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IMPORTANCE Chest radiography is a useful noninvasive modality to evaluate pulmonary
blood flow status in patients with congenital heart disease. However, the predictive value of
chest radiography is limited by the subjective and qualitive nature of the interpretation.
Recently, deep learning has been used to analyze various images, but it has not been applied
to analyzing chest radiographs in such patients.

OBJECTIVE To develop and validate a quantitative method to predict the pulmonary to
systemic flow ratio from chest radiographs using deep learning.

DESIGN, SETTING, AND PARTICIPANTS This retrospective observational study included 1031
cardiac catheterizations performed for 657 patients from January 1, 2005, to April 30, 2019,
at a tertiary center. Catheterizations without the Fick-derived pulmonary to systemic flow
ratio or chest radiography performed within 1 month before catheterization were excluded.
Seventy-eight patients (100 catheterizations) were randomly assigned for evaluation. A deep
learning model that predicts the pulmonary to systemic flow ratio from chest radiographs was
developed using the method of transfer learning.

MAIN OUTCOMES AND MEASURES Whether the model can predict the pulmonary to systemic
flow ratio from chest radiographs was evaluated using the intraclass correlation coefficient
and Bland-Altman analysis. The diagnostic concordance rate was compared with 3 certified
pediatric cardiologists. The diagnostic performance for a high pulmonary to systemic flow
ratio of 2.0 or more was evaluated using cross tabulation and a receiver operating
characteristic curve.

RESULTS The study included 1031 catheterizations in 657 patients (522 males [51%]; median
age, 3.4 years [interquartile range, 1.2-8.6 years]), in whom the mean (SD) Fick-derived
pulmonary to systemic flow ratio was 1.43 (0.95). Diagnosis included congenital heart disease
in 1008 catheterizations (98%). The intraclass correlation coefficient for the Fick-derived and
deep learning–derived pulmonary to systemic flow ratio was 0.68, the log-transformed bias
was 0.02, and the log-transformed precision was 0.12. The diagnostic concordance rate of the
deep learning model was significantly higher than that of the experts (correctly classified 64
of 100 vs 49 of 100 chest radiographs; P = .02 [McNemar test]). For detecting a high
pulmonary to systemic flow ratio, the sensitivity of the deep learning model was 0.47, the
specificity was 0.95, and the area under the receiver operating curve was 0.88.

CONCLUSIONS AND RELEVANCE The present investigation demonstrated that deep
learning–based analysis of chest radiographs predicted the pulmonary to systemic flow ratio
in patients with congenital heart disease. These findings suggest that the deep
learning–based approach may confer an objective and quantitative evaluation of chest
radiographs in the congenital heart disease clinic.
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A lthough the pulmonary to systemic flow ratio is an im-
portant hemodynamic parameter for clinical decision-
making, including judgment of operative indication in

patients with congenital heart disease, a precise evaluation of
this parameter requires cardiac catheterization, which is still
an invasive procedure and cannot be performed as daily prac-
tice. Previous studies have shown that less-invasive modali-
ties, such as echocardiography and magnetic resonance
imaging, are useful for assessing the pulmonary to systemic
flow ratio.1-3 However, echocardiography can be used only for
patients with simple congenital heart disease, and magnetic
resonance imaging can be used for a limited number of pa-
tients because of its magnetism and examination time. Chest
radiography is another less-invasive method that is used to as-
sess pulmonary blood flow status, but the evaluation is sub-
jective and qualitative, and little is known about clinicians’ di-
agnostic performance using chest radiography.

Deep learning, a branch of machine learning, is a method
for automated image interpretation. Since deep learning be-
came a rapidly evolving approach for computer vision, deep
learning–based analysis has been recently performed in sev-
eral medical settings using imaging modalities, such as diag-
nosis of lung cancer from chest computed tomography4 or
chest radiography,5 diagnosis of tuberculosis6 or pneumonia7

from chest radiography, and assessment of the position of the
endotracheal tube on a chest radiograph.8 Previous studies
have shown that a deep learning–based approach can be used
to recognize diseases or findings objectively in various imaging
modalities, and one of the studies showed the possibility that
deep learning–based analysis may outperform clinicians.7

Given the potential capability of deep learning shown in
the previous studies, we hypothesized that deep learning–
based analysis can predict the pulmonary to systemic flow ra-
tio from chest radiographs quantitatively in patients with con-
genital heart disease. In this study, we developed and validated
a deep learning–based method to predict the pulmonary to sys-
temic flow ratio from chest radiographs of patients with con-
genital heart disease.

Methods
Data Sets
We included 1689 consecutive cardiac catheterizations per-
formed for 907 patients during the period from January 1, 2005,
to April 30, 2019, in the Department of Pediatric Cardiology
in Mie University Hospital, Mie, Japan. Catheterizations with
no chest radiograph that was taken within 1 month before car-
diac catheterization and catheterizations with no pulmonary
to systemic flow ratio measurement were excluded. Among eli-
gible patients, 78 patients (100 catheterizations) were ran-
domly assigned for evaluation (evaluation group), and cath-
eterizations performed for the other patients were used for
training (training group). The pulmonary to systemic flow ra-
tio was calculated by using the Fick method.9 Radiographs were
obtained using UD150L-40, Rad Speed Safire, and MUX-10 OHJ
(Shimadzu Corp); Sirius 130HP (Hitachi Medical Corp); Beneo
Fx 1T2P (Fujifilm Medical Co Ltd); and FCR XL-2, FCR Veroc-

ity T, FCR Verocity U, Calneo HC SQ (SE), Calneo C 1417 Wire-
less, and Calneo Flex (Fujifilm Medical Co Ltd). As prepara-
tion of the data (Figure 1), we manually trimmed all radiographs
to remove extrathoracic images and applied a contrast-
limited adaptive histogram equalization. To square the im-
ages, we added black rectangles on the edge of each image. The
images were converted into an 8-bit depth and 512 × 512-
pixel matrix and Portable Networks Graphics format.

This study was approved by the Mie University Hospital
Institutional Review Board. Waiver of informed consent was
granted by the institutional review board (in accordance with
Japanese government ethics guidelines for biomedical re-
search, informed consent is waived if the study does not in-
clude personal information, has a retrospective design, and is
carefully performed under the instruction of the ethics com-
mittee of the institute).

Transfer Learning
We developed a deep learning model using a method of trans-
fer learning based on previous reports.4-8 As a base model, we
adopted pretrained Inception-v3, a 311-layer deep convolu-
tional neural network model developed by Google,10 which had
been already trained with everyday color images from Ima-
geNet (http://www.image-net.org/). Because the base model
was designed for classifying 1000 categories of everyday
objects, we replaced the final layer of the model with a global
average pooling layer and a fully connected layer to make the
model output a pulmonary to systemic flow ratio value, which
is a continuous variable. We then retrained the model with the
data sets obtained in our hospital to predict the pulmonary to
systemic flow ratio from chest radiographs. Weights in the first
133 layers, which correspond to the first 5 inception blocks,
were frozen, and weights in the other layers were retrained with
our data. The following parameters were used for training: 100
epochs; the loss function, 2-way random and single-score
intraclass correlation coefficient ICC(2,1)11; an optimizer,
stochastic gradient descent; and a learning rate of 0.01. All
images were randomly augmented by a rotation of less than
20°, a shift of less than 10%, and a horizontal flip. The accuracy
of the prediction model was assessed using a 10-fold cross-
validation. Ten models with a minimum loss of validation were
obtained.

Key Points
Question Does deep learning–based analysis of chest radiographs
predict the pulmonary to systemic flow ratio in patients with
congenital heart disease?

Findings This retrospective observational study using 1031
cardiac catheterizations and chest radiographs showed that the
pulmonary to systemic flow ratio predicted by a deep learning
model was significantly correlated with the values calculated using
the Fick method (intraclass correlation coefficient, 0.68). The
diagnostic concordance rate of the model was significantly higher
than that of experts (64 of 100 cases vs 49 of 100 cases).

Meaning These results may allow clinicians to quantify otherwise
qualitative and subjective findings of pulmonary vascularity in
chest radiographs.
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Evaluation and Data Analysis
We evaluated the obtained models using the evaluation group.
The mean pulmonary to systemic flow ratio value predicted
by the 10 models was used as the output of the whole re-
trained Inception-v3. Agreement between the Fick-derived pul-
monary to systemic flow ratio and the deep learning–derived
pulmonary to systemic flow ratio was analyzed by use of the
root mean square deviation, ICC(2,1), and Bland-Altman
analysis.12 To compare the diagnostic performance of our
model with the performance of clinicians at different levels of
their experience, both the Fick-derived and deep learning–
derived pulmonary to systemic flow ratios of the evaluation
group were classified into the following 4 categories: low (ra-
tio, <0.9), normal (ratio, ≥0.9 to <1.5), high (ratio, ≥1.5 to <2.0),
and very high (ratio, ≥2.0), while 3 certified pediatric cardi-
ologists (H.O., H. Sawada, and H.H.) and 3 pediatric cardiol-

ogy fellows (N.Y. and 2 others) classified the same chest radio-
graphs into the 4 categories using deidentified original chest
radiographs. When the answers differed among the 3 experts
or fellows, the majority answer was adopted as their classifi-
cation if there was a majority, otherwise the median of the an-
swers was used. The concordance rate between the classifi-
cation based on the Fick method and the classification based
on deep learning was compared with that of the Fick-derived
classification and the experts’ or fellows’ classification using
the McNemar test with the Yates continuity correction. All
P values were from 2-sided tests and results were deemed sta-
tistically significant at P < .05. We also assessed the capabil-
ity of our model and the clinicians to diagnose a high pulmo-
nary to systemic flow ratio of 2.0 or more using the cross
tabulation and the area under the receiver operating charac-
teristic curve (AUC). To examine how the experts interpret

Figure 1. Preprocessing of the Input Images

Radiograph before preprocessingA Radiograph after preprocessingB

Radiograph before preprocessingC Radiograph after preprocessingD

Two examples of radiographs before
preprocessing are shown, with
corresponding images after
preprocessing.
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pulmonary blood flow status on chest radiographs, they were
asked to evaluate how much a finding based on chest radio-
graphs was associated with the interpretation of pulmonary
blood flow. Five findings (the size of the heart, the left second
cardiac arch, the silhouette of the right lower pulmonary ar-
tery, the peripheral pulmonary vascularity, and the opacity of
the lung fields) were evaluated on a scale of 4 (1, not impor-
tant; 2, less important; 3, important; 4, very important). To
visualize how our model predicted the pulmonary to sys-
temic flow ratio from a chest radiograph in each case, we
performed gradient-weighted class activation mapping
(grad-CAM)13 and guided backpropagation.14 We also ad-
opted an activation maximization technique15 to visualize the
deep neural network of our model by generating imaginary
pictures that include characteristics of an increased or de-
creased pulmonary to systemic flow ratio.

Hardware and Software
Data preparation, training, and evaluation were performed on
a Z800 workstation (HP) with a graphical processing unit of
GeForce GTX 1080Ti (Nvidia) using Python 3.5 and its librar-
ies, including Pydicom, PyPng, and scikit-image,16 Keras 2.0.9
with TensorFlow17 backend, and Keras-vis. Statistical analy-
sis was performed using SPSS, version 25 (IBM Corp).

Results
A total of 1031 catheterizations performed for 657 patients were
eligible for this study (eFigure 1 in the Supplement). Of 1031
catheterizations, 1008 (98%) were performed for patients with
a diagnosis of congenital heart disease, and 217 (21%) were per-
formed for patients younger than 12 months. The mean (SD)
Fick-derived pulmonary to systemic flow ratio was 1.43 (0.95).
The Fick-derived pulmonary to systemic flow ratio was 1.00
in 291 catheterizations (28%), and chest radiography was per-
formed within 3 days before cardiac catheterization in 995 cath-
eterizations (97%).

In the evaluation group, no surgical or catheter interven-
tion that might have changed the pulmonary to systemic flow
ratio was performed, and no circulatory drug treatment, in-
cluding diuretics, vasodilators, or digoxin, was initiated be-
tween the chest radiography and the cardiac catheterization.
Nineteen of 100 catheterizations (19%) in the evaluation group
were performed for patients younger than 12 months, and all
but 1 of these patients had chest radiography performed within
3 days before the catheterizations. The Fick-derived pulmo-
nary to systemic flow ratio was 2.0 or more in 170 of 931 cath-
eterizations (18%) in the training group and in 19 of 100 cath-
eterizations (19%) in the evaluation group. The characteristics
of the patients in the training and evaluation groups are sum-
marized in the Table.

The scatterplot and the Bland-Altman plot between the Fick-
derived and the deep learning–derived pulmonary to systemic
flow ratio are shown in Figure 2. The root mean square devia-
tion was 0.45, and the ICC(2,1) was 0.68 (P < .001). The per-
centage error was 0.62, and the relative error was less than 20%
in 51 of 100 chest radiographs (51%). Bland-Altman analysis and

Table. Characteristics of Patients

Characteristic

Training
Group
(n = 931)

Evaluation
Group
(n = 100)

Age, median (IQR), y 3.4 (1.2-7.9) 4.6 (1.4-11.4)
Weight, median (IQR), kg 12.6

(7.8-23.1)
15.4
(8.6-34.5)

Male sex, No. (%) 469 (50) 53 (53)
Pulmonary to systemic flow ratio,
mean (SD)

1.42 (0.98) 1.43 (0.62)

PVR, mean (SD), Wood units · m2 1.87 (1.62)a 1.81 (1.42)a

Mean PAP ≥25 mm Hg, No. (%) 143 (16)a 14 (14)a

PAWP ≥15 mm Hg, No. (%) 27 (3)a 3 (3)a

Disease, No. (%)
Noncyanotic congenital
heart disease

476 (51) 69 (69)

Single valve stenosis 23 (3) 4 (4)
Septal defects 345 (37) 46 (46)

No intervention 253 (27) 35 (35)
Palliated 48 (5) 4 (4)
Repaired 44 (5) 7 (7)

Coarctation of the aorta 10 (1) 2 (2)
Patent ductus arteriosus 66 (7) 12 (12)

No intervention 56 (6) 12 (12)
Repaired 10 (1) 0

Congenitally corrected
transposition of the great arteries

2 (0.2) 0

Other 9 (1) 2 (2)
Cyanotic congenital heart disease 455 (49) 31 (31)

Dextro-transposition of the
great arteries

37 (4) 2 (2)

No intervention 0 0
Palliated 4 (0.4) 0
Repaired 33 (4) 2 (2)

Single ventricle defects 214 (23) 12 (12)
No intervention 9 (1) 0
Palliated 124 (13) 6 (6)
Repaired 81 (9) 6 (6)

Tetralogy of Fallot 135 (15) 12 (12)
No intervention 26 (3) 5 (5)
Palliated 52 (6) 4 (4)
Repaired 57 (6) 3 (3)

Aortic disease 12 (1) 2 (2)
No intervention 0 0
Palliated 8 (0.9) 0
Repaired 4 (0.4) 2 (2)

Double-outlet right ventricle 33 (4) 1 (1)
No intervention 5 (0.5) 0
Palliated 17 (2) 0
Repaired 11 (1) 1 (1)

Pulmonary atresia with intact
ventricular septum

22 (2) 2 (2)

No intervention 1 (0.1) 1 (1)
Palliated 13 (1) 1 (1)
Repaired 8 (0.9) 0

Other 2 (0.2) 0
No congenital heart disease 21 (2) 3 (3)

Abbreviations: IQR, interquartile range; PAP, pulmonary arterial pressure;
PAWP, pulmonary arterial wedge pressure; PVR, pulmonary vascular resistance.
a PVR was calculated in 897 catheterizations in the training group and 99

catheterizations in the evaluation group, mean PAP was measured in 910
catheterizations in the training group and 99 catheterizations in the
evaluation group, and PAWP was measured in 902 catheterizations in the
training group and 99 catheterizations in the evaluation group.
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its plot (Figure 2B) showed that the bias was 0.01, the preci-
sion was 0.45, the upper limit of agreement (defined as mean
[2 SD]) was 0.92, and the lower limit of agreement (defined as
mean [2 SD]) was −0.89. We also performed the Bland-Altman
analysis on the log-transformed data as recommended in a pre-
vious article12 because the differences between the Fick-
derived and deep learning–derived pulmonary to systemic flow
ratios increased linearly with the mean pulmonary to systemic
flow ratio. On the log scale, the bias was 0.02, the precision was
0.12, the upper limit of agreement was 0.26, and the lower limit
of agreement was −0.22. After antilog transformation, the bias
was 1.04, the upper limit of agreement was 1.81, and the lower

limit of agreement was 0.60. The Bland-Altman plot (Figure 2C)
showed that the deep learning–derived pulmonary to sys-
temic flow ratio was more different from the Fick-derived pul-
monary to systemic flow ratio in cases with a pulmonary to sys-
temic flow ratio of less than 0.79 (antilog of −0.1) and in cases
with a pulmonary to systemic flow ratio of more than 1.58 (an-
tilog of 0.2) and that the deep learning–derived pulmonary to
systemic flow ratio tends to be lower in patients with an in-
creased pulmonary to systemic flow ratio and higher in pa-
tients with a decreased pulmonary to systemic flow ratio.

The diagnostic concordance rate between deep learning–
derived and Fick-derived classifications was 64 of 100 (64%),

Figure 2. Performance of the Deep Learning Model
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which was significantly higher than that of experts and fel-
lows (experts, 49 of 100 [49%]; P = .02; fellows, 40 of 100
[40%]; P = .001). The confusion matrix of our model and the
clinicians are shown in eFigure 2 in the Supplement. Regard-
ing the detection of a high pulmonary to systemic flow ratio
of 2.0 or more, our model’s accuracy was 0.86. Sensitivity was
0.47, specificity was 0.95, and AUC was 0.88. For the experts,
accuracy was 0.80, sensitivity was 0.16, specificity was 0.95,
and AUC was 0.78; for the fellows, accuracy was 0.78, sensi-
tivity was 0.11, specificity was 0.94, and AUC was 0.67. Re-
ceiver operating characteristic curves and other statistics are
shown in Figure 3.

The mean importance value of the findings of chest radio-
graphs evaluated by the experts were as follows: size of the
heart, 1.7; left second cardiac arch, 2.0; silhouette of the right
lower pulmonary artery, 2.3; peripheral pulmonary vascular-
ity, 3.7; and opacity of the lung fields, 3.3. Grad-CAM (Figure 4)
showed that our model recognized the area in the lung fields
and the area around the heart as valuable for predicting an in-
creased pulmonary to systemic flow ratio, while no particu-
lar focus pattern was found for predicting a decreased pulmo-
nary to systemic flow ratio. Guided backpropagation (Figure 4)
showed that our model recognized structures mainly in the
lung fields when predicting the pulmonary to systemic flow
ratio. Activation maximization (eFigure 3 in the Supplement)
showed that coarse nodules represented an increased pulmo-
nary to systemic flow ratio, while no well-described pattern
was found for a decreased pulmonary to systemic flow ratio.

In addition, to investigate whether our model could de-
tect changes in the pulmonary to systemic flow ratio in an in-
dividual patient, we reviewed 34 repeated cardiac catheter-
izations performed for 12 patients. Changes in the deep
learning–derived pulmonary to systemic flow ratio in each pa-
tient were generally consistent with the changes in the Fick-
derived pulmonary to systemic flow ratio, with some range of
variance (eTable 1 in the Supplement). To investigate poten-
tial factors associated with the mismatch between deep learn-
ing–derived and Fick-derived pulmonary to systemic flow ra-
tios, we reviewed 6 patients in whom the difference between
the Fick-derived and deep learning–derived pulmonary to sys-
temic flow ratios was over the limits of agreement (eTable 2
in the Supplement). Tracheomalacia and abnormal position of
the diaphragm were noted in such patients.

Discussion
Our study, which investigated whether deep learning–based
analysis of chest radiographs predicts the pulmonary to sys-
temic flow ratio in patients with congenital heart disease,
showed that our model could predict the pulmonary to sys-
temic flow ratio from chest radiographs and that its diagnos-
tic performance was higher than that of experts.

The methods in this study were developed using transfer
learning of a deep convolutional neural network. Deep learn-
ing–based analysis of chest radiographs has been performed
in previous studies in which transfer learning was shown to
be an effective way to develop a deep learning model for the
interpretation of chest radiographs.5-8 In transfer learning, a
model that has been pretrained on larger data sets, such as im-
ages of everyday objects, is applied to another task that be-
comes the focus. This approach is effective for analyzing medi-
cal images because they have similar elements to everyday
images, such as edges and blobs. We adopted Inception-v3,
which had been pretrained on ImageNet, a data set of 1.2 mil-
lion everyday color images, for analysis of chest radiographs,
considering the performance of the model and our computa-
tional resource. Augmentation of data sets has been shown to
be an effective way to improve the performance of deep
learning.18 In previous studies, augmentation methods, in-
cluding random rotation, contrast-limited adaptive histo-
gram equalization, horizontal flipping, and random crop-
ping, were used to improve the performance of deep
learning.5,6,8 In this study, we applied horizontal flipping, ro-
tation, and shift. We applied contrast-limited adaptive histo-
gram equalization to all images because they had been taken
in various radiographic conditions. As a loss function, we used
ICC(2,1) because it is one of the most important differentiable
statistics for the evaluation of agreement between 2 methods
for measuring a quantitative variable.19

We compared the deep learning–derived pulmonary to sys-
temic flow ratio with the Fick-derived pulmonary to systemic
flow ratio in the evaluation group. The ICC(2,1) showed that the
deep learning–derived pulmonary to systemic flow ratio was sig-
nificantly correlated with the Fick-derived pulmonary to sys-
temic flow ratio (Figure 2A). The ICC(2,1) of 0.68 represents good

Figure 3. Diagnostic Performance for a High Pulmonary to Systemic
Flow Ratio

1.0

0.8

0.6

0.4

0.2

0
0 1.00.8

Se
ns

iti
vi

ty

1 – Specificity
0.60.40.2

Fellows

Experts

Deep learning

Receiver operating characteristic curves of the deep learning model, the
experts, and the fellows for detecting a high pulmonary to systemic flow ratio of
2.0 or more. For the deep learning model, the accuracy was 0.86, the positive
predictive value was 0.69, the negative predictive value was 0.89, sensitivity
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negative predictive value was 0.83, sensitivity was 0.16, specificity was 0.95,
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the positive predictive value was 0.29, the negative predictive value was 0.82,
sensitivity was 0.11, specificity was 0.94, and the area under the curve was 0.67.
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clinical significance according to a previous report.20 Bland-
Altman analysis showed that, after antilog transformation, the
bias was 1.04, the upper limit of agreement was 1.81, and the
lower limit of agreement was 0.60. Thus, the mean difference
between the 2 methods was 4%, and the deep learning–
derived pulmonary to systemic flow ratio may differ from the
Fick-derived pulmonary to systemic flow ratio by 40% below
to 81% above in 95% of cases. The Bland-Altman plot (Figure 2C)
showed that the deep learning–derived pulmonary to sys-
temic flow ratio was more different from the Fick-derived pul-
monary to systemic flow ratio in cases with a pulmonary to sys-
temic flow ratio of less than 0.79 (antilog of −0.1) and in cases
with a pulmonary to systemic flow ratio of more than 1.58 (an-
tilog of 0.2) and that the deep learning–derived pulmonary to
systemic flow ratio tends to be lower in patients with an in-
creased pulmonary to systemic flow ratio and higher in pa-
tients with a decreased pulmonary to systemic flow ratio. We
considered that this might be caused by the distribution of the
training group. The cardiac catheterizations with a normal pul-

monary to systemic flow ratio were dominant in our data set,
which may have allowed our model to predict a value closer to
1.00. It may be effective to include more cases with increased
or decreased pulmonary to systemic flow ratios for developing
a better model. In an additional study, we confirmed that the
deep learning–derived pulmonary to systemic flow ratio was
generally consistent with the Fick-derived pulmonary to sys-
temic flow ratio in repeated catheterizations. These findings sug-
gest that our model may detect a temporal change in the pul-
monary to systemic flow ratio in a patient, which should be
verified in a further study.

In terms of classifying chest radiographs into 4 classes de-
pending on pulmonary blood flow, our study showed that deep
learning–based analysis outperformed the clinicians whose di-
agnostic performance was correlated with their level of expe-
rience. Although several studies reported a high level of per-
formance for the deep learning model that is comparable to
or even superior to that of clinicians, the mechanisms in-
volved in achieving such a performance are unclear.7,21-23 In

Figure 4. Results of Gradient-Weighted Class Activation Mapping (Grad-CAM) and Guided Backpropagation

Grad-CAM of chest radiograph with increased pulmonary
to systemic flow ratio

A Guided backpropagation of radiograph in panel AB

Grad-CAM of chest radiograph with decreased pulmonary
to systemic flow ratio

C Guided backpropagation of radiograph in panel CD

A, Chest radiograph with increased
pulmonary to systemic flow ratio
(Fick-derived pulmonary to systemic
flow ratio, 2.89; deep
learning–derived pulmonary to
systemic flow ratio, 2.60) was
visualized using grad-CAM, which
represents the area (yellow and red)
that the deep learning model
considered important for predicting
an increased or decreased pulmonary
to systemic flow ratio. B, Chest
radiograph from panel A visualized
with guided backpropagation, which
emphasizes edges that were
recognized by the model and shows
how the model recognized chest
radiographs. C, Chest radiograph with
a decreased pulmonary to systemic
flow ratio (Fick-derived pulmonary to
systemic flow ratio, 0.86; deep
learning–derived pulmonary to
systemic flow ratio, 0.84) was
visualized using grad-CAM. D, Chest
radiograph from panel C visualized
with guided backpropagation.
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our study, because the data sets had not been labeled by cli-
nicians but by another examination (catheterization), it is pos-
sible that our model was able to recognize features that are not
consistently recognized by clinicians. In addition, the AUC of
our model for detecting a high pulmonary to systemic flow ra-
tio of 2.0 or more was 0.88, while that of the experts was 0.78.
This finding suggests the potential capability of our model to
help physicians to justify intervention. The clinicians in our
study were not provided with information (including diagno-
sis or past medical history) other than the chest radiograph,
which was not similar to the real-world clinical setting. This
change may have allowed us to underestimate the clinicians’
capability to evaluate pulmonary blood flow on chest radio-
graphs. If patients are confined to a specific disease, clini-
cians as well as the deep learning model may be able to pre-
dict the pulmonary to systemic flow ratio better.

One of the problems of deep learning is its difficulty in
showing the reasoning behind outputting a value.24 To un-
derstand our model’s recognition of chest radiographs, we ad-
opted 3 visualization methods. Grad-CAM and guided back-
propagation (Figure 4) showed that our model recognized and
focused on the structures in the lung fields and the area around
the heart when predicting the pulmonary to systemic flow ra-
tio in each chest radiograph. Through the activation maximi-
zation technique (eFigure 3 in the Supplement), the model gen-
erated the imaginary pictures that were considered to
maximize or minimize the output value. The results of acti-
vation maximization showed that findings indicating coarse
nodule-like structures, which were possibly equivalent to the
pulmonary vasculature, were associated with a high pulmo-
nary to systemic flow ratio. According to a standard textbook
of pediatric cardiology, findings that suggest increased pul-
monary blood flow include enlarged pulmonary arteries that
extend into the lateral third of the lung field, increased vas-
cularity to the lung apices, and wider diameter of the right pul-
monary artery visible in the right hilum compared with the di-
ameter of the trachea, whereas findings that suggest decreased
pulmonary blood flow include a small hilum, black lung field,
and small or thin vessels.25 Our findings focusing on how ex-
perts interpreted chest radiographs were consistent with those
descriptions. The recognition of our deep learning model is
thereby consistent with that of the experts and the text-
books, except our model focused on the area around the heart
as well as the structures in the peripheral lung fields. In addi-
tion to understanding the characteristics of our model, be-
cause grad-CAM and guided backpropagation can be applied
to each chest radiograph, it is possible that one can use these
2 visualization techniques in clinical settings as well.

Because of our model’s capability to quantitatively pre-
dict the pulmonary to systemic flow ratio from chest radio-
graphs and to outperform clinicians, the present proof-of-
concept study suggests that there may be hidden information
in routine imaging tests that deep learning can identify, add-
ing clinical value.

Limitations
Several limitations of this study should be acknowledged.
First, this is a single-institution study. The methods may
therefore perform less well in other situations because of the
lack of an external validation sample in the present study.
Second, because the present evaluation group included
patients with a variety of congenital heart diseases, includ-
ing complex congenital heart diseases, that were indicated
for diagnostic catheterization, the chest radiography find-
ings may have been influenced by associated lesions. Third,
because the results of the visualization methods represent
only limited aspects of our model, the predicting process of
our model may not have been completely revealed. Fourth,
the performance of our model may not have been properly
evaluated because of the different characteristics of the
diagnostic methods. Chest radiography may reflect pulmo-
nary blood flow over a longer period, whereas the measure-
ment of cardiac catheterization is instantaneous and influ-
enced by sedation, dehydration, or choice of mixed venous
saturation. Fifth, the time difference between chest radiog-
raphy and cardiac catheterization in the evaluation group
may have influenced the performance of our model, espe-
cially for infants, owing to the temporal change in pulmo-
nary vascular resistance. However, such effects may be mini-
mal because the time difference was minimal (<3 days in
99% of all catheterizations and 95% of infantile catheteriza-
tions) and no surgical or catheter intervention or initiation of
circulatory drugs was performed between the studies. Sixth,
considering the sensitivity and the specificity for diagnosing
a high pulmonary to systemic flow ratio, our model seems to
be relatively specific but not very sensitive. However, in the
future, such an evaluation of our model could be improved
by increasing the training data. Seventh, the predictive value
of our model might be limited for patients with several con-
ditions, including tracheomalacia and abnormal position of
the diaphragm, as shown in eTable 2 in the Supplement,
which may be associated with the limited number of such
patients in the training group. Eighth, similarly, the deep
learning–based evaluation of patients with idiopathic pul-
monary arterial hypertension or Eisenmenger syndrome will
be limited in the present algorithm because neither of those
conditions was included in the present study sample.

Conclusions
The present study showed that deep learning–based analysis
of chest radiographs could predict the pulmonary to sys-
temic flow ratio quantitatively and objectively, which may con-
fer an opportunity to quantify otherwise qualitative and sub-
jective findings of pulmonary vascularity in the clinical setting.
Further studies are warranted to improve the performance of
the model and to understand how the model predicts the pul-
monary to systemic flow ratio.
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