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Abstract: Aneurysmal subarachnoid hemorrhage (SAH) has increased with the aging of the
population, but the outcome for elderly SAH patients is very poor. Therefore, predicting the outcome
is important for determining whether to pursue aggressive treatment. Pigment epithelium-derived
factor (PEDF) is a matricellular protein that is induced in the brain, and the plasma levels could
be used as a biomarker for the severity of metabolic diseases. This study investigated whether
acute-phase plasma PEDF levels could predict outcomes after aneurysmal SAH in the elderly. Plasma
samples and clinical variables were collected over 1–3 days, post-SAH, from 56 consecutive elderly
SAH patients ≥75 years of age registered in nine regional stroke centers in Japan between September
2013 and December 2016. The samples and variables were analyzed in terms of 3-month outcomes.
Acute-phase plasma PEDF levels were significantly elevated in patients with ultimately poor out-
comes, and the cutoff value of 12.6 µg/mL differentiated 3-month outcomes with high sensitivity
(75.6%) and specificity (80.0%). Acute-phase plasma PEDF levels of ≥12.6 µg/mL were an inde-
pendent and possibly better predictor of poor outcome than previously reported clinical variables.
Acute-phase plasma PEDF levels may serve as the first biomarker to predict 3-month outcomes and
to select elderly SAH patients who should be actively treated.

Keywords: elderly patient; pigment epithelium-derived factor; prognostic factor; subarachnoid
hemorrhage

1. Introduction

The aging of the population has led to an increase, in many developed countries,
in elderly patients with subarachnoid hemorrhage (SAH) due to ruptured intracranial
aneurysms. In Japan, the percentage of patients over 75 years of age exceeds 20% [1]. As
endovascular therapy becomes more widespread and treatment techniques improve, the
opportunities for aggressively treating elderly SAH patients are expanding [1–3]. However,
previous studies have reported that poor outcomes clearly increase in SAH patients over
75 years of age [4,5], and, therefore, it is necessary to consider the targets separately.

Outcome determinants in aneurysmal SAH patients have been analyzed according to
demographics; advanced age has been reported as one of the most important factors [6,7].
Elderly SAH patients are more frequently associated with pre-morbidities, comorbidities,
poor admission World Federation of Neurological Surgeons (WFNS) grades, and more
intracranial hematoma volume, resulting in poor outcomes [8]. In the elderly (≥75 years of
age), however, further determinants for poor outcomes are limited to hypertension and
increased intracranial hematoma volume in multivariate logistic regression analyses in our
prospectively maintained SAH database at multiple institutions from 2013 to 2016 [8]. Thus,
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it is important to develop a biomarker to discriminate good and poor outcomes at an acute
phase in individual elderly aneurysmal SAH patients; this may provide an important basis
for making suggestions to the patient’s family regarding subsequent aggressive treatment.

Pigment epithelium-derived factor (PEDF) is a 50 kDa matricellular protein (MCP)
with multifunctional properties [9]. PEDF was discovered as a neuronal differentiation
activator in fetal retinal pigment epithelial cells, but is known to be induced in brain
tissues [9,10]. MCP levels are generally higher in young people and decline with aging,
but they increase in response to pathological conditions [10]. In addition, as MCPs are
generally secreted into body fluids such as peripheral blood, MCPs, such as tenascin-C,
periostin, osteopontin, and galectin, can be used to monitor the progression of inflammatory
pathologies in ischemic and hemorrhagic strokes [10]. Understanding the role of MCPs
has great potential in their use as prognostic biomarkers and therapeutic targets, but the
information on MCPs in the central nervous system is limited [10]. PEDF has recently
attracted a great deal of attention in terms of its metabolic regulation, and its circulation level
has been reported to act as a biomarker for the severity of various metabolic diseases [11]:
in healthy individuals aged 50 years and over, higher serum PEDF levels were observed
in women, possibly reflecting their comorbidities and estrogen statuses [12]. It is well
known that aging induces a shift toward proinflammatory phenotypes in the brain and
the periphery, as well as blood–brain barrier (BBB) dysfunction, and that older women
are more likely to have strokes leading to worse outcomes, although women are protected
from stroke before menopause [13]. In animal models of cerebral ischemia, in addition,
endogenous PEDF was reactively upregulated in injured brain tissues [14–16]. Thus, we
hypothesized that circulating PEDF levels are elevated in elderly SAH patients in a manner
that reflects their comorbidities, complications, and severity of brain injury and that their
PEDF levels are useful as prognostic biomarkers. However, the clinical significance of
plasma PEDF levels has never been investigated in SAH patients.

The aim of this study was to clarify the association between plasma PEDF levels at
an acute phase and 3-month outcomes in SAH patients aged ≥75 years and to determine
whether the PEDF levels are useful as a prognostic biomarker in elderly aneurysmal SAH
patients. If acute-phase plasma PEDF levels can serve as a biomarker for predicting 3-month
outcomes in elderly SAH patients, it would become the first clinical index to allow us to
select elderly SAH patients who can achieve good outcomes with active treatment.

2. Results
2.1. Clinical Characteristics of Elderly SAH Patients According to 3-Month Outcome

In the Prospective Registry for Searching Mediators of Neurovascular Events After
Aneurysmal SAH (pSEED) [17–19], 275 consecutive aneurysmal SAH patients were reg-
istered. The inclusion criteria for this study were ≥75 years of age at onset, pre-onset
modified Rankin Scale (mRS) score 0–2, obliteration of ruptured intracranial aneurysms
within 48 h of onset, and plasma sampling at days 1–3 post-SAH. Patients with infectious
diseases that may increase plasma PEDF levels were excluded. Thus, 56 elderly SAH
patients (≥75 years) were eligible for this study (Figure 1). For four patients whose 3-month
outcomes were unknown, the outcome at discharge was used instead; their outcomes were
mRS 0, 2, 4, and 5, respectively. In addition, angiographic vasospasm was not evaluated
in one patient due to poor general condition; this patient was included in the study and
analyzed excluding the missing data.

The clinical variables in 56 elderly SAH patients (≥75 years) with good and poor
3-month outcomes are shown in Table 1. Of the 56 patients, 41 (73.2%) had poor outcomes
(mRS 3–6), and 8 patients (14.3%) died. The median age of the 56 patients was 81 years
(interquartile range, 79.0–83.0), and the population consisted of 48 female patients (85.7%),
33 patients (58.9%) with admission WFNS grades IV–V, 30 patients (53.6%) with mod-
ified Fisher grade 4, and 30 patients (53.6%) with acute hydrocephalus. Cerebrospinal
fluid (CSF) drainage was performed in 17 patients (30.4%). Ruptured aneurysms were
obliterated with clipping in most patients (42 patients, 75.0%) or with simple coiling in
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the other patients. Treatment complications were observed in 16 patients (28.6%); 14 of
these had cerebral infarction, one patient had cerebral hemorrhage, and one patient had
cerebral contusion. Angiographic vasospasm occurred in 13 patients (23.2%), delayed
cerebral ischemia (DCI) occurred in 8 patients (14.3%), and delayed cerebral infarction
occurred in 19 patients (33.9%). In total, 23 patients (41.1%) underwent ventriculoperitoneal
or lumbo-peritoneal CSF shunting for chronic hydrocephalus (chronic shunt-dependent
hydrocephalus (CSDH)).
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Figure 1. Flow chart indicating the included and excluded patients in this study. SAH, subarachnoid
hemorrhage.

Table 1. Characteristics of elderly subarachnoid hemorrhage (SAH) patients with good and poor
outcomes according to 3-month modified Rankin scale (mRS).

Good
(mRS 0–2)
n = 15

Poor
(mRS 3–6)
n = 41

p-Value

Age, median (±25th–75th percentiles), years 80.0 (78.0–83.0) 81.0 (79.5–84.0) 0.468 a

Sex, female 14 (93.3) 34 (82.9) 0.428 c

Comorbidities
Hypertension 6 (40.0) 22 (53.7) 0.365 b

Diabetes mellitus 2 (13.3) 7 (17.1) 0.602 c

Dyslipidemia 2 (13.3) 8 (19.5) 0.713 c

Current smoking 2 (13.3) 3 (7.3) 0.602 c

Family history of SAH 0 5 (12.2) 0.309 c

Pre-onset mRS 0.349 b

0 13 (86.7) 30 (73.2)
1 2 (13.3) 6 (14.6)
2 0 5 (12.2)

Admission WFNS grade 0.938 b

I 2 (13.3) 4 (9.8)
II 4 (26.7) 10 (24.4)
III 1 (6.7) 2 (4.9)
IV 5 (33.3) 12 (29.3)
V 3 (20.0) 13 (31.7)
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Table 1. Cont.

Good
(mRS 0–2)
n = 15

Poor
(mRS 3–6)
n = 41

p-Value

Modified Fisher grade 0.012 b

1 3 (20.0) 2 (4.9)
2 0 1 (2.4)
3 9 (60.0) 11 (26.8)
4 3 (20.0) 27 (65.9)

Acute hydrocephalus 7 (46.7) 23 (56.1) 0.531 b

Ruptured AN location
Anterior circulation 14 (93.3) 38 (92.7) 1.000 c

Posterior circulation 1 (7.7) 3 (7.3)
Cerebrospinal fluid drainage 4 (26.7) 13 (31.7) 1.000 c

Ventricular 3 (20.0) 13 (31.7) 0.513 c

Cisternal 0 1 (2.4) 1.000 c

Spinal 3 (20.0) 1 (2.4) 0.055 c

Treatment modality
Clipping 9 (60.0) 33 (80.5) 0.165 c

Coiling 6 (40.0) 8 (19.5)
Procedural complication 5 (33.3) 11 (26.8) 0.741 c

Prevention of DCI
Fasudil hydrochloride 14 (93.3) 35 (85.4) 0.661 c

Cilostazol 14 (92.3) 32 (78.0) 0.259 c

EPA 6 (40.0) 13 (31.7) 0.562 b

Statin 7 (46.7) 9 (22.0) 0.097 c

Angiographic vasospasm 4 (26.7) 9 (22.0) 0.730 c

DCI 0 8 (19.5) 0.093 c

Delayed cerebral infarction 4 (26.7) 15 (36.6) 0.488 b

CSDH 4 (26.7) 19 (46.3) 0.185 b

Data, the number of patients (% of all patients per group) unless otherwise specified. p-values, a Mann–Whitney
U test, b Pearson’s chi-square test or c Fisher’s exact test. Only modified Fisher computed tomography grades
are significantly different between good and poor outcomes (p < 0.05). AN, aneurysm; CSDH, chronic shunt-
dependent hydrocephalus; DCI, delayed cerebral ischemia; EPA, eicosapentaenoic acid; WFNS, World Federation
of Neurological Surgeons.

As for baseline demographic and clinical variables, patients with poor 3-month out-
comes were associated with worse modified Fisher computed tomography (CT) grades,
although other factors, such as age, sex, comorbidities, smoking, admission WFNS grades,
acute hydrocephalus, and ruptured aneurysm location, were not different between patients
with good and poor outcomes (Table 1). None of the treatment-related factors were dif-
ferent between patients with good and poor outcomes, including aneurysmal treatment
modalities (clipping or coiling), CSF drainages, treatment complications, or prophylactic
medications for DCI (Table 1). The incidences of DCI, delayed cerebral infarction diagnosed
using CT scans, and CSDH were higher in patients with poor outcomes compared to those
with good outcomes, but the difference did not reach statistical significance. In contrast,
angiographic vasospasm occurred similarly in both outcome groups.

2.2. Acute-Phase Plasma PEDF Concentrations in Elderly SAH Patients

In the 56 elderly SAH patients, the PEDF levels in the stocked plasma samples obtained
at days 1–3 after SAH onset were determined using a commercially available enzyme-linked
immunosorbent assay kit. The plasma PEDF levels in an acute phase in the 56 elderly
SAH patients were significantly higher when compared with the plasma PEDF levels in
10 patients with unruptured intracranial aneurysms (five males and five females; mean age,
66.7 ± 8.9 years; Figure 2A). Because unruptured aneurysms in the elderly were not treated
and, therefore, their plasmas were not obtained, the age in the unruptured aneurysm group
was significantly younger than that in the SAH group (81.8 ± 4.4 years; p < 0.001, Mann–
Whitney U test), but there were no gender differences in the plasma PEDF concentrations
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in either the SAH group or the unruptured aneurysm group (male vs. female = 17.3 ± 4.8
vs. 14.1 ± 4.9µg/mL, p = 0.086 and 9.9 ± 2.5 vs. 7.8 ± 0.9µg/mL, p = 0.110, respectively;
unpaired t-test).
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Figure 2. Comparisons of plasma pigment epithelium-derived factor (PEDF) levels between 10 con-
trol patients with unruptured cerebral aneurysms and 56 elderly subarachnoid hemorrhage (SAH)
patients (A) and between elderly SAH patients with ultimately good and poor 3-month outcomes
(15 and 41 patients, respectively; (B)). Plasma samples were collected at days 1−3 post-SAH from
elderly SAH patients. Data are expressed as mean ± standard error of the mean. * p < 0.01 versus
control (unpaired t-test; (A)), † p < 0.05 versus good outcome (Mann–Whitney U test; (B)).

When the acute-phase plasma PEDF levels were compared between the elderly SAH
patients who ultimately had good and poor outcomes, the PEDF levels in patients with ulti-
mately poor 3-month outcomes were significantly higher than those in the good-outcome
group (15.4 ± 4.6 vs. 12.2 ± 5.4 µg/mL, respectively; Figure 2B).

2.3. Independent Determinants for Poor Outcome in Elderly SAH Patients

When a receiver-operating characteristics (ROC) curve was constructed for
acute-phase plasma PEDF levels to predict poor 3-month outcome, the area under the curve
was 0.730 and the cutoff value was determined as the plasma PEDF levels at
days 1–3 ≥12.6 µg/mL using the Youden index, with a sensitivity of 75.6% and a specificity
of 80.0% (Figure 3). The multicollinearity among the PEDF cutoff values and clinical factors
that were obtained at days 1–3 post-SAH was evaluated using variance inflation factor (VIF).
As a VIF > 5 of multicollinearity was observed between CSF drainage (VIF = 22.189) and
ventricular drainage (VIF = 20.739), ventricular drainage with a lesser p-value on univariate
analyses (Table 1) was retained, and CSF drainage was removed. VIF was calculated again
to confirm that there was no multicollinearity. An evaluation using Pearson’s correlation
coefficient was also performed to confirm that there was no correlation between any of
the variables, and then multivariate analyses were performed. The multivariate analyses
revealed that advanced age (adjusted odds ratio (aOR), 1.226; 95.0% confidence interval
[CI], 1.002–1.500; p = 0.048), modified Fisher grade (aOR, 3.944; 95.0% CI, 1.196–13.009;
p = 0.024), and acute-phase plasma PEDF levels ≥12.6 µg/mL (aOR, 21.493; 95.0% CI,
2.913–158.553; p = 0.003) were independent factors for poor 3-month outcomes, while the
use of a statin drug (aOR, 0.089; 95.0% CI, 0.011–0.726; p = 0.024) was an independent
factor for good 3-month outcomes (Table 2). Admission WFNS grade did not remain as
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an effective factor: when an ROC curve was created for admission WFNS grade to predict
poor outcomes, the area under the curve was 0.563.
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Figure 3. Receiver-operating characteristic curve for plasma PEDF levels at days 1–3 after subarach-
noid hemorrhage (SAH) according to good and poor 3-month outcomes in elderly SAH patients.
AUC, area under the curve; CI, confidence interval.

Table 2. Multivariate logistic regression analyses for poor 3-month outcomes in elderly patients with
subarachnoid hemorrhage.

Multivariate Analysis
aOR 95.0% CI p-Value

Age 1.226 1.002–1.500 0.048
Modified Fisher grade 3.944 1.196–13.009 0.024
Use of statin drug 0.089 0.011–0.726 0.024
PEDF ≥ 12.6 µg/mL 21.493 2.913–158.553 0.003

Multivariate logistic regression analyses are conducted using the forward selection method. Plasma pigment
epithelium-derived factor (PEDF) levels at days 1–3 are categorized using the cutoff value that was determined in
Figure 3. aOR, adjusted odds ratio; CI, confidence interval.

3. Discussion

Elderly SAH patients have a high rate of poor clinical grades on admission, causing
poor outcomes [5,8,20]. Although the definition of elderly SAH patients differs among
articles, previous studies reported that poor outcomes especially increase in patients over
75 years of age [4,5], i.e., the target of this study. The indications of aggressive treatment
for elderly SAH patients have expanded [1–3] and are expected to further increase in the
future. Therefore, it is useful to predict outcomes at an acute stage when considering
treatment indications for elderly SAH patients. Several studies have reported possible
determinant factors, mainly based on demographics, for poor outcomes in elderly SAH
patients; these factors included more advanced age, male sex, history of hypertension,
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worse WFNS or other clinical grades, higher modified Fisher grade, larger intracerebral or
intraventricular hematoma volume, acute hydrocephalus, and more severe angiographic
vasospasm [1,4,6–8,21,22]. However, most of the determinants are not valid when predict-
ing the outcome of SAH patients limited to the elderly, because the determinants themselves
are the characteristics of elderly SAH patients, who often have poor general health as well
as intracranial conditions on admission [8]. Thus, outcome predictors that can be adapted to
and are, ideally, specific to elderly SAH patients are needed. The present study first revealed
that elevated plasma PEDF levels at days 1–3 post-SAH were an independent predictor
of poor outcomes in elderly SAH patients over 75 years of age and that using ROC curve
analyses (area under the curve, 0.730) and plasma PEDF levels at days 1–3 ≥12.6 µg/mL
differentiated 3-month outcomes with high sensitivity (75.6%) and specificity (80.0%). In
this study, acute-phase plasma PEDF levels had a higher aOR than age and modified Fisher
grade, which assess both SAH and intraventricular hematoma volume [23]. In contrast,
admission WFNS grades and sex were not independent determinants for poor outcomes
in this study. Taken together, the findings suggest that acute-phase plasma PEDF levels
are more useful to predict outcomes for elderly SAH patients compared with previously
reported outcome determinants such as age and admission neurological status. Setting a
specific cutoff value of plasma PEDF may facilitate the prediction of outcome in the acute
phase of SAH and allow medical resources to be concentrated on elderly patients who are
expected to have a good outcome.

3.1. MCPs as a Biomarker

In recent years, some MCPs were reported to increase in peripheral blood after aneurys-
mal rupture and attention has been paid to MCP as a biomarker for predicting delayed-
onset neurovascular events and final outcomes after aneurysmal SAH [17,19,24–26]. MCPs
are characterized as molecules easily moving or secreted from injured sites into various
body fluids such as circulating blood and CSF, although the mechanism of the moving or
secretion remains unclear [27]. Although it is not certain whether some kinds of MCPs
are upregulated in post-SAH-injured brains and then secreted into peripheral blood in a
clinical setting, our previous clinical study suggested that MCP periostin in CSF leaked
out into intravascular circulating blood through a disrupted BBB to predict the subsequent
development of DCI after aneurysmal SAH [18]. Reportedly, higher admission plasma
levels of another MCP, thrombospondin-1, were an independent factor for poor 6-month
outcome and had similar predictive performance, regarding outcomes, to WFNS grades and
Fisher scores in aneurysmal SAH patients [24]. Elevated plasma osteopontin levels within
3 days of aneurysmal SAH onset were also an independent factor predicting poor 3-month
outcome [25]. Higher plasma levels of galectin-3 at admission or by 3 days post-SAH onset
were associated with poor 3- or 6-month outcomes in clinically mild cases or regardless of
the clinical severity [17,26]. Plasma levels of fibulin-5 were increased at days 4–6 post-SAH,
leading to poor 3-month outcomes [19]. Osteopontin, galectin-3, and fibulin-5 are all MCPs.
However, all of the analyses included patients of all ages, and it remains unclear whether
MCP levels can be predictive of outcome when restricted to elderly SAH patients. As for
PEDF, it is also an MCP, but its significance in SAH has never been investigated clinically
or experimentally. To the best of the authors’ knowledge, this is the first study showing
that plasma concentrations of MCP PEDF can serve as a biomarker for predicting outcomes
in elderly SAH patients.

3.2. PEDF and Early Brain Injury (EBI)

PEDF is an extracellular matrix protein and MCP, and belongs to the Serpin family [28].
MCPs are generally not highly expressed at a steady state in adult tissues, but their expres-
sion easily increases with a variety of phenotypes in response to pathological conditions
and diverse injuries [29,30]. PEDF is increased by hyperosmotic stress in cultured human
corneal epithelial cells [31] and is upregulated, at least, in pericytes in mouse models of
middle cerebral artery (MCA) occlusion and cold injury [16,32]. In addition, PEDF upregu-
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lation was observed in astrocytes after MCA occlusion in rats [14]. Thus, endogenous PEDF
is expected to be induced upon ischemic tissue damage in the brain [14,16], but it has not
been investigated whether PEDF is upregulated in the brain tissue after experimental or
clinical SAH. Post-SAH brain injuries are divided into two types of injuries depending on
the time of occurrence: injuries in which EBI occurs within 72 h of SAH onset and injuries
in which DCI develops after 72 h following SAH onset. Each of these types of brain injuries
have different mechanisms [33]. EBI is triggered by the rupture of an intracranial aneurysm
followed by increased intracranial pressure—causing transient global cerebral ischemia—as
well as mechanical brain injuries, and its main pathologies include the hypoxic disturbance
of metabolisms, neuroinflammation, microthrombosis, BBB disruption, neuronal apoptosis,
seizure, and cortical spreading depolarization [34–36]. Thus, PEDF may be upregulated in
brain tissues by ischemic injuries associated with EBI [14,16]. The severity of EBI is known
to be correlated with admission WFNS grades [34], and more severe EBI is more likely
to lead to angiographic vasospasm-related DCI or vasospasm-unrelated DCI and poor
outcomes [30,33,37]. In this study, because angiographic vasospasm was not associated
with outcome, it is suggested that EBI itself or DCI unrelated to vasospasm may be more
important for poor outcome in elderly SAH patients. Thus, it has been proposed that EBI is
the most important prognostic factor in aneurysmal SAH [38–40]; this is consistent with the
results of our study targeting the elderly. Although this study showed that higher plasma
PEDF levels at days 1–3 post-SAH were associated with worse outcomes in elderly SAH
patients over 75 years of age, it is unknown whether an increase in PEDF in peripheral
blood originates from the brain. However, if PEDF levels in the peripheral blood increase to
reflect the severity of EBI in an acute stage of SAH, it seems logical that acute-phase plasma
PEDF levels would be an important prognostic factor. This hypothesis is also consistent
with the findings in our cohort (pSEED) that worse admission WFNS grades caused higher
plasma PEDF levels in a study of SAH patients of all ages.

3.3. Possible Significance of Elevated Acute-Phase Plasma PEDF Levels

Given the above results, PEDF appears to be harmful to the brain function after
aneurysmal SAH, especially in the elderly. However, PEDF is a multifunctional MCP and is
known to act neuroprotectively in many situations [9,41]. In a rat model of transient MCA
occlusion, overexpressed PEDF or transvenously administered PEDF protected neurons
and other cells from ischemic insult, leading to a reduction in cerebral infarction, BBB
permeability, brain edema formation, and neuroinflammation [14,15]. The intracerebroven-
tricular administration of recombinant PEDF also decreased BBB disruption, brain edema,
and neuronal cell death in a mouse model of transient MCA occlusion [16]. In addition,
intraperitoneal administration of PEDF inhibited brain edema formation after cold injury by
blocking vascular endothelial-growth-factor-mediated signaling in mice [32]. In summary,
basic research has shown that PEDF is a neurotrophic molecule with neuroprotective and
anti-permeability effects, at least in ischemic and other brain injuries. Because transient
ischemia is an important inducer of EBI, and because neuronal apoptosis, BBB disruption
and brain edema formation are the main components of EBI, as mentioned above [34,36],
the authors consider that PEDF may also exert neuroprotective effects in the brain after
aneurysmal SAH. In this study, although elevated acute-phase plasma PEDF levels were
independent predictors of poor 3-month outcomes, the following explanation could be
possible: (1) plasma PEDF may increase, reflecting the severity of precedingly developed
EBI, and may indicate the degree of EBI more precisely than admission WFNS grades;
(2) upregulated PEDF may have neuroprotective effects against EBI, but the endogenous
PEDF levels may be neither enough to recover the proceeding EBI nor to prevent EBI from
progressing to DCI; and (3) as a result, higher acute-phase plasma PEDF levels may be
closely linked to poor outcomes after aneurysmal SAH. The same phenomenon has been
observed with another MCP, osteopontin, which has been repeatedly demonstrated to be
neuroprotective against brain injuries after experimental SAH [42–44]; however, plasma
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osteopontin levels at days 1–12 post-SAH were higher in patients who ultimately had a
poor outcome [25]. Thus, our hypotheses described above may be reasonable.

3.4. Limitations of This Study

This study has several limitations. First, the study population is relatively small
because the target population was limited to elderly subjects ≥75 years of age. The findings
need to be confirmed in a validation cohort. Second, because the study excluded patients
with obliteration of ruptured aneurysms >48 h post-SAH, patients with infection that
may increase plasma PEDF levels, and patients without a plasma sample, it cannot be
denied that the results of this study were biased. Third, it was not tested whether PEDF
is superior to previously reported biomarkers. This is because there are no established
or validated biomarkers known in SAH, although many plausible biomarkers have been
reported, including MCPs and non-MCPs [45]. Fourth, the exact mechanisms by which
plasma PEDF increases and how PEDF works, including the site of PEDF production, are
unknown in aneurysmal SAH. However, this is the first study to show acute-phase plasma
PEDF levels as an independent predictor of 3-month clinical outcomes in elderly SAH
patients. Elevated plasma PEDF levels at days 1–3 after onset may be a better predictor of
poor outcomes in elderly SAH patients than the clinical factors that have been reported to
be outcome determinants, although further basic and clinical investigations are required to
clarify the function, mechanisms, and clinical significance of PEDF.

4. Materials and Methods

All procedures performed in the studies involving human participants were carried
out in accordance with the ethical standards of the institutional and/or national research
committee and with the 1964 Declaration of Helsinki and its later amendments or compara-
ble ethical standards. The study was approved by the ethical committee of Mie University
Hospital (approval numbers 2544 and H2018-031), and written informed consent was
obtained from the relatives.

4.1. Study Population

The present study used the clinical data and plasma samples collected in the pSEED
that was conducted in 9 stroke centers in Mie prefecture in Japan between September
2013 and December 2016 (listed in Appendix A) [17–19]. The inclusion criteria were
as follows: ≥20 years of age at onset, pre-onset mRS 0–2, SAH diagnosed using CT
scans, saccular aneurysm as the cause of SAH confirmed on CT angiography or digital
subtraction angiography, and aneurysmal obliteration via surgical clipping or endovascular
coiling. The following patients were excluded, following the recommendations of previous
studies [17–19], because their pathology is different from SAH caused by a ruptured saccular
aneurysm: patients with dissecting, traumatic, mycotic, and arteriovenous malformation-
related aneurysms or SAH of unknown etiology. After angiographic confirmation of a
ruptured intracranial aneurysm, surgical clipping or endovascular coiling of the lesion was
performed as judged by the attending neurosurgeon to be appropriate for the individual
patient. From the registered 275 consecutive SAH patients, cases with obliteration of
ruptured aneurysms >48 h post-SAH (n = 12), infection that may increase plasma PEDF
levels (n = 33), missing plasma sample (n = 9), and <75 years of age at onset (n = 165) were
excluded. Finally, 56 elderly SAH patients (≥75 years) were retrospectively analyzed to
clarify the association between acute-phase plasma PEDF levels and 3-month outcomes
(Figure 1).

4.2. Clinical Variables

The variables included age, sex, comorbidities, social and family histories, mRS be-
fore onset, admission WFNS grades, modified Fisher grade [23] on admission CT scans,
acute hydrocephalus, ruptured aneurysm location (anterior or posterior circulation), CSF
drainage (ventricular, cisternal, or spinal drainage), treatment modalities (clipping or coil-
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ing), procedural complications (cerebral infarction, hemorrhage, contusion, and others),
prophylactic medications for DCI (intravenous injections of fasudil hydrochloride; oral or
enteral administration of cilostazol; eicosapentaenoic acid; and statin), DCI, angiographic
vasospasm, delayed cerebral infarction, CSDH, and outcomes. The timing of treatment,
treatment modality used for aneurysmal obliteration, and other medical management or
treatment strategies were decided by the onsite treating neurosurgeons and were not lim-
ited. As for CSF drainage, a ventricular catheter was placed to manage acute hydrocephalus
in all patients. Ventricular drainage was also placed to control brain swelling or increased
intracranial pressure, and cisternal drainage was placed in the basal cistern to promote
SAH clearance after surgical clipping in some cases, according to the preference of treating
neurosurgeons. Lumbar spinal drainage was placed, irrespective of clipping or coiling, to
promote SAH clearance and/or to manage progressive ventriculomegaly that occurred
postoperatively and within 14 days of onset.

Acute hydrocephalus was diagnosed via ventriculomegaly on admission CT scans
and was considered to cause disturbance of consciousness. Hemorrhagic or ischemic com-
plications related to clipping or coiling were diagnosed on CT or magnetic resonance (MR)
images on the first post-operative or post-intervention day. DCI was defined as otherwise
unexplained clinical deterioration (i.e., focal neurological impairments, a decrease of at
least two points on the Glasgow Coma Scale, or both) that lasted for at least one hour [46];
other potential causes of clinical deterioration were rigorously excluded. Angiographic
vasospasm was defined as ≥50% narrowing compared with the baseline vessel diameter
of major cerebral arteries on CT, MR, or digital subtraction angiographies regardless of
clinical symptoms. Delayed cerebral infarction was defined as a newly developed cerebral
infarct on CT scans that was undetected on the images one day after surgery or interven-
tion. CSDH was diagnosed based on the following 2 findings: (1) no detectable causes of
persistent conscious disturbance or neurological deterioration other than hydrocephalus
that occurred after day 14 post-SAH and (2) progressively increased ventricular size with
an Evans index of ≥0.30. CSDH was treated with CSF shunting. Outcomes were evaluated
at discharge and 3 months post-SAH: 3-month mRS 0–2 was defined as good outcome and
3–6 was defined as poor outcome. These events were assessed and determined at each
stroke center, and the organizing committee qualified them.

4.3. Measurement of Plasma PEDF

Blood samples were collected with minimal stasis from peripheral veins early in the
morning at days 1–3 post-SAH following aneurysmal obliteration. All blood samples were
immediately centrifuged for 5 min at 3000 rpm to separate cellular materials from the super-
natant plasma, and the plasma samples were stored at −78 ◦C until assayed. Experienced
technicians unaware of the clinical information determined plasma PEDF levels, which
were quantified using a commercially available enzyme-linked immunosorbent assay kit
for human PEDF (RD191114200R; BioVendor, Brno, Czech Republic).

As a control, plasma samples were collected from 10 patients with unruptured in-
tracranial aneurysms and no concomitant diseases that potentially affect PEDF expression
levels. Written informed consent was provided prior to any invasive procedure. Plasma
PEDF levels in control samples were determined as described above.

4.4. Statistical Analyses

Continuous variables were expressed as mean ± standard deviation and standard
error of the mean for graphs or as median ±25th to 75th percentiles. Comparisons of
continuous variables between two groups were performed using an unpaired t-test if each
population followed a normal distribution using the Shapiro–Wilk test; otherwise, this was
carried out using the Mann–Whitney U test. Categorical variables were presented as a
frequency or percentage and compared using Pearson’s chi-square test or Fisher’s exact
test, as appropriate.
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To minimize the potential bias introduced by choosing a single cutoff value, ROC
curve analyses were performed to determine the area under the curve and the best cutoff
value of plasma PEDF levels for poor outcome using the Youden index. The sensitivity
and specificity were determined for the cutoff value of a plasma concentration of PEDF to
predict poor 3-month outcome. For the following multivariate analyses, multicollinearity
among all variables was evaluated using VIF, and factors with VIF >5 were excluded except
for a factor with the smallest p-value on univariate analyses exploring poor outcome-related
variables. All variables used in the multivariate analyses were also evaluated using Pear-
son’s correlation coefficient: r > 0.5 of correlation was judged significant, and only the
variable with the smallest p-value was used as a candidate variable among similar clinical
variables that were intercorrelated. Multivariate logistic regression analyses were per-
formed using a forward stepwise method with 3-month dichotomous mRS outcome (good
or poor) as the dependent variable and candidate variables selected, as described above,
as independent variables. aORs with 95.0% CIs were calculated, and the independence of
variables was tested using the likelihood ratio test on reduced models. A p-value of <0.05
was considered significant. IBM SPSS Statistics version 28.0.0.0 (IBM, Armonk, NY, USA)
was used for all statistical analyses.
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