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Abstract

The sexual phase of Plasmodium represents a crucial step in malaria transmission, during

which these parasites fertilize and form ookinetes to infect mosquitoes. Plasmodium devel-

opment after fertilization is thought to proceed with female-stored mRNAs until the formation

of a retort-form ookinete; thus, transcriptional activity in zygotes has previously been consid-

ered quiescent. In this study, we reveal the essential role of transcriptional activity in zygotes

by investigating the function of a newly identified AP2 transcription factor, AP2-Z, in P. ber-

ghei. ap2-z was previously reported as a female transcriptional regulator gene whose dis-

ruption resulted in developmental arrest at the retort stage of ookinetes. In this study,

although ap2-z was transcribed in females, we show that it was translationally repressed by

the DOZI complex and translated after fertilization with peak expression at the zygote stage.

ChIP-seq analysis of AP2-Z shows that it binds on specific DNA motifs, targeting the major-

ity of genes known as an essential component of ookinetes, which largely overlap with the

AP2-O targets, as well as genes that are unique among the targets of other sexual transcrip-

tion factors. The results of this study also indicate the existence of a cascade of transcription

factors, beginning with AP2-G, that proceeds from gametocytogenesis to ookinete

formation.

Author summary

Sexual development in Plasmodium parasites, a causative agent of malaria, is essential for

their transmission from vertebrate hosts to mosquitoes. This important developmental

process proceeds as follows: formation of a gametocyte/gamete, fertilization and conver-

sion of the zygote into the mosquito midgut invasive stage, called the ookinete. As a target

of transmission blocking strategies, it is important to understand the mechanisms regulat-

ing Plasmodium sexual development. In this study, we assessed transcriptional regulation

after fertilization by investigating the function of a novel transcription factor, AP2-Z. The

results revealed the essential role of de novo transcription activated by AP2-Z in zygotes

for promoting ookinete development. As transcriptional activity during the zygote stage

has previously been considered silent in Plasmodium, novel genes important for ookinete
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formation can now be explored in the target genes of AP2-Z. Investigating the functions

of these genes can help us understand the mechanisms of Plasmodium zygote/ookinete

development and identify new targets for transmission blocking vaccines.

Introduction

Malaria is a serious infectious disease caused by Plasmodium parasites of the Apicomplexa

phylum, which are propagated among humans through bites from Anopheles mosquitoes [1].

Successful transmission from vertebrate hosts to mosquitoes requires these parasites to pro-

ceed with complex sexual development [2,3]; therefore, understanding the mechanism of Plas-
modium sexual development is a crucial aspect of malaria epidemiology.

Plasmodium sexual development begins when a subpopulation of asexual blood-stage para-

sites differentiate into male and female gametocytes in the host blood stream [4,5]. Taken up

through mosquito blood feeding, these gametocytes then develop into gametes and fertilize.

The fertilized female gametes, or zygotes, then develop into a banana-shaped motile stage

known as ookinetes, which then invade the midgut epithelia to proceed with further develop-

ment beneath the basal lamina [6].

Plasmodium sexual development is regulated at both transcriptional and translational levels.

At the beginning of sexual development, gametocytogenesis is induced by the AP2 transcrip-

tion factor AP2-G, which is expressed in a subpopulation of blood-stage parasites [7–10]. Sub-

sequently, the transcriptional repressor AP2-G2 starts to be expressed in the early stage and

supports differentiation to gametocytes [11,12]. In addition, AP2-G5, another transcriptional

repressor, promotes development of early gametocytes [13]. Early gametocytes then differenti-

ate into male and female gametocytes. For females, two transcription factors, AP2-FG and

AP2-O3, function as a transcriptional activator and repressor, respectively, to promote devel-

opment of female gametocytes [14,15]. In addition, during female development, parasites pre-

pare for development after fertilization by preserving mRNAs [16]. This preservation of

mRNAs is conducted by a translational repressor complex, in which at least two factors, ATP-

dependent RNA helicase DDX6 (DOZI) and trailer hitch homolog (CITH), are currently

known to be involved [16–19].

In Plasmodium berghei, fertilized females, called zygote, undergo meiosis within 4 h post-

fertilization [18]. After 6–8 h of zygote development, parasites start forming an apical protru-

sion, becoming retort-form ookinetes, and then develop into mature ookinetes approximately

20 h post-fertilization [20]. For these processes, female-stored mRNA plays an essential role;

parasites that lack dozi are not able to begin either meiosis or apical protrusion formation

[16,18]. In contrast, the role of de novo transcripts in zygotes has not been investigated,

although it has been shown that Plasmodium zygotes can develop into retort-form ookinetes

even in the presence of a transcriptional inhibitor [19]. Therefore, during the development of

Plasmodium zygotes, transcriptional activity is considered to be quiescent, similar to animal

embryos whose transcriptional activity is quiescent during the early stage after fertilization

[21,22]. For the late stage of ookinete development, parasites must activate de novo transcrip-

tion. AP2-O is one transcription factor that is expressed from retort-form ookinetes to mature

ookinetes [23], which activates the majority of known ookinete genes; thus, disruption of

ap2-o results in impaired development of ookinetes [24]. In addition, AP2-O2 is also essential

for ookinete maturation in P. berghei [25], although disruption of ap2-o2 in P. yoelii does not

affect ookinete development [26]. Thus, according to existing studies of transcriptional and
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translational regulators, Plasmodium ookinete development is currently considered to be pro-

moted by female-stored mRNAs in the early stage and de novo transcripts in the late stage.

In a previous study, we identified an AP2 transcription factor-related gene, ap2r-1, as a tar-

get gene of AP2-G and AP2-FG, and showed that its disruption affects ookinete development

[10]. Here, we demonstrate that AP2R-1 is an AP2 transcription factor that functions in

zygotes; hence, we rename it AP2-Z. By investigating the functions of AP2-Z, we reveal the

essential role of de novo transcription in zygotes for ookinete formation. Moreover, we also

demonstrate the existence of a transcriptional cascade, which starts with AP2-G, during Plas-
modium development from gametocytes to ookinetes.

Results

ap2-z is an AP2-family protein gene conserved in Apicomplexan parasites

We previously identified ap2-z (PBANKA_0612400) as a target gene of AP2-G and AP2-FG.

This gene is expressed in female gametocytes, and its transcription is highly female-specific in

both P. berghei and P. falciparum (approximately 100-fold and 20-fold higher in female game-

tocytes compared to male gametocytes, respectively) as shown by studies that performed stage-

specific RNA-seq analysis [27–29]. Disruption of ap2-z results in arrested zygote development

at the retort stage of ookinetes although meiotic replication was not affected as we assessed by

fluorescence-activated cell sorting (FACS) analysis (S1 Fig). AP2-Z has a putative AP2 domain

that has not been identified by homology searches because of a non-canonical linker peptide

between the second and third sheet (Fig 1A). The domain is highly conserved in the Plasmo-
dium species except for the linker peptide, which varies in amino acid sequence and length

among the species (S2 Fig). To investigate whether AP2-Z is conserved in other organisms, we

searched for any proteins with a domain similar to the putative AP2 domain of AP2-Z. Pro-

tein–protein BLAST (blastp) search identified proteins with a homologous domain to the puta-

tive AP2 domain of AP2-Z from Apicomplexan parasites, such as Toxoplasma gondii and

Eimeria tenella (Fig 1B). The conserved amino acids among Plasmodium AP2-Z and these

blastp-searched proteins were mostly found within the putative beta sheets and alpha helix,

and did not have the non-canonical linker peptide, except for the protein from Hepatocystis
(Fig 1B). Notably, these conserved amino acids contained consensus amino acids for the AP2

domain [30], indicating that this conserved domain is actually an AP2 domain. The homolo-

gous protein from Toxoplasma is consistently annotated as “AP2 domain transcription factor

AP2X-6,” and the homologous domain from all blastp-searched proteins without the non-

canonical linker was assigned as “AP2” in a protein domain search using a Simple Modular

Architecture Research Tool (SMART, http://smart.embl-heidelberg.de/). The phylogenetic

tree of Plasmodium AP2-Z and the blastp-searched proteins was topologically consistent with

the species tree of Apicomplexa, which further suggested that these proteins are orthologs (Fig

1C). In this regard, their ancestral protein probably did not include the non-canonical linker

peptide within the conserved domain, with Plasmodium and Hepatocystis species acquiring

this linker during evolution instead. Collectively, we concluded that AP2-Z is an AP2-family

protein conserved in the phylum Apicomplexa.

ap2-z is translationally repressed in female gametocytes by the DOZI

complex and expressed in zygotes

In our previous study, we tagged AP2-Z with mNeonGreen fluorescent protein (mNG) using a

conventional homologous recombination method (AP2-Z::mNG), and observed a fluorescent

signal in the nucleus of female gametocytes (Fig 2A), consistent with the previous observation
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that it is a target of AP2-G and AP2-FG [10]. To evaluate whether ap2-z is actually activated by

AP2-G and AP2-FG, we planned to perform a promoter assay on the endogenous ap2-z:
assessing roles of binding motifs of these two transcription factors as a cis-regulatory element

by introducing mutations on them. However, when we developed parasites expressing green

fluorescent protein (GFP)-fused AP2-Z (AP2-Z::GFP) by the CRISPR/Cas9 system using the

Cas9-expressing parasite (PbCas9) [31] (S3A Fig) to perform the promoter assay, we observed

no fluorescent signal in any blood-stage parasites, including female gametocytes (Fig 2A).

In the homologous recombination method used previously, the 3’ untranslated region

(UTR) of ap2-z was replaced by that of hsp70 upon tagging AP2-Z with mNG (Fig 2B, left)

[10]. However, in this study, we inserted gfp at the 3’ end of ap2-z by CRISPR/Cas9 without

replacing the original 3’ UTR (Fig 2B, right). In female gametocytes of the Plasmodium species,

Fig 1. Identification of possible AP2-Z orthologs in Apicomplexan parasites. (A) A schematic illustration of AP2-Z. Blue box shows the AP2 domain. Beta-

sheet and α-helix regions in the AP2 domain were predicted using PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) and indicated in orange and green boxes,

respectively. (B) Alignment of conserved amino acid sequences from AP2-Z and blastp-searched proteins by the ClustalW program in Mega X. Positions at

which all sequences have an identical amino acid are indicated by two asterisks, whereas positions with amino acid residues of the same property are indicated

by one asterisk. Amino acid sequences were retrieved from PlasmoDB or the NCBI database (P. berghei, PBANKA_0612400; P. falciparum, PF3D7_0411000;

Hepatocystis, VWU49277; Cardiosporidium cionae, KAF8822898; Toxoplasma gondii, XP_018635762; Neospora caninum, XP_003884720; Eimeria tenella,

XP_013229162; Cyclospora cayetanensis, OEH74626). (C) Phylogenetic tree of AP2-Z and blastp-searched proteins, which was inferred from their whole amino

acid sequences using the Maximum Likelihood method and JTT matrix-based model. Tree is drawn to scale, with branch lengths measured according to the

number of substitutions per site. Species of the same family, order, and class are enclosed by thin, thick, and dashed lines, respectively.

https://doi.org/10.1371/journal.ppat.1010510.g001
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a subset of genes is translationally repressed by the DOZI complex in a 5’ UTR- or 3’ UTR-

dependent manner [17,19]. Therefore, we assumed that ap2-z is translationally repressed by

the DOZI complex in normal females but translated in females of AP2-Z::mNG because of the

replacement of 3’ UTR. Consistent with this assumption, strong fluorescence was observed in

the nucleus of AP2-Z::GFP zygotes.

To further address whether ap2-z is translationally repressed by the DOZI complex, we

developed parasites expressing GFP-fused DOZI (DOZI::GFP) and performed RNA immuno-

precipitation (RIP) followed by reverse transcription quantitative polymerase chain reaction

(RT-qPCR) analysis. The analysis showed that more than 20% of ap2-z transcript was immu-

noprecipitated with anti-GFP antibody (Fig 2C). The percentage was comparable to that of

p28, which is known as a target of the DOZI complex [16,19]. On the other hand, the transcript

of p47, which is a gene translated in females [32], was only slightly detected in the immunopre-

cipitated samples. Therefore, these results validated that ap2-z was translationally repressed by

the DOZI complex in female gametocytes.

Given the above results, we next assessed the expression of AP2-Z in a time course manner

during zygote/ookinete development using the AP2-Z::GFP parasite. We performed ookinete

culture in which parasite development proceeds generally as illustrated in Fig 2D. In ookinete

cultures, gamete activation occurs within 15 min, and fertilization within 60 min. After fertili-

zation, zygote development continues until approximately 8 h after the start of ookinete cul-

ture (hoc), and then parasites start forming apical protrusion. Most fertilized parasites develop

into mature ookinetes in approximately 20 hoc. Nuclear-localized fluorescence began to

appear in zygotes at 4 hoc and became stronger at 6 hoc (Fig 2E). The strong fluorescence con-

tinued until zygotes started forming an apical protrusion (8–12 hoc). The signal then faded in

retort-form ookinetes and became barely detectable in the nuclei of banana-shaped ookinetes

(Fig 2E). Therefore, AP2-Z is mainly expressed in zygotes prior to apical protrusion formation.

Considering the expression of AP2-O in the late stage of ookinete development (Fig 2E) [23],

these results might indicate that AP2-Z is responsible for transcriptional regulation until

AP2-O starts to be expressed.

ap2-z is activated by AP2-G and AP2-FG in female gametocytes

To evaluate whether ap2-z transcription is activated downstream of AP2-G and AP2-FG, we

disrupted their binding motifs located upstream of ap2-z by CRISPR/Cas9 using AP2-Z::GFP

parasites (AP2-Z::GFP_cismut) (Figs 3A and S2B) and assessed the expression of AP2-Z in the

zygotes. The upstream region of ap2-z has two binding motifs of AP2-G [10] and one motif of

AP2-FG [14]. These motifs are located near to each other, with one of the AP2-G motifs

Fig 2. Expression profile of AP2-Z during sexual development and its translational repression in females. (A) Expression of AP2-Z in

gametocytes of the AP2-Z::mNG (left) and the AP2-Z::GFP parasite (right). Nuclei were stained with Hoechst 33342. Scale bar = 5 μm. (B)

Schematic illustrations of fluorescent protein-tagging strategies of AP2-Z. In the AP2-Z::mNG parasite, the 3’ UTR of ap2-z was substituted

upon fusion withmNG (left). In the AP2-Z::GFP parasite, the endogenous 3’UTR was retained upon gfp-fusion performed by CRISPR/Cas9

(right). (C) Enrichment of DOZI-associated transcripts evaluated by RNA immunoprecipitation-qPCR analysis. Pre-immunoprecipitated

samples were used as the input. Enrichment of p28 and p47 transcripts was analyzed as a positive and negative control, respectively. The p-

value on the graph was calculated by Student’s t-test. Error bars indicate the standard error of the mean (n = 3). (D) Schematic illustration

of zygote/ookinete development in ookinete cultures for P. berghei. When gametocytes are subjected to ookinete culture medium, gamete

activation is induced by low temperature and rise in pH, which completes within 15 min. The gametes then find a mate and complete

fertilization process, including cell fusion and nuclear fusion, within 60 min after starting ookinete cultures. After fertilization, zygote

development takes for 6–8 h, and then the zygotes become retort-form ookinetes starting formation of apical protrusion. Finally, the

parasites develop into mature ookinetes in approximately 20 hoc. (E) Expression of AP2-Z and AP2-O during ookinete culture using the

AP2-Z::GFP parasite and the parasite expressing GFP-fused AP2-O, which generated in the previous study [23], respectively. Nuclei were

stained with Hoechst 33342. Apical protrusion of the retort-form ookinete at 16 hoc is highlighted with a white dashed line. Scale

bar = 5 μm.

https://doi.org/10.1371/journal.ppat.1010510.g002
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overlapping with the AP2-FG motif, at approximately 650 bp upstream from the start codon of

ap2-z (Fig 3A). Disruption of these three motifs resulted in complete loss of fluorescence in the

nucleus of zygotes (Fig 3B). Furthermore, the AP2-Z::GFP_cismut parasites lost the ability to

produce banana-shaped ookinetes, as with ap2-z knockout parasites [ap2-z(-)] (Fig 3C and

3D). We further examined the expression of ap2-z in the AP2-Z::GFP_cismut at the RNA

level. Mice infected with AP2-Z::GFP or AP2-Z::GFP_cismut parasites were treated with sulfa-

diazine to enrich gametocytes by killing asexual blood-stage parasites. Total RNA was then

harvested from the infected blood and subjected to RT-qPCR analysis. The amount of ap2-z
transcripts relative to that of p28 was downregulated more than 200-fold in AP2-Z::GFP_cis-

mut compared to that in AP2-Z::GFP (Fig 3E). Collectively, these results suggested that tran-

scription of ap2-z is activated by AP2-G and AP2-FG in the early and female gametocyte,

respectively.

Fig 3. Transcriptional activation of ap2-z by AP2-G and AP2-FG. (A) Integrative Genomics Viewer images from the ChIP-seq data of AP2-G and

AP2-FG for the upstream region of ap2-z. Binding motifs of AP2-G and AP2-FG in the peak region are indicated by orange and purple bars,

respectively. Mutations introduced to these motifs are described on the right. The same mutations were introduced to both of the two AP2-G motifs. (B)

Expression of AP2-Z in the AP2-Z::GFP_cismut at 6 hoc. Nuclei were stained with Hoechst 33342. Scale bar = 5 μm. (C) Representative Giemsa-stained

image of ookinete in AP2-Z::GFP, AP2-Z::GFP_cismut, and ap2-z(-) parasites at 20 hoc. (D) Rate of conversion to ookinetes against all female-derived

cells in AP2-Z::GFP and AP2-Z::GFP_cismut at 20 hoc. (E) Relative amounts of ap2-z transcripts in gametocyte assessed by RT-qPCR analysis. The p28
gene was used as the internal control. Value for AP2-Z::GFP_cismut is given in brackets as it is too small to be depicted in the graph. The p-value on the

graph was calculated by the Student’s t-test. Error bars indicate the standard error of the mean (n = 3).

https://doi.org/10.1371/journal.ppat.1010510.g003
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AP2-Z binds to specific sites of the genome recognizing (T/C)(A/C)TG(A/

T)AC(A/G) motifs

To assess the target genes of AP2-Z, we performed chromatin immunoprecipitation followed

by high-throughput sequencing (ChIP-seq) analysis using AP2-Z::GFP parasites. The parasites

were harvested at 6 hoc, when parasites have not yet developed into retort-form or mature

ookinete, and subjected to ChIP-seq experiments using anti-GFP antibody, and the experi-

ments were performed in duplicate. The overall peak patterns were similar between each repli-

cate, indicating good reproducibility of the two experiments (Fig 4A). Experiment 1 and 2

identified 1,214 and 1,256 peaks with fold enrichment > 4.0, respectively, with 1,110 overlap-

ping peaks between the two experiments (Fig 4B, S1A and S1B Table).

Of the 1,110 common peaks, 643 peaks (57.9%) were located within intergenic regions,

most of which were located upstream of the genes (Fig 4C). The ratio of peaks located on gene

bodies (42.1%) was clearly higher than that in the ChIP-seq of AP2-G and AP2-FG, which

were expressed in the gametocyte stages (Fig 4D) [10,14]. However, when we analyzed our pre-

vious ChIP-seq data of AP2-O, which is an essential transcription factor for ookinete develop-

ment, the ratio of peaks located on gene bodies was 36.5%, which was comparable to that of

AP2-Z (Fig 4D) [24].

Next, we searched for motifs enriched in the peak regions to predict the binding motif of

AP2-Z. Motif enrichment analysis by Fisher’s exact test showed that the TATGAACA motif

was most enriched within 50 bp from the peak summits, with a p-value of 3.69 × 10−215. We

Fig 4. ChIP-seq analysis of AP2-Z. (A) Integrative Genomics Viewer images from ChIP-seq experiment 1 and 2 of AP2-Z in a part of chromosome 6.

Histograms show sequence coverage of ChIP data at each base. (B) Venn diagram of number of peaks identified in ChIP-seq experiment 1 and 2. (C)

Classification of peak locations. Light green and gray bars around the pie chart indicate the intergenic region and gene body region, respectively. (D) Ratio of

peaks located on the gene body and intergenic region for ChIP-seq of AP2-G, AP2-FG, AP2-Z, and AP2-O. (E) Sequence logo constructed from TGAAC motifs

in the peak regions (top) and predicted binding motif of AP2-Z (bottom). Sequence logos are depicted using WebLogo 3 (http://weblogo.threeplusone.com/

create.cgi). (F) Histogram showing the distance between the peak summit and the nearest (T/C)(A/C)TG(A/T)AC(A/G) motif for each ChIP peak.

https://doi.org/10.1371/journal.ppat.1010510.g004
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then identified enrichment of several further motifs that contained TGAAC and, taking them

together, obtained the (T/C)(A/C)TGAAC(A/G) motif. When constructing the sequence logo

by WebLogo3 using the sequences around the TGAAC motifs nearest to each peak summit,

the above 8-bp motif was consistently depicted (Fig 4E, top). In addition to the (T/C)(A/C)

TGAAC(A/G) motif, we also found enrichment of motifs that match (T/C)(A/C)TGTACA

with a p-value of 5.16 × 10−84. Taken together, we obtained the (T/C)(A/C)TG(A/T)AC(A/G)

motif as a putative binding motif of AP2-Z (Fig 4E, bottom). The motif was identified within

100 bp from the summits of 75.5% peaks; the closer the motif was to the summits, the more

peaks were identified (Fig 4F).

AP2-Z broadly targets genes that are important for ookinete development

Next, we identified the target genes of AP2-Z from the ChIP-seq data. The analysis showed

that AP2-Z was bound within the 1,200-bp region upstream of 516 genes (S2 Table). To evalu-

ate the role of AP2-Z in zygote development, we classified these target genes into several

groups according to their product descriptions annotated on PlasmoDB (https://plasmodb.

org/plasmo/app/). The target genes contained 330 functionally annotated genes. Of these

annotated target genes, 49 genes were categorized to the group ‘transcription and translation,’

which was the largest of 14 functional groups (Fig 5A). This group contained putative transla-

tion initiation factor genes, such as eIF3b and eIF6, elongation factor genes, and genes related

to ribosomal biogenesis. Furthermore, the group ‘transcription and translation’ also included

ap2-o, which is the gene coding a transcription factor essential for ookinete maturation (Fig

5B). In addition, although not identified as a target because of the 1,200-bp cutoff, we found a

Fig 5. Target analysis of AP2-Z using ChIP-seq data. (A) Classification of the target genes of AP2-Z into 14 functional groups according to their product

description annotated on PlasmoDB. (B) Transcription factor genes in the targets of AP2-Z. Histograms show sequence coverage of the ChIP sample in

experiment 1. Gray bars indicate a partial open reading frame. Positions of the AP2-Z binding motifs are indicated in red. (C) Representative peak images of

target genes essential for ookinete development. (D) GO analysis showing enrichment of genes with specific functions in the targets of AP2-Z. Terms with

p-value< 0.01 were shown. CC = Cellular Components, BP = Biological Process.

https://doi.org/10.1371/journal.ppat.1010510.g005
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peak at approximately 1,500 bp upstream of ap2-o2. Considering the fact that ap2-z is activated

by AP2-G and AP2-FG, these results suggested the existence of a cascade of transcription fac-

tors, starting from AP2-G, during the sexual development of Plasmodium. Besides ap2-o and

ap2-o2, ap2-z itself was also included in the targets, suggesting the existence of transcriptional

autoregulation (Fig 5B), a characteristic widely observed during prokaryotic and eukaryotic

transcriptional regulation [33,34]. As AP2-G and AP2-FG are no longer expressed after fertili-

zation, this autoregulation is probably required for the stable expression of AP2-Z during

zygote development.

Other than the ‘transcription and translation’ group, the target genes largely contained

genes that are important for ookinete development (Fig 5C). The group ‘pellicle/IMC’

included gap40, gap45, and 15 inner membrane complex (IMC) protein genes, which are

related to the pellicle structure of ookinetes. Most of the known ookinete microneme genes,

such as plp3, celtos, and ctrp, were included in the group ‘secretory proteins.’ Gene ontology

(GO) analysis further supported these results. In the category ‘Cellular Components (CC)’, the

target genes of AP2-Z were most enriched in ‘pellicle,’ with a p-value of 4.72 × 10−15 (Fig 5D).

Furthermore, in the category ‘Biological Process (BP)’, the target genes were most enriched in

‘DNA repair,’ which indicated that AP2-Z may also contribute to genome stability after mei-

otic replication in the zygote stage.

Target genes of AP2-Z are activated in early zygotes

Since de novo transcription in zygotes were previously considered silent, we next investigated

whether the target genes of AP2-Z are actually transcribed in the zygotes. We performed

RNA-seq analysis on the wild-type Plasmodium berghei ANKA strain (WT) at the gametocyte

stage and 6 hoc to identify genes upregulated after fertilization. Compared to gametocytes, 512

genes were significantly upregulated (log2(fold change)> 1, p-value adjusted for multiple test-

ing according to the Benjamini–Hochberg procedure (p-value adj) < 0.01) in the parasites at 6

hoc (Fig 6A, S3 Table). These zygote-upregulated genes (ZUG) contained known ookinete

genes, such as cdpk3, celtos, and ctrp, indicating that transcription of these ookinete genes

already occurs during the early stage of zygote development. Of the 512 ZUGs, 198 genes were

targets of AP2-Z, showing significant enrichment with a p-value of 3.7 × 10−69 by Fisher’s

exact test. Furthermore, more than 80% of the target genes were more highly expressed in

zygotes at 6 hoc than in gametocytes (log2(fold change) > 0) (Fig 6B), indicating that the tar-

gets of AP2-Z were transcribed after fertilization. Detecting significant upregulation in only a

subset of the target genes (38% of the targets) was probably due to the overlap with female-

stored mRNAs. Collectively, these results indicated that the target genes of AP2-Z are actively

transcribed during the zygote stage.

To further confirm the relationship between the target genes of AP2-Z and the ZUGs, we

investigated whether the binding motif of AP2-Z was enriched in the upstream region of the

ZUGs. We assessed enrichment of any motif in the upstream region (300–1,200 bp from the

start codon) of ZUGs compared to that of the other genes by Fisher’s exact test. In the

upstream region of ZUGs, TATGAACA, one of the binding motifs of AP2-Z [(T/C)(A/C)TG

(A/T)AC(A/G)] was enriched, with a p-value of 7.2 × 10−16 (Fig 6C). Furthermore, another

motif that partially contained the binding motif of AP2-Z, TTATGAAC, was also significantly

enriched, with a p-value of 1.2 × 10−13. This result strongly indicated that AP2-Z functions as a

major transcription factor during the early stage of zygote/ookinete development. The other

enriched motifs, including the most enriched motif, fully or partially contained the binding

motif of AP2-O [TAGC(T/C)A] (Fig 6C) [24]. Consistently, ZUGs contained 190 AP2-O tar-

gets, accounting for 37% of ZUGs. Enrichment of the AP2-O binding motif could be due to
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the large overlap between the target genes of AP2-Z and AP2-O, which is evaluated later in

detail. Notably, as with our result for the zygote stage, Witmer et al. reported a similar result

for the mature ookinete stage, where the binding motif of AP2-O should be a major cis-ele-

ment for upregulation of genes; in the upstream region of genes whose expression was upregu-

lated more than 8-fold in mature ookinetes compared to female gametocytes, a motif almost

identical to the AP2-Z binding motif, G(T/A)GAACA, was detected as the second most

enriched motif (next to the binding motif of AP2-O) [29].

Target genes of AP2-Z are downregulated in ap2-z(-)

To evaluate the contribution of AP2-Z to transcriptional regulation in zygotes, we performed

differential expression analysis between WT and ap2-z(-) by RNA-seq. The analysis revealed

that 161 genes, excluding ap2-z, were significantly downregulated (log2(fold change) < -1, p-

value adj< 0.01) and 184 were significantly upregulated (log2(fold change) > 1, p-value

adj< 0.01) in ap2-z(-) compared to WT at 6 hoc (Fig 7A and 7B, S4A and S4B Table). Of these

downregulated genes, 86 genes were a target gene of AP2-Z, showing enrichment of the target

genes in the downregulated genes (p-value = 1.8 × 10−40 by Fisher’s exact test). In addition, the

mean value of log2(fold change) for the target genes was significantly lower than that for the

other genes, with a p-value of 6.2 × 10−65 by Student’s t-test, indicating that the target genes

were generally downregulated in ap2-z(-) (Fig 7B). Nevertheless, downregulation was only

Fig 6. Differential expression analysis between gametocytes and zygotes at 6 hoc. (A) Volcano plot showing differential

expression analysis between gametocytes and zygotes at 6 hoc. Red dot represents ap2-z and blue dots represent the target

genes of AP2-Z. Green horizontal line indicates a p-value of 0.05 and a vertical line indicates a log2(fold change) of 1. (B)

Histogram of the number of AP2-Z targets against the log2(fold change) value (bin = 0.5) in the differential expression

analysis. Red vertical line indicates a log2(fold change) of 0. (C) Eight-base motifs enriched in the upstream of zygote-

upregulated genes. AP2-Z motifs are indicated in blue and AP2-O motifs are indicated in green. Motifs were ranked

according to their p-values.

https://doi.org/10.1371/journal.ppat.1010510.g006
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significant for a subset of the target genes (17%). We assumed that downregulation of some

targets was not significant because they were already transcribed in female gametocytes, mostly

by AP2-FG. Consistently, of 132 genes targeted by both AP2-Z and AP2-FG, only eight were

significantly downregulated in ap2-z(-) (Fig 7C). In addition, the mean value of log2(fold

change) for the common targets was significantly lower than that for the other AP2-Z targets,

with a p-value of 4.8 × 10−5 by Student’s t-test.

Comparative targetome analyses between AP2-FG, AP2-Z, and AP2-O

suggests their roles in regulating zygote/ookinete development

The results of this study suggested that gene expression during Plasmodium zygote/ookinete

development is regulated by AP2-FG, as female-stored mRNA, and AP2-Z and AP2-O, as de
novo transcripts. In this regard, we attempted to investigate the role of each of these three tran-

scription factors by comparing their target genes.

First, we compared the target genes of AP2-Z and AP2-O. The two target gene sets showed

a large overlap (307 genes), accounting for 60% of the targets of AP2-Z (Fig 8A, S2 Table). This

result was consistent with the above result that the binding motif of AP2-O was enriched in

the upstream of ZUGs. These overlapped genes included most of the known microneme

genes, ookinete surface protein genes, and IMC/pellicle genes, which are all related to parasite

invasion. Therefore, the main role of AP2-Z may be promoting the development of an invasive

stage until expression of AP2-O. Accordingly, these common targets are continuously

Fig 7. Differential expression analysis between WT and ap2-z(-) at 6 hoc. (A) Volcano plot showing differential expression analysis between WT and ap2-z
(-) at 6 hoc. Blue dots represent the target genes of AP2-Z. Green horizontal line indicates a p-value of 0.05. Two vertical lines indicate log2(fold change) values

of 1 and −1. The plot for ap2-z is omitted from the graph [log2(fold change) = −4.5, p-value adj = 4.9 × 10−300]. (B) MA plot showing differential expression

analysis between WT and ap2-z(-) at 6 hoc. The p-value in the box represents a statistically significant difference between the mean values of log2(fold change)

for AP2-Z targets and the other genes. Two green lines indicate log2(fold change) values of 1 and −1, and the red line indicates a log2(fold change) of 0. (C)

Venn diagram showing the overlap between AP2-Z targets downregulated in ap2-z(-) and the common targets of AP2-Z and AP2-FG.

https://doi.org/10.1371/journal.ppat.1010510.g007
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activated by the two transcription factors throughout development from zygote to ookinete,

which may be important for efficiently promoting ookinete formation. These common target

genes have ChIP binding sites of both AP2-Z and AP2-O in their upstream region. Notably,

these binding sites of AP2-Z and AP2-O are located very close to each other in the upstream

region of the same genes (mostly within 100 bp). (Fig 8B and 8C). This result suggested that

the two transcription factors share the same regulatory regions for their common target genes,

and that a major transcriptional regulator gradually switches from AP2-Z to AP2-O in these

regulatory regions as zygote/ookinete development progresses.

In contrast, the target genes unique to AP2-Z or AP2-O contained only a small number of

known ookinete genes. These ookinete genes in the unique targets contained six known IMC/

pellicle genes for AP2-Z and two known microneme genes, cht1 and soap, for AP2-O (Fig 8A,

S2 Table). While IMC formation is necessary from the first steps of ookinete formation, i.e.
determination of apical polarity and construction of an apical protrusion [35], microneme is

essential for parasite motility and invasion in mature ookinetes. Therefore, these results might

suggest that, while regulating the common targets, AP2-Z and AP2-O also regulate their

unique target genes in accordance with their own expression pattern during zygote/ookinete

development.

Next, we investigated the target genes of AP2-Z and AP2-FG. Since the target genes of

AP2-FG contains most of the female-enriched genes [14], we considered that this analysis

could possibly provide an indication for the role of female-stored mRNAs unique from that of

Fig 8. Comparison of the target genes between AP2-Z, AP2-O, and AP2-FG. (A) Venn diagrams showing the overlap between the target genes of

AP2-Z and AP2-O (top) and AP2-Z and AP2-FG (bottom). Genes were assigned according to previous literature [24,36–44,50–75]. (B) Distance

between ChIP peaks of AP2-Z and AP2-O in the upstream region of their common targets. (C) Representative peak images of the common target

genes of AP2-Z and AP2-O. Positions of AP2-Z and AP2-O binding motifs are indicated in blue and green, respectively.

https://doi.org/10.1371/journal.ppat.1010510.g008
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de novo transcripts. The genes common in the two target sets contained 132 genes, represent-

ing approximately 25% of the AP2-Z targets (Fig 8A, S2 Table). Several IMC/pellicle genes

were included in the target genes of AP2-FG as both common and unique targets (Fig 8A, S2

Table), which, as with previous studies [14,18,19], indicated that female-stored genes are

essential for ookinete formation. This is consistent with the fact that fertilized females were

able to develop into retort-form ookinetes, even when ap2-z was disrupted [10] or fertilized

females were treated with a transcriptional inhibitor [19]. On the other hand, the AP2-FG tar-

gets contained only two known microneme genes, both of them as common targets, suggesting

that although playing a role in the initial steps of ookinete formation, female-stored mRNAs

may not largely contribute to the later steps. The other unique targets of AP2-FG contained

most of the genes related to meiosis and crystalloid biogenesis (Fig 8A, S2 Table), which are

not directly involved in ookinete formation [36–40]. This result suggested that developmental

processes other than ookinete formation are mainly regulated by female-stored mRNAs during

Plasmodium zygote/ookinete development.

Unique targets of AP2-Z contain an important gene for ookinete

development

Although the target genes of AP2-Z largely overlapped with those of AP2-O, they also con-

tained a considerable number of unique targets, most of which have not yet been functionally

assessed. To evaluate the roles of these unique targets, we assessed one of the unique target

genes with an unknown function, PBANKA_0508300 (hereafter named ookinete maturation

gene 1 (omg1)). Notably, omg1 was significantly upregulated at 6 hoc compared to gameto-

cytes, with a log2(fold change) of 3.33, suggesting its transcription after fertilization. By fusing

mNG to omg1 using CRISPR/Cas9 (OMG1::mNG) (S3C Fig), we investigated the omg1 expres-

sion pattern during ookinete development. In the blood stage, both female and male gameto-

cytes of OMG1::mNG showed no fluorescent signal (Fig 9A). After fertilization, a weak signal

started to appear at 6 hoc. This signal intensified in retort-form ookinetes and was still

observed in matured ookinetes. Fluorescence was observed along the periphery of ookinetes

but was absent in the zygote remnant and the apical end (Fig 9A). This pattern of distribution

is similar to that of several known IMC components, such as IMC1h and IMC1i [24,41–44].

Therefore, this result suggested that OMG1 is a component of IMC that plays a role in pellicle

formation. This was consistent with the comparative targetome analysis between AP2-Z and

AP2-O, in which it was suggested that unique targets of AP2-Z include genes required from

the first steps of ookinete formation, such as IMC/pellicle genes.

We next disrupted omg1 by CRISPR/Cas9 [omg1(-)] using the PbCas9 parasite, obtaining

two clonal lines from two independent transfection experiments (S3D Fig), and investigated

its phenotype. Both female and male gametocytes of omg1(-) appeared normal and were able

to fertilize. In addition, meiosis was also normal in omg1(-) as assessed by FACS analysis (S1

Fig). However, ookinete maturation was delayed in omg1(-) compared to PbCas9 parasites. In

omg1(-), the ratio of banana-shaped ookinetes to all fertilized cells was less than 10% at 16 hoc

for both clones, whereas more than half of fertilized cells had become banana-shaped ooki-

netes in PbCas9 at the same time point (Fig 9B). Nonetheless, disruption of omg1 did not

completely impair ookinete development as most fertilized cells became banana-shaped ooki-

netes prior to 30 hoc.

We further investigated whether the delay in ookinete maturation affects mosquito infectiv-

ity. Mice infected with PbCas9 parasites or omg1(-) were fed on Anopheles stephensimosqui-

toes. At 14 days post infection, the number of oocysts in the midgut of infected mosquitoes

was significantly reduced in both clones of omg1(-) compared to in PbCas9 (Fig 9C).
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Therefore, because of impaired ookinete development, omg1(-) might delay in penetrating the

peritrophic membrane to reach the basal lamina and hence be exposed to the hostile environ-

ment of the mosquito midgut for a longer time. Collectively, these results suggested that the

unique targets of AP2-Z contain genes that are important for ookinete maturation.

Discussion

Previous studies showed that, in P. berghei, female-stored mRNA is essential for zygote/ooki-

nete development; thus, disruption of the DOZI complex completely abolishes meiosis and the

ookinete conversion of fertilized females [16,18]. Moreover, fertilized females are able to

develop until the retort stage of ookinetes in the presence of a transcription inhibitor, which

suggested that female-stored mRNAs are sufficient for promoting the initial step of ookinete

conversion [19]. On the other hand, our previous studies revealed the essential role of de novo

Fig 9. Investigation of one of the unique targets of AP2-Z, omg1. (A) Expression of OMG1 in the OMG1::mNG parasite during sexual

development. Arrow heads indicate the apical end of the ookinete. Nuclei were stained with Hoechst 33342. Scale bar = 5 μm. (B) Ratio

of ookinetes and retort-form/abnormal zygotes to all fertilized cells in PbCas9 and omg1(-) at 16 hoc. Right side of the figure shows

Giemsa-stained images of ookinetes at 16 hoc in PbCas9 (top) and omg1(-) (bottom). Error bars indicate the standard error of the mean

(n = 3). (C) Number of midgut oocysts at 14 days post infection for PbCas9 and omg1(-). Lines indicate the mean values and the standard

error (n = 20). The p-value on the graph was calculated by Student’s t-test.

https://doi.org/10.1371/journal.ppat.1010510.g009
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transcription by AP2-O in ookinete maturation, where disruption of ap2-o resulted in devel-

opmental arrest at the retort stage of ookinetes [23]. Putting these studies together suggests

that Plasmodium zygote/ookinete development is promoted by female-stored mRNA until the

retort stage of ookinetes and de novo transcription by AP2-O in the later stage. Accordingly,

transcriptional activity in zygotes has been considered quiescent, similar to animal embryos

that are transcriptionally silent in the early stage after fertilization [21,22]. In this study, by

investigating the roles of a novel AP2-family transcription factor, AP2-Z, we demonstrated

that in P. berghei, de novo transcription after fertilization is actually activated by AP2-Z before

formation of apical protrusion and is essential for zygote/ookinete development. Therefore,

our results indicated that female-stored mRNAs and de novo transcripts by AP2-Z both pro-

mote the zygote development.

In Plasmodium, a single DNA-binding transcription factor, such as AP2-G and AP2-O,

comprehensively regulates certain stage-specific genes [10,14,24,45,46]. Such a simple mecha-

nism of gene activation might enable regulation of the entire Plasmodium life cycle by only a

small number of sequence-specific transcription factors (approximately 30 AP2-family tran-

scription factors and a few others have been identified to date [47–49]). If the life cycle is sim-

ply proceeded by sequential expression of such master transcription factors, it is plausible to

hypothesize that they make up a large cascade covering the entire life cycle; i.e., every stage-

specific transcription factor, while regulating the respective stage-specific genes, activates the

transcription factors responsible for regulation of the next stage. In this study, we confirmed

such a cascade during sexual development via the promoter assay of ap2-z; that is, transcrip-

tion of ap2-z in female gametocytes was completely depleted upon disruption of the binding

motifs of AP2-G and AP2-FG in the upstream region. Furthermore, through target analysis of

AP2-Z, we revealed that AP2-Z targets ap2-o and ap2-o2, which are essential transcription fac-

tors for ookinete maturation. These results indicated that a dynamic cascade of transcription

factors that starts from AP2-G occurs during the entire process of Plasmodium sexual develop-

ment (Fig 10A and 10B). If such a simple cascade of transcription factors was found through-

out the entire life cycle of Plasmodium, we should always be able to identify transcriptional

regulators for the next developmental stage from target analysis of a certain transcriptional

activator, just as we found ap2-z from the target genes of AP2-G and AP2-FG in this study.

Fig 10. Cascade of transcription factors during the sexual development of Plasmodium. (A) Schematic illustration of the sequential expression of sexual

transcription factors: AP2-G, AP2-FG, AP2-Z, and AP2-O. Blue arrows indicate a period of protein expression and dashed lines indicate a period of

translational repression. (B) Schematic illustration showing the hierarchical relationship of sexual transcription factors during Plasmodium sexual

development.

https://doi.org/10.1371/journal.ppat.1010510.g010
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In conclusion, this study revealed the essential role of transcription by AP2-Z in zygotes

and a dynamic cascade of transcription factors during Plasmodium sexual development. More-

over, our comparative targetome analyses provided new insights into the mechanisms regulat-

ing zygote/ookinete development. To further expand our knowledge of the molecular

mechanisms underlying zygote/ookinete development and transmission from vertebrate hosts

to mosquitoes, it is important to evaluate the functions of individual target genes. Especially,

we believe that investigation of the unique target genes of AP2-Z could help us elucidate new

aspects of the mechanism regulating ookinete development because these genes are not readily

identified in transcriptome analyses of gametocytes or ookinetes. In addition, although most

of the unique target genes of AP2-Z have not yet been functionally investigated, they may well

be important for zygote/ookinete development, as shown in this study with omg1.

Materials and methods

Ethics statement

All experiments in this study were performed according to recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health in order to mini-

mize animal suffering. All protocols were approved by the Animal Research Ethics Committee

of Mie University (permit number 23–29).

Parasite preparation

All parasites used in this study were inoculated in Balb/c or ddY mice. The ap2-z(-) and

DOZI::GFP parasites were derived from the WT ANKA strain, and all other transgenic para-

sites were generated by the CRISPR/Cas9 system using Cas9-expressing parasites called

PbCas9 [31]. Ookinete cultures were performed as follows. First, infected blood was intraperi-

toneally injected into phenylhydrazine (nacalai tesque)-treated mice. When the parasitemia

reached approximately 3%, the mice were fed sulfadiazine (Sigma) in their drinking water

(10 μg/ml) to kill asexual stage parasites. After two days of sulfadiazine treatment, infected

blood was withdrawn from the mice and diluted in culture medium (RPMI1640 medium

whose pH was adjusted to 8.0 with NaOH solution, supplemented with fetal calf serum and

penicillin/streptomycin, achieving final concentrations of 20% and 1%, respectively). Blood

samples were then passed through a column filled with cellulose powder CF11 or a Plasmodi-

pur filter for ChIP-seq and RNA-seq experiments, and the parasites were incubated at 20˚C.

Midgut oocysts and sporozoites were counted from the midgut of infected mosquitoes at 14

days post-infective blood meal.

Generation of transgenic parasites

For tagging DOZI with GFP, the conventional homologous recombination method was used

as previously reported [23]. Briefly, two homologous regions were cloned into the gfp-fusion

vector to fuse dozi in frame with gfp. The vector was linearized by restriction enzymes and

transfected into parasites by electroporation. Mutants were selected with 70 μg/mL pyrimeth-

amine in drinking water. The previously reported CRISPR/Cas9 system was used to generate

transgenic parasites by CRISPR/Cas9 [31]. Briefly, PbCas9 parasites, which constitutively

express Cas9 endonuclease, were transfected with donor DNA prepared by the overlap PCR

method and sgRNA vector by electroporation. After transfection, mice infected with the trans-

fectants were treated with 70 μg/mL of pyrimethamine (Sigma) in their drinking water for

three days to select the desired mutants. All clonal parasites were obtained by limiting dilution
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methods, and genotyping was performed by PCR and Sanger sequencing. All primers used in

this study are listed in S5 Table (No. 1–39).

Fluorescence-activated cell sorting analysis

FACS analysis was performed using the LSR Fortessa (Becton Dickinson). Nuclei were stained

with Hoechst 33342. Sulfadiazine-treated parasites, before starting ookinete cultures or at 8

hoc, were gated with forward-scatter and Hoechst fluorescence intensity. Gated cells were

assessed for Hoechst fluorescence intensity (450/50).

RNA immunoprecipitation experiments

For the RIP experiments, mice infected with DOZI::GFP parasites were treated with sulfadia-

zine in their drinking water to kill asexual parasites. After two days of drug treatment, whole

blood was withdrawn from the infected mice and washed once with RPMI medium. After lys-

ing red blood cells in ice-cold lysis solution (1.5 M NH4Cl, 0.1 M KHCO3, 10 mM EDTA), the

samples were subjected to RIP experiments, which were performed using RiboCluster Profiler

(MBL Co., Ltd.) according to the manufacturer’s instructions. Briefly, cells were lysed in the

provided lysis buffer, and the lysate was mixed with antibody-free Protein A agarose beads

then incubated at 4˚C as a preclear step. Next, the precleared cell lysate was separated from the

beads by centrifugation. A small portion of the precleared sample was collected for input RNA

quantification, and the rest was mixed with antibody-immobilized Protein A agarose beads

and incubated at 4˚C. During this process, anti-GFP polyclonal antibody (Abcam, ab290) and

normal rabbit IgG supplied in the kit were used for immunoprecipitation of DOZI-associated

RNAs and as a negative control, respectively. Finally, RNA was purified from the beads and

subjected to RT-qPCR analysis. Three biologically independent samples were prepared and

used for the analysis.

RT-qPCR analysis

cDNA was synthesized from total RNA or immunoprecipitated RNA using PrimeScript RT

reagent Kit with gDNA Eraser (Takara). RT-qPCR analysis was performed using TB Green

Fast qPCR Mix (Takara) and Thermal Cycler Dice Real Time System II (Takara). All primers

used in this study are listed in S5 Table (No. 40–45).

ChIP-seq and sequencing data analysis

The ChIP-seq experiments were performed as described previously [24]. Briefly, AP2-Z::GFP

parasites at 6 hoc were fixed by adding formalin solution to achieve the final concentration of

1% and incubating the solution at 30˚C. After fixing, red blood cells were lysed in ice-cold 1.5

M NH4Cl solution. Next, the residual cells were lysed in SDS lysis buffer, and the lysate was

sonicated using Bioruptor (Cosmo Bio) to shear chromatin. A small portion of the sonicated

lysate was collected as input samples. ChIP samples were immunoprecipitated from the soni-

cated lysate with anti-GFP polyclonal antibodies (Abcam, ab290) immobilized on Dynabeads

Protein A (Invitrogen). DNA fragments were purified from the ChIP and input samples, and

then used for library construction, which was performed with a KAPA HyperPrep Kit accord-

ing to the manufacturer’s instructions. The library was then sequenced by Illumina NextSeq.

Two biologically independent experiments were performed.

The obtained sequence data were mapped onto the reference genome sequence of P. berghei
ANKA, downloaded from PlasmoDB 46, by Bowtie2. Reads that aligned more than two times

were removed from the mapping data. Using the mapping data from the ChIP and input
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samples, peaks were identified using the macs2 callpeak function with fold enrichment > 4.0

and q-value< 0.01, and common peaks between the two experiments were used for further

analysis. Binding motifs were predicted by analyzing enrichment of motifs within 50 bp from

peak summits using Fisher’s exact test (the method was previously described in detail [24]).

Genes that had peaks within the region upstream of 1,200 bp from ATG were identified as tar-

get genes. Parameters for all programs were set to the default, unless specified otherwise.

RNA-seq and sequence data analysis

Total RNA was extracted from Plasmodipur-filtered mouse blood infected with WT or ap2-z
(-) using the Isogen II reagent (Nippon gene). Briefly, red blood cells were lysed in ice-cold 1.5

M NH4Cl solution. The residual cells were then lysed in Isogen II, and total RNA was purified

from the lysate according to the manufacturer’s instructions. From the total RNA, RNA-seq

libraries were prepared using the KAPA mRNA HyperPrep Kit and sequenced by Illumina

NextSeq. Three biologically independent experiments were performed for each sample. The

obtained sequence data were mapped onto the reference genome sequence of P. berghei by

HISAT2, setting the maximum intron length threshold to 1,000. The mapping data for each

sample were analyzed by featureCounts and compared using DESeq2. The reads per kilobase

of transcript per million mapped reads for each gene were calculated from the featureCounts

results; genes with values of less than five in all three datasets for WT at 6 hoc were removed

from the differential expression analysis. Genes in subtelomeric regions were also removed.

For all programs, the parameters were set to the default, unless specified otherwise.

Supporting information

S1 Fig. FACS analysis of Hoechst signal. From the top, WT before starting ookinete culture,

WT at 8 hoc, ap2-z(-) at 8 hoc and omg1(-) at 8 hoc were shown. Nuclei were stained with

Hoechst 33342.

(TIF)

S2 Fig. Alignment of amino acid sequences of a putative AP2 domain of AP2-Z for Plasmo-
dium species. Positions at which all sequences have an identical amino acid are indicated by

two asterisks, whereas positions with amino acid residues of the same property are indicated

by one asterisk. Amino acid sequences were retrieved from PlasmoDB.

(TIF)

S3 Fig. Genotyping of transgenic parasites developed in this study. (A) AP2-Z::GFP. (B)

ap2-z(-). (C) OMG1::mNG. (D) omg1(-).

(TIF)

S1 Table. List of peaks identified in the ChIP-seq experiments. (A) Experiment 1. (B) Exper-

iment 2.

(XLSX)

S2 Table. List of target genes of AP2-Z.

(XLSX)

S3 Table. List of zygote-upregulated genes.

(XLSX)

S4 Table. List of differentially expressed genes in ap2-z(-). (A) Significantly downregulated

genes. (B) Significantly upregulated genes.

(XLSX)

PLOS PATHOGENS A novel transcription factor AP2-Z and de novo transcription in Plasmodium zygotes

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010510 August 10, 2022 19 / 24

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010510.s007
https://doi.org/10.1371/journal.ppat.1010510


S5 Table. List of primers used in this study.

(XLSX)
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