 3ʹ Library & Gel Bead Kit v3 and Single Cell Multiome ATAC +Gene Expression Kit (10X Genomics, Pleasanton,

CA, USA) following the manufacturer’s instructions. As a result, a cell barcoding sequence and unique molecular identifier were

added to individual cDNA molecules. Libraries were constructed and sequenced at a depth of approximately 120,000 reads per

cell using the Novaseq 6000 platform (Illumina, San Diego, CA, USA). For mapping of scRNA-seq of the CD10+SP population and

single cell multiome analysis of the CD34+ population, sequences obtained from the 10X Genomics scRNA-seq platform were de-

multiplexed and mapped using Cell Ranger and Cell Ranger ARC package (10X Genomics), respectively. For single cell transcrip-

tome data of CD10+SP and CD34+ population, we also quantified spliced and unspliced transcript counts using kallisto | bustools

(Melsted et al., 2021) and velocyto (La Manno et al., 2018) respectively. Cells were removed if they expressed fewer than 200 unique

genes, more than 8000 unique genes, or had greater than 15% mitochondrial reads. Genes not detected in any cell were removed

from subsequent analyses. Using the scanpy (Wolf et al., 2018) package in Python language, we conducted PCA of expression pro-

files of the cells (n_comps = 40) and Leiden clustering (Traag et al., 2019) on the PCA coordinates with scanpy.pp.neighbors and

scanpy.tl.leiden (n_neighbors = 30, resolution = 1.0). Using Signac R package (Stuart et al., 2021), we filtered out low quality cells

of demultiplexed single cell gene expression and ATAC data of the CD34+ population. In particular, the minimum and maximum

values of RNA counts were set to 1000 and 20,000, respectively, the minimum and maximum values of ATAC counts were set to

2000 and 40,000, respectively, the maximum value of nucleosome signal was set to 5 and the minimum value of TSS enrichment

was set to 1. We applied the RunRTIDF function of the Signac package for normalization.

Variational inference of single-cell transcriptome dynamics with fluctuation
We developed a computational methodology to estimate single-cell transcriptome dynamics with fluctuation. Our methodology sto-

chastically embedded spliced counts of each cell into a latent cell state space using a deep neural network. For each latent cell state,

our methodology stochastically simulated the micro-duration change and decoded the time-shifted spliced transcriptome as well as

the original spliced transcriptome. The unspliced transcriptome was reconstructed from original and time-shifted spliced transcrip-

tomes, which leveraged the differential equation of splicing kinetics. We assumed probabilistic observation of spliced and unspliced
Cell Reports 40, 111260, August 30, 2022 e3



Article
ll

OPEN ACCESS

t'Ce :::>ress Cell Reports 
counts from reconstructed counterparts and optimized parameters for encoding, decoding, stochastic simulation, and the RNA ve-

locity equation. Here, we describe the generative model for spliced and unspliced transcriptomes and the variational approximation

of the posterior distributions of latent variables.

Generative model of spliced and unspliced transcriptomes
This is our generative model for spliced and unspliced transcriptomes of a single cell, s˛Rg and u˛Rg where g is the number of

genes. This probabilistic model assumes two latent variables, z˛Rm and d˛Rm , where m is the dimension of the latent cell state

space. z represents the latent cell state and follows a Gaussian prior distribution

pðzÞ = Nðzj0; IÞ
d represents the change in the latent cell state during micro-duration dt and follows a Gaussian prior distribution

pðdÞ = Nðzj0; IÞ
Wemodeled the latent cell state after micro-duration dt as z0 = z+rd. We set r˂˂1 so that the change in the micro-duration is much

smaller than the whole variation of the latent cell state. We set r as 0.01 in this study. This generative model assumes that the time

evolution of the latent cell state z follows a Wiener process. Given the corresponding latent cell state z,we assume that spliced tran-

scriptome s follows a Poisson distribution

pðsjzÞ = Poissonðsjs = llqðzÞÞ
where l˛R is themean expression across all genes in the single cell and lqðzÞ˛Rg is the decoding neural network of the latent cell

state with 50 hidden units, two layers, and layer normalization. We also decoded the latent cell state before and after micro-duration

dt, z�rd and z+rd as lq(z�rd)and lq(z+rd), which corresponded to mean parameters of the spliced transcriptome before and after

the micro-duration. Using these time-shifted spliced transcriptomes, we approximately derived the time change of the mean param-

eter of the spliced transcriptome

ds

dt
z
lqðz+rdÞ � lqðz � rdÞ

2dt
(Equation 1)

Here, we assumed that the mean parameter of spliced and unspliced transcriptomes followed the differential equation of splicing

kinetics as with existing tools for RNA velocity estimation (Bergen et al., 2020; La Manno et al., 2018):

ds

dt
= b+u � g+s (Equation 2)

where b˛Rg is a vector of gene-specific splicing rates of unspliced transcripts and g˛Rg is a vector of gene-specific degradation

rates of spliced transcripts. By combininUg (1) and (2), we approximately derived themean parameter of the unspliced transcriptome

uzl
lqðz+ rdÞ � lqðz � rdÞ+ 2dtglqðzÞ

2dtb

We assumed that the unspliced transcriptome u followed a Poisson distribution

pðuj z; dÞ = Poissonðu j uÞ
Variational approximation of the latent variable posterior
To derive the latent cell state z and corresponding time change d, we used the variational approximation for the posterior distribution

of z and d similarly to a variational auto-encoder. We assumed the variational distribution of the latent cell state as a Gaussian dis-

tribution dependent on the observed spliced transcriptome as shown below:

qðzjsÞ = Nðzjm4 ðsÞ;diagðs4ðsÞÞÞ
where m4(s) and s4(s) are the encoding neural network with 50 hidden units, two layers, and layer normalization. We assumed that the

variational distribution of d is was a Gaussian distribution dependent on the latent cell state z as shown below:

qðdjzÞ = N
�
d
��m0

4ðzÞ;diag
�
s0
4ðzÞ

��
where m0

4ðzÞ and s04ðzÞ are neural networks with 50 hidden units, two layers, and layer normalization. These formulations corre-

sponded to an assumption that the time evolution of latent cell state z followed an advection diffusion model

dz = r m0
40 ðzÞ dt + r s0

40 ðzÞ dW
whereW is a Wiener process. Hence, s040 ðzÞ correspondcorresponded to the fluctuation of latent cell state dynamics and m0

40 ðzÞ cor-
responded to the average dynamics of latent cell states. For the estimation process of the parameters of the generative models and

the variational distribution, we maximized Evidence Lower BOund (ELBO) loss Lðq; 4; 40Þ defined below:
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Lðq; 4; 40; a; bÞ = � Eqðz;djsÞ

�
log

Pðs; u; z; dÞ
qðz; djsÞ

�
z � log pðsjz0Þ � log pðujz0; d0Þ+DKLðqðzjsÞjpðzÞÞ+DKLðqðdjz0ÞjpðdÞÞ

where z0and d0 are derived through reparametrized sampling form qðzjsÞ and qðdjz0Þ, and EPðxÞ½fðxÞ� represents the expectation of

f(x) given x � PðxÞ. For thismaximization, we used the Adamoptimizer with a learning rate of 0.0001,mini-batch size of 100, and 1000

epochs at total. Only for the first 500 epochs, we fixed 40 and ignored DKLðqðdjz0ÞjpðdÞÞ and� log pðujz0; d0Þ from ELBO loss, which

corresponded to the variational auto encoder of spliced transcriptome. All implementations were based on the pytorch library of Py-

thon language.

Evaluation of the accuracy of estimated expression and dynamics for each gene
Owing to the sparse observation for weakly expressed genes or the strong deviation from our constant RNA degradation assumption,

the reconstructed expression and dynamics for some genes were unreliable. To quantify the accuracy of estimated expression for

each gene, we calculated the Pearson correlation between the observed spliced transcript count and reconstructedmean parameter

cs. To quantify the accuracy of estimated dynamics for each gene, we calculated the Pearson correlation of the ratio of the unspliced

transcript count to the spliced transcript count added by one between the observation and reconstruction cr . We excluded genes

with low accuracy cs˂0.3or cr˂0.1, when we scored the fluctuation direction of each gene as described below section.

Calculation of the fluctuation in the gene expression change
The variational distribution of d enableenabled us to evaluate the stochastic dynamics of latent cell states, while each latent cell state

was associated with a comprehensive gene expression profile by decoding the neural network. Here, we iteratively sampled N times

micro-duration changes di,n(n = 1,..,N) for the latent state of the cell i, zi = m4 ðsiÞ; from the variational distribution qðd jziÞ: We de-

coded the cell states after micro-transitions zi + rdi;n and derived multiple spliced transcript abundances after the micro-duration,

which reflected the stochastic dynamics in the latent cell state space. Here, we calculated the fluctuation of the gene expression

change as their variance among these cells sampled from one original observed cell. We also calculated the advection of the

gene expression change as their average.

Clustering analysis based on fluctuation
On the basis of this deviation from the average expression changes described above, we conducted clustering analysis on cells with

the top20% largest fluctuation.Using the scanpypackage inPython language,weconductedPCAof thedeviation of cells (n_comps=

20) and clustering on PCA coordinates with scanpy.pp.neighbors and scanpy.tl.leiden (n_neighbors = 30, resolution = 1.0).

Fate prediction based on estimated dynamics
To estimate the cell fate probability for each single cell, we calculated the transition probability between single cells, which is consis-

tent with the estimated cell state dynamics, and chained it to simulate the destination as described below.

Calculation of the transition probability between single cells
To estimate fate probability for each lineage, we quantified the probability that the transition between single cells occurs. We calcu-

lated the transition probability from cell i based onbased on the iteratively sampled latent cell state change during themicro-duration

di,n(n = 1,..,N). We assumed that the destination of n th transition from cell i is cell j when the cosine similarity between the transition

and latent coordinate difference from cell i to cell j is smallest among the neighbor j˛NðziÞ:
We defined the transition probability as shown below:

Tij =

8><
>:

1

N

P
n = 1;:::;N

I

�
argmaxj˛NkðziÞ

din$Dij

jjdinjj
����Dij

����
�
ðj˛NðziÞÞ

0 ðj;NðziÞÞ
where Dij = zj � zi; N = 30; NðziÞ is the k-th nearest neighborhoods of zi.

Fate probability based on long-term transition
We determined destination cells and assumed that the transition from destination cells was unavailable. The destination cells were

defined by cells with the top 5% expression profiles similar to those of expected destination cell clusters. The similarity of cell i to

cluster k was formulated as shown below:

rik = ðsi � ~sÞ$ðfk � ~fÞ
where ~s is the averaged spliced transcriptome across all cells, fk is the averaged expression profile of cell type k in the PBMC dataset

derived from Seurat, and ~f is the average of that over all cell types. We chained the corrected transition probability 1024 times and

estimated the cell fate probability of a specific cell type by summing the long-term transition probability to cells whose expression

profile was the most similar to that of the specific cell type among all destination cell types.
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Scoring fluctuation direction
As described in the previous section, we simulated the stochastic gene expression change in each cell. Here, we estimated the

average expression change from iteratively sampled cells after a micro-duration as shown below:

s0i =
1

N

X
n

lqðzi + rdi;nÞ � lqðziÞ

We calculated the deviation of the gene expression change sampled once per cell from these averaged expression changes as

shown below:

di = lq
�
zi + rd0

i

� � s0i

where d0
i was sampled from qðd jziÞ:We evaluated the directionality of the fluctuation deviation of each cell based on the similarity to

the expression difference between two specific cell types as shown below:

pikk0 = di$ðfk � fk0 Þ
large value of pikk0 indicates that the dynamics of cell i is directed toward cell type k rather than cell type k0. Furthermore, this cell-

specific score can be used to evaluate each gene directionality between the two cell types in specific cell subpopulation Cas shown

below:

egkk0 =
X
i˛C

pikk0dig

A large value of egkk0 indicates that the expression change of gene g fluctuates positively in cells whose dynamics is directed toward

cell type k rather than cell type k0.

Two-dimensional embedding of velocity in the latent cell space
We applied the embedding method of Bergen et al. (2020) to our latent cell state dynamics. First, we calculated the transition prob-

ability between single cells as shown below:

Qij =

8><
>:

1

C0
i

exp

�
cðdi;DijÞ

s

�
ðj˛NðiÞÞ

0 ðj;NðiÞÞ
where c(x,y) is the cosine similarity between x and y, di = m4 ðsiÞ, C0

i is the normalization factor, so that
P
j

Qij = 1 and s is a constant

value (0.05 in this study).

Next, we calculated the change of embedded coordinates by averaging the difference between cells for the transition probability

as shown below:

du
i =

X
j

Qijðuj � uiÞ

where ui ˛R2 is the UMAP embeddings of the latent cell state of cell i, m4 ðsiÞ:

Application of other fate estimation tools
We applied CELLRANK and Palantir to the pancreas dataset with default parameters. For Palantir, we determined the initial state as

the cell whose PCA coordinate was nearest to the center of Ngn3low endocrine progenitor cells. Terminal states corresponding to

Alpha, Beta, Delta, Epsilon, and Ductal cells were determined as the cells whose PCA coordinates were nearest to the center of

the corresponding clusters.

Simulation experiment of scRNA-seq
We simulated the spliced and unspliced transcriptome of differentiating cells using SERGIO (Dibaeinia and Sinha, 2020). We

assumed three cell types with 100 genes and differentiation from cell type 0 to 1. To heavily capture the initiation of differentiation,

we subsampled 1000 cells per cell type from initial 500 steps. We set the parameters as follows: noise_params = 0.3, decays = 0.8,

splice_ratio = 1.5, sampling_state = 30, noise_params_splice = 0.1, and noise_type = ’dpd’. To add library size effects, we set the

parameters as follows: mean = 8 and scale = 0.4.

Calculation of co-accessibility of B/pDC-differentiating chromatin regions
To explore the natural accessibility of chromatin regions with different accessibilities between B and pDC populations, we scored

their co-accessibility at the single cell resolution. First, we examined the differentially accessible chromatin regions of B and pDC

clusters identified in the clustering analysis of transcriptome data from the CD34+ population using FindMarkers function
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implemented in Signac R package with p < 0.01 and |log2FC| > 0.25. Next, we calculated the signature scores for each side as B and

pDC lineage accessibility. After negative values were converted to 0, we calculated B/pDC co-accessibility by their product.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R tool 4.1.0. Statistical tests and p values are described in the figure legends. Statistical tests

for comparison were two-sided, and p < 0.05 was considered significant. Data are presented as means ± SD as described in the

figure legends.
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