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Abstract

Human motion forecasting is a necessary variable to analyze human motion

concerning the safety system of the autonomous system that could be used

in many applications, such as in auto-driving vehicles, auto-pilot logistics

delivery, and gait analysis in the medical field. At the same time, many

types of research have been conducted on 2D and 3D human motion pre-

diction for short and long-term goals. In this dissertation, human motion

forecasting in the 2D plane has been conducted as a reliable alternative in

motion capture of the RGB camera attached to the devices. While for a

more precise location in the real-world automation application, 3D human

motion forecasting is also necessary since the device could detect the exact

location in the 3D plane. The unannotated dataset is used as the samples

to conduct the works on 2D human motion forecasting to realize the us-

ability of the task in real-world applications. On the unannotated dataset

prediction task, the author proposed the feature extraction by OpenPose as

the commonly used pose estimator and then obtained the future prediction

movement by the RNN-LSTM or Kalman Filter. As a result, the usabil-

ity of human motion prediction by applying the RGB camera is confirmed.

The prediction results obtained by the Kalman Filter show better perfor-

mance than the RNN-LSTM based on the correct prediction result within

the correct location range.

In contrast, the annotated dataset is used to improve the quality and per-

formance of the prediction results obtained by the models. The author

proposed a method, the time series self-attention approach to generate the

next future human motion in the short-term of 400 milliseconds and long-

term of 1000 milliseconds, resulting that the model could predict human

motion with a slight error of 23.51 pixels for short-term prediction and 10.3



pixels for long-term prediction on average compared to the ground truth in

the quantitative and qualitative evaluation. Our method outperformed the

LSTM and GRU models on the Human3.6M dataset based on the MPJPE

and MPJVE metrics. The average loss of correct key points varied based

on the tolerance value. Our method performed better within the 50 pixels

tolerance. In addition, our method is tested by images without key point

annotations using OpenPose as the pose estimation method. As a result,

our method could predict well the position of the human but could not pre-

dict well for the human body pose. This research is a new baseline for the

2D human motion prediction using the Human3.6M dataset.

Subsequently, studies were carried out to predict human motion in 3D,

aiming to improve various applications. Building upon the groundwork

established by previous studies, the time series self-attention method was

utilized as the model with modifications to accommodate 3D input data.

As a result, our approach showed good performance in both short and long-

term prediction tasks. It had an average error of 36.4mm between the

prediction and ground truth in short-term predictions and 73.2mm in long-

term predictions.

Overall, the studies of human motion forecasting have been conducted based

on 2D and 3D input. In this study, we confirmed the realization of our

method to predict human motion in the short and long term.
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Chapter 1

Introduction

1.1 Background

Autonomous system utilization has become more progressive with the advancement of

artificial intelligence. Many applications can be operated autonomously, such as self-

driving cars and auto-pilot robots. The system’s decision-making is taken autonomously

by the system. Several things to consider for efficient, effective, and safe decision-

making while operating the device. In the matter of the safety of the system, some

devices apply depth or distance sensor[1, 2] to keep the device at a safe distance from any

object [3, 4]. However, in the case of a moving object like a human, the system might

get a blind spot when a human body has not reached the depth sensor measurement

area but will be on the track of the device route. With this in mind, the consideration

of the behavioral knowledge of the object is necessary to increase the sensitivity and

tackle the lack of the blind spot in the current autonomous’s safety system. There are

several advantages of using the RGB camera for the safety system:

1. Computer-aided system.

2. Wide range measurement.

The other utilities that can benefit from using human motion forecasting are:

1. Computer-aided falling down prevention for the disabled and elderly.

2. Additional input for the human pose estimation training as the biased data.

3. Additional input for the human position tracking research.

1



1. INTRODUCTION

Human motion forecasting has been retracted attention for advancing methods,

strategies, and results. Several types of research, such as using recurrent neural net-

works, gated recurrent units (GRU), long short-term memory (LSTM), and Trans-

former networks, are conducted in many ways for this problem. Different approaches

with different inputs and expecting different outputs in the process, which the task

could be divided by the input of two-dimensional coordinates and three-dimensional

coordinates. Both of these works have advantages and disadvantages in the process

and precision of prediction. The two-dimensional input contains x and y coordinates in

the frame of the image, which makes the input could be from the RGB camera that is

commonly applied in many systems. As well as, the process of two-dimensional input is

easier to compute, considering the input size is less than the three-dimensional input.

However, in the autonomous system, the device might need to consider the z coordinate

to measure the real distance in the real world. As for now, the three-dimensional input

is still under development, and the input is only given by the RGB camera with a depth

sensor to obtain the z coordinate, which makes this input still limited by the cost of the

input device. Apart from the input data, human motion forecasting research has been

developed along with the human pose estimation problem to support the necessity of

the input.

Various Machine Learning (ML) techniques have been used to predict better results

judging by the distance of prediction to the ground truth. While conducting the re-

search, the baseline has been set to improve the prediction by one evaluation method.

It was started from human motion prediction with recurrent network model[5, 6, 7].

Recent approaches have been followed with more techniques, and the renewal evalua-

tion method to measure the distance in millimeters (mm)[8, 9]. These researches were

conducted with the input of 3D input data and expecting the 3D output in the long-

short term prediction. While for the 2D input data, some research has been conducted

with various inputs of the dataset, approaches, and output[10, 11]. As for this research,

the author considers using the most commonly applied dataset for the human motion

forecasting and human pose estimation dataset, which is the Human3.6M dataset, to

set the baseline of the 2D human motion forecasting and join and improve the 3D

human motion forecasting research.

The author conducted several experiments to improve the prediction result with the

combination of Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN),

2



1.2 Overview of Human Motion Forecasting

and the Transformer Network model applied in the 2D and 3D input data. Inspired by

the natural language processing problem, the attention scheme shows an excellent result

in understanding the context and the connection between words in sentences[12]. This

attention scheme seems to be applicable in the human motion forecasting problem with

some modifications on input data and models. The transformer network is also used

in many applications with some modifications based on the problem. For example, the

Vision Transformer is developed to do the object detection task[13, 14, 15] as well as

in the time-series prediction task[16]. Furthermore, the author proposes several novel

methods to improve human motion forecasting task performance. An overview of the

contributions of our work is presented in Section 1.2.

1.2 Overview of Human Motion Forecasting

This section provides an overview of the human motion forecasting process. There are

four steps to generate the human motion prediction. These include feature preparation,

learning or training the model, feature prediction, and feature-to-video interpretation.

Each step is briefly introduced below.

1.2.1 Feature Preparation

Given the input generated from the device, like the RGB camera, RGB-D camera, or

motion capture by the sensor. This input data must be preprocessed for the feature

needed as the learning data in the next step. For example, if the sequences of images

containing the human in the frame have been obtained. One needs to extract the

human body feature first and get the pose in the format of joint key points. However,

it depends on the expected input needed. As for this work, the author separated the

research based on the input:

1. 2D input: given the input generated from the motion capture by the distance

sensor provided by the dataset for the training and testing process interpolated

in the x and y coordinate of the frame image. While the input generated from

the pose estimation result is used to evaluate the model on the biased data. Let

the input be X ∈ R2N consisting of x and y coordinate in the N human body

key points.

3
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2. 3D input: given the input generated from the motion capture by the distance

sensor provided by the dataset for the training and testing process interpolated

in the x, y, and z coordinate. Let the input be X ∈ R3N consisting of x, y and z

coordinate in the N human body key points.

Data preparation is done by stacking the sequence of frames in the sliding window

process. This process becomes the standard method to generate the input feature to

the model. Given the coordinate data X = [X1, X2, . . . , Xn], where Xi is the vector

of coordinate data in the frame i with respect of the key points. Further detailed

descriptions of the data preparation will be explained in Section 3 and 4.

1.2.2 Model Training

Predicting the sequence of frame vectors is the main task of the model. The model

extracted important information from the training data. Thus, later it can generate

the prediction from the unobserved data, expecting the next determined number of

sequence frames as the output. Several methods to obtain the best model have been

applied, which will be further explained in Section 2, 3, and 4.

1.2.3 Feature Prediction

After training the model using the training data, the pattern of the samples has been

transformed into the model to recognize. The model is expected to be able to predict

the unobserved data based on the pattern that has been trained. The feature predicted

by the model will be determined as a good result or not a good result depending on

the evaluation method calculated by how far the distance from the prediction to the

ground truth is.

1.2.4 Feature-to-video Interpretation

Since the result is in the form of the coordinate features, the visualization of the feature

is needed to see how good the prediction looks in the qualitative evaluation and to

realize the output in the actual video or any suitable format.
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1.3 The Organization of This Dissertation

In this Section, the author describes the overall organization of this dissertation. Chap-

ter 1 introduces the background, main problems, goals, methods in general, and how

the author organized the chapters based on the task. Chapter 2 describes the research

on 2D human motion forecasting by using unannotated data to realize the usability

of human motion prediction in real-world applications. After realizing the usability of

the human motion prediction real-world applications, Chapter 3 describes the research

on the 2D human motion prediction by using annotated data from the commonly used

dataset in human motion research. While human motion forecasting could be used for

predicting individuals using 2D inputs like the RGB camera, which also means that it

could be applied using the 3D data when the input is a certain coordinate of humans

based on the motion capture devices that can measure the location with quite high

precision. This brings us to Chapter 4, which describes the research of human motion

forecasting using the 3D input by the commonly used annotated dataset. Finally, the

author provides the discussion and conclusion in Chapter 5.

1.4 Motivation for the Research

1.4.1 Importance of Human Motion Forecasting Research

Human motion forecasting is the task of predicting the future movements of individuals

in a given environment. Why does this task become important? In several cases,

this task could greatly improve safety, efficiency, and user experience across various

applications.

1. Robotics and autonomous systems: Accurately forecasting human motion enables

robots and autonomous systems to interact more safely and efficiently with people

in their environment.

2. Healthcare: Human motion forecasting can be used to assist with rehabilitation

and to monitor and predict the progression of movement disorders.

3. Transportation: Accurately forecasting human motion can help optimize pedes-

trian traffic flow and improve safety in public transport systems.

5
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4. Gaming and entertainment: Human motion forecasting can be used to create

more realistic and immersive virtual environments.

5. Surveillance and security: Human motion forecasting can be used to detect and

respond to potential security threats in real time.

1.4.2 Applications of Human Motion Forecasting

As explained in Section 1.4, the task of human motion forecasting could improve the

safety, efficiency, and user experience across various applications. In terms of practical

uses of human motion forecasting tasks, for example:

1. Improving the interaction between robots and humans in various settings.

2. Supporting physical therapy and tracking the development of movement disorders.

3. Streamlining pedestrian traffic flow and enhancing safety in public transportation.

4. Creating more believable virtual environments for gaming and entertainment.

5. Detecting and responding to potential security threats in real-time.

6. Analyzing and improving athletic performance in sports.

7. Enhancing the interaction between people and computer systems.

1.5 Scientific Contributions

The author highlighted the scientific contributions of this dissertation as follows:

1. Improved understanding of human movement: The study of human motion pre-

diction has led to a deeper understanding of the underlying patterns and principles

of human movement.

2. Improved human-robot interaction: Human motion prediction is crucial for im-

proving human-robot interaction and has led to the development of new safety

protocols and interaction methods.

6
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3. Advances in the computer vision and machine learning method: Human motion

prediction has pushed the boundaries of machine learning and computer vision

by requiring algorithms to make predictions based on complex and dynamic data.

4. Development of the new baseline of the 2D human motion forecasting: 2D human

motion forecasting using commonly used annotated datasets and commonly used

evaluation metrics could help set the baseline for the related works to follow.

5. Advances in the deep learning application of the attention-based method to under-

stand the human motion prediction task, which also could help the other research

to use the same model’s structure in another task.

1.6 Summary of the Introduction

In this chapter, the author introduces the basic knowledge needed to understand the

human motion forecasting task. The background, main problems, goals, methods, and

expected outcomes are explained explicitly. While the following chapters describe more

in detail. The author has given examples of the applications, and the importance of

the human motion forecasting research described in Section 1.4 as well as the detail of

the contributions of our work have been described in Section 1.5.
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Chapter 2

RNN-LSTM and Kalman Filter

Based Time Series 2D Human

Motion Forecasting

2.1 Introduction

While machines were developed to coexist and help the work of a human, a system that

considers the behavior of the surroundings for the device is needed. For the example of

the system in human interaction, humans constantly interact with their surroundings

along with other living things and nonliving things. Many researchers and companies

have developed this sensing system for many uses, such as the distancing sensor to

measure the distance in the auto-braking system for the car’s safety system. However,

the system will detect everything at a certain distance as a threat using the distance

sensor without considering the object. Compared to a camera, distance sensors are more

expensive. And one more reason for users to use the camera is that the development

can still go further on distinguishing objects.

This research aims to develop a system that recognizes the environment’s behavior

in the next 1-second movement. As for the first step, the system determines the human

body as an object. Then, by predicting the human action, which has a problematic

pattern to be recognized, the system will understand where the human will move,

giving another delay time for the system to do the action. For these reasons, the scope

of human motion has been limited by only using simple human motions like hand

9
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Figure 2.1: Pose Estimation: OpenPose failed to estimate the full body human pose key

points.

gestures and walking movements.

For a more reliable dataset, some researchers use the RGB-D camera, like Kinect,

to estimate the human body pose [17, 18]. Nonetheless, this paper uses the RGB

camera since it has been commonly used recently in any aspect of life. The main

objective of this research is to predict the motion of the human pose, focusing on the

data obtained from the RGB camera and preprocessed by the pose estimation method.

In this research, we rely on OpenPose to estimate the human body pose. However,

the data that OpenPose has preprocessed did not consistently generate the precise

estimation of human body parts, shown in Fig. 2.1. With this in mind, the data needs

to be prepared to be the input of the prediction method. We determine the estimation

failure by the OpenPose as the unstable data as the challenge in this paper. Related

research has been conducted to predict human motion with the RGB camera focusing

on sports activities like boxing, karate, or taekwondo. The result shows 0.5 seconds

prediction of human movement has been obtained. Nonetheless, the accuracy of the

forecast was not found in this paper [19].

Recently, Recurrent Neural Network (RNN) has been used to deal with the specific

problem for prediction, inclusively the difficulty of predicting human motion [17, 20, 21].

Because the individual behavior of humans is varied and unique, a short-term and long-

10
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(a) Sample 1 (b) Sample 2

(c) Sample 3

Figure 2.2: Our dataset samples

term prediction method is compulsory to clear up the forecasting problem. Recurrent

Neural Network Long Short Term Memory (RNN-LSTM) implements the short-term

and long-term prediction method based on its extended memory to store the weight of

parameters with reliable certainty of prediction results [22, 23]. While Kalman Filter

has been used as the prediction method that is reliable enough based on the result from

the time-series data [24], realizing the human motion prediction using RNN-LSTM and

Kalman Filter and comparing the result to show the performance on the unstable data

like human motion is the main idea of this study. This research has been updated with

more data and evaluation methods from the previous experiment [25].

2.2 Preliminaries

In this section, the author describes the tools, terminologies, and methods used in this

research.
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(a) Sample 1 (b) Sample 2

(c) Sample 3

Figure 2.3: CMU dataset samples

2.2.1 Dataset

COCO dataset key points have been used to generate 18 key points of the human

body pose in the frame [26, 27]. The COCO dataset is used as training data in feature

extraction to detect the key points of the human body in our dataset and CMU dataset.

As the first step of the prediction, simple human motion and gestures are needed, such

as hand gestures and simple walking. Our dataset is consisting 30 fps (frame per second)

videos with a frame dimension of 960 × 540 pixels, as shown in Fig. 2.2. The CMU

dataset has been used as a step forward to a more complex motion as a comparison

for our dataset. This CMU dataset consists of 2605 videos with 30 fps and 352 × 240

pixels frame dimension, as shown in Fig. 2.3.

2.2.2 YOLOv3

You only look once (YOLO) is an object detection system targeted for real-time pro-

cessing. Fast YOLO is the fastest general-purpose object detector in the literature, and

12
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YOLO pushes the state-of-the-art in real-time object detection. YOLO also generalizes

well to new domains making it ideal for applications that rely on fast, robust object

detection [28].

2.2.3 Pose Estimation: OpenPose

For the 2D real-time multi-person keypoint detection, OpenPose provides 15 or 18, or 25

body/foot key points estimation based on the dataset key points. OpenPose generates

25 joints of the human body with BODY25 joints detection from the RGB image [26].

The features obtained from OpenPose are not as precise as the manually annotated

data. With OpenPose as the pose estimation method, one can predict human motion

without key point annotations in the frames. Considering the practical applications, a

pose estimator such as OpenPose is needed to make it possible for a method to directly

predict key points from image data without key point annotations.

2.2.4 Kalman Filter

Kalman Filter is an adequate iterative filter that estimates the internal state of a linear

dynamic system from a series of noisy measurements [29]. Kalman Filter has been used

in some applications for short-term forecasting [24]. Kalman Filter is based on two

primary functions. The first step is the prediction step. The first guess is generated

about what we think is valid and the certainty that the estimation is correct. After

that, Kalman Filter generates a different estimate with a weighted average calculation.

Then, the new guess is generated by the previous guess, which the weighted average

has corrected, and these steps are iteratively calculated.

2.2.5 Recurrent Neural Network

Recurrent Neural Network is one of the classes in the neural network where the connec-

tions on the units create a structure along with the temporal sequence. RNN has the

internal memory to process the series of data inputs. The computing units in the RNN

have a time-varying real-valued activation and adjustable weight. RNNs are created

by recursively applying the same weights over a graph-like structure [30]. The learned

model in RNN has the exact input size since it transitions from one state to another.
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Input

YOLOv3 + OpenPose

LSTM Kalman Filter

Predicted Movement
Data

Output

Figure 2.4: Proposed method overview

2.2.6 Long Short-Term Memory

The short-term data could be stored based on the RNN’s internal memory that stores

the weights and computations of the data. However, RNN cannot keep the series of

data in the longer term to be predicted. Here, LSTM performs the role of the extended

form of RNN, which contains the extended memory by structure. Hochreiter and

Schmidhuber invented LSTM in 1997, which works and can handle signals that mix

low and high-frequency components [23].

2.3 Proposed Method

One second of the human motion forecast is the goal of this research. First, the human

body pose is defined by parts covering the head, neck, shoulders, elbows, wrists, hips,

knees, and ankles as the coordinate data of the features. Then, this coordinate data

will be converted to the movement data containing the distance and direction based on

the body parts of the frame. Finally, the movement data will be processed using the

RNN-LSTM and Kalman Filter to predict.
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(a) YOLOv3 is applied on the Our dataset. (b) OpenPose is applied on the Our dataset

after the YOLOv3 crop.

(c) Our dataset sample after YOLOv3 and Open-

Pose features extraction.

Figure 2.5: Our dataset features extraction process
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(a) YOLOv3 is applied on the CMU dataset. (b) OpenPose is applied on the CMU dataset

after the YOLOv3 crop.

(c) CMU dataset sample after YOLOv3 and Open-

Pose features extraction.

Figure 2.6: CMU dataset features extraction process

2.3.1 Feature Extraction

The feature is one key factor in obtaining the prediction as the data that will be

calculated are from this step. The OpenPose from OpenCV implements the state-

of-the-art method to estimate the human body pose with an RGB camera. The key

points will detail the coordinate data used in the prediction method based on the COCO

dataset. Nonetheless, the results obtained by OpenPose are not constantly stable, as

shown in Fig. 2.1. In this paper, the problem of the estimation failure by OpenPose

is solved by narrowing the frame input for OpenPose by using YOLOv3. YOLOv3

detects the object of the human body in the frame, as shown in Fig. 2.6a and 2.5a.

With this cropping limitation, the pose estimation is only focused on the human body

frame as shown in Fig. 2.6b and 2.5b.

Given the coordinate data x and y based on the result of the pose estimation by

OpenPose, the obtained raw x and y coordinate values are not suitable for motion
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2.3 Proposed Method

estimation using our estimation model because their value range depends on the image

size. Equations 2.1 and 2.2 convert the obtained coordinate value at i-th frame xi and

yi to the movement data expression that consists of distance di and direction θi.

di =
√
(xi − xi−fs)2 + (yi − yi−fs)2 (2.1)

θi = arcsin

(
yi − yi−fs

di

)
(2.2)

where fs is the constant value of the frame step of 30.

2.3.2 Pose Prediction Using Kalman Filter

Kalman Filter consists of the estimate function and the correction update function.

This research defines Kalman Filter in two parts to calculate the movement data dis-

tance and direction separately using Equations 2.3 and 2.4.

di = di−1 +
(σi × di−1) + (σc × δi)

σi × σc
(2.3)

θi = θi−1 +
(σi × θi−1) + (σc × δi)

σi × σc
(2.4)

where σi is the initial weight and an updated weight of di, σc refers to the constant

noise weight, δi is the data obtained by OpenPose.

2.3.3 Pose Prediction Using RNN-LSTM

Pose prediction by Kalman Filter could fail to estimate the sudden move, which is

why we propose RNN-LSTM as a comparison to predict human motion. Three stacked

hidden layers of RNN-LSTM are used as the learning model to process the input of 14

key points of human body parts. Likewise, other related research used three stacked-

layer of RNN-LSTM [17, 18, 19]. The loss function is defined by the Mean Squared

Error (MSE) to calculate the loss value in the training process of RNN-LSTM.

LMSE =
1

n

n∑
i=1

(x̂− xi) (2.5)
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2.3.4 Evaluation Method

The experiments have been performed by comparing the CMU dataset and our dataset

using the Kalman Filter and RNN-LSTM. To evaluate the accuracy of the prediction,

the euclidean distance between two nodes from different frames is calculated to compare

the lengths from the ground truth to the predicted result [24].

E =
√
(xi+30 − xp)2 + (yi+30 − yp)2 (2.6)

Where i refers to the number of the frame, xi and yi are the x and y coordinate data

at i-th frame. The xp and yp are the coordinates of x and y of the prediction result,

calculated by di and θi, movement data at the i-th frame, as shown in Equations 2.7

and 2.8.

xp = xi + di (2.7)

yp = yi + di (2.8)

As for the evaluation of the satisfiable prediction, Ep determines the evaluation

based on the percentage of the limitation satisfiable range in a frame by:

Ep =
Ns

N
× 100 (2.9)

Ns represents the number of the prediction results below the satisfiable range, and N

represents the total frame.

2.4 Experiment Results

Figures 2.7a and 2.7b shows the prediction results on our dataset. The red nodes

are the actual position of the key points, and the blue nodes are the forecast position

of the key points. While figure 6 shows the prediction results for the CMU dataset.

Table. 2.1 shows the average evaluation distances by the percentage of successful

prediction, error average, and error median for RNN-LSTM and Kalman Filter on our

and CMU datasets.

Generally, Kalman Filter shows better results than RNN-LSTM on the predicted

key points, with 93.2% of the predictions in the distance range of successful prediction.
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(a) Our dataset with RNN-LSTM (b) Our dataset with Kalman Filter

(c) CMU dataset with RNN-LSTM (d) CMU dataset with Kalman Filter

Figure 2.7: Prediction results on Our dataset and CMU dataset using RNN-LSTM and

Kalman Filter. Red nodes define the current position, and blue nodes define the prediction

obtained by the corresponding methods.
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Figure 2.9: Evaluation of predicted results obtained from Kalman Filter prediction result

by each node and motions based on the percentage of the value lower than 1.8%.
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2.4 Experiment Results

Table 2.1: Evaluation of the experiment results by RNN-LSTM and Kalman FIlter on

Our dataset and CMU dataset.

Method Dataset Succesful

Prediction

(%)

Error Average

(pixels)

Error Median

(pixels)

RNN-LSTM
Ours 75.4 ± 24.9 33.4 ± 9.9 17.6 ± 18.0

CMU 52.3 ± 18.7 32.4 ± 11.4 7.2 ± 5.4

Kalman Filter
Ours 93.2 ± 5.6 7.7 ± 2.3 5.6 ± 1.2

CMU 77.1 ± 6.0 5.2 ± 0.8 3.8 ± 0.8

Kalman filter shows a closer error average and error median, which indicates that

the results that the Kalman Filter has obtained are generally more comparable to the

ground truth but not in the distance range of the successful prediction. However, when

we see the result distribution from Fig. 2.8, which shows the percentage of successful

prediction from accumulative frames in every key point to compare the method and

dataset result, RNN-LSTM shows better results on knees and ankles on our dataset.

At the same time, the other prediction results are various. For example, RNN-LSTM

shows complications in remembering the data on the elbow and wrist key points since

these key points are the parts of the human body that move more than others. Fig. 2.9

shows the evaluation result based on the satisfiable result percentage on all frames based

on the movement comparison by Kalman Filter, where the prediction result distribution

on the moving to the right side motion is satisfiable with the most negligible value of

97% of the predictions are in the range of the correct prediction. However, in the

movement of hand gesture + moving to the left on hips, knees, and ankles nodes, the

prediction distribution result shows none of the results are in the range of the correct

prediction. While the other motion, the prediction results are varied, with the most

negligible value of 80% of the projections in the accurate forecast except for the ankles

and knees are varied around 60% of the prediction results are in the range of the correct

prediction.
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2.5 Summary

We have proposed a system to predict human motion with Kalman Filter and RNN-

LSTM using an RGB camera for one second forward. The actions of hand gestures,

sideways movement, and simple walking are included in the sample video. Based on

the prediction result, most of the predicted key points are close to the ground truth.

The validity of the RGB-based method in the simple human motion study has been

confirmed. These results concluded that this is an essential step to comprehending a

more advanced method for more complex human motion. As for future works, the data

has to be normalized since it has spike movement from the feature extraction method,

making the prediction method challenging to predict.
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Chapter 3

Time Series Self-Attention 2D

Human Motion Forecasting

3.1 Introduction

With the development of the autonomous system such as auto-driving cars and auto-

pilot robots that can be utilized in many ways [31, 32, 33], the safety system prevents

the device or vehicle from crashing unexpectedly into other objects like humans. Such

a system in real life is still under development, but some systems using sensors and

cameras on devices are implemented on electric vehicles or non-electric vehicles. With

more advanced technology, this system can be expanded to the level of knowing the

behavior of the environment. Moreover, several applications can be utilized by knowing

human motion forecasting. For example, human motion forecasting can help the human

motion tracking model for better accuracy [34]. It can be used in the locomotive

syndrome disorder evaluation to prevent humans from falling or any self-accident that

might happen, as well as gait recognition, to identify patterns during walking [35].

Human motion forecasting has been retracted attention for advancing methods,

strategies, and results. Several types of research, such as using recurrent neural net-

works, gated recurrent units (GRU), long short-term memory (LSTM), and Trans-

former Networks, are conducted in many ways for this problem [6, 7, 17, 36, 37]. How-

ever, the inputs and outputs they generate are based on data obtained from 3D motion

capture [8, 9]. This is not directly applicable to the real world when using the 2D input

image generated by the pose estimation on an RGB camera. Furthermore, this work is
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challenging considering that human behaviors are dynamic based on the person. With

this in mind, the scope of our research should be shrinker by uncomplicated motions

provided in the dataset.

Inspired by the natural language processing (NLP) problem, the attention scheme

has been showing excellent results in understanding the context and connection between

words in sentences [38]. This attention scheme seems to be applicable in the sequence-

to-sequence time series data, which has a similar conception to the words in natural

language processing. When in the NLP task, the word vector is taken as the input

on each sentence, as for the time-series data, a single time point data is taken like the

word in the NLP task.

In this research, the author proposes the core of behavioral human motion fore-

casting as a step to realizing and advancing behavior-based knowledge systems for

autonomous systems. In order to result in the calculated future movement of the hu-

man, the input of image sequences with the human body pose feature is required. The

author constructed the human motion forecasting algorithm by using the attention-

based method since it shows promising results in many ways of usage and applica-

tion [12, 13, 14, 16, 38, 39, 40].

The experiment is conducted using the Human3.6M dataset as the primary dataset

and the 3DPW dataset as the secondary dataset. In Fig. 3.1, samples of the testing

sequence “sitting” and “direction” motions have been tested by the model to obtain

the 2D visualization for comparison with the ground truth. The Human3.6M dataset

provides the human body’s key points in every frame used for the proposed model

input. In this case, the method does not need to determine the input length since the

data has the same size in each frame. The input data is already a numerical value.

Unlike the word in the NLP task, the proposed method does not perform the embedding

that converts the input data into a numerical feature vector. Instead, the process of

positional encoding becomes extensive for understanding the key point connections by

frames. Thus, this research proposes positional encoding based on the frame with the

transformer encoder-based method to predict human motion.
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Figure 3.1: Pose prediction sequences of “Sitting” and “Direction” motions with a time-

series self-attention network. The blue line is the ground truth, while the green line is the

prediction result by the model.

3.2 Related Works

3.2.1 Human Motion Forecasting

3.2.1.1 3D Human Motion Forecasting

As the 3D human motion prediction baseline, the Encoder-Recurrent-Decoder (ERD)

model was introduced in 2015 [5]. This research uses the recurrent neural network

(RNN) architecture that absorbs nonlinear encoder and decoder networks before and

after recurrent layers as the model’s input. The Human3.6M dataset [41] is used and

expected to obtain the short-term human motion prediction with 80, 160, 240, 320,

400, 480, and 560 milliseconds. As a result, the three layers of LSTM obtained the

best result compared to ERD, Conditional Restricted Boltzmann Machines (CRBMs)

model, Gaussian Process Dynamic Model (GPDM) model, and the nearest neighbor

N-gram model (NGRAM) based on the Euclidean distance loss.

Approaches from different methods and strategies have been broadly applied to

solve the problem of human motion prediction. One approach uses the state-of-the-

art recurrent neural network (RNN) model [17], which compares several methods as

evaluation from other techniques, including LSTM. The goal is to learn time-dependent

representations that perform tasks such as short-term motion prediction and long-term
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human motion prediction. The seq2seq, the encoding and decoding architecture, is used

with the sampling-based loss for the long-term motion prediction [42]. The research

also employs the residual network to help the model to incorporate prior knowledge

about the statistics of human motion.

More methods were published for this problem as it became popular among au-

tonomous system researchers and developers. Different ways to predict better and

to compute reliable standard of error are developed with the following competing re-

sults [6, 7, 36, 43]. The mean per joint position error (MPJPE) is a reliable evaluation

metric to show the distance between the ground truth and the prediction. One of the

most recent human motion forecasting approaches is the Space-Time-Separable Graph

Convolutional Network (STS-GCN) [8], which also evaluated on the archive of motion

capture as surface shapes (AMASS) dataset [44] and 3D pose in the wild (3DPW)

dataset [45]. They also used MPJPE to evaluate the distance between ground truth

and the prediction result, commonly used to assess the human pose estimation. Follow-

ing the success of STS-GCN, A. Bouazizi et al. [9] conducted the short and long-term

human motion prediction using multilayer perceptron (MLP) architecture solely and

achieved the best performance as of now.

As a result, many improvements have been made to this problem with more datasets

and cases. Even though 3D human motion forecasting has become an important issue

to solve, getting the data of 3D joints in the real world is a different problem. Coming

up with the idea of real-time human motion forecasting with an RGB camera, the

2D interpretation of data is unavoidable, which became the reason for conducting the

2D human motion forecasting research. In this research, the author proposed a new

baseline for 2D human motion forecasting with Transformer-based architecture.

3.2.1.2 2D Human Motion Forecasting

One of the similar ideas of our research, single human motion forecasting, is conducted

by predicting the human motion with 3D poses in the wild (3DPW) dataset [45] for

the 3D input dataset and Posetrack [11] for the 2D input dataset. However, due to the

lack of the ground truth 2D input dataset, one could not compare using the Posetrack

dataset. Therefore, the author considered using the Human3.6M dataset and 3DPW

dataset with 2D input as it provides more data and is broadly used in the human

motion forecasting problem.
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3.2.1.3 Image Synthesis-based Forecasting

Predicting the object not only for humans is also necessary, considering that humans

are not the only object that can move in the real world. An approach to predict

pixel space for the following sequence of image features has been conducted [10]. It

uses the convolutional neural network (CNN) to generate future frames from the input

sequences. The model can predict two frames with a structured similarity index to mea-

sure the similarity between the prediction and the ground truth images and sharpness

evaluation to measure the loss of sharpness between the true frame and the prediction.

Compared to our idea, they presented the method for a video not only with a specific

object like in our research. However, developing this video prediction for the future

image is exciting and promising to be the next step of our research by expanding the

object not only for human motion.

3.2.2 Transformer Network for Time Series Problem

Since the attention-based method was introduced, the application of the attention-

based method also broadens up not only used in NLP problems but also in time-

series data prediction and classification tasks like image and object recognition. It

has been proved to give a slight to significant improvement in the results. As for the

example usage of the transformer network with time-series data, research to forecast

the influenza prevalence case has been conducted [16]. Compared with the other time-

series method like LSTM and seq2seq, which uses attention, the transformer model

showed performance improvement in Pearson correlation and root mean square error.

As a result of this research, it can learn complex dependencies of various lengths from

time-series data. Following the success of the transformer network for the time-series

problem, the author considered using the transformer network for a more complex

time-series problem like human motion forecasting.

3.3 Preliminaries

3.3.1 Dataset

In other related research, the Human3.6M dataset is used in all the studies. This

dataset is broadly used in human pose-related research such as the human pose estima-
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tion [46, 47]. It was considering the gestures and features of the human body that are

nicely provided by the Human3.6M dataset [41]. This dataset contains 17 scenarios by

11 subjects taken from 4 different angles with high-resolution 50 fps video. The Hu-

man3.6M dataset provided the scenarios in the studio-like capture with no interaction

with another object. 3DPW dataset provided the real-life captured dataset with mul-

tiple human features in the frame[45]. As well as the Human3.6M dataset, the 3DPW

dataset provided the 2D pose annotation data, which is suitable for this research.

3.3.2 Multi-Head Attention

Multi-head attention is a module for attention mechanisms that run through an at-

tention mechanism several times in parallel [12]. Multiple attention heads allow for

attending to parts of the sequence differently.

3.3.3 Transformer Networks

Transformer networks were proposed by Vaswani et al. for the machine translation

tasks [12]. It became state of the art for the NLP problems with the large scale of usage.

The usage of the transformer networks was also broadened to solve the problem of the

computer vision tasks by Vision-Transformer, which is a simplified model of transformer

networks. In the transformer networks used in the NLP, the attention mechanism tried

to compute the relation between words in the sentence to be analyzed. In the case of

the vision transformer, it tried to calculate the different parts of the image. By splitting

the image into fixed-size patches, linear embedding, adding positional embeddings, and

feeding the resulting sequence of vectors to a standard transformer encoder, then for

the classification, the standard MLP head is used.

3.4 Proposed Method

In this section, the author describes the detail of the proposed method, which estimates

the human body’s key points (from now on called key points) in future TP frames from

key points from past TQ frames by using the time series self-attention model. The

overview of the method’s flow is described in Fig. 3.2.
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Figure 3.2: Overview of the prediction flow. TQ number of input frames is defined and

predict frame TP ahead of prediction. While in this research, the TP is defined as 10 for

400ms and 25 for 1000ms prediction task.

3.4.1 Frame-by-frame 2D Pose Estimation

Requiring the feature of key points from the input video for the processing, the 2D

pose estimation is needed to interpret the image into the coordinate location of the key

points. In this research, the author used OpenPose as the standard method to estimate

the 2D human pose in an image. However, other methods are likewise applicable for

this task, such as XNect [48], ViTPose [14], and ViTPose V2 [15].

Most 2D humans pose estimation methods on video images estimate the joint coor-

dinates frame-by-frame, and key points are expected to be the 2D data consisting of x-

and y-coordinate in the video frame. The estimated key points in the i-th video frame

Qi ∈ R2N consists of x- and y-coordinates of N points. When the number of given

frames is TQ, Q = {Q1,Q2, . . . ,QTQ
} is obtained as the sequence of feature vectors.

Notably, Qi is flattened to a 1-dimensional vector, and its components are normal-

ized by scaling between 0 and 1.

3.4.2 Time Series Self-Attention

This section describes the self-attention-based method to forecast key points in future

TP frames from the input sequence Q. Transformer models apply the embedding to
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transform the raw data to the 1-D vector. However, the input sequence in this research

has the shape of a 1-D vector, which no longer needs the embedding transformation.

The positional encoding is applied to the input data’s positional index before feeding

the input data to the transformer encoder and MLP head.

Considering that the input sequence Q is already a vector with numerical numbers,

the embedding module is not needed in the network. Positional encoding is added

to the input to capture the positional information. However, this positional encoding

captures the position based on each time or frame input, as the position of the key

points on each frame is fixed. With this in mind, the model only considers the frame

position. The transformer encoder network computes the key points inside the frame

regarding the frame position. Let t be the desired position in an input frame,
−→
Ft ∈ Rd

be its corresponding encoding, while d is the encoding dimension which in this case

d = 32.

−→
Ft

(i) =

{
sin(ωk · f) if i = 2k,

cos(ωk · f) if i = 2k + 1,
(3.1)

where

ωk =
1

10000
2k
d

(3.2)

and k is indices containing {0, 1, . . . , d2 − 1}.
As shown in Fig. 3.3, similar to the Transformer Encoder [12], the transformer

encoder block in the proposed model includes the Multi-Head Attention, the MLP

head block that contains the linear transformation in the fully-connected network, and

the normalization layer applied after every block. The MLP head block contains two

linear layers with a ReLU activation function after each. The model with a linear layer

dimension of 1,024 or 4,096 is set to examine the best model for each motion. The

expected output of the MLP head block is P̂ = {P̂1, P̂2, . . . , P̂TP
} , where TP is the

length of the expected output dimension.

3.4.3 Loss Metric

Root mean square error (RMSE) is employed to evaluate the distance of estimated key

points sequence P̂ = {P̂1, P̂2, . . . , P̂TP
} from its corresponding ground truth sequence
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L

Figure 3.3: Time series self-attention network. L is the number of Transformer Encoder

layers.

P = {P1,P2, . . . ,PTP
}.

L1 =

√√√√ 1

TpN

∑
Pi,P̂i

∥Pi − P̂i∥2 (3.3)

Additionally, because key points in the leg and arm have more significant movement

than those in the body trunk, additional errors on those points are computed.

L2 =
1

TpN

∑
Pi,P̂i

∥Pi − P̂i∥2 (3.4)

where Pi and P̂i is the set of left and right side of the shoulder, elbow, hand, hip, knee,

and ankle key points in Pi and P̂i, respectively. N is the number of key points in Pi.

Finally, loss function L is formulated as the weighted summation of L1 and L2.

L = L1 + wL2 (3.5)

where w is a weight parameter set to 4 in the experiment.
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3.5 Experiments

3.5.1 Dataset

The Human3.6M dataset has been used with the 2D data pose representation from sub-

jects and motions in this research. The interpretation of 2D data from the Human3.6M

dataset is provided by human pose estimation research [49]. The data is divided based

on the training and testing. The training data consists of subject numbers 1, 6, 7, 8, 9,

and 11, and the testing data consists the subject number 5. This setup is referred to

as the related experiment [17]. However, the evaluation methods and metrics apply to

this research. As for the 3DPW dataset, the author follows the setting of the training,

validation, and testing sets originally from the dataset itself [45].

For the evaluation of robustness against the input sequence Q, the testing accuracy

is compared to ground truth provided by the Human3.6M dataset and OpenPose esti-

mation. In the ground truth testing, the ground truth key points are used for both the

input sequence Q and output sequence P. In the OpenPose testing, the input sequence

Q is given by OpenPose. Furthermore, only the ground truth output sequence P is

used for calculating the evaluation metrics.

3.5.2 Experimental Setup

The author set up the model with several parameters, including the number of trans-

former encoder layers L = 6, dropout value of 0.5, batch size of 64, and dimension on

the linear layer of 1024 and 4096 to compare the result repeated in 5,000 epochs.

The proposed model is trained and evaluated using a sliding window strategy in

the time axis. As shown in Fig. 3.4, one window consists of TQ input frames and TP

output frames.

In this research, the input data is determined to be 25 frames. The ground truth

data is the subsequent 10 frames for the short-term prediction or 25 frames for the

long-term prediction consecutively with one frame shifted.

The optimal batch size is 64, and the optimal number of transformer encoder layers

is L = 6 for our environment. The model took more memory and made the training

process heavier if the batch size exceeded 64.

The training process is done by specific single motions one by one with a learning

rate of 0.001 with the Adam optimizer. Then, the sequence data with 25 frames is
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Figure 3.4: Sliding window on the input and ground truth data as the expected output.

Given the source input for the method with the shape of TQ frames and the target expected

output with the shape of TP frames. One shifting scheme as the input is used to keep the

input length sufficient for the model.

defined as the input, expecting 10 frames of 400 milliseconds or 25 frames of one second

in the video. The following experiments use the PyTorch environment on an NVIDIA

GeForce RTX 3090 GPU.

3.5.3 Evaluation Metrics

Recent works in human pose forecasting and estimation have standardized the evalua-

tion metrics by calculating the mean per-joint position error (MPJPE) [5, 6, 7, 8, 9, 17,

36, 43], mean per-joint velocity error (MPJVE) [49, 50] and mean per-joint localization

error (MPJLE) [41]. MPJPE is calculated by computing the squared Euclidean dis-

tance between the ground truth and the prediction with respect to the treated joints.

The evaluation metric of MPJPE is defined by:

MPJPE =
1

N

N∑
i=1

∥Pi − P̂i∥, (3.6)

where Pi and P̂i is the ground truth and predicted coordinates in the frame i in the

N frames respectively.

The MPJVE is calculated by computing the L2-norm of motion velocity, which is

the one-frame difference of coordinates between the prediction and the ground truth.

The evaluation metric of MPJVE is defined by:

MPJVE =
1

N

N∑
i=1

∥Vi − V̂i∥, (3.7)
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where Vi and V̂i are velocity from frame i− 1 to time i, and is defined by:

Vi = Pi −Pi−1. (3.8)

If MPJPE is defined to calculate the distance from the prediction to the ground

truth and MPJVE is to define the mean differences in each frame movement. MPJLE

defines the localization of the correct key point within the tolerance value. The evalu-

ation metric of MPJLE is defined by:

MPJLE =
1

N

N∑
i=1

1∥Pi−P̂i∥≥t, (3.9)

where 1 is a binary step function that gives 0 if the distance value is within t and gives 1

otherwise. At the same time, t is the integral tolerance value in an interval. In this case,

the author defined t = [0, 200]. One can obtain an estimate of the average error. In the

same way, the mean average precision measure the performance of a classifier [41].

Qualitatively, the skeleton data is shown to visualize the difference between the

prediction and the ground truth. Additionally, to know the computational time of the

proposed model on each frame to produce the prediction value, the average time taken

by motion is calculated. This is necessary considering predicting human activity for

the role in real life.

3.6 Results

As described in Section 3.5.3 for the 2D human motion forecasting task, the prediction

result is quantitatively evaluated by the evaluation methods to show that the prediction

is correct or sufficient based on the distance of the prediction result and the correspond-

ing ground truth data. As for the comparison in the 2D human motion prediction, the

state-of-the-art method, such as LSTM and GRU, is used to compare the validity of

our method. Qualitatively, the prediction result could be seen in frames in the video

comparing the ground truth and prediction key point skeleton movement.

3.6.1 Model Training

In this section, the author describes the evaluation of the model in the training phase.

To show the model validity of learning the certain problem in the data, evaluation
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Figure 3.5: Our model is trained for 1000 epochs using Walking motion data for the

long-term prediction task.

over the training phase is needed. Fig. 3.5 shows the training phase on the Walking

motion using the Human3.6M dataset. The RMSE with additional weight is computed

to evaluate the distance from the prediction results to the corresponding ground truth.

3.6.2 Quantitative Evalulation

The results are separated regarding the dataset and evaluation metric for quantitative

evaluation.

3.6.2.1 Human3.6M Dataset

Comparison based on MPJPE. In this part, the prediction results are evaluated

based on the MPJPE score to see the distances from the prediction to the ground

truth. Table. 3.1 shows the evaluation result based on the MPJPE for the Hu-
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Table 3.1: MPJPE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data for the short-term prediction task.

Motion
400 msec

Ours (1024) Ours (4096) LSTM GRU

Walking 13.32 49.19 14.38 13.90

Eating 8.51 12.57 13.14 14.48

Smoking 9.91 7.51 16.47 17.40

Discussion 11.20 8.55 20.62 20.75

Direction 28.09 7.63 21.55 21.77

Greeting 15.26 14.38 36.67 35.42

Phoning 60.26 11.20 19.00 18.89

Waiting 37.08 70.17 26.98 25.84

Walking Dog 10.97 29.93 41.19 39.60

Walking Together 9.09 32.48 45.42 46.32

Posing 47.98 8.19 30.76 27.86

Sitting 9.99 19.28 18.91 21.74

Sitting Down 8.37 23.09 27.95 28.84

Taking Photo 59.11 119.23 36.58 34.52

Average 23.51 29.53 26.40 26.24

man3.6M dataset comparing the time series self-attention method (hereinafter called

Ours), RNN-LSTM, and RNN-GRU in the short-term prediction task. Our method

is performed with two linear dimension values, 1024 and 4096, to see the difference in

which dimension gives the best results.

The best result can be seen in the bold highlighted value. Our method with 1024

linear dimensions obtained the best result compared to the other method in Walking,

Eating, Walking with Dog, Walking Together, Sitting, and Sitting Down motions. This

means 6 over 14 motions, or 42.8 percent of the motions with a range of the MPJPE

score around 8 to 14 pixels, within the best-predicted motions with our method with

1024. At the same time, Our method with a linear dimension of 4096 obtained the

best result on Smoking, Discussion, Direction, Greeting, Phoning, and Posing motions.

Similar to the linear 1024, this model also obtained 6 over 14 motions or 42.8 percent

of the motions with a range of error of around 7 to 15 pixels. However, our method
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Table 3.2: MPJPE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data for the long-term prediction task.

Motion
1000 msec

Ours (1024) Ours (4096) LSTM GRU

Walking 14.43 12.03 12.11 12.74

Eating 9.11 10.11 14.09 13.02

Smoking 7.11 8.27 15.21 16.53

Discussion 8.34 14.30 21.21 19.48

Direction 5.76 8.17 20.35 20.56

Greeting 12.90 10.67 33.92 32.56

Phoning 9.11 10.85 18.41 16.93

Waiting 6.37 7.15 24.46 22.37

Walking Dog 10.98 13.1 39.99 38.82

Walking Together 8.15 8.20 40.82 29.62

Posing 15.46 8.41 26.38 25.96

Sitting 9.61 17.05 20.73 19.48

Sitting Down 9.18 7.59 31.25 25.74

Taking Photo 17.69 12.53 40.70 29.50

Average 10.30 10.60 25.69 23.09

failed to predict the Waiting and Taking Photo motions with quite a significant MPJPE

score of around 37 to 120 pixels. Instead of our model, GRU could predict the motion

better with an MPJPE score of 25.84 pixels on Waiting and 34.52 pixels on Taking

Photo motion. Indeed 25 to 35 pixels is quite a significant score compared to the other

best results. With regard to this MPJPE score, Waiting and Taking Photo motions

are considered the most challenging case, as these motions are aperiodic motions which

means that these motions are not recurring at regular intervals.

In contrast, Our model with 1024 linear dimensions obtained bad results on Direc-

tion, Phoning, and Posing motions compared to the other models with a range of 28

to 61 pixels. On the other hand, our model with 4096 linear dimensions obtained bad

results on Walking, Walking Dog, and Walking Together compared to the other models

with a range of 29 to 50 pixels.

According to these results, our model with a linear dimension of 1024 could not
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predict the motions with not so much movement but good with the recurrent motions.

In contrast, our model with a linear dimension of 4096 obtained bad results on the

motions with a lot of movement but could predict well on the motions with not so much

movement. This means that more dimension linear gives the effect of more possibilities

and a better understanding of passively moving actions, but many possibilities value

also reduces the context understanding of the actively moving actions. On average, our

model, with 1024 linear dimensions, obtained the best result compared to other models

with 23.51 pixels by MPJPE. However, the average values were not very different from

the other models due to some significant errors.

Table. 3.2 shows the MPJPE evaluation result of the long-term human motion

prediction task on the Human3.6M dataset. While on the short-term prediction show-

ing, the prediction results varied based on the motions. Long-term prediction results

show consistency over all motions in the range of 5 to 18 pixels by our models. On

average, our model with a linear dimension of 1024 obtained the best result of 10.30

pixels by MPJPE. Followed by a very small difference in our model with a linear di-

mension of 4096 by 10.60 pixels on average of MPJPE. The best prediction results

were obtained on the Direction motion with 5.76 pixels by MPJPE score. There is

not so much difference in our model with a linear dimension of 1024 and 4096 in the

long-term prediction task, which indicates the model could predict well in any case of

the motions. Our model outperformed the RNN-based method with quite a significant

MPJPE score. The motion-wise comparison shows our model with a linear dimension

of 1024 is a bit bigger than the other models, while the other prediction results on other

motions are smaller than the RNN-based models.

Given a clean annotation over the key points of the human body poses might be

unrealistic in the real world yet. Due to this reason, the pose estimation key point

detection is used to extract the human body pose features as the testing data for our

trained model. In this case, OpenPose is used to generate the human body pose features

as it is currently one of the most used pose estimation methods. The features with the

noise of incorrect estimation could be one barrier for the model to predict future human

motion. With this in mind, our model could be evaluated with the noisy data obtained

from the real-time human pose estimation.

Table. 3.3 shows the MPJPE score evaluation on the data generated by OpenPose

as the pose estimation on the Human3.6M dataset. For the short-term prediction task,
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Table 3.3: MPJPE of 2D joint positions in pixel on the Human3.6M dataset using human

pose estimation by OpenPose as the testing data.

Forecasting (msec) 400 1000

Model Ours (1024) Ours (4096) Ours (1024) Ours (4096)

Walking 29.10 52.38 25.82 36.00

Eating 22.51 26.73 24.69 16.79

Smoking 50.50 38.53 21.12 19.15

Discussion 26.75 21.02 21.66 25.94

Direction 26.24 19.40 17.43 19.53

Greeting 29.11 25.09 23.18 16.80

Phoning 61.17 24.84 22.47 21.39

Waiting 35.05 70.17 23.96 25.34

Walking Dog 25.70 48.98 23.27 83.43

Walking Together 48.62 39.19 23.01 23.51

Posing 58.16 23.84 27.80 23.91

Sitting 17.27 18.91 22.29 20.87

Sitting Down 22.97 29.18 21.05 17.28

Taking Photo 78.84 119.23 23.80 22.73

Average 37.71 39.90 22.97 26.62
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our model with 1024 linear dimensions obtained the best result on average, with a small

difference over our model with a linear dimension of 4096. As the comparison regard-

ing the motions, our model with a linear dimension of 1024 obtained quite consistent

MPJPE scores with a range of 17 to 35 pixels on most of the motions. Expect the

Smoking, Phoning, Walking Together, Posing, and Taking Photo motions. Comparing

the prediction results on the ground truth annotation testing, the Phoning, Posing,

and Taking Photo motions also obtained bad results. The difference between the result

of the ground truth annotation testing and the OpenPose extracted features testing

is 14.49 pixels, which indicates the prediction result by using the OpenPose generated

features is still reliable to get the future of human body motions.

Similarly, our model with a linear dimension of 4096 obtained almost the same

pattern as the evaluation result on the ground truth annotation data testing with

only 10.29 pixels differences between the evaluation result of the OpenPose generated

features testing.

Furthermore, on the long-term prediction task, our models predict better regarding

the MPJPE evaluation score. The results of both models consistently predict human

motion in a range of 16 to 36 pixels of MPJPE score. However, our model with a linear

dimension of 4096 failed to predict future human motion with the MPJPE score of

83.43 pixels. As a result, our model with 1024 and 4096 linear dimensions can predict

future human motion on average. Even though the MPJPE score is quite big, the

prediction result is still reliable for predicting the human location movement, while on

the other hand, the model could not predict to visualize the human body pose well.

Additionally, Fig. 3.6 shows the MPJPE evaluation on the key points with respect

to the motions. The ankle’s key points in the Walking motion obtained the highest

MPJPE score compared to the difference with another key point in the other motions.

Since the ankles are the most moving key points in the Walking motion, followed by the

hands and elbows. This could be explained more clearly in the qualitative evaluation

in Section 3.6.3.

For more details, Fig. 3.7 shows the comparison between the testing result on the

data obtained by OpenPose and the ground truth testing in each motion.

Figure 3.8 shows the comparison of the MPJPE distance trajectories on the Open-

Pose testing and ground truth testing by each frame in the “Walking” motion.

40



3.6 Results

ce
nt
er
 h
ip

rig
ht
 h
ip

rig
ht
 k
ne
e

rig
ht
 a
nk
le

le
ft 
hi
p

le
ft 
kn
ee

le
ft 
an
kl
e

ce
nt
er
 b
od
y

ne
ck

he
ad

le
ft 
sh
ou
ld
er

le
ft 
el
bo
w

le
ft 
ha
nd

rig
ht
 sh

ou
ld
er

rig
ht
 e
lb
ow

rig
ht
 h
an
d

Walking
WalkDog

WalkTogether
Discussion

Eating
Greeting
Phoning
Photo
Posing
Sitting

SittingDown
Smoking
Waiting

Directions 2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Figure 3.6: MPJPE-based evaluation on the key points and motions for the long-term

prediction task using our model with a linear dimension of 1024. The heatmap color

contains the MPJPE score based on the color scale on the right side.

Comparison based on MPJVE. In this part, the evaluation based on MPJVE

is described in detail to compare the smoothness of the movement prediction results

obtained by the methods.

Table. 3.4 shows the score of MPJVE evaluation obtained by our model with a

linear dimension of 1024 and 4096, RNN-LSTM, and RNN-GRU for the short-term

prediction task. Based on the motions, empirically, the motion with more movement

will obtain more MPJVE scores due to the changes in the movement over the frames.

For example, comparing the Eating and Walking Dog motion will obtain a very different

MPJVE score since most of the Eating motion movements stayed on the same spot while

the only movement was at the hands and some gestures of the torso. On average, our

model with a linear dimension of 4096 obtained the best MPJVE score with 1.22 pixels

over other methods. Our model with a linear dimension of 1024 could predict the best

based on the MPJPE score, but based on the MPJVE, the prediction result is not as

smooth as the other method obtained. This indicates the results obtained by this model

are quite spiky, with 1.99 pixels average movement for 1 frame. At the same time, the

worst result was obtained by our model with a linear dimension of 1024 on the Walking
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3.6 Results

Table 3.4: MPJVE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data.

Motion
400 msec

Ours (1024) Ours (4096) LSTM GRU

Walking 1.05 1.67 1.15 1.23

Eating 0.70 0.73 0.97 1.00

Smoking 2.7 1.45 0.86 0.89

Discussion 1.34 1.28 1.27 1.33

Direction 1.34 0.69 1.15 1.23

Greeting 1.33 1.30 2.77 2.91

Phoning 2.38 0.83 1.11 1.10

Waiting 2.59 0.93 1.60 1.62

Walking Dog 4.81 2.79 2.51 2.38

Walking Together 1.28 1.25 2.36 2.35

Posing 1.64 0.84 1.58 1.60

Sitting 0.85 0.9 1.18 1.44

Sitting Down 2.69 1.64 1.30 1.21

Taking Photo 3.15 0.73 1.31 1.24

Average 1.99 1.22 1.51 1.54
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Ground truth testing, average = 14.43

Figure 3.8: Comparison of MPJPE in long-term prediction by frame on OpenPose testing

and ground truth testing with linear 1024 model.

Dog motion with 4.81 pixels average movement for 1 frame step. On the other hand,

the prediction results obtained by the RNN-based models are quite consistent with the

range of the MPJVE score of 0.8 to 2.5 pixels.

Table. 3.5 shows the score of MPJVE evaluation obtained by our model with

a linear dimension of 1024 and 4096, RNN-LSTM, and RNN-GRU for the long-term

prediction task. On average, both of our models outperformed the RNN-based method.

Our model achieved the best results when using a linear dimension of 4096, and it

obtained the highest MPJVE score for 11 out of 14 motions. Additionally, our model

performed well for the remaining 3 out of 14 motions using a linear dimension of

1024. All the models demonstrated exceptional performance in the long-term prediction

task, with an MPJPE score range of 0.6 to 2.39 pixels for a 1-frame step. Overall,

our approach showed strong performance in both short-term and long-term prediction
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3.6 Results

Table 3.5: MPJVE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data.

Motion
1000 msec

Ours (1024) Ours (4096) LSTM GRU

Walking 1.11 1 1.07 1.22

Eating 0.71 0.66 1.04 1.10

Smoking 0.66 0.62 0.84 0.88

Discussion 1.16 1.36 1.31 1.24

Direction 0.72 0.77 1.15 1.16

Greeting 1.45 1.26 2.39 2.67

Phoning 0.87 0.80 1.11 1.14

Waiting 0.98 0.85 1.45 1.62

Walking Dog 1.28 1.1 2.16 2.37

Walking Together 0.72 0.67 2.00 2.03

Posing 1.31 0.91 1.58 1.67

Sitting 1.07 0.9 1.41 1.29

Sitting Down 0.97 0.76 1.61 1.53

Taking Photo 0.88 0.83 1.40 1.33

Average 0.99 0.89 1.47 1.52

tasks. In the short-term prediction task, using a larger linear dimension resulted in

better performance. In contrast, for the long-term prediction task, there was only a

minimal difference in performance between using a linear dimension of 1024 and 4096,

with an MPJPE score difference of only 0.1 pixels.

During the evaluation, models were compared to ground truth annotation data

in testing. Additionally, models were tested on non-annotated data that had been

processed with the OpenPose feature extraction method as shown in the Table. 3.6.

The evaluation results using non-annotated data for testing yielded significantly higher

average movement over 1 frame step than when ground truth annotated data was used.

The average movement when using non-annotated data was 5 to 9 pixels, whereas it

was only between 0.8 to 2 pixels when using annotated data. However, it’s important to

note that comparing the results on average may not provide an accurate representation

of the performance as the different motions have distinct characteristics. For instance,
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Table 3.6: MPJVE of 2D joint positions on the Human3.6M dataset using human pose

estimation by OpenPose as the testing data.

Forecasting (msec) 400 1000

Model Ours (1024) Ours (4096) Ours (1024) Ours (4096)

Walking 7.92 9.79 6.89 7.82

Eating 4.87 3.63 4.85 4.92

Smoking 14.61 5.96 5.78 5.59

Discussion 7.11 6.96 7.50 6.13

Direction 5.20 4.82 5.29 4.84

Greeting 8.12 8.07 1.45 7.34

Phoning 7.35 5.03 5.44 5.02

Waiting 7.36 0.93 7.43 6.03

Walking Dog 8.19 11.42 8.29 9.50

Walking Together 24.50 11.87 9.29 9.30

Posing 6.31 6.20 4.59 6.96

Sitting 3.74 3.44 3.34 2.84

Sitting Down 5.72 5.78 5.86 5.33

Taking Photo 11.98 0.73 4.34 5.05

Average 8.79 6.05 5.74 6.19

in the case of the ”Walking Together” motion, the MPJVE score is relatively higher

than other motions because the subject in this motion has more movement than the

other motions. This also suggests that the more movement occurs within a frame, the

harder it is for the model to generate a smooth movement prediction over multiple

frames.

Comparison based on MPJLE. In this part, the author describes the evaluation

based on the MPJLE metric to show the localization of the prediction results by the

Threshold at the tolerance t as shown on Table. 3.7. The tolerance t is an interval

from 0 to 200 pixels. When the prediction result is above the threshold of tolerance, the

result is considered an error. The performance of the methods is evaluated at different

thresholds (5, 10, 20, 50, 75, 100, 150, and 200). The best performance for each

threshold is highlighted in bold. Overall, it appears that the ”Ours (4096)” method

performs the best, having the lowest MPJLE among all methods at most thresholds.
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Table 3.7: MPJLE of 2D joint positions on the Human3.6M dataset in long-term predic-

tion task.

Methods
Threshold@t

5 10 20 50 75 100 150 200

LSTM 1.000 1.000 1.000 0.884 0.654 0.446 0.225 0.121

GRU 1.000 1.000 1.000 0.854 0.627 0.435 0.193 0.092

Ours (1024) 1.000 1.000 0.980 0.662 0.505 0.387 0.226 0.150

Ours (4096) 1.000 1.000 1.000 0.635 0.457 0.373 0.218 0.141

Although the performance of our model with a linear dimension of 1024 is similar to

that of our model with 4096 linear dimensions, at a threshold of 20 pixels, our model

with a linear dimension of 1024 only slightly outperforms the latter, with a difference

of just 0.02%.

3.6.2.2 3DPW dataset

In this section, the author describes the result of evaluating the human motion pre-

diction task using the 3DPW dataset by time series self-attention, RNN-LSTM, and

RNN-GRU. To evaluate the effectiveness of the methods when using different datasets,

an evaluation was performed using the 3DPW dataset and based on the MPJPE metric

as shown on Table. 3.8. While the Human3.6M dataset collected data at the indoor

studio, the 3DPW dataset collected the outdoor data with unscripted motions. Hence,

overall the MPJPE scores using the 3DPW dataset are very high. This means that

the models could not predict future human motion. However, based on the evaluation

result of MPJPE scores, the 1-layer RNN-GRU obtained the best average prediction

result with 236.31 pixels. Our model could only be performed better than the RNN-

based method on the left ankle key point with a very small difference compared to the

RNN-GRU.

3.6.2.3 Computational Time

Additionally, the author acknowledged the average computation time by the model to

predict a frame of motion as an important note, considering that in the real world, one

needs optimal computation to get a real-time prediction. As shown on Table 3.9, the

47



3. TIME SERIES SELF-ATTENTION 2D HUMAN MOTION
FORECASTING

Table 3.8: MPJPE of 2D joint positions in pixel on the 3DPW dataset using the real

position data as the testing data. The author compared our method with LSTM and GRU

models for Layer L = 1, 2, and 3 with the 3DPW dataset.

Keypoints
Our Method LSTM GRU

L = 1 L = 2 L = 3 L = 1 L = 2 L = 3 L=1 L = 2 L = 3

Head 300.66 304.49 305.94 291.18 292.15 287.65 287.09 304.28 283.75

Neck 210.09 211.55 243.07 198.10 216.20 215.61 193.15 210.02 205.77

Right Shoulder 230.72 219.34 254.70 208.71 223.54 224.08 200.17 218.20 216.35

Right Elbow 272.43 258.64 289.76 243.50 260.86 259.78 236.62 242.08 251.56

Right Arm 284.46 285.97 304.73 268.98 280.76 298.59 268.57 260.71 277.89

Left Shoulder 225.60 226.63 252.11 209.95 228.16 232.55 206.32 222.86 216.89

Left Elbow 262.93 251.46 279.75 252.70 260.94 275.28 244.77 259.65 249.14

Left Arm 278.76 269.65 290.99 278.02 276.12 302.90 270.06 278.03 268.75

Right Hip 200.78 207.60 238.80 189.49 207.88 207.93 187.28 206.86 203.76

Right Knee 201.87 212.06 246.68 205.82 213.77 215.71 198.18 210.54 214.54

Right Ankle 232.04 243.93 269.89 237.51 245.93 244.32 227.35 239.76 244.73

Left Hip 212.96 210.56 238.46 191.73 213.81 213.65 193.32 211.36 206.62

Left Knee 215.32 218.37 243.52 208.82 230.06 220.52 207.50 222.62 216.19

Left Ankle 237.89 245.12 272.82 244.08 266.75 252.06 239.56 257.20 246.73

Right Eye 297.97 315.54 316.55 316.22 305.46 292.54 317.87 335.00 311.33

Left Eye 328.79 347.23 318.94 310.22 289.83 309.99 303.15 319.58 303.48

Average 249.58 251.76 272.92 240.94 250.77 254.32 236.31 249.92 244.84
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Table 3.9: The average computation time in seconds for a frame to be predicted in the

testing by the model.

Motion Processing time (sec)

Walking 2.44

Walking Dog 2.42

Walking Together 2.42

Discussion 2.43

Eating 2.42

Greeting 2.42

Phoning 2.42

Taking Photo 2.42

Posing 2.42

Sitting 2.42

Sitting Down 2.43

Smoking 2.43

Waiting 2.43

Direction 2.43

Average 2.43

model could generate the 400 milliseconds prediction around 2.4 seconds for a frame

in general. On average, the models with linear dimensions of 1024 and 4096 are not

significantly different, with only 0.03 seconds differences. The average computation

time principally depends on the process and the power of the GPU, which is only

comparable when using the same GPU with no other process running since it could

affect the time taken by the GPU to generate the prediction.

3.6.3 Qualitative Evalulation

In this section, the author describes the evaluation results in the qualitative-based

comparison. Fig. 3.9 shows the short-term prediction task results on Walking, Eating,

Smoking, and Discussion motion. At the same time, the Fig. 3.10 shows the long-

term prediction task results on the same motions. The motions of the qualitative-based

evaluation are shown with respect to the 5 frame steps to show the differences in moving

motions. The blue line refers to the ground truth based on the annotated data from
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the corresponding frames, and the green line refers to the prediction results obtained

by our models with a linear dimension of 1024. As shown in the figures, some poses

failed to be precisely predicted. Fig. 3.9a shows quite off from the correct pose in the

5 sequences poses. However, the location of the human is still correct regardless of the

pose. At the same time, the 2 last poses seem to follow the pose. Fig. 3.9c shows the

pose with a large error in the pose prediction. Our model failed to predict the pose well

but could predict the location of the human regardless of the pose. This qualitative

evaluation is in line with the quantitative evaluation on Table. 3.1.

The long-term prediction task performed better in most motions except for the

walking motions compared to the short-term prediction task. This could be seen based

on the qualitative evaluation results on the Fig. 3.10 which is in line with the quanti-

tative evaluation result on the Table. 3.2.

Fig. 3.11 shows a good prediction result based on the qualitative comparison of the

corresponding ground truth. Meanwhile, Fig. 3.12 shows the bad prediction result.

On the good prediction results, our model could predict the pose very well, including

the hands and legs movements which are considered the most challenging key points to

predict since it moves much more than the other key points.

3.7 Summary

This research is conducted to set the baseline of 2D human motion forecasting, which

is applicable to most systems that use RGB cameras. In this case, one can also see it as

a reliable alternative to the 3D-based data of human motion forecasting. The author

proposed the time-series self-attention as a method to predict human motion for the

short and long term. This study compared the time-series self-attention method with

the LSTM and GRU models.

The author evaluates the models based on the MPJPE to measure the error from

the prediction to the ground truth, MPJVE to evaluate the movement of every frame

in pixels, and MPJLE to calculate the average correct key points in the threshold

tolerance value. This study also compared the result when the data obtained by the

pose estimation method is used. In this case, the author uses OpenPose as a standard

method. In addition, the average computation time of our method is calculated to see
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(a) Walking

(b) Eating

(c) Smoking

(d) Discussion

Figure 3.9: Short-term prediction result by our model using 1024 linear dimension in

Human3.6M dataset.
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(a) Walking

(b) Eating

(c) Smoking

(d) Discussion

Figure 3.10: Long-term prediction result by our model using 1024 linear dimension in

Human3.6M dataset.
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Figure 3.11: Good prediction results obtained by our model with a linear dimension of

1024.
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Figure 3.12: Bad prediction results obtained by our model with a linear dimension of

1024.

54



3.7 Summary

the real-time usability. As a result, our method could predict short-term and long-

term human motion well. Based on the MPJPE, the author found out that the model

predicted better on the long-term prediction task than in the short-term. Meanwhile,

on the 3DPW dataset, the prediction results for the long-term prediction from our

method, LSTM, and GRU models obtained a considerably significant MPJPE metric.

The average computation time is below our expectation to be applicable in the real-time

system. Although the average computation time relies on the computation device, this

issue is still can be solved by reducing the linear dimension on the MLP Head, reducing

the number of heads in the self-attention layer, reducing the number of the transformer

encoder layer, and also changing the type of data input to Float16. However, this issue

needs further research to do to evaluate the result.

While the author strongly believes that the outcome of the method is giving an

impact as the baseline for future work in this related field of study. Thus, future

relevant work could advance the result based on the evaluation metrics and the average

computational time cost.
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Chapter 4

Temporal-Spatial Time Series

Self-Attention for 2D and 3D

Human Motion Forecasting

4.1 Introduction

In this section, the author describes the detail of human motion forecasting using 3D

data. In the same way, that human motion forecasting using 2D, using the 3D features

has its advantages. The devices to capture the 3D features are broadly developed

and produced in the market. For example, the light detection and ranging (LiDAR)

camera is developed to capture the depth parameter in a frame. This feature has

unlocked the ability to get the third parameter of location over the 2D image frame.

Additionally, with the depth parameter, the object detection method could work more

precisely to localize the object over the 3D plane recognition. Regarding that, the

research on human motion forecasting using 3D data is applicable in the real world,

unlocking the application of automation over devices. Adding one more parameter in

motion prediction also gives the model another weight to calculate, but also gives extra

information to predict better. While the 2D human prediction is evaluated in pixels,

the 3D data gives the ability to transform the data into real metrics like millimeters to

evaluate and process the visualization in the 3D plane.

Several research addressed the model to forecast based on the temporal dimen-

sion, with the Recurrent Neural Network[5], LSTM[5, 51], and Triangular Prism RNN
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method [7]. While some other research modeled the forecasting using the spatial and

temporal dimensions such as the STS-GCN[8] and MotionMixer[9]. However, under-

standing the motion based on spatial and temporal dimensions is needed to improve

the prediction. Understanding over relation and connection of the spatial and temporal

dimensions is necessary. In this research, we improved the method used in the Section.

3 by applying Multi-Layer Perceptron (MLP) for temporal dimension computation.

We applied this method for the 2D and 3D human motion forecasting tasks. This re-

search is conducted to provide the feasibility of human motion forecasting in real-world

applications using 2D and 3D input.

• We propose a novel self-attention architecture for human motion forecasting tasks.

• We propose a feasibility study on the usability of human motion forecasting ap-

plications using unannotated data.

• We provide the standard evaluation metric and compare previous related works

in human motion forecasting.

• Our code available at: https://github.com/AndiDemon/HumMovForecasting.

4.2 Related Works

In this section, the author describes the previous related research in which those sim-

ilarities are found and compared with regard to the dataset, methods, and evaluation

metrics.

Based on the baseline, the research on 3D human motion forecasting has been

settled on the results over certain evaluation metrics. Started from [5] that aims to

recognize and predict the human body pose in videos and motion capture by the en-

coder recurrent decoder (ERD) model using the Human3.6M dataset. As a result, the

prediction of human motion obtained the short-term prediction for 400ms and the long-

term prediction for 1000ms. They provided a comparison with state-of-the-art methods

such as RNN-LSTM-3LR, CRBM, 6GRAM, and GDPM in walking motion by Mean

Angle Error (MAE). Following the research to predict human motion, several works

have been done. One research is conducted by using the Structural-RNN model [6]. As

a result, the proposed method using S-RNN successfully improved the performance in
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the MAE metric on the Eating, Walking, Smoking, and Discussion actions. While more

works have been published with better performance based on the MAE [9], the other

metric to evaluate the model based on the distance from the prediction result to the

ground truth has been introduced [8] and followed by [9]. Furthermore, not only using

the Human3.6M dataset, the comparison over another dataset such as AMASS [44]

is conducted to validate the various samples and actions. Comparing the models on

different datasets and more actions done, this research broadly improved the validation

of real-life applications.

Hence, this research is still ongoing, and more state-of-the-art methods, such as

the Transformers model [12], have been introduced. The author follows the previous

related research to develop the best performance on the MPJPE, MAE, and additionally

MPJVE, which is just as important as the other metric to show the smoothness over the

changes of the frames. Since the author has researched 2D human motion forecasting,

the time-series self-attention is modified to process the 3D data.

4.3 Feature Preparation

In this section, the author describes the data preparation and pre-processing of the 3D

features. Similarly, the process is almost the same after the 3D data transformation,

given the data with 33 key points all over the human body, including the fingers. At

the same time, the features of fingers are not necessary for this research since they

will not give more information about human motions. Hence, the key points regarding

the fingers are ignored, which remains the 22 key points left. Let the sequence data

X = {X1, X2, . . . , XT } ∈ R3×N×T , where T is defined as the number of frames for

N key points. Setting up the sliding window of Q = {Q1, Q2, . . . , QTQ
} input, and

P = {PTQ+1, PTQ+2, . . . , PTQ+TP
} expected output. Aiming to predict the N key points

for the next TQ + TP future frames P̂ = {P̂TQ+1, P̂TQ+2, . . . , P̂TQ+TP
} respectively to

the frames. As for the subject on the Human3.6M dataset, the training data includes

subject numbers 1, 6, 7, 8, and 9. Subject number 11 is used as the validation data,

and subject number 5 is used as the testing data. This setting is used in several related

research to keep the comparison between the methods in line [8, 9].
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4.4 Proposed Method

4.4.1 Temporal-Spatial Time Series Self-Attention

In this section, the author describes the detail of the prediction method model. As

described in the 4.1, the architecture of the model is quite different when using 2D

features. Given the 3D features in the shape of (batch size, inputwindowframes,Q) as

the input, it is processed with positional encoding and dropout layers. Then, the CNN

block layer with SE Block and the Add layer. After that, this step is repeated by L

times. Following the CNN block step, Transformer Encoder with SE Block and Add

layer is applied repeatedly by M times. Finally, the tensors are finalized by the MLP

Head layer to obtain the prediction.

4.4.2 Loss Metric

In this section, the author describes the detail of the method to evaluate the method in

the training and testing phase. These evaluation metrics are used as the loss function

and to evaluate the method regarding the prediction results.

Following the metric evaluation protocol from previous related research. MPJPE

is employed to evaluate the Euclidean distance between the forecasting result to the

ground truth using the cartesian coordinate[8, 9]. At the same time, MAE is used to

evaluate based on the Eular-angle representation[8, 9]. MPJPE is defined as:

EMPJPE =
1

N
∥PTp − P̂Tp∥ (4.1)

whereN is the total number of frames in the testing data, P̂TP
determines the prediction

on the number Tp frame of the output window, and the PTp is the corresponding ground

truth.

Processing 3D data gives another parameter in the way to understand the direction

of the human body. As for this matter, the evaluation metric is needed to evaluate

the correctness of the prediction by the model. Mean Angle Error is determined to

evaluate the prediction by computing the Euler rotation data processed by the model

as the input. MAE is defined by:

EMAE =
1

N
∥PTp − P̂Tp∥ (4.2)
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Figure 4.1: Temporal-Spatial Time Series Self-Attention architecture for 2D and 3D

human motion forecasting. We defined the pose dim as the input pose dimension that

differs based on the dataset, frames dim as the number of input frames, hidden dim as

the hidden dimension on the neural network, and output frame dim as the expected frame

output dimension. The input data are processed by the positional encoding and dropout

layer. The first unit consists of the CNN block, the squeeze-and-excitation (SE) block, and

the skip connection as the temporal dimension computation. The first unit is repeated

L times. Then followed by the second unit which consists of the transformer encoder

block, the SE block, and the skip connection for context-relation awareness. The second

block is repeated M times. Finally, the multilayer perceptron (MLP) Head computes the

spatial dimension prediction, and we use the 1D convolutional layer to transform the frame

dimension for the output.
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whereN is the total number of frames in the testing data, P̂TP
determines the prediction

on the number Tp frame of the output window, and the PTp is the corresponding ground

truth.

4.5 Experiments

In this section, the author describes the overall experimental details, which include

dataset setup, experimental setup, model configuration, and the device used to perform

the experiment.

4.5.1 Dataset

In this section, the author describes the dataset that is used in this research as well as

the dataset setup. Similar to the research on 2D human motion forecasting in Section. 2,

the Human3.6M dataset is used as the main dataset to be evaluated with other previous

related research however, if the 2D human motion forecasting research using the 2D

input data that has been interpolated from the 3D data. In this research, the input

data is the 3D cartesian coordinates and the Euler angle rotation map obtained by

motion capture of the camera sensors. The data is divided into training, validation,

and testing. The training data consists of subject numbers 1, 6, 7, 8, and 9. While

subject number 11 is determined as the validation data, and subject number 5 is the

testing data. 22 joints for forecasting the 3D body pose as the input and 16 for the

angle-based prediction.

At the same time, the AMASS dataset is used to validate the method on another

dataset. AMASS dataset is separated by training, validation, and testing data based

on the sub-dataset provided in AMASS. Training data contains the samples, including

CMU, MPI Limits, TotalCapture, Eyes Japan Dataset, KIT, EKUT, TCD handMo-

cap, and ACCAD. Validation data contains the samples, including HumanEva, MPI

HDM05, SFU, and MPI mosh. The testing data contains a sample of BioMotionLab

NTroje. In this dataset, the 3D cartesian coordinates data is used with 18 key points

as the input.
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4.5.2 Experimental Setup

In this section, the author describes the experimental setup used to configure the fea-

tures, train the model, and visualize the prediction. Part of this research is done by the

previous research to keep the comparison in line with the previous related research [9].

The input window in this research is ten frames consecutively with the option of 1

or 5 steps over the sliding window. Expecting the 10 or 25 frames as the output in

the sliding window to get the output of 400ms or 1000ms. As shown in the model

overview, the CNN block layer is repeated three times, and the Transformer Encoder

layer is repeated two times. The dropout layer is defined by 0.1, with the learning rate

to train the model being 0.0001 using the ADAM optimizer. As for the loss function,

the MPJPE is used to calculate when the coordinate data is used, and MAE is used to

calculate the loss when the angle rotation is used. The author used the NVidia GeForce

RTX 4090 to perform the experiment.

4.6 Results

4.6.1 Quantitative Evaluation

In this section, the author describes the evaluation results based on the MPJPE and

MAE metrics for short-term and long-term 3D human motion prediction tasks.

4.6.1.1 2D Human Motion Forecasting

Human3.6M Dataset

Comparison based on MPJPE. Table 4.1 shows the MPJPE for short and

long-term forecasting tasks and Table 4.2 shows the MPJVE to measure the proximity

between the ground truth and the prediction in terms of joint positions and velocities,

respectively. In comparison, LSTM[51] and GRU[52] are employed to predict human

motion. The results show that our method outperformed the other two methods in

terms of both MPJPE and MPJVE at both time intervals. Specifically, our method

achieved an MPJPE of 12.32 and 15.17 pixels and an MPJVE of 0.87 and 1.19 pixels

at 400ms and 1000ms, respectively, while the other methods achieved lower perfor-

mance on both metrics. Table 4.3 shows the MPJE and MPJVE metrics when the

data obtained by OpenPose is used. Compared to the ground truth test, MPJPE is
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Table 4.1: MPJPE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data.

Motion
400 msec 1000 msec

TS-TSSA (Ours) LSTM GRU TS-TSSA (Ours) LSTM GRU

Walking 14.06 14.38 13.90 19.61 12.11 12.74

Eating 7.17 13.14 14.48 9.01 14.09 13.02

Smoking 7.10 16.47 17.40 9.81 15.21 16.53

Discussion 12.37 20.62 20.75 16.94 21.21 19.48

Direction 9.33 21.55 21.77 12.25 20.35 20.56

Greeting 8.24 36.67 35.42 14.72 33.92 32.56

Phoning 10.80 19.00 18.89 14.46 18.41 16.93

Waiting 9.92 26.98 25.84 12.37 24.46 22.37

Walking Dog 10.69 41.19 39.60 13.48 39.99 38.82

Walking Together 12.00 45.42 46.32 12.26 40.82 29.62

Posing 8.19 30.76 27.86 16.17 26.38 25.96

Sitting 18.37 18.91 21.74 19.45 20.73 19.48

Sitting Down 31.80 27.95 28.84 32.98 31.25 25.74

Taking Photo 6.52 36.58 34.52 8.93 40.70 29.50

Average 12.32 26.40 26.24 15.17 25.69 23.09

significantly changed from 12.32 to 30.78 pixels on our method at 400ms prediction task

and 15.17 to 34.96 pixels at 1000ms prediction task. While on LSTM and GRU, the

MPJPE is changed, but not more than 2 times the ground truth testing. Furthermore,

the evaluation of MPJVE is also increased significantly. These changes happened due

to the uncertainty of the pose estimation obtained by OpenPose. However, to evaluate

whether the forecasting result is reliable or not, the qualitative evaluation is explained

in section 4.6.2.

3DPW dataset is used to evaluate the model on outdoor activity with undefined

scenarios. As shown in table 4.4, the forecasting result is evaluated based on the MPJPE

metric. Our method obtained the best forecasting result compared to the LSTM and

GRU. However, the MPJPE metric obtained is too big compared to the dataset frame

size. This forecasting failure appeared due to the undefined scenarios of the 3DPW

dataset. This summarizes our method is not reliable in the unknown scenario activity.

64



4.6 Results

Table 4.2: MPJVE of 2D joint positions in pixel on the Human3.6M dataset using the

real position data as the testing data.

Motion
400 msec 1000 msec

TS-TSSA (Ours) LSTM GRU TS-TSSA (Ours) LSTM GRU

Walking 1.06 1.15 1.23 1.16 1.07 1.22

Eating 0.64 0.97 1.00 0.79 1.04 1.10

Smoking 0.56 0.86 0.89 0.79 0.84 0.88

Discussion 1.03 1.27 1.33 1.59 1.31 1.24

Direction 0.67 1.15 1.23 1.09 1.15 1.16

Greeting 1.21 2.77 2.91 1.54 2.39 2.67

Phoning 0.86 1.11 1.10 1.15 1.11 1.14

Waiting 0.89 1.60 1.62 1.28 1.45 1.62

Walking Dog 1.15 2.51 2.38 1.68 2.16 2.37

Walking Together 0.69 2.36 2.35 0.98 2.00 2.03

Posing 1.04 1.58 1.60 1.46 1.58 1.67

Sitting 0.67 1.18 1.44 0.88 1.41 1.29

Sitting Down 1.03 1.30 1.21 1.28 1.61 1.53

Taking Photo 0.67 1.31 1.24 1.01 1.40 1.33

Average 0.87 1.51 1.54 1.19 1.47 1.52
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Table 4.3: Evaluation based on MPJPE and MPJVE metrics of 2D joint position on the

Human3.6M dataset with the position data obtained by OpenPose as testing data. (Pixels)

Error
400ms 1000ms

Ours LSTM GRU Ours LSTM GRU

MPJPE 30.78 33.61 34.64 34.96 33.83 33.85

MPJVE 5.88 12.01 15.70 7.11 11.82 15.56

Table 4.4: Evaluation based on MPJPE of 2D joint position on the 3DPW dataset.

(Pixels)

Error
1000ms

Ours LSTM GRU

MPJPE 156.85 240.94 236.31

4.6.1.2 3D Human Motion Forecasting

Human3.6M Dataset

Comparison based on MPJPE. Table. 4.5 shows the comparison based on

the MPJPE metric from the current related research methods. As mentioned in Sec-

tion 4.4.2, the MPJPE is calculated by computing the distances between the prediction

result and its corresponding ground truth with respect to the key points and frames.

Thus, in the Table. 4.5 our method is compared with another state-of-the-art for

the short and long-term prediction task. The research on 3D human motion prediction

has been conducted since 2015 using the Res. Sup resulting in the MPJPE score

88.3mm for the short-term prediction and 136.6mm for the long-term prediction task

on average. Followed by the convSeq2Seq in 2019, with a slightly better performance

on average, obtaining 72.7mm for short-term prediction tasks and 124.2mm for the

long-term prediction task. LTD-10-25, RNN-GCN, and MultiAttention obtained small

improvements in the prediction results over time. Then, STS-GCN comes out with

the breakthrough of the MPJPE score below 100mm. STS-GCN obtained the average

prediction over all motions with 75.6mm and obtained the best current prediction

result on the Greeting motion with an MPJPE score of 91.6mm for the long-term

prediction task. While after that, MotionMixer with MLP Based method obtained

the current best prediction almost in overall motions and the average for the short
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and long-term prediction tasks. MotionMixer obtained the best result on average with

33.6mm for the short-term prediction task and 71.6mm for the long-term prediction

task by MPJPE. On the other hand, our method, based on the current evaluation

result of MPJPE, obtained second place for the short and long-term prediction tasks.

Our method obtained an MPJPE score average of 36.4mm for short-term prediction

tasks and 73.2mm for long-term prediction tasks. Our method achieved the best result

on the Walking Dog for the short-term prediction task with 54.1mm and the Walking

Together motion with 49.9mm for the long-term prediction task.

Even though. our method is not achieving the best result over other previous

related research, the prediction results are good enough to tell the future human motion

prediction for 400msec and 1000msec ahead. The visualization of this prediction result

can be seen in Section 4.6.2.

Comparison based on MAE. Table. 4.6 shows the comparison based on the

MAE metric from the current state-of-the-art methods. Our method performed quite

well with the average prediction result obtained the MAE with 1.56 for the short-term

prediction task, and 1.77 for the long-term prediction task. However, comparing to

the other previous related methods, our method could not perform better when using

the angular data. Difference between the best result obtained by the STS-GCN [8] is

quite significant with around 0.7 MAE metric different. With this in mind, our method

could predict when the coordinate data is used while in terms of the angular data, our

method could not improve the prediction result from the previous related works.

AMASS Dataset

In this section, the author describes the evaluation of the experiment using the

AMASS dataset based on the MPJPE metrics. Since AMASS dataset does not provide

the angular data, the evaluation based on MPJPE is the only evaluation metric that

could fit on this dataset. Table. 4.7 shows the evaluation result based on MPJPE

using the AMASS dataset for the short and long-term prediction tasks.

4.6.2 Qualitative Evaluation

In this section, the author describes the evaluation based on the qualitative results.
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Table 4.5: MPJPE evaluation using Human3.6M dataset for short-term and long-term

3D human motion forecasting task.

Walking Eating Smoking Discussion Directions

Forecasting time (msec) 400 1000 400 1000 400 1000 400 1000 400 1000

Res. sup [17] 66.1 79.1 61.7 98.0 65.4 102.1 91.3 131.8 84.1 129.1

convSeq2Seq [53] 63.6 82.3 48.4 87.1 48.9 81.7 77.6 129.3 69.7 115.8

LTD-10-25 [36] 44.4 60.9 38.6 75.8 39.5 72.1 68.1 118.5 58.0 105.5

RNN-GCN [54] 39.8 58.1 36.2 75.7 36.4 69.5 65.4 119.8 56.5 106.5

MultiAttention [55] 39.0 57.1 45.2 73.7 29.0 68.7 64.0 117.5 62.6 105.7

STS-GCN [8] 32.9 51.8 25.4 52.4 25.8 50.0 40.2 78.8 34.7 71.0

MotionMixer [9] 28.6 49.2 20.9 47.4 21.4 45.4 35.5 78.0 29.2 66.5

Ours 32.5 51.7 23.5 48.2 23.7 47.6 39.1 79.4 33.3 70.1

Greeting Phoning Posing Purchases Sitting

Forecasting time (msec) 400 1000 400 1000 400 1000 400 1000 400 1000

Res. sup [17] 108.8 153.9 76.4 126.4 114.3 183.2 100.7 154.0 91.2 152.6

convSeq2Seq [53] 96.0 147.3 59.9 114.0 92.9 187.4 89.9 151.5 63.1 120.7

LTD-10-25 [36] 82.6 136.8 50.8 105.1 79.9 174.8 78.1 134.9 58.3 118.7

RNN-GCN [54] 78.1 138.8 49.2 105.0 75.8 178.2 73.9 135.9 56.0 138.8

MultiAttention [55] 85.4 136.7 44.1 104.6 78.7 172.9 67.9 133.1 66.3 115.0

STS-GCN [8] 49.2 91.6 30.9 66.1 45.6 106.4 48.7 93.5 35.0 75.2

MotionMixer [9] 46.2 93.6 27.8 63.4 40.1 99.7 42.7 88.7 29.8 68.9

Ours 49.8 96.1 29.5 63.9 44.4 103.1 46.2 90.5 31.7 70.3

Sitting Down Taking Photo Waiting Walking Dog Walking Together

Forecasting time (msec) 400 1000 400 1000 400 1000 400 1000 400 1000

Res. sup [17] 112.0 187.4 87.6 153.9 87.7 135.4 110.6 164.5 67.3 98.2

convSeq2Seq [53] 82.7 150.3 63.6 128.1 69.7 117.7 103.3 162.4 61.2 87.4

LTD-10-25 [36] 76.4 143.8 54.3 115.9 44.4 108.3 38.6 146.4 39.5 65.7

RNN-GCN [54] 72.0 143.6 51.5 115.9 54.9 108.2 86.3 146.9 41.9 64.9

MultiAttention [55] 66.3 141.8 49.4 115.2 71.1 105.1 119.0 141.4 42.0 63.2

STS-GCN [8] 47.9 94.3 33.6 76.9 35.2 72.0 59.6 102.6 30.5 51.1

MotionMixer [9] 42.6 89.3 27.9 66.6 30.0 68.2 54.1 99.6 27.4 50.4

Ours 45.2 90.5 30.1 67.6 33.7 69.5 54.1 99.8 29.8 49.9

Average

Forecasting time (msec) 400 1000

Res. sup [17] 88.3 136.6

convSeq2Seq [53] 72.7 124.2

LTD-10-25 [36] 68.1 112.4

RNN-GCN [54] 58.3 112.1

MultiAttention [55] 60.0 110.1

STS-GCN [8] 38.3 75.6

MotionMixer [9] 33.6 71.6

Ours [9] 36.4 73.2
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Table 4.6: MAE evaluation using Human3.6M dataset for short-term and long-term 3D

human motion forecasting task.

Average MAE

Forecasting time (msec) 400 1000

Res. sup [17] 1.15 -

convSeq2Seq [53] 1.13 1.82

LTD-10-25 [36] 1.04 1.68

RNN-GCN [54] 1.04 1.65

MultiAttention [55] 0.93 1.57

STS-GCN [8] 0.66 1.07

MotionMixer [9] 0.63 1.08

TS-TSSA (Ours) 1.56 1.77

Table 4.7: Evaluation based on MPJPE using AMASS dataset for short-term and long-

term 3D human motion forecasting task.

Average MPJPE

Forecasting time (msec) 400 1000

convSeq2Seq [53] 67.6 93.5

LTD-10-25 [36] 45.3 75.2

RNN-GCN [54] 42.0 67.2

MultiAttention [55] 41.2 65.8

STS-GCN [8] 24.5 45.5

MotionMixer [9] 21.9 41.6

TS-TSSA (Ours) 46.0 63.7
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4.6 Results

Figure 4.3: 2D qualitative evaluation on Sitting, and Sitting Down motions respectively

from top to bottom.

Figure 4.4: 2D qualitative evaluation on Walking motion using the data obtained by

OpenPose.

defined as the prediction results obtained by our model, while the black and grey are

defined as the corresponding ground truth. The visualization is made by generating

a random frame in motion. Generally, our model could predict human motion quite

well qualitatively. Figures 4.6f and 4.6d show the visualization of the taking photo

and sitting motion. Our model failed to predict the left-hand and right-hand gestures.

Despite that, the result of the phoning and greeting motions failed to be predicted in

the right-leg and left-leg pose. These results aligned with the quantitative evaluation

based on MPJPE when the phoning and greeting motions obtained big MPJPE values,

which indicates the motion to be quite difficult to predict due to the dynamic movement

over time, even though the other motions show the tendency to be predicted well.
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4. TEMPORAL-SPATIAL TIME SERIES SELF-ATTENTION FOR 2D
AND 3D HUMAN MOTION FORECASTING

(a) Walking (b) Eating

(c) Smoking (d) Discussion

(e) Direction (f) Greeting

Figure 4.5: Long-term prediction result by our model in Human3.6M dataset.
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4.6 Results

(a) Phoning (b) Posing

(c) Purchases (d) Sitting

(e) Sitting Down (f) Taking Photo

Figure 4.6: Long-term prediction result by our model in Human3.6M dataset.
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4. TEMPORAL-SPATIAL TIME SERIES SELF-ATTENTION FOR 2D
AND 3D HUMAN MOTION FORECASTING

(a) Waiting (b) Walking with Dog

(c) Walking Together

Figure 4.7: Long-term prediction result by our model in Human3.6M dataset.
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4.7 Summary

Table 4.8: Computational complexity analysis on long-term 2D human motion forecast-

ing.

Method Parameters ≈ FLOPs MPJPE

LSTM 300k 109M 25.69

GRU 230k 82M 23.09

TS-TSSA (Ours) 313k 0.89M 15.17

Table 4.9: Computational complexity analysis on long-term 3D human motion forecast-

ing.

Method Parameters ≈ FLOPs MPJPE

MultiAttention [55] 3.4M - 110.1

MSR-GCN [56] 6.3M 192.4M 114.2

STS-GCN [8] 57.5k 7.1M 75.6

MotionMixer [9] 30.2k 2.1M 71.6

TS-TSSA (Ours) 308.1k 105.6M 73.2

4.6.3 Complexity Evaluation

Evaluations based on the number of parameters and floating operations FLOPs on

the model are compared for the computational cost and performance. Table.4.8 shows

the comparison of the parameters and approximate FLOPs on the long-term 2D hu-

man motion forecasting task. In comparison with the RNN-based method, our method

TS-TSSA obtained the best performance with nearly the same number of parameters

and estimated FLOPs 121 times smaller. Meanwhile on the Table.4.9 shows the 3D

human motion forecasting task. TS-TSSA (ours) obtained around the same perfor-

mance with 5 to 10 times the number of parameters compared to the STS-GCN[8] and

MotionMixer[9].

4.7 Summary

The objective of this research is to demonstrate the viability of 2D and 3D human

motion forecasting in real-world applications. Human motion forecasting research has

been conducted with quite a various methods, separating 2D and 3D input data. In
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4. TEMPORAL-SPATIAL TIME SERIES SELF-ATTENTION FOR 2D
AND 3D HUMAN MOTION FORECASTING

this paper, Temporal-Spatial Time Series Self-Attention (TS-TSSA) is proposed to

forecast human motion for short and long-term prediction tasks. As a result, TS-TSSA

outperformed the RNN-based method based on the MPJPE and MPJVE evaluation

metrics for the 2D forecasting task using the Human3.6M dataset and 3DPW dataset.

Using the data obtained from the pose estimation method as the input data, our method

did not manage to yield satisfactory predictions of the human pose. Nevertheless, it

still could provide good forecasting results regarding the human body’s position. This

indicates that our method is applicable to real-world applications to provide human

movement forecasting. While for the 3D forecasting task, our method performed well

based on the MPJPE evaluation metric. The results show comparable achievement

to the previous related works. In conclusion, our method could be suitable for both

2D and 3D human motion forecasting tasks. The author believes that these outcomes

could give more improvement on the way of using the self-attention-based approach.
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Chapter 5

Conclusion

Autonomous systems have been developed for various applications. However, for safety,

these systems must consider the movement of objects around them. This is where

human motion prediction comes into play, as it helps to prevent accidents, both for

others and for the autonomous devices themselves. For example, self-driving cars can

use human motion prediction to anticipate and respond to human behavior, robots can

use it to interact more effectively with humans, and devices designed to support the

elderly can use it to prevent falls. Many more potential applications could benefit from

human motion prediction. With this in mind, the author proposes steps of research to

realize human motion prediction in real-world applications.

In the second chapter, the author proposed a method to predict human motion

using the unannotated data obtained from the commonly used method to generate the

human body pose. The 2D pose estimation: OpenPose is used to generate the human

body pose in real-time, then the RNN-LSTM and Kalman Filter are used to generate

the future human motion for one second ahead. As a result, this research confirmed

the usability of 2D human motion prediction in real-world applications.

In the third chapter, the author proposed the improvement of the 2D human mo-

tion prediction by using the annotated data and the novel proposed method. The

Human3.6M and 3DPW datasets are used as the main dataset to be compared with

the other state-of-the-art methods. The author proposed the Time Series Self-Attention

method as the model to predict human motion for the short and long term. As a result,

our proposed method outperformed the RNN-LSTM and RNN-GRU in the short and

long-term prediction task using the Human3.6M dataset. However, when using the
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5. CONCLUSION

3DPW dataset, our method, as well as the RNN-based method, could not perform well

due to the varied uncategorized data in the 3DPW dataset. In addition to the usability

confirmation, the author added the evaluation using the data obtained by the pose

estimation method. As a result, our method could perform very well in predicting the

human location but could not predict well regarding the human pose. In conclusion,

this research could provide improvement of the 2D human motion prediction and could

be used as the baseline to be compared with other works in the future.

The technologies to obtain a more precise location of the human pose are growing.

The more specific data that could be obtained means the more complex process of

generating the human motion prediction. Due to this reason, in the fourth chapter,

the author applied the Time Series Self-Attention method in the 3D human motion

forecasting task. Since this research has been developed by many other previous works,

our proposed method could be compared with other related research with respect to

the dataset, the configuration of the data, and the evaluation metric. As a result, our

method could predict well the human pose using the Human3.6M and reach the 2nd

world best position based on the MPJPE evaluation metric for the short and long-term

prediction task. However, our method could not predict well when using the angular

data in which the MAE evaluation metric takes place. By using AMASS dataset, our

method could perform well in predicting human motion, but the results are not quite

competitive compared to the other previous methods.

In conclusion, the author performed the study on 2D and 3D human motion pre-

diction. the author confirmed the usability and performance of the proposed method

in both 2D and 3D human motion prediction for the short and long term. The self-

attention-based method is applicable for time-series tasks such as human motion pre-

diction, which could lead to future works for more applications of deep learning, such

as the classification task, object recognition, and many more applications.
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