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Abstract

Remote sensing in the field of agriculture has become a timely concern to maximize

agriculture production from available resources. Information produced from the remote

sensing methods has shown immense potential in providing insights that can be directly

used in the decision-making processes in agriculture. The use of hyperspectral imaging

for agriculture-related decision-making has gained significant attention in recent years

due to its ability to provide detailed information on crop health and composition. Even

though hyperspectral imaging was started in the domain of satellite-based acquisition

systems, the advancement of technology has managed to produce cameras that are ca-

pable of mounting in Unmanned Aerial Vehicles such as multi-rotors. These platforms

provide localized data acquisition capabilities having high spatial and temporal resolu-

tions. However, the high cost and complexity of hyperspectral cameras have limited their

widespread adoption in the agricultural sector. Recent introductions to UAV mountable

hyperspectral cameras have managed to reduce this high entry cost and opened up new

avenues for many research communities. This thesis was motivated by the potential of

the use of low-resolution hyperspectral imaging as a more cost-effective and practical

solution for agriculture-related decision-making.

The thesis begins by discussing the use of low-resolution hyperspectral cameras for the

initial analysis of spectral signatures. Spectral signatures obtained using the hyperspec-

tral camera were compared with the spectral signatures obtained via a field spectrometer

to evaluate the usability of the camera in the domain of agriculture decision-making.

However, while interpreting the aerial images captured from the drone, hyperspectral

mosaic generation was identified as a significant barrier. Mosaic generation is a key step

in interpreting the captured images and deriving information from the captured data.

This is because it allows the capability to interpret information relative to the entire

captured field rather than relative to each captured image.

Image mosaic generation can be subdivided into several key steps as follows. Feature

identification, feature matching, transformation calculation, and finally image blending.

However, it was identified that this process failed at the step of feature identification and

matching in the low-resolution hyperspectral images. This is because current popular

feature detection and matching algorithms fail to either identify features at all or fail to

identify features that could be matched across the captured images. Indistinctive features

in these low-resolution aerial images such as repeating patterns, low-contrast areas, and

uniform textures prevent the traditional feature detection and matching algorithms from

identifying any usable matches. To overcome this challenge, a successful stitching pipeline

is proposed next, utilizing two learning-based feature-matching methods.
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The proposed method employs a stitching pipeline to create a low-resolution hyper-

spectral image mosaic. It employs two leaning-based feature detection and matching

algorithms which have shown promising results in initial experiments with low-resolution

hyperspectral images. Matched features were then used to transform the images into

one plane and then blended producing the mosaic. Results indicate successful mosaic

generations with consistent geometrical features compared to the captured field. The

generated mosaic is then evaluated for spectral consistency within the same targets and

spectral differentiability within different targets.

However, even with the state-of-the-art feature match detection methods, it was iden-

tified that certain landscapes especially at low altitudes struggle to produce any usable

outputs. Hence an improved feature match detection method was needed to address

the drawbacks. At the same time, it was highlighted that none of the feature detection

methods in use utilizes all the spectral information available in a hyperspectral image. To

utilize the missing information and increase the robustness of the detected and matched

features, a novel feature match identification method based on 3D convolutional neural

networks and edge detection was proposed in the second part of the thesis. A set of fea-

ture matches were generated using the hyperspectral image’s edge maps. Physics-inspired

edge detection algorithm was incorporated for this task and a set of SIFT feature matches

were obtained for the matched images. The sensitivity of the SIFT detector was reduced

so that an initial set of correct and incorrect feature matches were generated. Then the

obtained set of feature matches was filtered by using a 3D convolutional Siamese Network

trained on matched features and non-matched features. The second half of the thesis dis-

cusses the feature set generation, architecture of the Siamese Neural Network, training,

and evaluation of the proposed method. The proposed model was evaluated against 4

state of the art feature detectors and the results indicated the superior performance of

the proposed method.

Overall, the initial mosaic generation method was capable of successfully creating

image mosaics from a given set of hyperspectral images. Spectral and geometrical con-

sistency was observed between the non-stitched image and the stitched image. Secondly,

the proposed feature detection and matching method was capable of producing highly

accurate feature matches across the evaluated image pairs compared to the state-of-the-

art methods. However, a few limitations such as the processing speed were identified

during the inference stage of the proposed method.
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Chapter 1

Introduction

1.1 Background

Hyperspectral imaging is a subdomain of spectral sensing technology that has gained

increasing attention in various fields, including agriculture. It involves capturing images

of the same scene across a wide range of wavelengths, allowing the acquisition of detailed

spectral information from each pixel in the scene. In the agriculture domain, this allows

hyperspectral imaging to provide valuable insights into plant physiology parameters such

as composition, health, growth, nutrition, and many others. In precision agriculture,

hyperspectral imaging has emerged as a promising tool, where it can assist farmers in

making informed decisions about crop management. By analyzing the spectral signatures

of crops, hyperspectral imaging can provide critical information about plant health, dif-

ferent nutrient contents, stresses due to nutrient content shortages, pest infestations, and

other factors that impact crop growth and productivity.

The increasing population, decreasing resources, and climate change have posed a

severe threat to food security. There is a pressing need to optimize crop production

from available resources and reduce waste. Hyperspectral imaging has the potential to

transform the way farmers manage their crops, by enabling them to make data-driven

decisions that can improve crop yields, optimize resource utilization, and reduce envi-

ronmental impact. Furthermore, it can be used as a research tool to determine low-cost

multispectral solutions that could reduce the cost while allowing the user the capability

of critical decision-making. Recent advances in hyperspectral imaging technology, par-

ticularly in the area of low-pixel resolution snapshot cameras, have further enhanced its

potential for agriculture. Low-pixel-resolution snapshot cameras can capture hyperspec-

tral images in a single snapshot, allowing for faster data acquisition and reduced motion

artifacts. Furthermore, the entry cost of the cameras has decreased allowing them to be a

more viable solution in both the research domain and end-application domain. However,

reducing the cost of the camera comes with a few disadvantages and this thesis discusses

the importance of finding solutions to these problems.



1.2 Motivation

The motivation for this thesis arises from the potential benefits of using hyperspec-

tral imaging in precision agriculture, particularly in the areas of crop monitoring and

management. Hyperspectral imaging has recently become more accessible due to the

decreasing cost of cameras. However, a significant challenge remains in the generation of

high-quality image mosaics from low-resolution images. The creation of mosaics is cru-

cial for interpreting data as a cohesive image of the entire target area instead of multiple

individual images.

The image mosaic generation process involves several steps to create a seamless com-

posite image from multiple individual images. The first step in the mosaic generation

process is to identify features of each image, which are distinctive points or areas that

can be reliably matched across images. These features can include corners, edges, or

any other unique structures that can serve as points that can be used to align the im-

ages. Once the features are identified, the next step is to identify matching features in

between the images. The accuracy of the stitching will depend on the accuracy of the

matches. The next step is to calculate the transformation needed to align every image

to a common coordinate system. This involves estimating the rotation, translation, and

scaling parameters that can transform the images to align them correctly in the mosaic.

Once the images are aligned, the last step is to blend the overlapping areas to create a

smooth transition without visible seams. In hyperspectral imaging, this process should

be repeated for every channel.

However, in low-pixel-resolution hyperspectral imaging, this whole process fails at the

feature identification and matching step due to the traditional feature identification and

matching algorithms not being able to either identify or match the minimum number of

features needed for the successful calculation of the transformation matrices. Apart from

the low resolution, narrow optics add to this issue by limiting the number of features

captured in one image. One solution to mitigate this problem is to fly at high altitudes,

which opens the possibility to capture more features from the scene. However, this results

in a low spatial resolution which in turn negates one of the main advantages of UAV-based

image hyperspectral image capturing.

In order to overcome this challenge, the motivation behind this thesis is to present

an innovative approach to image stitching in low-pixel resolution hyperspectral imaging.

This involves leveraging cutting-edge feature detection and matching methods in the

initial stage. The proposed solution encompasses the exploration of potential strategies

to identify feature matches between images and subsequently employ these matches in

the image stitching process. The proposed approach promises to facilitate the creation

of high-quality, seamlessly stitched image mosaics, ready for use in subsequent image

analysis and segmentation.
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The second stage of the thesis delves into the proposition of a novel solution, with the

aim of attaining a robust set of feature matches by harnessing all available spectral infor-

mation within the hyperspectral image. The primary objective of this feature-matching

method is to improve the accuracy of detected feature matches, thus enhancing the quality

and precision of image mosaic generation. This motivation underscores the significance

of advancing current methodologies to address the unique challenges posed by low-pixel

resolution hyperspectral imaging, ultimately contributing to the enhancement of image

analysis and segmentation processes.

By overcoming the challenges of feature match detection and image stitching in low-

resolution hyperspectral imaging, this research has the potential to contribute to the

advancement of precision agriculture practices. The proposed solution can provide a

practical and effective approach to generating accurate and reliable datasets for crop

monitoring, such as assessing crop health, detecting diseases and pests, optimizing irri-

gation management, and improving nutrient management. The outcomes of this research

can have implications for farmers, agronomists, and other stakeholders in the agriculture

industry by enabling more precise and data-driven decision-making for sustainable and

efficient agricultural practices.

1.3 Contributions of Thesis

This thesis discusses the use of low-pixel resolution hyperspectral imaging in the

domain of precision agriculture. Initially, the use of the camera for data acquisition is

discussed, and the data are compared with a field spectrometer for spectral similarity

among the same targets and spectral differentiability among different targets. Then, a

solution for the problem of difficulty in creating low-resolution mosaics is proposed. The

proposed method uses the knowledge of the learning-based feature detection method

to identify matches in between images and use the matches to generate transformation

matrices. Finally, a further improved feature matching method is proposed for more

robust feature detection and matching in low-pixel resolution hyperspectral images.

The specific contributions of this thesis are as follows.

• Initial setup of data acquisition setup followed by a data Comparison between

spectral signatures obtained using the UAV-based hyperspectral camera and a field

spectrometer. Spectral signatures were compared for spectral consistency with the

same targets and spectral differentiability with different targets.

• Low-resolution hyperspectral mosaic generation pipeline: Learning-based feature

matching methods were investigated and two learning-based feature detectors and

matches were adapted to match features between the hyperspectral images. Matched

3



features were used to obtain the transformation and stitch the images. Problems

faced in stitching low-resolution images and solutions taken are discussed in detail.

The proposed method was then evaluated using several case studies. The limita-

tions identified during these case studies were addressed, and the final proposed

method was evaluated in another case study.

• Enhanced feature match detection using 3D Convolution Neural Network based

Siamese network: A novel approach to obtain a robust set of feature matches was

proposed using the Siamese network architecture based on 3D convolution. The

network was trained to filter out incorrect matches from an initial set of matches

generated with converted edge maps of low-pixel-resolution hyperspectral images.

The proposed method was evaluated with four state-of-the-art methods and the

results indicated robust performance.
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Chapter 2

Related Works

The field of remote sensing in agriculture has undergone significant transformations and

has emerged as a crucial tool to optimize production and resource utilization. In recent

years, the advent of hyperspectral imaging has garnered substantial attention because

of its potential to offer detailed insights into crop health and composition. This chap-

ter delves into the existing body of knowledge, tracing the evolution of remote sensing

technologies, and exploring the advancements that have shaped the current landscape

of agricultural research related to hyperspectral UAV (Unmanned Aerial Vehicles) based

decision making.

As remote sensing technology progressed, the transition from traditional satellite-

based acquisition systems to the deployment of UAVs equipped with hyperspectral cam-

eras has revolutionized data acquisition capabilities. These UAV platforms present

unique opportunities for high-resolution and localized data collection, overcoming spatial

and temporal limitations associated with satellite systems. However, challenges such as

the high cost and complexity of hyperspectral cameras have historically hindered their

widespread adoption within the agricultural sector. Motivated by the need for more

cost-effective and practical solutions, this review of the literature critically examines the

transition from traditional hyperspectral imaging to the exploration of low-resolution

hyperspectral cameras in the context of agriculture-related decision-making.

Furthermore, the literature review will introduce existing literature on feature-matching

techniques utilized in the image stitching domain. Later it will explore the following

discourse on feature-matching techniques used in UAV-based image mosaic generation.

This section will also explore the specific hyperspectral image mosaic generation research

literature available in the academic publication domain.

Through a comprehensive exploration of existing literature and methodologies, this

chapter lays the foundation for the subsequent discussion on the proposed solutions,

their evaluations, and the potential avenues for future research. The aim is to provide a

holistic understanding of the challenges and advancements in hyperspectral imaging for

agriculture, setting the stage for the unique contributions of the present thesis.



2.1 Introduction to Remote Sensing in Agriculture

Agriculture, as a critical component of global food production, faces numerous chal-

lenges such as optimizing crop yields, resource management, and environmental sus-

tainability. Remote sensing technologies offer a transformative solution by providing

real-time and accurate information about crop health, soil conditions, and overall field

performance.

Remote sensing, a powerful technology that has revolutionized various fields, plays

a pivotal role in enhancing agricultural practices and management. By utilizing sensors

mounted on satellites, aircraft, or drones, remote sensing enables the collection of valu-

able data about the Earth’s surface without direct physical contact. In the context of

agriculture, remote sensing provides a comprehensive and efficient means of monitoring,

analyzing, and managing agricultural landscapes. [1, 2]

The most critical step in remote sensing is the data acquisition stage. There are a

multitude of sensing methods used in different decision-making domains. These include

and not limited to RGB imaging, infrared imaging, RADAR (RAdio Detecting And

Ranging), LiDAR(Light Detection and Ranging), GPR (Ground Penetrating Radar),

Multispectral imaging, and many more. Hyperspectral imaging is one of these numerous

imaging techniques that is becoming popular in the hyperspectral domain.

2.2 Introduction to Hyperspectral Imaging

Figure 2.1: Different imaging technology and location where each technology captures

information

Hyperspectral imaging is a cutting-edge technology that was first introduced by the

National Aeronautics and Space Administration’s (NASA) jet propulsion laboratory in

the late 1970s [3]. it received widespread attention due to the capability of capturing

two-dimensional images from multiple locations of the electromagnetic spectrum. A

comparison between popular image acquisition technologies in the precision agriculture
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domain is shown in figure 2.1. Black and white (grayscale) imaging can be identified

as the most basic form of image capturing. It is a simple representation of the scene

presented as variations of intensity at one particular location of the electromagnetic

spectrum. RGB imaging, which stands for Red, Green, and Blue, captures information

from three locations in the visible range of the electromagnetic spectrum. RGB imaging

was considered the most popular sensing technology used in precision agriculture-related

sensing tasks.

Multispectral imaging cameras, on the other hand, capture several broad wavelength

bands in visible, near-infrared, and short-wave infrared spectrums. However, hyperspec-

tral imaging systems can capture up to hundreds of distinctive wavelength bands in a

single capture. Furthermore, the bandwidth of the sampled segment is narrow compared

to multispectral imaging systems. The narrowness of the bands provides a continuous

spectral measurement across the measured range of the electromagnetic spectrum. Hence

making those measurements sensitive to subtle variations in reflected energy.

There are three main hyperspectral acquisition platforms to consider in hyperspectral-

based agriculture remote sensing applications. Satellites, Airplane and UAVs. Each plat-

form offers distinct advantages and disadvantages, influencing its suitability for various

agricultural monitoring needs. Satellites, while providing global coverage and a con-

sistent overhead view, may face limitations in spatial resolution and susceptibility to

atmospheric interference. Airplanes, on the other hand, offer higher spatial resolution

and flexible scheduling, but come with challenges related to limited accessibility and

higher operational costs.

UAVs, with their unique capabilities, stand out as a promising platform for hyper-

spectral acquisition in agriculture. These unmanned systems can operate at low altitudes,

delivering exceptionally high spatial resolution, which is crucial for detailed analysis of

smaller agricultural plots. The rapid deployment capability of UAVs allows for timely

data collection, making them well-suited for targeted interventions and responsive agri-

cultural management. Moreover, UAVs offer a cost-effective alternative to airplanes,

making frequent and widespread monitoring economically viable.

However, UAVs also come with their own set of challenges, such as limited flight time

and susceptibility to adverse weather conditions. Despite these limitations, the potential

benefits of UAV-based hyperspectral acquisition in agriculture are substantial. The com-

bination of high spatial resolution, cost-efficiency, and rapid deployment position UAVs

as an ideal tool for precision agriculture. Their ability to navigate challenging terrains

and access remote areas further enhances their applicability to address the evolving needs

of modern agriculture.

As technology continues to advance and regulatory frameworks adapt, UAV-based

hyperspectral acquisition is poised to play a transformative role in agriculture. The de-
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tailed and timely information provided by UAVs can empower farmers to make informed

decisions, optimize resource allocation, and enhance overall crop management. With

ongoing developments in sensor technology, data processing capabilities, and regulatory

support, UAV-based hyperspectral acquisition holds the potential to revolutionize agri-

cultural practices, fostering sustainability and efficiency in food production. Table 2.1

summarizes an overview of the strengths and weaknesses of each method of acquisition.

Table 2.1: Comparison of main three hyperspectral acquisition platforms.

Satellite based Aircraft Based UAV based

Coverage area Broad, large-scale Moderate, localized Moderate, Limited, localized

Spatial resolution Lower Moderate Higher

Flexibility Limited by orbits Moderate, limited by weather Higher, limited by weather

Real-time analysis Limited Possible Possible

Response time Moderate Moderate Quick

Weather dependency Affected by clouds Affected by weather Affected by weather

Data acquisition control Remote operation Onboard control Onboard control

Cost High Moderate Moderate, Low

Hyperspectral Sensor Types

There are several types of hyperspectral sensors, each with its unique characteristics

and applications. Point and line scan sensors are types of hyperspectral sensors that

capture spectral and spatial information of a target line by line Wavelength scan sensors,

on the other hand, acquire imagery in hundreds of narrow, contiguous spectral bands,

which facilitates fine discrimination between different features on the target surface [4].

In the domain of agriculture remote sensing, push broom and snapshot types of

hyperspectral sensors are commonly used [5]. The pushbroom sensor, also known as

a line scan hyperspectral camera, collects full spectral and spatial information of the

target in a single line. The user has to move the acquisition platform across the target

to capture the entire scene [6].

The snapshot hyperspectral sensor is a relatively new hyperspectral image sensor. It

offers certain advantages, such as acquiring hyperspectral images at video rate, ultra-

portability, and easy handling with a small number of spectral bands. Snapshot hyper-

spectral imaging is a method for capturing hyperspectral images during a single integra-

tion time of a detector array. No scanning is involved with this method, in contrast to

push broom and whisk broom scanning techniques. The lack of moving parts means that

motion artifacts should be avoided. This instrument typically features detector arrays

with a high number of pixels [6, 7].
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Figure 2.3: Number of publications related to hyperspectral imaging in remote sensing

domain

Ximea snapshot camera. Recent introductions of low-resolution snapshot hyperspectral

cameras, such as Cubert Ultris 5 [8] and Ximea snapshot cameras [9] can be identified

as a solution to remove the entry barrier. Furthermore, these cameras have the added

advantage of having a significantly smaller form factor. Which allows the possibility of

mounting the cameras in UAV platforms. However, these advantages come at the cost

of loosing pixel resolution.

2.4 Image Mosaic Generation

Mosaicing is the process of stitching multiple images into one image [10]. In the

remote sensing domain, a mosaic of the captured images is a single image obtained by

stitching the images captured using an aerial platform. Interpreting the data and deci-

sions relative to this stitched image is much easier and more convenient than interpreting

relative to each captured image separately. The typical work process of image mosaic

generation includes identifying the features of each image, matching features, calculating

the transformation needed to align every image to one coordinate system, and finally

blending the images into one by deciding on a strategy to blend overlapping areas with-

out visible seams. However, this process fails at the feature detection and matching stage

for hyperspectral images taken from recently introduced low-cost snapshot hyperspectral

cameras. This is due to their low resolution and narrower optics. As an example, the

recently introduced Cubert Ultris 5 camera’s resolution is limited to 290px × 270px. [8]

and Field of View is limited to 15◦. One method to mitigate this problem is by flying at
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Table 2.2: Different UAV-based hyperspectral sensors available in the commercial market

Product Size Weight
Sensing

Method

Resolution

(pixels)

Spectral

Range

(nm)

Spectral

Bands

SPECIM

FX10

150 x 85

x 71 mm
1.3 kg

Push

Boom
1024

400-

1000
224

SPECIM

AFX10

130 x 152

x 202 mm
2.5 kg

Push

Boom
1024

400 -

1000
1024

Headwall

Nano HP

132 x 102

x 73 mm
1.05 kg

Push

Boom
1020

400 -

1,000
342

HySpex

Mjolnir

V-1240

250 x 175

x 170 mm
4 kg

Push

Boom
1240

400 -

1000
200

BaySpec

GoldenEye

60 x 33

x 43 mm
180 g

Snapshot

Imaging

648

x 488

400 –

1100
140

BaySpec

OCI™-1000

30 x 30

x 75 mm
120 g

Push

Boom
2048

470 –

1000
100

Corning

microHS 410

SHARK

136 x 88

x 70 mm
700g

Push

Boom
704

400 –

1000
155

imec

multishot

VNIR + RGB

120 x 120

x 150 mm
2.22 Kg Snapshot

2048

x 1088

460 –

860
33

Cubert

firefleye

185

200 x 67

x 60 mm
490 g Snapshot

1000

x 1000

450 -

950
125

Ximea

Snapshot

26 x 26

x 31 mm
32 g Snapshot

409

x 217

665 -

960
24
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relatively high altitudes so that the camera captures more features from the scene that

could be identified by traditional feature detection methods. However, doing so will lose

the advantage of high spatial resolution in UAV-based hyperspectral image capturing.

Image registration is the process of transforming two or more images into a single plane

using the common features of the images and it could be identified as a key step in the

mosaic generation process. Feature detection-related research work can be divided into

two main subsections focusing on image registration of general image stitching research

and aerial image-specific stitching research publications. In general image stitching,

image registration can be subdivided into two main areas. Intensity-based methods and

Feature-based methods [11]. Under intensity-based methods algorithms such as frequency

domain methods [12], spatial domain methods [13], and optical flow methods [14] can

be identified. Under feature-based image registration algorithms, geometrical feature

identification methods and leaning-based feature detection methods can be identified

[11]. However, out of these different methods, most image-stitching applications focus on

using area-based registration and feature-based registration [15]. This is true for aerial

image-specific stitching research as well. 2022 review of existing UAV image mosaicing

research [16] indicates that the most widely used methods used in the registration process

are SIFT [13], SURF [17], Harries corner detection [18], FAST [19], BRISK [20] and

ORB [21]. All these methods depend on feature-based descriptors that define the point it

describes. However, these feature-based detectors perform poorly when there are factors

such as poor texture, viewpoint change, illumination variation, repetitive patterns, and

motion blur [22]. Poor textures are a common occurrence in low-resolution hyperspectral

images. Further, repetitive patterns are a common occurrence in aerial images. Hence the

need arises to use alternative feature-detecting methods to overcome the aforementioned

problem.

2.5 Feature Identification and Matching in Images

Feature detection and matching in images is a fundamental process in computer vision

and image processing. It involves identifying distinctive points or regions in an image, of-

ten referred to as key points or interest points, and establishing correspondences between

these points in different images. This process begins with feature detection, where every

pixel is examined to identify if there is a feature present. Once the key points are identi-

fied, a descriptor is calculated for each of them. The final step is feature matching, which

aims to establish correspondences between key points in different images. This process

is essential for various applications, including image registration, object recognition, and

3D scene reconstruction.

SIFT [13], or Scale-Invariant Feature Transform, is a popular computer vision algo-
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rithm that detects and describes key features in images or videos, which are robust to

changes in scale, rotation, and illumination. Developed by David Lowe in 1999, SIFT

uses a scale-space pyramid and difference of Gaussian (DoG) images to identify stable

key points and computes descriptors that capture the local appearance and orientation

of each key point. Despite its computational complexity and sensitivity to image noise,

SIFT has been widely used in various computer vision applications due to its robustness

and versatility. SURF [17], or Speeded-Up Robust Features is also a popular computer

vision algorithm that detects and describes key features in images or videos with a focus

on efficiency and robustness. It was introduced by Herbert Bay et al. in 2006 as an

improvement over SIFT, aiming to address some of its computational limitations. SURF

uses a combination of box filters and integral images to accelerate feature detection, and

it employs Haar wavelet responses to compute descriptors that are resistant to changes in

scale, rotation, and illumination. SURF has gained popularity in real-time and resource-

constrained applications due to its speed and robustness, also making it a valuable tool

in various computer vision tasks.

FAST [19], or Features from Accelerated Segment Test, is known for its speed and

simplicity in detecting key points in images or videos. FAST was proposed by Edward

Rosten et al. in 2006 as a fast alternative to existing feature detection methods. It

works by comparing the intensity values of pixels in a circle around a candidate key

point with a threshold, and it can quickly identify corners or key points based on pixel

intensity changes. FAST is particularly efficient for real-time applications due to its

minimal computational overhead, making it widely used in scenarios where real-time

processing is critical, such as robotics and augmented reality. While FAST may be less

robust to scale and rotation changes compared to other methods, it is often used as a fast

initial feature detection step in more complex computer vision pipelines. BRISK [20] or

Binary Robust Invariant Scalable Keypoints combines speed, efficiency, and robustness in

detecting key points in images or videos. BRISK was introduced by Stefan Leutenegger

et al. in 2011 as a fast alternative to existing feature detection methods, with a focus

on binary descriptors for improved efficiency. BRISK uses a pyramid-based approach

to detect key points at multiple scales, and it employs a binary pattern for descriptor

computation, making it highly efficient and memory-friendly. BRISK also incorporates

rotation invariance and scale adaptability, making it robust to changes in scale, rotation,

and illumination.

ORB [21], which stands for Oriented FAST and Rotated BRIEF is also a popular

computer vision algorithm that combines the speed and efficiency of FAST and the bi-

nary descriptor of BRIEF, with the added capability of handling rotation invariance.

ORB was introduced by Ethan Rublee et al. in 2011 as an efficient and robust alter-

native to existing feature detection methods. ORB uses the FAST algorithm to detect

13



key points and computes a binary descriptor using BRIEF, while also estimating the ori-

entation of key points for improved rotational invariance. This makes ORB well-suited

for applications that require both speed and robustness, such as image matching, ob-

ject recognition, and simultaneous localization and mapping (SLAM). ORB has gained

popularity due to its efficient computation, low memory footprint, and robustness to

scale rotation, and illumination changes. AKAZE [23] or Accelerated-KAZE was intro-

duced as an improvement over the KAZE algorithm [23] with the aim of achieving faster

processing times without sacrificing performance. AKAZE uses a nonlinear scale space

for feature detection, which allows for accurate keypoint localization at multiple scales,

and it employs a novel descriptor that captures both local and global information for

improved matching. AKAZE is known for its robustness to changes in scale, rotation,

and illumination, as well as its ability to handle challenging imaging conditions, such as

motion blur and viewpoint changes.

Harris corner detection [18] is another widely used image processing technique that

aims to identify and locate important feature points, or corners, in an image. It was

developed by Chris Harris and Mike Stephens in 1988 and is based on the concept of

detecting regions in an image where intensity changes occur in multiple directions. Harris

corner detection utilizes the eigenvalues of a matrix calculated from image intensity

gradients to determine if a pixel represents a corner, making it a popular method for

applications such as image recognition, image stitching, and object tracking.

In summary, SIFT and SURF are accurate but computationally expensive, Harris

corner detection and FAST are fast and efficient but may have limitations in certain

scenarios, BRISK and ORB are efficient in terms of storage and matching speed but may

have limitations in challenging image conditions, and AKAZE is computationally efficient

and robust to aerial image challenges but may have limitations in extreme viewpoint

changes or occlusions. The choice of algorithm depends on the specific requirements and

constraints of the aerial image stitching task at hand.

2.5.1 Learning-based feature identification and matching

With the recent advancements in deep learning-based technologies and SLAM (Simul-

taneous Localization And Mapping) technologies, many learning-based feature-matching

methods are being introduced. These learning-based methods can be divided into two

subgroups, Detector-based feature-matching methods, and detector-free feature-matching

methods. Several detector-based and learning-based methods, such as LIFT [24], Magic-

Point [25], SuperPoint [26], and SuperGlue [27], have demonstrated superior performance

in scenarios with changing illumination compared to traditional feature matching algo-

rithms.

LIFT (LInear Feature Transform) [24] algorithm proposed by Yi et al. in their pa-
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per titled ”LIFT: Learned Invariant Feature Transform”. LIFT aims to improve upon

the traditional SIFT (Scale-Invariant Feature Transform) algorithm by learning a lin-

ear transformation that is invariant to various image transformations, such as rotation,

scale, and illumination changes. In the LIFT algorithm, local image patches are ex-

tracted around keypoints of interest, and a descriptor is computed for each patch. Unlike

SIFT, which uses handcrafted descriptors, LIFT learns a descriptor transformation ma-

trix using a deep neural network. This transformation matrix is trained to be invariant

to different image transformations, allowing the descriptors to be more robust and accu-

rate in matching features across different images. MagicPoint paper [25] aims to address

the limitations of traditional feature point detectors, such as sensitivity to image trans-

formations, by proposing a novel approach to detecting stable feature points in images.

MagicPoint leverages deep neural networks to learn feature point detectors that are ro-

bust to changes in scale, rotation, and illumination. The algorithm uses a convolutional

neural network (CNN) to predict both the location and the scale of feature points in an

image. It also incorporates a spatial transformer network (STN) that allows the CNN

to explicitly model and correct for geometric transformations in the image. One of the

key contributions of MagicPoint is its ability to handle challenging imaging conditions,

such as extreme scale changes, large rotations, and strong illumination changes, which

are often problematic for traditional feature point detectors.

Superpoint [26] is a deep learning-based approach for detecting and describing interest

points in images, which can be used for tasks such as image matching, image retrieval,

and visual localization. SuperPoint is trained in a self-supervised manner, meaning it

does not require labeled data for training. Instead, it leverages image pairs with known

camera poses to generate ground truth correspondences, which are then used to supervise

the training process. SuperPoint uses a convolutional neural network (CNN) to detect

and describe interest points in an image. The detected interest points are represented

as pixel-wise heatmaps, indicating the likelihood of each pixel being an interest point,

while the descriptors are learned using a separate CNN. Same as MagicPoint, the paper

suggests that it can also show a strong ability to handle challenging imaging conditions.

SuperGlue uses graph neural networks (GNNs) to learn the matching process. It

first extracts local features from images using a convolutional neural network (CNN)

and then constructs a graph representation of the features. The GNN is trained to

propagate information across the graph and predict matching scores between pairs of

features. The matching scores are used to establish correspondences between features in

different images.

“LightGlue: Local Feature Matching at Light Speed” [28] is a paper that introduces

LightGlue, a deep neural network designed to match local features across images12. The

authors revisit multiple design decisions of SuperGlue, the state of the art in sparse
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matching, and derive simple but effective improvements12. LightGlue is more efficient in

terms of both memory and computation, more accurate, and much easier to train12. One

key property is that LightGlue is adaptive to the difficulty of the problem: the inference

is much faster on image pairs that are intuitively easy to match, for example, because of

a larger visual overlap or limited appearance change12. This opens up exciting prospects

for deploying deep matches in latency-sensitive applications like 3D reconstruction12.

MagicPoint, LightGlue, SuperPoint, and SuperGlue are three state-of-the-art ap-

proaches for feature detection, description, and matching in computer vision tasks, es-

pecially in the domains of Simultaneous Localization and Mapping (SLAM), and 3d

localization. MagicPoint is simple and efficient, achieving high accuracy and computa-

tional efficiency. SuperPoint is self-supervised and robust to scale changes and viewpoint

changes. SuperGlue uses graph neural networks to capture contextual information and

is robust to challenging matching scenarios. However, all three methods rely on hand-

crafted or learned features, may suffer from ambiguities in feature matching, and can be

sensitive to changes in lighting conditions. Especially in the areas of indistinctive regions

such as uniform textured areas or low contrast areas.

To overcome these issues, recent research focuses on detector-free leaning-based fea-

ture matching methods. NcNet [29], sparse NcNet [30], and DualRC-Net [31] can be

identified as some of the models proposed in this area with promising results. Recently

the use of Transformers [32] in vision-related tasks has attracted a lot of focus due to

the computational efficiency they promise. LoFTR [22], the feature-matching model in-

corporated in this proposed stitching method is based on Transformers and the paper

indicates that it outperformed all of the existing methods even in problematic illumina-

tion changing situations, and uniform textured images.

LoFTR- Local Feature TRansformer [22] is a detector-free method that performs local

feature matching in image pairs. LoFTR incorporates a detector-free design to extract

position and context-dependent local features, which are transformed into feature repre-

sentations in order to match between images. It uses a Convolutional Neural Network

(CNN) to extract multi-level features from the images being compared. A Local Feature

Transformer module is then used to extract the position and context-dependent local fea-

tures. Using linear transformers in the algorithm reduces the computation cost making

it suitable for SLAM applications. The use of self-attention and cross-attention layers

improves the accuracy of the predictions by allowing the model to attend to important

features and patterns within the input data. Furthermore, the model can handle differ-

ent types of input data and match them more accurately by using the model’s ability

to use an optimal transport layer or a dual-softmax operator in establishing coarse-level

matches.
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2.5.2 Feature Detection and Matching in UAV Image Mosaic Generation

Figure 2.4: Feature detection methods used in aerial image stitching as a percentage of

publications.

The examination of various global single transform feature revision methodologies by

Gómez-Reyes et al [33] highlights several commonly employed techniques in the field of

UAVs, including Harris corner, SIFT, FAST, ORB, SURF, and BRISK. A comparative

analysis reveals that the traditional ORB method stands out for its rapid processing

capabilities, rendering it suitable for real-time applications. However, it falls short in

accuracy compared to alternatives like FAST and BRISK, particularly in scenarios in-

volving rotation and rapid scale changes. Despite this, SURF tends to be favored due

to its performance parity with SIFT and its comparable speed to ORB. Nevertheless,

when prioritizing accuracy and robustness over speed, SIFT emerges as the preferred

choice, as indicated by recent advancements leveraging GPU and computing algorithms,

as depicted in Figure 10. These developments signify an enhancement in the speed of

SIFT applications. 2.4 summarize the findings in their publication as a percentage.

2.6 Hyperspectral Image Stitching Pipelines

The typical hyperspectral image stitching process differs slightly from the normal

RGB imaging process. Depending on the feature-matching algorithms employed, it is
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Table 2.3: Summery of the hyperspectral image stitching research.

Paper

Feature

Detection

and

Matching

Resolution of

stitched images
Remarks

Mo et al, A robust uav

hyperspectral image

stitching method based on

deep feature matching

SuperGlue

Width

640 to 687 px

Height

752 to 7738px

Line scanning,

High altitude

Zhang et al , “Hyperspectral

panoramic image stitching

using robust matching and

adaptive bundle adjustment

SuperPoint
960 px x

1057 px

Urban Landscapes

300m altitude

Zang et al, Automatic stitching

for hyperspectral images

using robust feature

matching and elastic warp

SIFT
960px x

1057 px
300m altitude

Peng et al, Hyperspectral

Image Stitching via

Optimal Seamline Detection

SIFT
960px x

1057 px
300m altitude

crucial to select one or several spectral bands for feature matching. If the matching al-

gorithms support three-channel inputs, such as the SIFT feature detector and matcher,

then it is possible to select three spectral bands from the hyperspectral image. Another

option is to extract a single channel from the image and use it to match features. Typi-

cally, the spectral channel with the highest contrast is chosen due to the greater number

of features that detectors can detect from the scene.

Specific research addressing hyperspectral image stitching when this literature survey

was carried out is summarized in Table 2.3. There are only a limited number of research

available addressing the specific topic. Mo et al [34] discusses the stitching of images

obtained with the line scanning sensor, and they incorporate the use of superGlue [27]

as their feature detection method. Zang et al [35, 36] discusses the use of the same type

of sensor stitching in two separate papers. One using superPoint [26] as the feature
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detection method and one using SIFT [13] as the detector and matcher. Finally, Peng

et al. [37] discuss another approach using the same SIFT detector and matcher. None of

these methods discusses the use of low-pixel resolution snapshot stitching of hyperspectral

images. Further, all of the images were taken at higher altitudes which made it easier

to capture geometrical features needed in the stitching process. It can be concluded

that there is an obvious research gap that needs to be explored to advance hyperspectral

imaging technology.

2.7 3D Convolution Neural Network and Siamese Network Ar-

chitecture

The second part of this thesis proposes a novel approach to obtain a robust set of

feature matches. The proposed method utilizes the spectral information available in the

hyperspectral image for decision-making. In order to achieve this, a 3D convolution-based

Siamese network was utilized. This section of the related work will briefly describe the

background on 3D convolution and Siamese networks.

2.7.1 3D Convolution Neural Networks

Convolution is a fundamental operation in neural networks, particularly in Convolu-

tional Neural Networks (CNNs). It involves sliding a filter or kernel over the input data

and performing element-wise multiplication followed by a summation, which results in a

single output. This process is repeated across the entire input, resulting in a feature map

that represents the learned features of the input data. The filters are learned during the

training process, allowing the network to adapt to the specific task at hand [38].

While traditional convolution operates on 2D data, such as images, 3D convolution

extends this operation to 3D data. In 3D convolution, the kernel is also three-dimensional,

and the convolution operation is performed across the width, height, and depth of the

input data. This makes 3D convolution particularly suitable for volumetric data, such

as medical imaging or video data, where temporal information can be considered as an

additional dimension [39].

3D Convolutional Neural Networks (3D-CNNs) leverage 3D convolution to learn spa-

tial and temporal/spectral features simultaneously. They have been successfully applied

in various fields, including video analysis, action recognition, and medical image analysis.

Hyperspectral images, which capture a wide spectrum of light, result in a 3D data

cube with two spatial dimensions and one spectral dimension. This makes them a perfect

candidate for 3D convolution. By applying 3D convolution to hyperspectral images, a

model can learn both spatial and spectral features simultaneously, which can lead to
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improved performance in tasks such as object detection, classification, and segmentation

[39–41].

Moreover, 3D convolution can help to preserve the spatial and spectral correlations

present in hyperspectral images, which are often lost when using traditional 2D con-

volution. This can lead to more accurate and robust models for hyperspectral image

analysis. Therefore, 3D convolution and 3D-CNNs hold great promise in advancing the

field of hyperspectral image analysis and related machine learning tasks.

2.7.2 Siamese Neural Networks

Siamese Neural Networks (SNNs) represent a specialized class of artificial neural net-

work architectures featuring two or more identical sub-networks. These parallel sub-

networks, often termed twin networks, share identical configurations, encompassing the

same parameters and weights [42, 43]. Functioning in tandem, they process input data

and ultimately compare their respective outputs, typically employing a distance function

to gauge similarity. Consequently, the output yielded by a Siamese neural network’s exe-

cution can be interpreted as the semantic similarity between the projected representations

of the two input vectors [42,43].

The architecture of a Siamese Network comprises two identical sub-networks, each

tasked with processing a distinct input sample using the same set of weights. Leveraging

convolutional and pooling layers, these networks extract meaningful features from the

image samples [44]. Crucially, the final layer in each branch is the comparison layer,

responsible for generating an embedding—a compact representation of the data sam-

ple—that facilitates the subsequent similarity assessment.

Let X1 and X2 be the inputs to the Siamese network. The network consists of two

identical subnetworks that share weights. Let fθ represent the shared subnetwork with

parameters θ. The outputs of the two subnetworks are denoted as fθ(X1) and fθ(X2).

The distance between the outputs is typically computed using a distance metric, such as

the Euclidean distance or the contrastive loss.

The output of the Siamese network can be represented mathematically as:

D(X1, X2) = ϕ(∥fθ(X1)− fθ(X2)∥),

where ∥ · ∥ denotes a distance metric, ϕ is an optional transformation (e.g., scaling),

and D(X1, X2) is the output similarity score between inputs X1 and X2.

By combining the two methods it is possible to create 3D Convolution Siamese Net-

works. These networks can be particularly useful in hyperspectral imaging. They can

learn to recognize similar patterns in different hyperspectral images, making them highly

effective for tasks such as image matching and object recognition. Moreover, they can
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handle the high dimensionality of hyperspectral data, which is often a challenge for tra-

ditional machine learning algorithms.

One of the key advantages of 3D Convolution Siamese Networks in hyperspectral

imaging is their ability to handle few-shot learning scenarios. In many real-world appli-

cations, there is a strong demand for labeled data for hyperspectral classification, but

acquiring sufficient labeled data can be a big obstacle. 3D Convolution Siamese Networks

can address this problem by learning to recognize patterns in the data with only a few

labeled samples. This makes them a promising tool for hyperspectral image analysis.

2.8 Dimentionality Reduction in Hyperspectral Images

In hyperspectral imaging, dimensionality reduction plays a crucial role in managing

the vast amount of data collected. This is also an important step when training any of

the hyperspectral image-based machine learning techniques. This section discusses what

dimensionality reduction entails, its significance in hyperspectral imaging, and common

techniques employed for this purpose.

Dimensionality reduction refers to the process of reducing the number of variables

or features under consideration. In the context of hyperspectral imaging, where each

pixel contains a spectrum with hundreds of bands, dimensionality reduction aims to

transform these high-dimensional data into a more manageable and interpretable form

while preserving essential information [45].

Hyperspectral imaging systems capture images across numerous narrow and contigu-

ous spectral bands, resulting in data with high dimensionality. However, processing

and analyzing such high-dimensional data pose significant challenges, including compu-

tational complexity, storage requirements, and the risk of overfitting. Dimensionality

reduction techniques alleviate these challenges by extracting the most relevant informa-

tion from the data while discarding redundant or noisy features [45,46].

Moreover, dimensionality reduction facilitates data visualization, interpretation, and

understanding. By reducing the data to a lower-dimensional space, analysts can explore

and interpret the relationships between spectral bands more effectively, aiding in the

identification of patterns, anomalies, and features of interest within the hyperspectral

imagery.

Dimensionality reduction methods in hyperspectral imaging can be broadly catego-

rized into two types: Supervised and unsupervised. For supervised methods, Supervised

Principal Component Analysis (SPCA) [47], Linear Discriminant Analysis (LDA) [48,49],

Local Fisher Discriminant Analysis (LFDA) [50,51] can be identified as some of the pop-

ular algorithms in literature.

Principal Component Analysis (PCA) [52, 53], Independent Component Analysis
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(ICA) [52, 54], Wavelet Dimensionality Reduction [55, 56] could be identified as some

of the unsupervised methods using in the hyperspectral domain. Autoencoders are an-

other type of dimensionality reduction technique that could be used in both supervised

and unsupervised dimensionality reduction techniques.

Figure 2.5: Typical encoder architecture.

Autoencoders are a class of artificial neural networks used for unsupervised learning,

particularly in the field of deep learning. The fundamental principle behind autoencoders

is to learn a compressed representation, or encoding, of input data and then reconstruct

the input data from this representation [57]. This is achieved through two main compo-

nents: an encoder, which maps the input data to a lower-dimensional latent space, and

a decoder, which reconstructs the input data from this reduced representation. During

training, the autoencoder learns to minimize the reconstruction error, typically using

techniques like gradient descent and backpropagation [58]. Typical encorder architecture

is depicted in the figure 2.5 where the latent space is taken as the encoded data.

In the context of hyperspectral imaging, where each pixel contains a high-dimensional

spectrum of intensities across numerous wavelengths, autoencoders offer an effective

means of dimensionality reduction. By compressing the spectral information into a

lower-dimensional space, autoencoders can capture the essential features of the data

while discarding redundant or less informative components [59].

One significant advantage of using autoencoders for dimensionality reduction in hy-

perspectral imaging is their ability to capture nonlinear relationships and complex pat-

terns within the data. Unlike traditional linear techniques such as principal component

analysis (PCA), which may struggle to effectively capture nonlinearities, autoencoders

can learn more intricate representations, leading to potentially better compression and

reconstruction of hyperspectral data.

Additionally, autoencoder-based dimensionality reduction often results in more inter-
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pretable latent representations compared to other methods. The latent space learned by

the autoencoder can provide insights into the underlying structure of the hyperspectral

data, potentially revealing meaningful features or clusters that are not readily apparent

in the original high-dimensional space [60].

Another notable advantage of autoencoders, particularly in practical applications

such as real-time processing or online analysis of hyperspectral data, is their relatively

low inference time [61]. Once trained, the encoding and decoding process can be effi-

ciently performed, allowing for rapid compression and reconstruction of hyperspectral

images. This is especially beneficial in scenarios where fast processing is essential, such

as in remote sensing applications or in environments where computational resources are

limited.
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Chapter 3

Configuration and Initial Meassurements

from the system

Hyperspectral imaging technology has seen significant advancements in recent years,

offering unprecedented capabilities in capturing detailed spectral information across a

range of wavelengths. In this chapter, we delve into the utilization of the Cubert Ultris

5 Hyperspectral camera, in conjunction with UAV platforms for image acquisition. The

chapter provides an overview of the equipment specifications, setup, and methodology

employed for data acquisition and preprocessing.

The Cubert Ultris 5 Hyperspectral camera, equipped with 51 spectral bands span-

ning from 450nm to 850nm, presents an ideal solution for aerial imaging tasks. With a

resolution of 290×275 pixels and a compact form factor weighing only 120g, this camera

emerges as a promising candidate for integration with UAV systems. Leveraging the

capabilities of the DJI M600 Pro drone, equipped with a payload capacity suitable for

accommodating the camera and associated hardware, we embarked on UAV missions for

hyperspectral imaging.

The chapter describes the image acquisition process, delineating the steps involved in

ensuring optimal data quality. From thermal stabilization of the camera to calibration

procedures involving white and black calibration images, each stage is outlined. Ad-

ditionally, the integration of DJI A3 pro flight controller and DJI Ground Station pro

software for mission planning and execution is detailed.

Furthermore, the chapter delves into the preprocessing pipeline essential for convert-

ing raw image data into radiance images. This encompasses radiometric calibration to

account for sensor response characteristics, correction for dark current and flat-field re-

sponse, and optional atmospheric correction. Noteworthy is the discussion on the spectral

signature evaluation, where comparisons between drone-captured hyperspectral images

and field spectrometer data unveil insights into the accuracy and reliability of the ac-

quired data.

In conclusion, this chapter sets the stage for subsequent analyses and applications



of drone-based hyperspectral imaging data. The demonstrated capabilities underscore

the transformative potential of this technology across diverse domains, ranging from

environmental monitoring to precision agriculture and beyond. Moreover, it underscores

the importance of methodological refinements and preprocessing techniques in harnessing

the full potential of hyperspectral imaging for real-world applications.

3.1 System setup

Table 3.1: Specifications of the camera.

Wavelength Range 450 - 850 nm

Spatial Resolution 290 x 275 pixel

Spectral Bands 51

Spectral Sampling 8 nm

FOV (Field of View) 15°

Weight 126 g

Dimensions 29 x 29 x 65 mm

Hyperspectral image acquisition was carried out using the recently introduced Cubert

Ultris 5 Hyperspectral camera [8]. As shown in the specification Table 3.1 camera has

51 spectral bands in the wavelength range of 450nm to 850nm. Further, this camera

has a resolution of 290 × 275 pixels with a field of view of 15° and a full-width half

maximum of 26nm at 532nm. At a package size of 29× 29× 49 mm and weight of only

120g, this is an ideal candidate to be used on most UAV platforms. The camera and the

image acquisition computer(Pokini F2 mini PC [62] ) sum up to a weight of 500g to 600g

depending on the cabling used to connect the interfaces. With the additional circuitry

and cabling total weight of the system was about 800g. Hence, any drone with a payload

of at least 1kg and has the mounting space for the camera and the single board computer

could be used for mounting the camera. Since we already have access to a DJI M600

Pro [63] drone at the laboratory, it was used to carry out the UAV missions.

Figure 3.1 (a) depicts the overall system and 3.1 (b) shows the system configuration.

The camera and the Mini PC were powered using the same UAV (Unmanned Aerial

Vehicle) battery with a voltage of 18v. A Pololu voltage regulator was used to step

down the voltage to 12 for the circuit and to smooth out any power ripples caused by

power spikes in the drone. To trigger the camera, one of the DJI PWM (Pulse Width

Modulation) outputs was programmed to output the trigger signal. A PWM relay was

25



Figure 3.1: (a) Image of the drone (b) System configuration diagram

Table 3.2: Settings used with the DJI GS pro application.

Camera Settings Application Settings

Sensor resolution width 290px Shooting angle Parallel to main path

Sensor Res height 275px Capture mode Hover & capture

Sensor width 0.95mm Flight course Scan Mode

Sensor height 0.9mm Speed Varying speeds

Focus length 3mm Front overlap 80%

Min shutter interval 0.1 Side overlap 80%

used to trigger the camera shutter using the camera’s trigger interface. The trigger pin on

the camera was used to receive the trigger signal and capture the hyperspectral snapshot

cube. Once the camera was triggered and the hyperspectral snapshot cube was captured,

the camera software running on the Mini PC stored the data on the SSD (Solid State

Drive) of the computer.
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Figure 3.2: Overview of the image acquisition process followed

3.2 Data Acquisition and Preprocessing

3.2.1 Data acqusition

Figure 3.2 presents the overview of the flow followed in order to perform a data

acquisition session. Initially, the camera was turned on and kept until it reached thermal

stability. Then a white calibration card was placed in front of the camera view at the

same angle as the data acquisition was performed. Furthermore, extra care was taken

to make sure the card surface was evenly lit by the sunlight and there were no shadows

or foreign materials on the surface of the calibration card. To fulfill the next step of

adjusting the camera exposure, the flight PC was connected to the laptop via a local

wifi network. Virtual Network Client (VNC) was used to connect the laptop to the flight

PC. The exposure of the camera was then adjusted using the manufacturer’s software.

This will ensure the images will not get overexposed. Then a white calibration image

was taken followed by a black calibration image. After that flight controller software

was used to plan the mission. After planning the mission, the user has the freedom to

auto-launch the UAV and start the mission or, manually launch the UAV and start the

mission.

The use of the DJI A3 pro flight controller in the drone allows the use of DJI Ground
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Station pro [64] software for flight planning. The hyperspectral camera should be con-

figured as a custom camera in the application and the settings used are presented in the

Table 3.2 left column. The right column presents the flight path and capturing related

settings of the application. An overlap of 80% was used for both front and side overlap.

This is to ensure enough coverage between images for feature matching. Furthermore,

due to a lack of Real-Time Kinematics (RTK) based positioning in the drone, wind-

related disturbances will cause the drone to shift. Due to the narrow FOV of the camera,

this shift would cause difficulties in the feature-matching step. The high overlapping per-

centage will also help to tackle this issue. Capturing was carried out in Hover & capture

mode. This will ensure that the camera will be stable during the shutter activation. After

selecting the flying area, the DJI GS pro application will calculate the flight path and the

number of waypoints it needs to stop and trigger the shutter. DJI A3 flight controller

only has the ability to hold 100 waypoints at a time. If the mission has more than 100

data points, it will stop after finishing the first 100d data points, until the remaining

data points are loaded in to the memory.

Figure 3.3: Image acquisition location- Mie University farm

All the data acquisition related to this thesis was carried out on the Mie University

farm located in the Tsu city of Mie prefecture in Japan. An aerial image of the farm is

depicted the Figure 3.3. This farm grows different crops throughout the year including

but not limited to rice, wheat, cabbage, onion, potato, sweet potato, tea, mango, orange

and leafy vegetables. Before each flight session, the camera was turned on till it reached

thermal stability. This is to ensure that the sensor’s thermal response was not affecting

the measurements. A sequence of images was captured in two-minute intervals and the

sensor metadata was checked in order to ensure the temperature stayed the same over

several images.
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3.2.2 Pre-processing captured images.

Once the image acquisition session was completed, data were transferred to a separate

personal computer for further processing. In hyperspectral imaging, the sensor captures

the electromagnetic radiation reflected or radiated from the target. Captured data is typi-

cally in the form of digital numbers (DN) or radiance values, which represent the intensity

of the electromagnetic radiation detected by the sensor. These values are influenced by

various factors such as the sensor’s response, atmospheric effects, and sensor-specific ar-

tifacts such as dark current and flat-field response. A radiometric calibration step should

be performed to convert the raw data into reflectance values. Reflectance represents the

proportion of incident radiation that is reflected by the target surfaces.

Figure 3.4: Radiometric calibration process

Key steps involved in converting digital numbers to reflectance are shown in Figure

3.4. The first step is to characterize the sensor response. This involves determining

its gain, offset, linearity, and spectral response function by using calibrated radiometric

sources or reference targets. This step was already carried out by the manufacturer and

the provided calibration was used during experiments. The next step is to correct the

dark current response of the sensor. Dark current is the signal generated by the sensor

even in the absence of any radiation. For this step, the camera was covered with a lens

cap to block all the light. An image was captured and stored as a dark image and each

measurement was substracted by this image to remove the dark current noise.

Iref =
Iraw − IDARK

Iwhite − IDARK

(3.1)
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3.3 Spectral Signature Evaluation

After the initial setup of the system, a set of experiments was carried out to evaluate

the spectral signatures obtained from the flight with the field-level spectral signatures.

The following subsections will discuss the specific process followed, the results obtained,

and the conclusion of the performed experiments.

3.3.1 Field Data Collection

In order to compare the hyperspectral camera images with the field spectrometer,

two data acquisition sessions were carried out in the Mie University farm located at

coordinates 34°48’26.2”N 136°27’13.7”E on two separate days. During session 1, the

drone was flown at a height of 80m, resulting in a ground sampling distance of 8.7cm

per pixel. The drone was used to capture images of asphalt and rice plants using the

steps described in the previous section. At the same time, a field spectrometer (EKO

MS-730 [67]) was used to collect spectral signatures of the asphalt and rice plants in the

same location.

In session 2, the drone was flown at a lower height of 40m, resulting in a smaller ground

sampling distance of 4.9cm per pixel. Hyperspectral images were captured for soil, cab-

bage, potato, and tea targets using the same procedure and imaging parameters. Spectral

signatures of these targets were also collected using the field spectrometer. After data

acquisition, one further pre-processing step was carried out by applying a Savitzky-Golay

Filter in order to smooth the spectrum. Then a 5pxx5px area from the hyperspectral

image equivalent to the location of the field spectral meter data was obtained and av-

eraged to get one spectral signature. Spectral values obtained from the hyperspectral

images were compared with the spectral values obtained by the field spectrometer for

the same locations in this manner. This allows the assessment of the accuracy and reli-

ability of the hyperspectral camera images, as well as the ability to use the drone-based

imaging system for applications such as vegetation monitoring, crop classification, and

soil analysis.

3.3.2 Results and Discussion

Figure 3.6 and Figure 3.7 present a comparison between the spectrum information

obtained from the drone and the field spectrometer data for the same targets in session

1 and session 2, respectively. The first observation from the results shows that field

spectrometer data appears to be smoother compared to the spectral signatures obtained

using the hyperspectral camera. This difference could be attributed to several factors.

Firstly, the field spectrometer’s spectral resolution is much higher than the hyper-

spectral camera’s spectral resolution. So the sampling interval is much higher in the field
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Figure 3.6: Session 1 data (a) Spectral signatures captured from the drone (b) Spectral

signatures captured from the field-spectrometer

spectrometer. In this case, the field spectrometer has a spectral resolution of 3 nm and

a sample interval of 0.35 nm much higher than the hyperspectral camera’s 8nm sam-

pling interval. As a result, the field spectrometer data may show more detailed spectral

features and appear smoother when plotted. Secondly, the process of resampling field

spectrometer data to match hyperspectral data can also affect the smoothness of the

spectral curve. In this case, the 450 nm to 850nm spectral range of the field spectrome-

ter was resampled to match the 51 bands of the hyperspectral camera using an averaging

filter. This effectively will smoothen the field spectrometer data.

Figure 3.7: Session 2 data (a) Spectral signatures captured from the drone (b) Spectral

signatures captured from the field-spectrometer

Another factor that might have been contributing to the observed differences in spec-

tral signatures between the drone and the field spectrometer data can be identified as
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the spectra mixing. Spectral mixing is the process by which the hyperspectral camera

captures spectral information from multiple materials or targets within a single pixel due

to its spatial resolution. For example, session 1 asphalt might contain dirt, or any other

signatures from surrounding materials resulting in a different spectral signature com-

pared to the field spectrometer data which localizes the asphalt spectrum directly. This

is also evident from the fact that the second session’s spectral signatures captured with

a much higher spectral resolution compared to session one, displaces a close relationship

between the field spectrometer signatures and hyperspectral camera signatures.

Figure 3.8: Variance of the spectrum of different targets.

However, spectral signatures were still different from each other. Figure 3.8 depicts

the variation of each target’s spectrum within a 10-pixel by 10-pixel area of the image.

All three crops display about 5% to 10% of variance. On potatoes, the same amount

of variation can be observed in the 560nm to 700nm spectral range as well. The potato

crop selected for this session was nearing its harvest date, which means that it was likely

in a stage of mixed maturity with a mix of dead leaves along with green leaves, This

mixed state of the potato crop could have contributed to the high variance in the drone

spectral signatures.

3.4 Conclusion

The results of this chapter demonstrate the significant potential of drone-based low-

resolution hyperspectral cameras in capturing spectral signatures of various targets. The

ability of the drone-based camera to provide spectral signatures that closely match those
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obtained from the field spectrometer indicates its capability to effectively capture the

spectral information of different materials and surfaces. While the spectral signatures

may not be a perfect match, the high similarity between them indicates that the drone-

based hyperspectral camera is capable of capturing spectral information that is distin-

guishable and can be further utilized for subsequent analyses.

One of the key implications of this finding is that the drone-based hyperspectral

camera can be used for tasks such as the segmentation and classification of different

targets or materials. Spectral signatures obtained from hyperspectral images can be

used as a basis for developing algorithms and models to classify and identify various

objects or materials on the ground, such as vegetation, buildings, water bodies, and

geological features. This has significant implications for a wide range of applications,

including environmental monitoring, precision agriculture, urban planning, and disaster

management.

Furthermore, this section of the thesis highlights the need for case-specific pre-processing

methods, such as noise cancellation, to further enhance the quality of the hyperspectral

data. Noise or interference in the data can affect the accuracy and reliability of the

spectral signatures, and therefore, appropriate pre-processing techniques may need to be

employed to mitigate such issues. This underscores the importance of further refining

the methodology and processing techniques for drone-based hyperspectral imaging, as

well as considering specific environmental or target characteristics in order to improve

the quality of the results.

Overall, the findings of this section lay a strong foundation for the subsequent sec-

tions of the thesis, which can leverage the drone-based hyperspectral images to address

the main research problem of the thesis. The successful use of drone-based hyperspectral

imaging opens up new possibilities for future research in the field, including exploring

advanced data analysis techniques, refining data acquisition protocols, and integrating

hyperspectral data with other remote sensing data sources. The results obtained from

this section contribute to the advancement of knowledge in the field of drone-based hyper-

spectral imaging and pave the way for further research and applications in this exciting

and rapidly evolving field.
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Chapter 4

Image Mosaic Generation for

Low-Resolution Hyperspectral Images

4.1 Introduction

As mentioned in the initial sections, image mosaic generation is a critical step in the

decision-making process of any aerial imaging-based application. Hyperspectral imaging,

which captures data in a wide range of spectral bands, has gained increasing attention

in recent years due to its ability to provide detailed information about the composition

and properties of objects and surfaces. However, the image mosaicing process becomes

challenging in low-cost hyperspectral cameras with low spatial resolution and limited

field of view. Section 2.4 of the thesis discussed the existing literature on image mosaic-

generating techniques and approaches, on both normal aerial images and hyperspectral-

specific imaging applications. However, the literature survey was unable to find any

existing research focusing on the issue of low-resolution hyperspectral image stitching.

This chapter specifically focuses on low-pixel-resolution hyperspectral image stitching,

which presents unique challenges and requirements compared to traditional image mosaic

generation methods.

4.1.1 Feature matching in low-resolution hyperspectral imaging.

This section will explain the research problem in more detail by comparing existing

feature detection and matching methods used in image mosaic generation. Detection

algorithms were compared for their capability to detect and match features in sample

low-resolution hyperspectral images. A set of sample images were selected from different

data acquisition sessions which are presented in Figure 4.1 (a) to (h). Each pair of

images is adjacent to images from different data acquisition sessions. Each image pair

was subjected to feature detection and matching using several selected feature detection

and matching algorithms. SIFT [13], SURF [17], FAST [19], BRISK [20] and ORB [21]



AKAZE [23] algorithms were selected as the candidate methods based on their popularity

in aerial image stitching [16]. shown images are single-channel images displayed in the

Viridis color scheme instead of grayscale for easiness of viewing.

Figure 4.1: Sample images for feature detection and matching

For the comparison image pair was selected bandwise from each hyperspectral image.

As an example, input for SIFT was arranged where two input images are each hyperspec-

tral image’s channel one. Next channel two was taken and the mean value was calculated

at the end. Table 4.1 presents the mean values obtained for each image. Results indicate

that certain images struggle to produce any usable amount of matches to calculate the

transformation calculation.

4.1.2 Feature Matching Using Learning-based Feature Matching Algorithms

The second set of experiments was carried out to evaluate the performance of modern

learning-based algorithms. LIFT [24], MagicPoint [25], SuperPoint [26], SuperGlue [27]

and LoFTR [22] algorithms were selected for this set of experiments. similar to the
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Table 4.1: Mean features identified and matched over the 51 channels of each hyper-

spectral image

Image pair SIFT ORB AKAZE SURF FAST BRISK

a 229 17 34 60 32 44

b 0 0 1 0 0 1

c 37 2 3 8 5 6

d 3 2 0 2 0 1

e 156 2 10 31 15 8

f 3 0 0 0 0 3

g 31 3 8 43 5 4

h Fail 0 0 Fail 0 0

previous experiment number of matches was calculated between each pair of images for

each channel of the images. Results indicate the superior performance of the LoFTR and

SuperGlue algorithms when identifying matches between images. Here LoFTR feature

matches were computed with the pretrained ”outdoor” model. DISK feature descriptor

was incorporated to be used with the SuperGlue matcher,

4.2 Image stitching Optimization Utilizing GPS Information

The traditional method of image stitching, which involves creating a mosaic by iden-

tifying features and descriptors from each image and finding matches between them, can

be time-consuming and resource-intensive. This method relies on identifying matches

between images and grouping them into subsets to determine the stitching order. A con-

fidence parameter is calculated to determine the most likely adjacent image for stitch-

ing [68]. However, this process can be inefficient, especially for hyperspectral images [69].

The GPS-based optimization method utilizes GPS data to aid in the stitching process.

The GPS information, such as the coordinates and orientation of the images, is used to

determine the relative position and orientation of each image in the mosaic. By using

GPS data, the need for extensive feature matching and descriptor calculation is reduced,

resulting in a faster and more efficient stitching process [15, 68]. This section proposes

a GPS optimization method that would offer a more efficient and accurate approach to

image stitching. It reduces the processing time of image stitching by minimizing the need

for extensive feature-matching calculation across every image.
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Algorithm 1 GPS Line Segmenting Algorithm

1: Initialize first segment [GPS pnts[0, 1]

2: for i + 2← len(GPS pnts) do

3: Calculate θ

4: Calculate d

5: Calculate difference between Currentd and lastd

6: if ddifference <= dtresh or θ <= θtresh then

7: CurrentSegment← GPS pnts[i]

8: else

9: Start a new segment

10: Initialize new Segment with GPS pnts[i, i + 1]

11: end if

12: end for

4.2.1 Methodology

Figure 4.2: Parameters used in identifying segments

Algorithm 1 presents the overall procedure followed to obtain the line segments from

the GPS information. This algorithm assumes that the flight planning software created

the flight path in straight lines and that images are captured in a sequence. which is

always the case for the mission created with the most popular flight planning software

such as DJI Ground Station Pro. First, two images are used to initialize the first segment.

From the next GPS point onwards θ:tangent angle between the current point and the

last point of the segment and α: tangent angle between the last two points of the current

segment is calculated. Further, dcurrent: distance between the current point and the last
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point and dlast: distance between the last two points of the current segment is calculated.

The aforementioned angles are depicted in figure 4.2. Angle difference θ − α and the

distance difference dcurrent − dlast were calculated next. If the angle difference or the

distance difference is below the threshold values set current point is added to the current

segment. If not current segment will be saved and the new segment will be initialized

using the current GPS point and the next one. Figure 4.3 (b) presents segmented lines

from the set of GPS points shown in figure 4.3 (a).

Figure 4.3: (a) GPS points of the recorded images (b) Segmented images subsets

Results show successful segmentation of lines using the aforementioned methodology.

Furthermore, parallel processing could be incorporated to speed up the overall process

by stitching each segment in separate cores.

4.3 Image Stitching Methodology

Overview of stitching two adjacent images shown in the algorithm 2. Implementation

of the LoFTR and SuperGlue for the hyperspectral images was carried out using the Ko-

rnia computer vision library [70]. Kornia is an open-source computer vision library that

provides a wide range of functionalities for image processing tasks. It is built on top of

PyTorch, a popular deep learning framework, and provides a modular and flexible inter-

face for performing various computer vision operations, including image transformations,

filtering, feature extraction, and geometric operations. Kornia is designed to be highly

efficient, GPU-accelerated, and compatible with both CPU and GPU computations. It is

widely used by researchers and practitioners in the field of computer vision for developing

cutting-edge applications and solutions. In this section, this thesis utilized Kornia for
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Algorithm 2 Stitching Two Adjacent Images

1: Image1[:,:,Selected band], Image2[:,:,Selected band]

2: Convert to 8-bit images

3: Find matches Keypoints

4: if Keypointconfidence > Threshold then

5: Keep Keypoints

6: end if

7: Calculate Affine Transformation

8: if Affine Transformation is None then

9: Calculate Homography Transformation

10: end if

11: Wrap each band using the Transformation matrix

12: Blend Each Band

implementing the LoFTR algorithm and SuperGlue algorithm with DISK descriptors for

hyperspectral image stitching, as described in the previous section. The user can select

between the two options when initializing the stitching algorithm. The decision between

which method to select for feature matching will depend on the captured scene. During

the experiments varying performance levels were observed.

Since the LoFTR and SuperGlue functions expect 8-bit images, the selected channel

image was converted into 8-bit. Even though this step causes some information loss due

to the conversion, it won’t affect the final stitched image since two converted images

are only used to obtain the matched keypoints. LoFTR algorithm. outputs matched

keypoint pairs along with the confidence of each keypoint pair. It was then filtered with

a user-defined confidence threshold. Filtered keypoint pairs are then used to calculate

the transformation matrix between the two images. Since the hyperspectral camera is

mounted perpendicular to the astronomical horizon during flight, and the images are

taken with the hover and capture mode, first the algorithm tries to solve for the affine

transformation. However, if it fails due to perspective distortions due to unstable flight

conditions such as windy conditions, homography transformation is calculated.

The stitching process was carried out using a computer with an AMD Ryzen 9 3900X

12-Core Processor, 64Gb RAM, and an Nvidia RTX 3090 graphics card. GPU was only

used in the process of running the feature-matching algorithms.

The calculated transformation matrix is then used to calculate the corners of the

output image which is then used to calculate the minimum and maximum x and y coor-

dinates of the output image. The translation matrix is then defined using the minimum
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x, and y values, and each channel of the second image was warped using this translation

matrix. If the calculation of the affine transformation was successful each channel of the

first image was also warped using the translation matrix. Each channel of the translated

image was then again warped using the affine transformation matrix. If the affine trans-

formation was unsuccessful, the translation matrix was multiplied by the homography

matrix to obtain the full transformation matrix. Which was used to warp the image

one to the new image plane. Finely each channel of the warped images was blended

separately using a feature blend and stacked to obtain the final stitched image cube with

all the channels.

4.3.1 Selection of initial Hyperspectral Band for Stitching

Figure 4.4: (a) Images compared (b) Matches obtained using LoFTR

One of the key factors that significantly impact the accuracy and quality of hyper-
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spectral image stitching is the selection of the correct band/bands for feature matching.

Hyperspectral imagery typically consists of hundreds of spectral bands, each capturing

information about the reflectance or radiance values of the scene at different wavelengths.

These bands can be sensitive to different physical properties of the objects in the scene,

such as their material composition, vegetation density, and moisture content. Hence,

the choice of bands used for feature matching can significantly affect the accuracy and

reliability of the stitching process.

The selection of bands for feature matching is crucial because it directly affects the

ability to find corresponding features or points in overlapping images. The choice of

bands for feature matching should consider several factors. Firstly, the selected bands

should have distinctive and stable features that can be accurately detected and matched

across different images. Bands with low contrast or those that are affected by atmospheric

conditions, illumination changes, or noise may not provide reliable and consistent feature

matches. Secondly, the selected bands should capture relevant information about the

scene or objects of interest. For example, in agricultural applications, bands sensitive to

vegetation properties may be crucial for accurate stitching of images showing crop fields.

Figure 4.4 presents an experiment with the previously cited image pairs of e, f, g,

and h. LoFTR algorithm was run on each image pair for each channel. Figure 4.4 (b)

plot shows the resultant graph. The number of features of each channel is the sum of

features that had more than 0.9 confidence level from the LoFTR algorithm. In most

of the cases, LoFTR manages to find features more than 100 features on average where

image pairs e, f, and g had mean feature identifications of 419, 105, and 178 respectively.

Where the minimum number of features was identified in the bands of 522nm, 450nm,

and 450nm respectively and the maximum number of features was identified in the bands

of 618nm, 730nm, and 682nm for e, f, and g image pairs. On image pair h on the other

hand, matching algorithms showed a significant reduction in producing matches higher

than the 0.9 confidence threshold. The mean value of feature identification was 36 where

the maximum value of 82 at the 586nm band and minimum feature identification of 7 in

the 802nm band was observed.

The reason for this change is the contrast level of each band changes depending on the

composition of the image contents. Hence it is important to select a suitable hyperspectral

band having a high contrast value depending on the specific application area. In the

agriculture domain, from the experiments, it was identified that the spectral ranges from

650nm to 750nm produce high-contrast images because of the contrast between vegetation

and the ground. However, foreign objects like metal surfaces and building surfaces can

change this contrast. To tackle this problem when any one of the pairs failed to identify

enough features for the stitching, other bands were scanned to verify whether any high-

contrast bands were producing enough features above the 0.9 confidence value. In cases
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where even other bands did not produce enough features, the confidence threshold value

was reduced to 0.7 in order to increase the number of features.

4.4 Results and Discussion

4.4.1 Introduction

Figure 4.5: Sample set from the image set selected for case study 1

The process of stitching line segments to obtain a final result is complex and involves

multiple sub-processes. To provide a comprehensive and easy-to-understand overview of

the process, the results are presented through several case studies in this section. Each

case study focuses on a specific data acquisition session, providing an introduction to

the data, presenting intermediate results, and discussing the outcomes in terms of both

positive and negative aspects at each step.

By adopting a case study approach, the thesis aims to provide a detailed and in-

depth analysis of the stitching process for different scenarios. This approach allows for a

thorough examination of the methodology’s performance under various conditions, such

as different environmental settings, target characteristics, and data acquisition sessions.

It also enables the identification of potential strengths and limitations of the methodology

in different contexts.

In each case study, the data acquisition session is carefully selected to represent a

specific scenario, and the data used for stitching is introduced, including details on the

initial GPS points captured and the segmentation of line segments. Intermediate results,

such as images or visual representations, are presented to provide a clear understanding

of the progress of the stitching process. These intermediate results serve as a basis for

evaluating the performance of the methodology at each step of the process.

Furthermore, the case studies provide a comprehensive analysis of the outcomes in
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Figure 4.6: Case study 1 (a) GPS points of the selected image set (b) Segmented lines

terms of positives and negatives. This allows for a critical evaluation of the methodology’s

performance, highlighting the strengths and advantages, as well as the limitations and

challenges encountered during the process. This analysis provides valuable insights for

further refinement of the methodology and for identifying potential areas for improvement

in future applications.

Overall, the case study approach in presenting the results of the stitching process

allows for a detailed and comprehensive assessment of the methodology’s performance,

providing a clear understanding of the outcomes at each step of the process. The analysis

of positives and negatives in each case study contributes to a holistic evaluation of the

methodology’s effectiveness and limitations and forms the basis for recommendations and

further research in the field of line segment stitching for image stitching using drone-based

low-resolution hyperspectral data.

4.4.2 Case Study 1

The first dataset selected was obtained from the same location described in previous

sections (Mie University Farm) on a clear day without cloud cover. At the start of the

data acquisition session Altitude angle: the angle between the horizon and the center of

the sun was 56.69◦ and the Azimuth angle: the angle between the meridional plane of the

earth and the vertical plane of the sun was 138.91◦. At the end of the data acquisition

session, the altitude angle was 60.03◦ and the azimuth angle was 150.53◦. During this

time solar irradiance was changed from 1002 W/m2 at the start to 1012 W/m2 at the

end of the session.

UAV was flown at a height of 120 meters. At this height, each image had a spatial
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Figure 4.7: Intermediate results after stitching each line segment using band 29

resolution of 13.1 cm/px. A total of 110 images were captured to cover the desired

plantation area. The whole of the selected farming plot was already sown in order to

prepare the soil for the next season’s cultivation. Because of this, the contrast level of

most images was homogeneous. Figure 4.5 (a) shows a sample of images selected for

this case study. Figure 4.5 (b) shows the NDVI values of the selected images. NDVI or

Normalized Difference Vegetation Index is used to interpret vegetation health and vigor.

NDVI is calculated using the reflectance values of near-infrared (NIR) and red bands of

the image. NDVI index is represented in the range from -1 to 1 where higher values

indicate healthier vegetation and lower values indicate less healthy or sparse vegetation.

In this case, values close to 0 mean little or no vegetation was present in the sown plot.
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Figure 4.8: Intermediate results after stitching each line segment using band 35

However, the surrounding area of the selected plot contained a healthy weed population.

Figure 4.6 demonstrates the initial GPS points captured, and in (b), segmented lines

from the GPS points are represented in different colors. As mentioned previously these

segments are then stitched separately using parallel processing. The initial feature se-

lection band was selected as 29 which captures the information from 682 nm. Total line

segments were stitched in under 11 minutes. Figure 4.7 presents the intermediate line

stitching obtained from the aforementioned methodology. The image sequence is repre-

sented starting from the top left following downward and shifting to the right side from

the seventh line segment. All of the images were stitched as intended except for the fifth

line segment. Further investigation is discussed in a later section about the particular
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Figure 4.9: Stitched image of case study 1 using the band spectral 682nm

cause of the issue and ways to mitigate the issue.

Figure 4.10: Spectral analysis of the stitched image case study 1. (a) Stitched image

and the selected patches (b) spectral signatures associated with each bounding box

Figure 4.9 (a) depicts one channel image of the final stitched image using channel no

29 as the initial feature detection band. As evident from the result, stitching quality is

poor. Geometrical lines have shifted by a considerable margin and severe ghosting effects

can be visible in different areas. Figure 4.8 presents the intermediate results for the same

dataset by initial feature identification with the 35th band or the 730nm band of the

image. From the visual inspection, some intermediate results are considerably improved

over the band 29th intermediate results. Further Figure 4.9 (b) depicts the final stitching
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result using band 35 as the initial band selection. It is also an improvement over the

stitch done using band 29 in terms of geometrical consistency and ghosting effects. This

raises the need to improve the accuracy of feature matches.

Figure 4.10 presents a spectral plot that sheds insight into the spectral consistency

of stitched images. The first plot (a) of the figure indicates the stitched image in RGB

format. To evaluate the spectral consistency of the stitched image, a set of bounding

boxes from the image that represents several targets of hyperspectral images was selected.

These bounding boxes were set to a size of 20 pixels by 20 pixels.

From each pixel within the bounding boxes, hyperspectral signatures were extracted

and plotted, as shown in Figure 4.10 (b). The selected targets for this analysis were

vegetation, soil, asphalt, and a mixture of soil and weed. Results indicate that the

spectral signatures of each pixel within the bounding box are consistent and can be

differentiated, similar to the signatures discussed in Chapter 3. This finding suggests

that stitching images do not significantly impact their spectral consistency, which is an

important consideration in remote sensing applications.

4.4.3 Case Study 2

Figure 4.11: Case study 1 (a) GPS points of the selected image set (b) Segmented lines
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Figure 4.12: Case study 2 (a) Intermediate results of the line segment stitching. (b)

Stitched image in monochrome and RGB representations

Figure 4.13: Spectral analysis of the stitched image case study 2. (a) Stitched image

and the selected patches (b) spectral signatures associated with each bounding box

A second case study was carried out on an image set where the acquisition height was

much lower than in the previous study. This session was carried out at an altitude of 50

meters from the ground and at that altitude, it had a spatial resolution of 5.5 cm/px.

Which is more than double the spatial resolution of case study one. This session only
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Figure 4.14: NDVI plots (a) Stiched image of case study 1. (b) Stiched image of case

study 2

contained 54 images. Figure 4.11 plots the GPS pots of this session and the corresponding

line segments obtained. Apart from the flight height, every other flight parameter was

kept the same as in case study 1. It can be observed that the GPS points are plotted a

lot closer than the case study one due to the drone flight height being much lower than

the study one.

Figure 4.12 (a) presents the intermediate results of the stitched line segments and (b)

presents the final stitched image in monochrome and RGB format. It can be observed

that the proposed stitching process succeeded in producing a stitched image with some

geometrical imperfections.

In the previous spectral analysis, three locations were chosen from the stitched image.

These locations included plots containing soil and onions, soil alone, and plots containing
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weeds. The resulting plots are shown in Figure 4.13. In (a), the RGB image displays the

selected samples with their bounding boxes, while in (b), the spectral signatures within

each bounding box are shown.

Similar to the findings in Case Study 1, the spectral signatures obtained from the

selected plots in Case Study 2 were consistent within their respective bounding boxes.

However, in cases where multiple materials are present in a single pixel, such as in

mixed pixel situations, spectral unmixing might be necessary to separate the spectral

components of each material in that pixel.

4.5 Chapter Conclusion

In conclusion, the initial stitching process of hyperspectral images obtained via a UAV,

as described in this section, has shown successful results that can be utilized in various

decision-making processes in agriculture and other fields. The generation of NDVI maps,

growth estimation, crop monitoring, precision agriculture, crop stress detection, yield

prediction, crop phenotyping, and field boundary mapping are some of the potential end

uses of stitched hyperspectral mosaics.

However, it is important to note that the selection of the initial feature detection band

is critical for achieving geometrically consistent stitching. Some regions of the spectrum

may pose challenges for the LoFTR algorithm in identifying matches accurately, resulting

in low-accuracy transformation matrices and poor performance of the proposed method.

This limitation needs to be carefully considered when applying the proposed method in

practical applications.

Further research and experimentation are needed to refine the method and overcome

this limitation for more reliable and accurate stitching results. Despite this limitation,

the proposed method represents a significant advancement compared to previous meth-

ods, where the entire process failed at the feature identification step. The successful

results achieved so far using the proposed method offer a promising approach for stitch-

ing hyperspectral images from UAVs and have the potential to enhance the analysis of

remote sensing data for various applications in agriculture, environmental monitoring,

and other fields. Such an example of a possible use case is depicted in the FIgure 4.14

where NDVI images were generated using the stitched images described in case study 1

and case study 2.

In summary, while the proposed method has limitations related to the selection of

feature detection bands, it presents a promising approach for stitching hyperspectral

images obtained via UAVs, and further research and improvement can contribute to its

wider application in diverse remote sensing applications, benefiting agriculture and other

domains.
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Chapter 5

Enhancing Feature Detection and Matching

in Low-Pixel-Resolution Hyperspectral

Images

5.1 Introduction

Although chapter 4 proposed the mosaic generation pipeline based on the LoFTR

and SuperGlue feature detection and matching methods, several limitations of the cur-

rent state-of-the-art methods were identified. Feature detection was not performing ade-

quately on some image pairs even with the state-of-the-art methods. One main drawback

of these methods is that they are reliant on a single band of the hyperspectral image.

None of the state-of-the-art methods are designed to be used with hyperspectral images.

As explored in the previous chapter, these algorithms take an image of one spectral band

selected by the user and use it to detect and match features between adjacent images.

Hence it was hypothesised that if an algorithm was proposed to utilize all the information

available in all of the hyperspectral bands feature detection could be improved further.

The use of all the available bands in a hyperspectral image allows the algorithms to bet-

ter make predictions on correct and incorrect features. Based on this, a 3D Convolution

Neural Network-based Siamese network was proposed where an initial feature match set

was generated using edge maps and then the Siamese network was used to filter out the

non-matches from the matches. This chapter of the thesis describes the design, training,

and evaluation steps of the proposed model.

5.2 Proposed Model

Figure 5.1 provides an outline of the proposed approach, which involves a sequence

of four main steps for generating a collection of highly accurate filter matches from a



given pair of images IA and IB. The initial step selects a spectral band, extracts edges

from each image pair, and creates a binary edge map using Phase Stretch Transformation

(EA and EB). Subsequently, SIFT feature detection is applied to each edge map, and

a brute-force matcher is employed to derive a set of matches from the two edge map

images. Following this, 32 by 32 patches are extracted around the identified matched

keypoints, capturing all the spectral band information from each selected patch (PA1,

PA2, ..... PAi and PB1, PB2, ..... PBi). In the concluding step, a 3D convolution-based

Siamese network is employed to filter out inaccurate feature matches from the identified

list of feature matches. The subsequent sub-sections in the methodology section will

delve into the specifics of each of these processes.

Figure 5.1: Overview of the proposed method

5.3 Data acquisition and preprocessing

All hyperspectral images utilized in this experiment were captured using the Cubert

Ultris 5 hyperspectral camera [8]. This camera boasts a resolution of 290 pixels by 275

pixels and comprises 51 spectral bands sampled across the 450 nm to 850 nm range,

with an 8nm spectral resolution. Its compact dimensions of 29mm by 29mm by 40mm

and a weight of 120 grams make it an ideal solution for mounting on a variety of UAVs.

The complete acquisition system, including the provided single-board computer, trig-

gering circuit, and wiring-mounting hardware, weighed under 800g. The DJI M600 Pro

drone, along with its accompanying SDK, was employed for data acquisition sessions, and

captured irradiance images were converted to radiance. Figure 5.2 illustrates the data
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acquisition platform. Additional details about the setup and the initial data conversion

process can be found in the initial chapter 3.

Image acquisition was carried out using the DJI Ground Station Pro software, em-

ploying the ”hover and shoot” mode to trigger the hyperspectral camera. An 80% front

and side overlap was chosen between images to compensate for the accuracy limitations

of traditional GPS systems. This deliberate overlap ensures a substantial common area

between consecutive images, facilitating the detection of feature matches. The selected

fields for data acquisition encompassed various scenes, including freshly plowed soil, a

mix of weed and soil, watered paddy fields, asphalt roads, fully grown weed, and orange

plants. This diverse selection aimed to showcase feature detection challenges encountered

in agricultural plots, particularly scenarios involving early-stage vegetation where a sig-

nificant portion of soil is visible. Furthermore, selecting a wide variety of targets will aid

the model’s robustness.

Figure 5.2: DJI M600 pro drone with the camera mounted

5.4 PST-based feature match generation

Training the Siamese network to discern matches from non-matches, based on a set of

potential feature matches, constitutes the primary methodology employed in this paper

to acquire a robust set of filter matches. The basic approach involves selecting a pixel

region from the first image and obtaining all possible combinations from the second

image with the same region size, iterating until the entire first image area is covered.

However, this method is computationally demanding. An alternative strategy involves

transforming the image into a different domain and extracting features from it. After

exploring various approaches such as hyperspectral band fusion and image enhancement,

it was determined that generating edge maps from hyperspectral images and subsequently

identifying features within these maps yielded a sufficiently accurate dataset for filtration

by the Siamese network.

The Phase Stretch Transformation (PST) emerges as a noteworthy edge and texture
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detection method, offering commendable performance on visually impaired images with

computational efficiency. Initially introduced by Asghari et al [71, 72] based on the

concept of photonic time stretch [73], PST was chosen as the preferred edge map creator

over other popular algorithms like Canny edge detection [74], Sobel edge detection [75],

and Laplacian of Gaussian (LoG) edge detector [76], as indicated by the evaluation results

presented in Zhou et al.’s work [77]. The preference for PST was further motivated by

the unavailability of trained algorithms, discrepancies in data size, and computational

burden associated with learning-based edge detection methods.

Initially, one band from each hyperspectral image underwent PST edge detection using

the Python library [77]. The PST algorithm, with user-tunable parameters including

phase strength, warp strength, Gaussian low-pass filter standard deviation (sigma), lower

and upper thresholds, and a boolean for binary/analog edge detection, was applied with

phase and warp strengths set at 0.2 and 50, and a sigma of 0.15 for the low pass filter.

The threshold range spanned 0 to 0.65, producing a binary mask as the resultant edge

map. Subsequently, the converted edge image underwent SIFT feature detection and knn

matching using OpenCV, yielding a list of matches for the image pair. The sensitivity of

the SIFT detector was enhanced by adjusting contrast threshold, sigma, and octaveLayers

parameters, with specific values set for this experiment.

By tuning the SIFT detector’s sensitivity, more than 10,000 feature matches were

generated, providing substantial data for the Siamese network. Notably, the spectral

band selection for edge detection played a crucial role in this step. Although feature

matches remained high across various selected bands, opting for spectral bands within the

600nm to 800nm range produced considerably higher set of accurate matches. Further

details on specific outcomes will be presented in the results section. Figure 5.3 (a)

illustrates the original images, (b) showcases the edge map created via the PST method,

and (c) depicts 100 randomly selected feature matches from the designated image pair.

Following this, 32x32-pixel size patches were extracted, centered around the matched

keypoints, each containing spectral information. This process resulted in two 32x32x51

image patches for every matched keypoint in the first and second images.

5.5 Dimentionality reduction using Autoencorder

Employing a neural network to train on the 32x32 pixel patches extracted with the

51 spectral bands is not advisable due to challenges associated with high dimensional-

ity, notably the curse of dimensionality [78]. Consequently, this research implements

a straightforward autoencoder-based dimensionality reduction network to address these

challenges, reducing the hyperspectral image dimensions from 51 bands to 16 bands. The

choice of an autoencoder-based approach stems from considerations of execution time.
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Figure 5.3: Intermediate results of feature match generation method. (a) selected image

pair from the 750 nm band. (b) PST edge map. (c). Ransom sample 100 detected

matches.

While training the autoencoder incurs computational expenses, the subsequent inference

of the trained model proves significantly faster than traditional methods like Principal

Component Analysis.

The dimensionality reduction is accomplished through a feed-forward neural network-

based encoder and decoder, each comprising three hidden layers. Rather than represent-

ing the entire patch in a lower-dimensional space, a 1D autoencoder is trained to reduce

the dimensions of each spectral signature at each pixel. Consequently, the input for the

autoencoder is of size (1, 51). Each hidden layer is followed by a batch normalizing layer

and a leaky ReLU layer. Post-training, the encoder portion of the autoencoder is utilized

to reduce the 51 dimensions to 16 at each pixel within the 32x32 patches. Regenerated

pixel spectrums from the autoencoder exhibit a high correlation with the original data,

affirming the effectiveness of the autoencoder approach.

5.6 Feature filtering using a 3D convolution Siamese Network

The feature matches produced encompass two subsets: correct matches and incorrect

matches. The inclusion of the Siamese network serves the purpose of discriminating
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Figure 5.4: Proposed network architecture

between matches and non-matches. To leverage both spectral and spatial information in

the filtering process, this research introduces a 3D convolution-based Siamese network.

Figure 5.4 illustrates the architecture of the proposed Siamese model. The network

undergoes training on both matched and non-matched features, with each patch having

an input size of 32x32x16.

5.6.1 Network architecture

The architecture comprises three 3D convolution layers, where the first two layers

use 3D convolution kernel sizes of 3x3x3, and each subsequent layer utilizes a 1x3x3

kernel. Following each convolution layer, batch normalization is applied, and activation

is achieved through a LeakyReLU function with a negative slope set at 0.2. Following

the activation layers, three max-pooling layers are employed, with sizes of 2x2x2 for the

initial two layers and 1x2x2 for the final max-pooling layer. The output is then flattened

and fed into a dense network featuring two layers with sizes of 256 and 128. Ultimately,

the Euclidean distance is computed from the output of each network.

To enhance the distance between output embedding for non-matched images and

reduce the distance for matched images, a contrastive loss function is employed during

the training process. This loss function penalizes the network when it predicts that two

inputs are the same, and vice versa. The proposed network architecture was determined

after experimenting with various shapes and sizes, considering the accuracy it yielded.

The contrastive loss function is computed as follows. Let z1 and z2 denote embeddings

of two patches in an embedding space, y represent the binary label indicating whether

the pair of patches is a match or not, and margin be the hyperparameter defining the

minimum desired separation between similar and dissimilar points in the embedding

space. The calculation of the contrastive loss function can be expressed as follows.
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First, compute the Euclidean distance (L2 distance) between the two embeddings by

calculating the element-wise difference between z1 and z2. Then, calculate the squared

L2 distance for each pair of embeddings. Finally, obtain the Euclidean distance by taking

the square root of the squared distances, as represented in equations 5.1 and 5.2.

difference = z1 − z2 (5.1)

Euclidean Distance =

√√√√ n∑
i=1

(differencei)2 (5.2)

Then calculate the difference between the margin and the calculated distance. Clamp

the negative values to ensure that negative values are set to zero, indicated in equation

5.3. This enforces that dissimilar points are only penalized if they are closer than the

desired margin. Finally, calculate the loss for the two patches by the equation 5.4.

negative distance = min(max((margin− Euclidean Distance), 0.0),max valuei)

(5.3)

loss =
y · distance squared + (1− y) · negative distance2

2.0
(5.4)

The training process utilized a dataset generated by traversing a 32x32 pixel win-

dow across an image. As depicted in Figure 5.5 (a), dataset matches were formed by

replicating the same image patch while shifting the Pr window in 5-pixel strides. This

32x32 window was then systematically moved to cover the entire image, and duplicated

patches were preserved as matches. For non-matches, the Pr window remained station-

ary while the Py window moved in 5-pixel strides to encompass the entire image. Each

non-match comprised patches Pr and Py. Once the Py window covered the entire image,

the Pr window advanced in 5-pixel strides, and the motion of Py was repeated to avoid

duplications. This combination of movements resulted in 2548 matches and 1685502 non-

matches from a single image. However, non-matches were randomly selected, and only

5000 non-matches were retained from one image. Three hundred hyperspectral images

were chosen from distinct acquisition sessions to generate the data samples for training

and validation.
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Figure 5.6: Four samples of created dataset. (a) Matches. (b) Non Matches.

Figure 5.5: Training Data creation (a) Matches creation (b) Non-matches creation

5.6.2 Training dataset creation and training process

From the established dataset, 7,000,000 matches and non-matches were randomly

chosen for each class, contributing to the training, validation, and testing phases. Figure

5.6 (a) illustrates two matched samples from the dataset, while (b) displays non-matched

samples. The selected data was distributed into training, validation, and test sets with a

ratio of 0.8, 0.1, 0.1. Model training concluded at epoch 18, ceasing when five consecutive

validation losses failed to exhibit improvement. The model was trained with a learning

rate of 0.0001 using Adam optimization [79]. Additionally, dynamic mini-batch sizing

was implemented during training, progressively increasing the batch size from 256 to

2048 over the initial 5 epochs. This strategy, known to offer advantages such as swift

convergence, a regularization effect, and efficient memory and computational resource

utilization in large-scale models [80, 81], was employed. Despite the proposed model

having a relatively small number of tunable parameters, specifically 202,568, compared

to some larger models, dynamic sizing contributed to the model’s rapid convergence.

Figure 5.7 (a) presents the training and validation loss values for the model.

Following the training process, the inference for predictions involved calculating the
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same Euclidean distance and thresholding the distance to derive the prediction. Figure

5.7 (b) showcases the Matthews Correlation Coefficient (MCC) curve for the test dataset.

The MCC is a performance metric for binary classification tasks, factoring in true posi-

tives, true negatives, false positives, and false negatives. The resulting score falls within

the range of [-1, 1], where 1 signifies a perfect prediction, 0 represents a random predic-

tion, and -1 denotes a complete disagreement between prediction and observation. The

MCC curve is obtained by varying the threshold value and calculating the corresponding

MCC values. The x-axis in Figure 5.7 (b) represents threshold values ranging from 0

to 3, while the y-axis presents the MCC values obtained at each threshold. The curve

indicates that threshold values below 0.9 yielded nearly perfect results for the test set.

However, when applying the trained model to adjacent image pairs, thresholds above 0.6

introduced a significant number of incorrect matches. This discrepancy arises from slight

variations between the trained data and real data. While the trained data comprised

identical matches from the same images, applying the trained algorithm to adjacent im-

ages introduced slight illumination and perspective changes due to differences in image

acquisition locations. The method employed for dataset generation eliminates the labor-

intensive manual labeling required when generating a dataset with adjacent images. It

is believed that the features learned from the dataset created with the proposed method

effectively imparted relevant information to CNN, a claim that will be substantiated in

the results section.

Figure 5.7: (a) Training and validation loss curve (b) Matthews Correlation Coefficient

curve

5.7 Evaluation Procedure

To assess the proposed method, several hyperspectral image pairs were chosen to

showcase both the superior performance of the proposed model and instances where it
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does not perform as well. The 762nm (38th) spectral band was selected from each image

pair, and the edge image was generated as detailed in Section 5.4. Subsequently, a set

of feature matches was acquired using SIFT detectors as outlined in the same section.

Following this, 32x32 patches were extracted in pairs for each match, and dimensions

were reduced from 51 to 16 using the encoder. Each pair of patches was then processed

through the Siamese network to obtain the Euclidean distance. A threshold value was

chosen for binary classification. The filtered feature matches set was then employed to

evaluate the proposed method against both traditional and state-of-the-art methods.

As evaluation metrics for method comparison, an inlier percentage was determined

by computing homography with RANSAC. Additionally, a common region was extracted

from the two overlapping regions after the homography transformation. Subsequently,

the Structural Similarity Index Metric (SSIM) [82] and the correlation coefficient were

calculated for the two regions. SSIM involves three sub-components: luminance compari-

son, contrast comparison, and structural comparison, making it indicative of the accuracy

of identified feature matches. On the other hand, the correlation coefficient measures the

linear relationship between image pixels in the two regions, with values ranging from

-1 to 1. A value of -1 indicates a perfect negative linear correlation, while 1 denotes a

perfect positive correlation. However, it does not account for the perceptual qualities of

the two regions.

To compare the proposed method, the previously mentioned LoFTR, and LightGlue

methods were selected. LightGlue was employed in conjunction with the DISK fea-

ture detector [83] during the experiments, leveraging the superior performance observed

with this combination of feature detector and matcher. Additionally, a combination of

Good Features to Track (GFTT) detector [84] + OpenGlue [85], and a combination of

KeyNet keypoint detector [86] + OpenGlue were utilized as state-of-the-art methods

for performance comparison with the proposed method. The second nearest neighbor

matcher (SNN) was employed to filter out non-matches from the matches in each of the

two aforementioned detectors and descriptors. OpenGlue employs Convolutional Neural

Networks to generate descriptors for the keypoints identified using GFTT and KeyNet.

These methods were selected after an initial evaluation and demonstrated comparable

results with the LoFTR and LightGlue algorithms.

5.8 Results and discussion

The presentation and subsequent discussion of the results will be presented in two

distinct subsections. The first section will discuss the utilization of spectral bands in

PST-based feature match generation, examining the influence of selecting a specific band

on the performance of the proposed method. Additionally, a discussion will be under-
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taken to understand how the choice of a particular spectral band affects the accuracy

and reliability of the feature matches generated by the proposed approach. Subsequently,

the second subsection will center on the performance evaluation of the proposed method.

This evaluation will gauge its effectiveness using carefully selected image pairs derived

from diverse datasets acquired in varied locations. This assessment aims to showcase

the method’s robustness across different scenarios and datasets, offering a comprehensive

perspective on its capabilities and potential limitations. The insights and findings derived

from these analyses will contribute to the understanding of the proposed method’s effi-

cacy and its practical applicability in real-world scenarios involving hyperspectral image

matching.

5.8.1 Selection of the spectral band

As mentioned in section 5.4 it was identified that the performance in the 600 to 800nm

range, specifically in band 18 to band 42, was comparatively better than in the other

spectral bands. Figure 5.8 presents graphs obtained in order to evaluate this statement.

Ten image pairs were randomly selected, and the feature matching was carried out for each

band of the hyperspectral image pair. Figure 5.8 (a) presents all the matches obtained for

each image pair at each spectral band while figure 5.8 (b) presents the filtered features

obtained from the proposed Siamese model. Derived feature matches were then used

to calculate the homography between the two images at each band and the inlier ratio

and the mean reprojection ratio were calculated for each band. Figures 5.8 (c) and (d)

present the respective plots. It could be highlighted that the high number of matches

identified in the initial few bands did not translate into accurate match predictions. This

is because the contrast between pixels in the initial bands is lower, and this produces noise

rather than accurate matches when the image is subjected to PST-based edge detection.

Furthermore, bands 32 and 33 suffered from the same situation as well, where there was

a drop in filtered features. In terms of inliers, most of the bands from all image pairs

were able to produce more than 80% inliers. However, image pair H had a fluctuating

performance where it produced a respectable inlier ratio and a re-projection error within

the band 20 to 30 (618nm to 706nm). Hence, it is suggested that in order to get the

maximum performance from the proposed method, one needs to consider the contrast

between pixels within each band. When incorporating edge-based feature detection in an

application area other than agriculture plots, such as biomedical hyperspectral imaging,

it is necessary to consider the band suitable for the specific application.
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5.8.2 Evaluation of the proposed method

To assess the proposed method, four state-of-the-art feature detectors and matches

commonly used in Simultaneous Localization and Mapping (SLAM) and other visual

tracking tasks were chosen, in addition to the traditional SIFT method. Eighteen image

pairs were carefully selected from three distinct datasets captured on different dates and

at varying locations, with respective flight altitudes of 100m, 110m, and 80m. Figure

5.9 presents samples from each dataset, where the primary number indicates the dataset

number, and the subscript denotes the image pair. The selection of image pairs was

strategically done to underscore the strengths and weaknesses of the proposed method,

facilitating a comparative analysis with state-of-the-art methods.

Each image pair underwent processing through the proposed method, as outlined in

Section 5.7, to derive the Structural Similarity Index (SSIM) and correlation coefficient.

Precisely, if the identified matches are accurate, higher SSIM and correlation values would

be expected, signifying similarity in the two overlapping regions and the success of each

method in generating high-quality feature matches. In addition to SSIM and the correla-

Figure 5.8: Evaluation of selecting a band for initial feature matching for 10 image

pairs. (a) Total matches produced for each band. (b) Total matches produced from the

proposed methods. (c) Inlier ratio each band produced. (b) Mean reprojection error for

each band
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tion coefficient, the inlier percentage, corresponding to the homography calculation, was

also computed. This metric provides insight into the proportion of matches that align

with the calculated homography, offering further evaluation criteria for the proposed

method and facilitating comprehensive comparisons with other methodologies.

The results obtained from the evaluation experiments are presented in Table 5.1.

In instances where the match number is specified, and the remaining columns indicate

”Fail,” it signifies that the algorithm generated matches; however, it either failed to

calculate a homography using the identified matches or the computed homography did

not yield meaningful results. When the term ”Fail” is mentioned without indicating any

matches, it suggests that the algorithm could not generate any matches for the respective

image pairs.

Overall, the proposed method, the LoFTR method, and LightGlue with the DISK

descriptor-matcher exhibited significantly superior performance in terms of both the num-

Figure 5.9: Sample of the selected data, Each figure name represents the corresponding

dataset and the image pair in accordance with the Table 5.1
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Figure 5.10: Line graphs for SSIM values obtained for each image pair.

ber of matches produced and the number of inliers falling under the calculated homog-

raphy. In the first dataset, all methods yielded respectable metrics for the identified

feature matches, except for matches obtained from LoFTR for image pair f , which failed

to produce any usable homography from the detected matches. However, concerning

the number of feature matches, traditional SIFT, GFTT + OpenGlue, and KeyNet +

OpenGlue generated fewer results compared to the other three methods. This dimin-

ished performance was more evident in datasets 2 and 3, where the produced results

were subpar compared to the other three methods.

Observations revealed that in scenes characterized by complexity and a diverse range

of shapes and pixel intensities, most evaluated methods demonstrated satisfactory per-

formance. However, an exception was noted in the case of the LoFTR method applied to

image 2u in Figure 5.9. Such scenarios typically involve complex vegetation, as depicted

in images 2u and 2w, or scenes like 1b and 1d, where the radiometric characteristics cre-

ate contrasting pixel regions. This underscores the importance of developing methods

specifically tailored for application in agricultural plots, where such characteristics may

not be prevalent. The need for methodologies adept at handling agricultural scenes,

characterized by specific challenges, becomes apparent in ensuring reliable and accurate

feature matching under diverse and complex environmental conditions.

Among the assessed methods, LightGlue consistently yielded the highest number of

feature matches in most instances. LoFTR also demonstrated comparable results with

LightGlue, although its performance was suboptimal for specific image pairs, such as i

and r from datasets 2 and 3, as illustrated in Figure 5.9. The proposed method exhibited

a performance level between LightGlue and LoFTR concerning the number of feature

matches. Figure 5.10 visually represents the SSIM values, showcasing that, overall, the

proposed method provided the highest SSIM values for the datasets, except in 5 instances

out of 18, where SIFT delivered the highest SSIM, and two occasions where LightGlue

and GFTT+OpenGlue produced superior SSIM.
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Figure 5.11: (a) Image pair o in dataset 3. (b) After the PST edge detection

Despite LoFTR generating a substantial number of matches, it did not achieve as high

accuracy as the proposed method and the LightGlue method in terms of SSIM values.

Among the feature matches obtained, the proposed method secured 9 out of the top 18

inlier ratios. Additionally, in the remaining 9 cases where our method did not achieve the

highest inlier ratio, 7 instances were within 10% of the highest value. This underscores

the highly accurate nature of the proposed method. However, image pair o depicted in

Figure 5.11 exhibited suboptimal performance with the proposed method. This can be

attributed to two primary reasons. A) There exists an illumination difference between

the two images, causing the Siamese network to classify correct matches as non-matches.

This is a consequence of the training data comprising identical pairs from the same

image. B) Due to the low contrast of the image, the initial edge-based feature detection

method struggled to identify correct matches. Furthermore, a consistent correlation was

observed between correlation coefficient values and SSIM values across the results for

each algorithm.

Nevertheless, a notable drawback of the presented approach lies in its computational

speed. The proposed algorithm exhibits a performance slowdown of up to a factor of 10

in comparison to alternative methods, attributed to the substantial number of feature

matches requiring filtration. It is crucial to emphasize that, throughout the experiments,

trials were performed with room for further code optimization, particularly in the area

of parallel processing and GPU utilization. We advocate employing the current model as

an adjunctive feature detection method to complement state-of-the-art approaches. In

practical scenarios, such as image mosaicing tasks, users can integrate evaluation metrics

like SSIM to determine if the identified matches meet a specified threshold. If not, the

proposed method could be invoked to discern feature matches.

5.9 Chapter Conclusion

In conclusion, Chapter 5 introduced a novel approach to hyperspectral image feature

matching using a 3D Convolution Neural Network-based Siamese network. While the

previous chapter proposed a mosaic generation pipeline based on the LoFTR feature

detection and matching method, it critically assessed the limitations of existing state-of-
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Table 5.1: Results from the proposed method vs others

Proposed Method LoFTR LightGlue + DISK

Dataset
Image

Pair
Matches SSIM Correlation Inliers Matches SSIM Correlation Inliers Matches SSIM Correlation Inliers

1

a 282 0.973 0.935 94.68 13 0.867 0.851 92..0 677 0.971 0.999 93.83

b 254 0.980 0.992 91.73 719 0.942 0.978 80.80 834 0.980 0.992 84.77

c 412 0.989 0.997 95.63 499 0.870 0.964 77.35 838 0.989 0.997 98.56

d 394 0.982 0.998 96.70 63 0.907 0.979 85.71 873 0.981 0.998 96.44

e 132 0.959 0.974 77.20 42 0.902 0.926 92.85 334 0.960 0.974 84.43

f 231 0.975 0.980 81.38 5 Failed 438 0.973 0.977 98.18

2

i 74 0.929 0.622 89.18 240 0.909 0.717 87.08 97 0.793 -0.025 82.47

j 88 0.967 0.896 87.50 287 0.922 0.833 75.95 387 0.954 0.943 76.74

k 36 0.971 0.941 72.22 91 0.932 0.925 69.23 Failed

l 107 0.946 0.983 85.04 7 0.640 0.578 85.71 241 0.853 0.911 68.87

m 215 0.983 0.968 86.04 143 0.899 0.880 74.12 212 0.982 0.965 88.21

u 753 0.958 0.978 92.69 58 0.605 0.712 93.10 960 0.955 0.976 98.43

w 1057 0.959 0.980 99.81 841 0.862 0.929 93.10 1042 0.954 0.977 91.26

3

n 14 0.887 0.874 100.0 410 0.782 0.747 71.21 6 Failed

o 52 0.600 0.693 94.23 234 0.687 0.931 75.21 285 0.710 0.958 92.63

p 131 0.940 0.947 94.02 32 0.780 0.514 65.62 507 0.937 0.819 81.65

q 36 0.969 0.980 75.00 45 0.720 0.805 66.66 118 0.660 0.497 33.89

r 23 0.790 0.761 91.30 Failed 41 0.750 0.657 60.97

GFTTAffNetHardNet

+snn

KeyNetAffNetHardNet

+snn
SIFT

Dataset
Image

Pair
Matches SSIM Correlation Inliers Matches SSIM Correlation Inliers Matches SSIM Correlation Inliers

1

a 51 0.971 0.927 98.11 125 0.975 0.982 83.20 38 0.977 0.956 13.47

b 52 0.979 0.992 100.0 126 0.981 0.992 88.09 29 0.981 0.993 11.41

c 87 0.988 0.997 87.35 143 0.989 0.997 95.10 44 0.989 0.997 10.67

d 88 0.981 0.998 95.45 150 0.981 0.998 86.66 38 0.981 0.998 8.12

e 23 0.960 0.974 86.95 88 0.958 0.974 96.59 33 0.961 0.974 18.18

f 23 0.960 0.974 86.95 88 0.958 0.974 96.59 33 0.961 0.974 18.18

2

i Failed Failed 34 Failed

j Failed Failed Failed

k 7 0.957 0.932 100 10 0.801 0.774 80.00 Failed

l 4 0.927 0.971 100 18 0.922 0.968 88.88 12 Failed

m 27 0.973 0.958 92.59 73 0.981 0.964 84.93 66 0.981 0.963 8.37

u 192 0.955 0.976 24.70 131 0.958 0.978 87.78 357 0.957 0.977 83.75

w 259 0.958 0.980 24.50 131 0.957 0.979 83.21 456 0.958 0.979 96.49

3

n Failed 5 Failed 26 Failed

o 8 Failed 8 Failed Failed

p 14 0.814 0.510 78.57 41 0.742 0.452 75.60 19 Failed

q 1 Failed 26 0.932 0.956 69.23 7 0.970 0.978 19.44

r 1 Failed 6 Failed Failed
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the-art methods. One significant drawback identified was the reliance on a single band of

hyperspectral images, which led to inadequate feature detection performance in certain

image pairs.

Motivated by this limitation, the chapter presented a solution that leverages informa-

tion from all available hyperspectral bands. The proposed Siamese network, integrated

into the feature matching pipeline, demonstrated improved feature detection accuracy

by using 32x32 patches extracted from different spectral bands. The methodology in-

volved generating initial feature matches using edge maps obtained through Phase Stretch

Transformation (PST), followed by dimensionality reduction using a 1D autoencoder.

The Siamese network was then employed to filter out inaccurate matches, resulting in a

collection of highly accurate filter matches.

The evaluation process included data acquisition and preprocessing steps, highlighting

the use of the Cubert Ultris 5 hyperspectral camera mounted on a DJI M600 Pro drone.

The evaluation criteria encompassed the Structural Similarity Index (SSIM), correla-

tion coefficient, and inlier percentage based on homography calculations. The proposed

method was compared with state-of-the-art algorithms, including LightGlue and LoFTR,

across diverse datasets and scenarios.

The results demonstrated the efficacy of the proposed method, showcasing its abil-

ity to generate highly accurate feature matches in challenging agricultural scenes. The

analysis of spectral bands revealed that selecting specific bands within the 600-800 nm

range significantly contributed to improved performance. While the proposed method

exhibited slightly slower computational speeds, it excelled in accuracy and robustness,

especially in complex agricultural environments.

Despite achieving remarkable results, the proposed method faced challenges in sce-

narios with illumination differences and low-contrast images. Ongoing efforts for code

optimization were emphasized, emphasizing the potential for further improvements in

computational efficiency.

In summary, this Chapter presented a comprehensive and innovative approach to

hyperspectral image feature matching, offering a valuable contribution to the field. The

proposed method’s strengths in accuracy and robustness position it as a promising tool

for applications in agriculture and other domains where hyperspectral image analysis is

crucial.
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Chapter 6

Conclusion

This thesis intended to develop an approach to generate an image mosaic generation

pipeline that would work for low-resolution hyperspectral images. Furthermore, a novel

feature match generation method was also proposed to be incorporated with hyperspec-

tral image mosaic generation pipelines. This chapter summarizes the work carried out

and presented in this thesis, a list of contributions, and a discussion of potential future

work.

6.0.1 Summery

In Chapter 2, the background of the research problem was presented and the current

work in the relevant field was reviewed. Chapter 3 presented the initial setup of the

acquisition UAV platform, the data acquisition process followed, initial measurement

comparison between the hyperspectral camera and a field spectrometer. In Chapter

4, further investigation into the limitations of the current feature-matching algorithms,

performance of the learning-based methods in the domain of hyperspectral low-resolution

images, and image stitching pipeline were discussed. Further, several case studies were

presented in order to better deliver the proposed method and intermediate results were

discussed. Moreover, modification to the presented pipeline was discussed in order to

mitigate the identified issues. Chapter 5 presented a novel approach to utilize all the

spectral information available for hyperspectral image feature matching. The use of a 3D

convolution Siamese network was proposed to filter out incorrect feature matches from a

set of initial feature match sets, obtained using edge images of the hyperspectral images.

Results indicated robust performance of the proposed method.

6.0.2 Contributions

Hyperspectral imaging is a powerful remote sensing technology that captures spectral

information of a scene at a high level of detail. By collecting information across many

narrow and contiguous spectral bands, hyperspectral imaging can reveal the chemical



and physical properties of the imaged objects, leading to a wide range of applications in

various fields such as agriculture, mineralogy, and environmental monitoring. However,

due to the large amount of data generated by hyperspectral sensors and their limited

spatial resolution, it is often necessary to mosaic multiple low-resolution images to obtain

a complete view of the scene. The importance of mosaic generation in aerial hyperspectral

images lies in the fact that the quality of the mosaics directly affects the accuracy and

effectiveness of subsequent data analysis and interpretation, making it a crucial step in

the overall workflow of hyperspectral image analysis. The motivation for this thesis came

from the use of low-pixel-resolution hyperspectral imaging in agriculture applications. It

was identified that one of the main challenges in low-resolution hyperspectral imaging

for agricultural applications is feature matching and subsequently in generating image

mosaics from the captured hyperspectral images.

In the initial stage, this thesis investigated the problem of hyperspectral mosaic gen-

eration from low-resolution hyperspectral images. One of the major challenges in this

task is identifying features from images, which is crucial for the accurate registration

and alignment of images. Traditional feature detection methods used in already pro-

posed methods are not sufficient for hyperspectral images due to their limited resolution.

Furthermore, indistinctive features like uniform textures and repeating patterns present

in hyperspectral low-resolution images taken via drones, further add to this problem.

In the initial steps, various learning-based approaches were explored to identify a suit-

able method that would provide features with high accuracy. A learning-based approach

named LoFTR and LightGlue was identified as a promising candidate for the feature

identification and matching task.

Image stitching methodology incorporating the aforementioned learning algorithms

was then proposed to identify the feature matches necessary in the stitching process. The

proposed stitching method was evaluated using several case studies. Initial results from

the proposed method indicated significant improvements over the traditional methods

where it was able to stitch the image sets with some geometrical errors. This is a signif-

icant improvement because the previous methods were unable to produce any stitching

results. However, the identified limitations of this initial method were then discussed and

a modified method was proposed.

Subsequent chapter 5 introduces an innovative hyperspectral image feature match-

ing method using a 3D Convolution Neural Network-based Siamese network. Addressing

limitations from the previous chapter, the approach leverages information from all hyper-

spectral bands, improving feature detection accuracy. The methodology includes using

32x32x51 patches from the hyperspectral image obtained via Phase Stretch Transforma-

tion (PST) based edge maps to detect matching features. A 1D autoencoder was utilized

in the dimensionality reduction process and the subsequent patch was then classified into
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match or nonmatch by using a 3D convolution-based Siamese network.

Evaluation against state-of-the-art algorithms demonstrates the method’s efficacy in

challenging agricultural scenes, particularly when specific bands within the 600-800 nm

range are selected. Despite slower computational speeds, the method excels in accu-

racy and robustness. Challenges include scenarios with illumination differences and

low-contrast images, with ongoing efforts focused on code optimization for improved

computational efficiency. In summary, the proposed method constitutes a considerable

contribution to hyperspectral image analysis, showing promise for applications in agri-

culture and related domains.

6.1 Future Works

In the proposed mosaic generation pipeline, some ghosting effects were observed from

the final stitched images. It has been observed that the blending method used was

causing the ghosting effect. This is due to the misalignment or inconsistencies between

overlapping regions of the images. This is especially observed around distinctive objects

like buildings and structures. Identifying seams or edges of the objects and blending

the images so that edges would not fall on the distinctive features could be researched

to improve the blending accuracy. Furthermore, georectification of the mosaics was not

considered in this stage of the research.

In the proposed 3D Siamese network-based feature filtering method, one of the major

drawbacks was the processing speed. For filtering features for one image pair proposed

model took 5 to 10 seconds of processing time. This is not ideal hence code optimization

and GPU-based processing should be considered as future works in this research.
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L. Pádua, J. Hruška, R. Morais et al., “Uav-based hyperspectral monitoring using

push-broom and snapshot sensors: A multisite assessment for precision viticulture

applications,” Sensors, vol. 22, no. 17, p. 6574, 2022.

[7] B.-H. Cho, Y.-H. Kim, K.-B. Lee, Y.-K. Hong, and K.-C. Kim, “Potential

of snapshot-type hyperspectral imagery using support vector classifier for the

classification of tomatoes maturity,” Sensors, vol. 22, no. 12, 2022. [Online].

Available: https://www.mdpi.com/1424-8220/22/12/4378

[8] ““gmbh – real-time spectral imaging,” cubert. [online]. available:

https://www.cubert-hyperspectral.com/products/ultris-5. [accessed: 15-nov-2022].”

[9] XIMEA, “Hyperspectral snapshot usb3 camera 24 bands 665-960nm,” 2024,

accessed: 2024-02-06. [Online]. Available: https://www.ximea.com/en/products/

hyperspectral-cameras-based-on-usb3-xispec/mq022hg-im-sm5x5-nir

[10] D. Capel, “Image mosaicing,” in Image Mosaicing and super-resolution. Springer,

2004, pp. 47–79.



[11] R. Feng, H. Shen, J. Bai, and X. Li, “Advances and opportunities in remote sensing

image geometric registration: A systematic review of state-of-the-art approaches and

future research directions,” IEEE Geoscience and Remote Sensing Magazine, vol. 9,

no. 4, pp. 120–142, 2021.

[12] Y. Li, J. Wang, and K. Yao, “Modified phase correlation algorithm for image reg-

istration based on pyramid,” Alexandria Engineering Journal, vol. 61, no. 1, pp.

709–718, 2022.

[13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, pp. 91–110, 2004.

[14] H. Lee, S. Lee, and O. Choi, “Improved method on image stitching based on op-

tical flow algorithm,” International Journal of Engineering Business Management,

vol. 12, p. 1847979020980928, 2020.

[15] A. Moussa and N. El-Sheimy, “A fast approach for stitching of aerial images.” In-

ternational Archives of the Photogrammetry, Remote Sensing & Spatial Information

Sciences, vol. 41, 2016.
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