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Abstract 

Vegetation coverage is a crucial parameter in agriculture, as it offers 
essential insights into crop growth and health conditions. The spatial 
resolution of spaceborne sensors is relatively limited, making it challenging 
to precisely measure vegetation coverage. Consequently, fine-resolution 
ground observation data becomes indispensable for establishing the 
correlation between remotely sensed reflectance and plant coverage. This 
study estimated rice plant coverage per pixel using time series Sentinel-2 
Multispectral Instrument (MSI) data, which enables monitoring rice growth 
conditions over a wide area. Rice plant coverage was calculated using 
Unmanned Aerial Vehicle (UAV) data with a spatial resolution of 3 cm based 
on the spectral unmixing method. This plant coverage map was generated 
every two to three weeks throughout the rice growing season. Subsequently, 
the plant coverage was estimated at a 10 m resolution through the multiple 
linear regression, utilizing Sentinel-2 MSI reflectance data and these plant 
coverage maps. In this process, a geometric registration of MSI and UAV 
data was conducted to improve their spatial agreement. The coefficient of 
determination (R2) of the multiple linear regression model was 0.92 and 0.94 
for the Level-1C and Level-2A products of Sentinel-2 MSI, respectively. The 
root mean squared error (RMSE) of the estimated rice plant coverage was 
10.77% and 9.34%, respectively. This study highlights the potential of a 
satellite time series model for accurate estimation of rice plant coverage. 

 
Keywords: 
unmanned aerial vehicle (UAV); Sentinel-2 multispectral instrument (MSI); 
paddy field; rice plant coverage; mixed pixel analysis. 
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Glossary 

Diffuse reflectance standard panel: The reference panel used in optics and 
imaging for consistent, diffuse reflection (Fig. A-1 in Appendix). It is crucial 
for the calibration and evaluation of optical devices and color measurements. 
 
Mie no Yume: Mie Prefecture's original rice variety, which is characterized 
by medium maturation and exceptional eating quality. 
 
Orthorectification: The process of removing distortions caused by terrain 
variations from aerial or satellite images, ensuring an accurate representation 
of ground features. It involves geometric correction to align the image with 
a map projection, enhancing its suitability for precise analysis and mapping 
applications. 
 
Radiometric calibration: The process of adjusting the brightness values in 
remote sensing images to ensure consistency and accuracy across different 
sensors or over time. It enables quantitative analysis and comparison of pixel 
values for scientific and practical applications such as land cover mapping 
and environmental monitoring. 
 
Real-time kinematic global navigation satellite system (RTK-GNSS): 
The precise navigation technique to enhance the positioning accuracy of 
GNSS data, that is used in real-time applications such as surveying, mapping, 
and precision agriculture. It utilizes carrier phase measurements from 
multiple GNSS satellites and a reference station to achieve centimeter-level 
positioning, enabling high-precision location-based tasks. 
 
Unmanned Aerial Vehicle (UAV): The aircraft operated without a human 
pilot on board, controlled either autonomously by onboard computers or 
remotely by a human operator. 
 
Yamada Nishiki: The rice variety for a premium Japanese sake. It is highly 
prized for its large grains, high starch content, and ability to produce high-
quality sake with a delicate and refined flavor. 
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1. Introduction 

In Japanese agriculture, the number of farmers has decreased from 
approximately 2.337 million in 2000 to 1.028 million in 2020 [1,2]. The 
average age of agricultural workers was 67.8 years old in 2020 [2]. The 
decrease and aging of the workers is a major problem in Japanese agriculture. 
There is also the problem of abandoned farmland. To solve these problems, 
the local government has been promoting the consolidation and 
agglomeration of farmlands. The consolidation of farmlands accelerated in 
2014 with the establishment of the Agricultural Land Bank. As a result, the 
consolidation rate in FY2021 was 58.9%. In addition, the number of new 
agricultural corporations has been steadily increasing [3–5]. As these trends 
indicate, the scale of agricultural management has increased. This means that 
agricultural efficiency is required more than ever. 

 
The Japanese government has accelerated the social implementation of 

smart agriculture by launching the "Agricultural Demonstration Project" in 
2019 [6]. The characteristics of smart agriculture technology basically 
consist of Information and Communication Technology, Robotics 
Technology, and Artificial Intelligence [7]. These technologies are expected 
to dramatically improve productivity through work automation and data 
sensing technology. Satellites and aircraft have been used in agricultural 
remote sensing. Meanwhile, the unmanned aerial vehicle (UAV) has 
attracted a lot of attention in recent years. UAVs are expected to be used for 
detailed observation of the field because they have high spatial resolution 
and flexible observation capabilities [8]. Kaminishi et al. [9] surveyed rice 
farming corporations about their future intention to adopt smart agriculture 
and concluded that they were highly positive about using drones and 
satellites to measure crop growth conditions. 

 
Satellite remote sensing has been utilized for large-scale field data 

collection [10–13]. Franch et al. [14] proposed a yield prediction model that 
combines spectral reflectance targeting two rice varieties (JSendra and 
Bomba). The field-based yield forecast error during the rice tillering stage 
was 3.73% for JSendra and 5.82% for Bomba, respectively. Additionally, 
they demonstrated that the correlation between the spectral reflectance of 
Sentinel-2 and rice yield varied depending on the variety and phenology. 
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These findings emphasize the necessity of discriminating between varieties 
to develop satellite-based yield models. Zhao et al. [15] used spectral 
reflectance from the FORMOSAT-2 multispectral data with eight-meters 
resolution to estimate agronomic variables (biomass, leaf area index, plant 
nitrogen concentration, and plant nitrogen uptake). The results revealed that 
the regression model's performance was significantly influenced by the rice 
growth stage. They concluded that optimized band selection for each growth 
stage is crucial. Their study categorized the phenological stages into tillering, 
booting, and heading. Due to variations in growing environments, such as 
varieties and growth stages, estimations tend to be dependent on specific 
conditions. Constructing a generic model capturing the growth conditions of 
each field on a regional scale proves challenging. 

 
Vegetation coverage in a unit area serves as a crucial parameter in various 

model analyses. This metric intuitively captures field conditions and 
minimizes the need for consideration of varieties or regional differences. In 
remote sensing, agricultural variables, including vegetation coverage, are 
frequently estimated through regression analysis using spectral reflectance 
and vegetation indices as parameters. However, this method necessitates 
validation data with true values, often acquired through manual field data 
collection by researchers [16–18]. Hayashi et al. [19] employed a method to 
estimate rice plant coverage by binarizing infrared photographs taken from 
a height of three meters using an elevated work vehicle. Lee et al. [20] 
developed a technique to isolate paddy rice from the background by 
calculating color indices from RGB information in digital camera images 
captured from a height of two meters. While these studies efficiently provide 
coverage information, they take time and effort in large areas. UAV has 
revolutionized spatial data acquisition, offering near-true values over 
expansive areas. With a spatial resolution surpassing that of satellites by a 
few centimeters, UAVs can contribute to the efficient measurement of 
vegetation coverage by low-altitude remote sensing and address previous 
challenges, such as data scarcity in the field.  

 
In recent years, research has increasingly combined UAVs with satellite 

data, yielding effective results across various agricultural applications. Jiang 
et al. [21] focused on estimating plant dry matter (PDM) and plant nitrogen 
accumulation (PNA) from Sentinel-2 images. They constructed an 



三重大学大学院 工学研究科  
 

6 

estimation model by investigating the optimal machine learning algorithm, 
incorporating satellite spectral indices, weather variables, and PDM or PNA 
calculated from UAV images. Schiefer et al. [22] aimed to estimate the 
fractional cover of standing deadwood using a Long Short-Term Memory 
network (LSTM) based on Sentinel-1 and Sentinel-2 time series. UAV 
images, segmented with standing deadwood, were employed as spatial 
reference data, enhancing the accuracy of the estimation model. In the study 
by Lewis et al. [23], the focus was on estimating the coverage of intertidal 
brown canopy-forming macroalgae. UAV image pixels were classified using 
the brown algae index (BAI) with a threshold value to calculate the coverage. 
Subsequently, a regression model was constructed utilizing the calculated 
coverage and the BAI obtained from Sentinel-2 images. These research 
endeavors collectively underscore the synergistic capabilities of UAVs and 
Sentinel-2 satellite data, showcasing their potential for accurate and detailed 
spatial analysis in diverse environmental and agricultural contexts. 

 
In the realm of remote sensing technology applied to field science, the 

"mixed pixel problem" poses a significant challenge for many researchers. 
This issue arises when the land surface corresponding to a single pixel 
comprises multiple components, while the pixel itself holds only one spectral 
information. Mixed pixels encompass diverse properties, differing from pure 
pixels [24]. Despite hindering accurate feature detection and vegetation 
classification, many studies often assume that a pixel comprises a single land 
cover component to simplify the analysis. A method employed to address 
this problem is linear spectral unmixing [25,26]. In this approach, 
components such as plants, soil, and water in a pixel are referred to as 
endmembers. The observed reflectance of the mixed pixel can be expressed 
as a linear combination of the pure reflectance of these endmembers and their 
respective area fractions. This technique enables the estimation of the area 
fraction corresponding to each component within a pixel. By employing 
linear spectral unmixing, researchers can mitigate the challenges associated 
with mixed pixels and enhance the accuracy of their remote sensing analyses. 
UAV images, owing to their fine resolution, contain more pixels compared 
to satellite images of the same extent. Consequently, the number of 
components within a single pixel decreases, while the number of pixels with 
distinct component boundaries increases. Despite the enhanced resolution, 
the consideration of mixed pixels in UAV images remains necessary. Duan 
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et al. [27] successfully employed the spectral unmixing method in UAV 
remote sensing images to calculate wheat plant coverage. This method 
exhibited significantly improved accuracy compared to the support vector 
machine and thresholding methods. 

 
The objective of this study is to estimate rice plant coverage using 

Sentinel-2 Multispectral Instrument (MSI) data. In the model construction, a 
time series of UAV-observed plant coverage maps is generated based on the 
spectral unmixing method. These coverage maps serve as reference data for 
multiple linear regression with MSI reflectance data. Two types of MSI 
products, Level-1C (top-of-atmosphere reflectance) and Level-2A 
(atmospherically corrected surface reflectance), were utilized to evaluate 
estimation accuracy. Additionally, geometric registration of UAV and MSI 
data is conducted to improve their spatial agreement. The outcomes of this 
study have the potential to provide continuous plant coverage, serving as 
fundamental data for vegetation growth estimation. 
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2. Materials 

2.1 Study Field 

The study was conducted at Tsuji Farm, located in Tsu City, Mie 
Prefecture, Japan (136°29’E, 34°46’N) (Figure 1). Eight paddy field plots of 
Japonica rice were selected for the study. The rice variety "Mie no Yume" 
was cultivated in six plots (A, B, C, D, E, and F), and "Yamada Nishiki" was 
cultivated in two plots (G and H). "Mie No Yume" was planted on June 16 
and 17, 2023. "Yamada Nishiki" was planted on May 30 and 31, 2023. The 
model was developed and assessed using data from the "Mie no Yume". In 
contrast, the "Yamada Nishiki" was used to assess the applicability of the 
model to other varieties. 

 

Figure 1. The study fields. Labels A to H represent the study plot. 
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2.2 UAV Spectral Images 

We used P4 Multispectral [28], equipped with a five-band multispectral 
camera capturing blue to near-infrared (NIR) wave regions shown in Table 
1. The camera specifications are detailed in Table 1. Flight altitude was 60 
meters from the ground, and photos were obtained in equal time interval 
shooting mode with a 70% overlap and 90% sidelap using DJI Ground 
Station Pro [29] software. For radiometric calibration, a diffuse reflectance 
standard panel [30] was captured before take-off. Observations were carried 
out under varying weather conditions, encompassing both sunny and cloudy 
scenarios, with low wind speeds. The dates of UAV observations are 
provided in Table 3. The UAV images were obtained six times after rice 
planting to the flowering stage (Fig. A-2 in Appendix). 

 
 

Table 1. Technical specifications of P4 multispectral UAV. 

* Grand Sampling Distance 
 

Specification Value 
Dimension 35 cm (diagonal size) 

Take-off weight 1487 g 

Image size 1600 × 1300 pixel 

GSD * on 60m flight altitude approximately 3.2 cm 

Field of view 62.7 ° 

The spectral range of the band 

Blue 456 ± 16 nm 

Green 560 ± 16 nm 

Red 650 ± 16 nm 

Rededge 730 ± 16 nm 

NIR 840 ± 26 nm 
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2.3 Sentinel-2 Reflectance Image 

Sentinel-2 MSI was used in this study because it has higher temporal (5 
days) and spatial (10 meters) resolution. Among the 13 spectral bands of MSI, 
we used bands 2, 3, 4, and 8 (Table 3), considering the compatibility with 
UAV. Both top-of-atmosphere reflectance in the Level-1C product and 
atmospherically corrected reflectance in the Level-2A product were 
examined for the comparison of model accuracy. The cloud-free data closest 
to the UAV observations were downloaded through the Copernicus Open 
Access Hub [31]. Unfortunately, Sentinel-2 data corresponding to UAV 
observations on September 2, 2023, could not be derived due to cloud 
coverage. The observation dates of the Sentinel-2 data are listed in Table 3. 

 
 

Table 2. Technical specifications of Sentinel-2/MSI observations. 
Specification Value 

Observation width 290 km 

Observation frequency 5 days (by the combination of Sentinel-2A/2B) 

The central wavelength of the 
band and resolution 

Band 2 (Blue) 490 nm 10 m 

Band 3 (Green) 560 nm 10 m 

Band 4 (Red) 665 nm 10 m 

Band 8 (NIR) 842 nm 10 m 

 
 

Table 3. Data and time of UAV and Sentinel-2/MSI observations. 

 

UAV Sentinel-2/MSI 

10:40 ~ 11:20 on June 16, 2023 10:37:01 on June 19, 2023 

10:40 ~ 11:20 on June 26, 2023 10:36:59 on July 4, 2023 

10:35 ~ 11:20 on July 14, 2023 10:36:59 on July 24, 2023 

10:35 ~ 11:20 on July 27, 2023 10:37:01 on July 29, 2023 

10:50 ~ 11:30 on August 17, 2023 10:36:59 on August 13, 2023 

11:20 ~ 12:00 on September 2, 2023 - 
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3. Methods 

A comprehensive overview of the methodologies, data handling, and 
procedural steps employed in this study is presented in Figure 2. The 
illustration encapsulates the entire process flow, illustrating how the data 
were utilized throughout the study. 
 

Figure 2. Flowchart of the methodology employed in this study. 
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3.1 Preprocessing 

3.1.1 Orthorectification and Radiometric Correction 

The UAV-acquired images were processed using Pix4Dmapper [32] 
software to generate single-band ortho reflectance images with a spatial 
resolution of 0.03 m. Radiometric correction was executed with the aid of a 
calibrated reflectance panel. It is crucial to note that the pixel values in the 
original images are relative to the specific conditions during data collection 
and are not absolute. This discrepancy is primarily attributed to variations in 
light conditions, such as atmospheric conditions and the sun position on the 
day of acquisition. Given that UAVs observe crops multiple times, achieving 
accurate pixel values becomes imperative. Therefore, compensating for 
variations in illumination conditions that impact the data, known as 
radiometric correction [33], is essential for enhancing the precision of the 
acquired information. 

3.1.2 Geometric Registration of UAV and Sentinel-2 Images 

The goal of this study is to estimate rice plant coverage from Sentinel-2 
images at a per-pixel level. Therefore, establishing the positional relationship 
between UAV and Sentinel-2 images is crucial for accurate pixel comparison. 
It should be noted that Sentinel-2 images exhibit slight deviations from 
actual positions due to their 10-meter resolution. The absolute geolocation 
of Sentinel-2 is at least six meters [34]. In contrast, the UAV image resolution 
is three centimeters. Nevertheless, since RTK-GNSS was not used during the 
observation, the UAV images also exhibit slight deviations. Consequently, 
the geometric registration pre-processing step is indispensable to ensure high 
estimation accuracy. 

 
Figure 3 illustrates a schematic diagram of the geometric registration 

process. In Figure 3a, a UAV image (blue-shaded layer) is overlaid on a 
Sentinel-2 image. The geometric registration process proceeded as follows: 

 
1. The UAV image was systematically shifted, with a maximum shift of 

9.0 m and increments of 0.6 m in both the north-south and west-east 
directions from the initial position, where it was overlaid without any 
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processing (Figure 3a). 
 
2. The shifted UAV image within the red box was then clipped and scaled 

down to match the Sentinel-2 resolution (10 meters/pixel) by pixel 
averaging. 

 
3. The correlation between the Sentinel-2 image within the red box 

(Figure 3b) and the scaled-down UAV image (Figure 3c) was 
calculated. The resulting correlation coefficients were employed to 
assess geometric registration accuracy. 

 
These processes were applied to all corresponding band images. In the 

example depicted in Figure 3, the UAV image represents the NIR band from 
June 16, 2023, and the Sentinel-2 image corresponds to band 8 (NIR) from 
June 19, 2023. This geometric registration approach was consistently applied 
to all dates listed in Table 3. 

 
For the assessment of geometric registration accuracy, we utilized green 

and NIR reflectance images as they exhibited a distinct trend in correlation 
coefficients. The geometric registration process results with higher 
correlation coefficients between these two band images were adopted. 
Notably, a higher correlation coefficient was observed in the NIR band when 
the rice plants were in their early growth stage. Conversely, during the later 
growth stage, the green band exhibited a higher correlation coefficient. This 
trend can be attributed to the changing proportions of paddy fields in the 
geometric registration target area, influencing reflectance as rice plants 
mature. 
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Figure 3. Geometric registration process of UAV and Sentinel-2 images. 
(a) Schematic diagram of the geometric registration process. 
(b) Downscaled UAV NIR image. (c) Sentinel-2 band8 image. 
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3.1.3 Extraction of Paddy Fields 

Given that the focus of this study is on paddy fields, the extraction process 
exclusively isolates paddy field pixels using QGIS software [35] after the 
geometric registration process. The extraction process unfolded as follows: 

 
1. Paddy field pixels were manually selected within the 10-meter grid 

depicted in Figures 3b and 3c. 
 

2. UAV and Sentinel-2 images corresponding to the selected pixels were 
then extracted. The size of the extracted UAV image is 333 × 333 pixels, 
while the extracted Sentinel-2 image is 1 × 1 pixel. 
 

Figure 4 illustrates the extracted pixels in both UAV and Sentinel-2 images. 
Due to the geometric registration processing preceding extraction, the 
positions of paddy field pixels varied depending on the image date. 
Consequently, extracted pixels, including those from non-paddy field areas, 
were manually excluded from further analysis. 
 
 

Figure 4. Extraction of paddy field pixels can be expressed as follows: 
(a) UAV image on 16 June 2023. (b) Sentinel-2 image on 19 June 2023. 
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3.2 Calculation of Rice Plant Coverage from UAV Data 

3.2.1 The Linear Spectral Unmixing Method 

The paddy field pixels extracted through pre-processing constitute mixed 
pixels containing both rice and water components. The endmembers in this 
context are water and rice. Consequently, the observed reflectance of the 
mixed pixel can be mathematically expressed as a linear combination of the 
pure reflectance values of the endmembers and their respective area fractions. 
To facilitate this, the study obtained the pure reflectance values of the 
endmembers from Plot A on both June 16 and September 2, 2023. 
Considering that June 16 corresponds to a period just before planting, the 
average reflectance of 500 points was assumed to represent the pure 
reflectance of water (Figure 5a). On September 2, as the rice plants grew and 
occupied a larger proportion of the entire plot (Figure 5b), the average 
reflectance of 500 points on that date was assumed to represent the pure 
reflectance of the rice. 

 

Figure 5. 500 random points on the RGB image.  
(a) Endmember of water on June 16, 2023. 

(b) Endmember of rice on September 2, 2023. 
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3.2.2 Reflectance Normalization 

Considering the solar radiation conditions at the time of UAV image 
acquisition is crucial for accurate UAV image analysis. The construction of 
a reliable linear spectral unmixing model necessitates the incorporation of 
solar radiation considerations. Studies by Ono et al. [36,37] have 
demonstrated that normalizing each reflectance value using the mean value 
of all bands effectively suppresses sunlight and atmospheric effects. This 
normalization technique is commonly employed in satellite forest 
monitoring research and has been adapted for use in UAV monitoring in this 
study. Each band's reflectance was normalized by dividing it by the additive 
mean reflectance of all bands, aiming to mitigate differences in observation 
conditions (Equations (1) and (2)). 

 

𝑟! = 𝑟"#$% + 𝑟&'%%( + 𝑟'%) + 𝑟'%)%)&% + 𝑟*+, (1) 

NR-./0 =
r-./0
r!

	 , NR12003 =
r12003
r!

	 , …	 , NR456 =
r456
r!
	 (2) 

 
In these equations, 

𝑟"#$%, 𝑟&'%%(, 𝑟'%), 𝑟'%)%)&%, 𝑟*+,  represents the observed reflectance of 
endmembers, 𝑁𝑅"#$%, 𝑁𝑅&'%%(, 𝑁𝑅'%), 𝑁𝑅'%)%)&%, 𝑁𝑅*+,  represents the 
normalized reflectance of endmembers 
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3.2.3 Constrained Least Squares Method 

The observed reflectance of the mixed pixel in this study can be expressed 
using Equation (3). The primary approaches to linear spectral unmixing 
methods include (i) constrained least squares, (ii) fuzzy membership 
methods, (iii) methods based on geometric models, and (iv) methods based 
on establishment models [38]. In this study, the areal fraction is computed 
utilizing the least-squares method, subject to the conditions 𝜌7 + 𝜌' = 1, 
		𝜌7, 𝜌' ≥ 0. All rice paddy pixels are subjected to a linear spectral mixed 
model (Equation (3)), and the constrained least squares method is then 
employed to calculate the rice plant coverage 𝜌' . Additionally, a coverage 
map is generated as an outcome of this process. 

 

 
In the provided equations, 

𝑵𝑷 = 2𝑁𝑃"#$%, 𝑁𝑃&'%%(, 𝑁𝑃'%), 𝑁𝑃'%)%)&%, 𝑁𝑃*+,4 represents the observed 
normalized reflectance vector of the mixed pixel, 	𝜌7, 𝜌'  represents the 
areal fraction of water and rice, 𝑵𝑹𝒘, 𝑵𝑹𝒓  represents normalized 
reflectance vector of water and rice, respectively. 
  

𝑵𝑷 = 𝜌7𝑵𝑹𝒘 + 𝜌'𝑵𝑹𝒓	 (3) 
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3.3 The Estimation Model of Rice Plant Coverage 

For the estimation of rice plant coverage, we developed a multiple linear 
regression model using Sentinel-2 images (Equation (4)). All paddy field 
pixels were divided into training and test data sets at an 8 to 2 ratio. The 
model was trained using the training data and subsequently validated with 
the test data. The coefficient of determination was employed for evaluating 
the model's performance. Additionally, validation was conducted to assess 
differences in Sentinel-2 products. 

 
𝑅𝐶(𝑖) = 	𝑎:𝑅";(𝑖) + 𝑎;𝑅"<(𝑖) + 𝑎<𝑅"=(𝑖) + 𝑎=𝑅">(𝑖) + 𝑏	 (4) 

  
Where, 𝑅𝐶(𝑖) represents the average rice plant coverage calculated from 

UAV images at pixel 𝑖. The variables 𝑎:, 𝑎;, 𝑎<, 𝑎=, and 𝑏 are regression 
coefficients, while (𝑖), 𝑅"<(𝑖), 𝑅"=(𝑖), and 𝑅">(𝑖) denote the reflectance 
values of Sentinel-2 bands at pixel 𝑖. 
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4. Results and Discussion 

4.1 Geometric Registration 

Table 4 presents the geometric registration results, including correlation 
coefficients before and after geometric registration (𝑟?'@&@(A# and 𝑟BC@DE%)) 
and the distance moved from the center (𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 and 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙) for 
each date and each band. The shift amount of the higher 𝑟BC@DE%)  was 
adopted for each day. In other words, the shift amount of the NIR band was 
adopted for June 16 to July 27, and that of the green band was adopted for 
August 17. Notably, all correlation coefficients demonstrated improvement 
following the geometric registration process, with an overall enhancement 
rate of 6.82% (mean correlation coefficient: 0.725 to 0.773). The average 
absolute shift was 2.64 m horizontally and 4.08 m vertically. This result 
showed the effectiveness of the geometric registration process. 

 
Table 4. Results before and after the geometric registration 

Date Band 𝒓𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒓𝒔𝒉𝒊𝒇𝒕𝒆𝒅 Horizontal (m) Vertical (m) 
June 16, 

2023 
green 0.597 0.648 +1.8 −3.6 
NIR 0.817 0.915 +4.2 −4.2 

June 29, 
2023 

green 0.420 0.428 −1.2 −2.4 
NIR 0.823 0.851 0.0 −3.6 

July 14, 
2023 

green 0.603 0.662 −4.2 −4.2 
NIR 0.697 0.743 −3.0 −4.2 

July 27, 
2023 

green 0.874 0.921 +0.6 −3.6 
NIR 0.867 0.935 +2.4 −3.6 

August 17, 
2023 

green 0.797 0.830 −3.6 −4.8 
NIR 0.753 0.801 −2.4 −3.6 
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4.2 Normalization Evaluation 

The results of the normalization process are depicted in Figure 6. Figure 
6a represents the state before normalization, while Figure 6b illustrates the 
outcomes after normalization. Mean reflectance and standard deviation for 
each date are plotted. The difference in reflectance by illumination condition 
was considerably reduced by the normalization. In Figure 6a, it can be 
observed that the reflectance on June 29 is considerably higher than other 
dates. Conversely, Figure 6b demonstrates that this variation is effectively 
suppressed after normalization. During the early stages of plant growth, the 
reflectance in the visible light range tends to be higher due to the 
predominant presence of water in the pixel. As the rice plants grow, the near-
infrared reflectance becomes more prominent owing to the increased fraction 
of rice in the pixel. This trend is clearly illustrated in Figure 6 after 
normalization. 

 
 

(a) (b) 
Figure 6. Normalization results. 

(a) before normalization, (b) after normalization. 
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4.3 Rice Plant Coverage by UAV 

4.3.1 Coverage Map Derived by UAV 

Figure 7 illustrates the dynamic changes in rice plant coverage within Plot 
A. The spatial distribution of coverage is clearly depicted, allowing for a 
detailed observation of rice plant growth over time. Notably, significant 
coverage variations were observed across different locations until July 27, 
capturing the nuanced changes in the field. However, after August 17, 
minimal changes were observed across the entire field, indicating a stable 
state suitable for utilization as the correct label. 

 

    

16 June 2023 29 June 2023 

    
14 July 2023 27 July 2023 

    
17 August 2023 2 September 2023 

Rice Plant Coverage (%) 

 
Figure 7. Rice plant coverage map of UAV images 

(Left: RGB image; Right: coverage map). 
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4.3.2 Seasonal Changes in Coverage 

The variations in rice plant coverage across different plots are depicted in 
Figure 8. The horizontal axis represents each day passed from the planting 
date, while the vertical axis denotes the rice plant coverage. The plotted 
values represent the average coverage for each field, providing insight into 
the speed of rice plant growth over time. 

 
Figure 8 illustrates a rapid growth phase for rice plants occurring between 

13 and 28 days after planting. However, after 62 days, the rice plant coverage 
saturates. Notably, Plot B exhibits lower coverage compared to the other 
plots, a distinction evident in the RGB orthophotos. 

Figure 8. Seasonal coverage changes in UAV images by plots. 
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4.4 Rice Plant Coverage of Sentinel-2 

4.4.1 Evaluation of Estimation Model 

The estimated model utilizing Sentinel-2 Level-2A product, as expressed 
in Equation (5), underwent evaluation for its accuracy. The correlation 
between the estimated coverage and correct labels is visually presented in 
Figure 9. The horizontal axis represents the correct label in UAV images, 
while the vertical axis indicates the estimated coverage in Sentinel-2 images. 
Pixels used in the coverage analysis are plotted for each date. 

 
Figure 9a shows the results of the Level-1C product. The coefficient of 

determination was found to be 0.917 for the training data and 0.917 for the 
test data. The RMSE values were 10.70% for the training data and 10.45% 
for the test data. Figure 9b shows the results of the Level-2A product. The 
coefficient of determination was found to be 0.945 for the training data and 
0.944 for the test data. The Root Mean Square Error (RMSE) values were 
9.133% for the training data and 9.039% for the test data. These results affirm 
the relatively high estimation accuracy of the model. However, it is 
noteworthy that the estimation error becomes more pronounced after the 
heading stage, suggesting that the model is less well-fitted during this phase.  

 
Two potential reasons for this discrepancy are identified. Firstly, the low 

resolution of satellite pixels may limit their ability to represent detailed 
coverage appropriate to the growth stage accurately. A potential solution 
involves transitioning to a nonlinear regression model instead of a linear one. 
Secondly, the timing of image acquisition for UAV and satellite differs, and 
crop growth conditions can change dramatically with varying dates, 
especially during the growing season. A possible solution involves 
estimating a growth curve of coverage from UAV images, with the estimated 
coverage on the satellite acquisition date serving as the correct label for 
model estimation. 

 
Furthermore, as shown in Figure 9a and 9b, the results for Level-1C and 

Level-2A products, respectively, are presented. Notably, the transition to 
Level-2A products led to an improvement in accuracy. This enhancement in 
accuracy underscores the importance of utilizing Level-2A products for more 
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reliable and precise estimation outcomes. 
 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	−57.39𝑅"A(); − 458.70𝑅"A()< 
+56.62𝑅"A()= + 307.07𝑅"A()> + 24.74 (5) 

 
Here, 𝐶𝑜𝑣𝑒𝑟𝑒𝑔𝑒 represents the estimated coverage of Sentinel-2 images, 

while 𝑅"A(); , 𝑅"A()< , 𝑅"A()= , and 𝑅"A()>  denote the  Sentinel-2 
reflectance values for bands 2, 3, 4, and 8, respectively. 

 

  

(a) (b) 
Figure 9. Estimation coverage and correct labels.  

(a) Sentinel-2 Level-1C product. (b) Sentinel-2 Level-2A product 
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4.4.2 Coverage Map 

The dynamic changes in estimated rice plant coverage are illustrated in 
Figure 10. This depiction not only showcases the spatial variation in rice 
plant coverage but also provides a comparative reference to the UAV 
coverage map. Notably, plots B and F exhibit lower coverage compared to 
other plots. Observation of certain pixels reveals a decrease in coverage from 
July 29 to August 13, which may be attributed to the presence of thin clouds 
in the satellite data on August 13. 

 
In an effort to mitigate cloud effects, we conducted a comparison between 

Sentinel-2 images for Level-2A products with atmospherically corrected 
surface reflectance and Level-1C with top-of-atmosphere reflectance. The 
results indicated that Level-2A products were superior, suppressing the 
impact of clouds to a certain extent. However, residual cloud effects are still 
evident, as depicted in Figure 10. 
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13 August, 2023 

 

Rice plant coverage (%) 
  

  0 ~ 10   51 ~ 60 
  11 ~ 20   61 ~ 70 
  21 ~ 30   71 ~ 80 
  31 ~ 40   81 ~ 90 
  41 ~ 50   91 ~ 100 

 

Figure 10. Rice plant coverage map of Sentinel-2 images 
 

4.4.3 Seasonal Changes in Coverage 

Figure 11 illustrates the changes in rice plant coverage across different 
plots. The horizontal axis represents each day elapsed from the planting date, 
while the vertical axis indicates the rice plant coverage. This representation 
enables a visualization of the speed of rice growth from the planting date. 

 
Observationally, the estimated coverage tends to be lower than the UAV-

corrected labels in almost all plots. Notably, Plot C did not reach 80%  
coverage even at 59 days after rice planting. Moreover, after 18 days, the 
disparity in coverage between plots gradually increased. This outcome 
emphasizes the influence of various factors on coverage estimation and 
highlights the importance of continuous refinement in modeling approaches. 

 
Furthermore, the results indicate that the Level-2A product effectively 

mitigates the impact of clouds on Day 59. As depicted in Figure 9b, no 
decrease in coverage is observed, reinforcing the reliability and robustness 
of utilizing Level-2A products for accurate estimation despite varying 
atmospheric conditions. 
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(a) Sentinel-2 Level-1C product type 

(b) Sentinel-2 Level-2A product type  
Figure 11. Seasonal change in average Sentinel-2 coverage by each field 
 

4.5 Possibility of Model Application 

To assess the general applicability of the estimated model (Equation 
(5)), it was applied to another species, specifically "Yamada Nishiki," 
planted in plots G and H. The coverage changes across plots are depicted 
in Figure 12. The horizontal axis represents each day elapsed from the 
planting date, while the vertical axis indicates the rice plant coverage. 
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The observed coverage exhibited rapid growth on July 24 (55 days after 
planting). However, it is evident from Figure 13 that floating weeds 
significantly influenced the rice coverage. A potential solution to address 
this issue involves introducing a new variable into the estimation model to 
effectively separate rice and floating weeds. Given the challenges posed 
by 10-meter resolution satellite images, considering the use of higher-
resolution satellite imagery is worth exploring. 

 
Notably, Plot G displays lower coverage compared to other plots. Figure 

14 illustrates a high variability in rice plant distribution within Plot G. This 
variability contributes to the accuracy of the coverage transition trend, 
showcasing the model's ability to capture nuanced variations within 
individual plots. 

Figure 12. Seasonal coverage changes in Sentinel-2 images 
for “Yamada Nishiki” species 

Figure 13. UAV image taken on July 29. 
(a) Floating weeds on plot H, (b) rice plant variability on plot G 
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5. Conclusion 

The primary aim of this study was to estimate rice plant coverage from 
satellite images. Rice plant coverage was computed from UAV-acquired 
images using the linear spectral unmixing method, serving as the correct 
label. The estimated model exhibited a coefficient of determination of 0.944, 
with an associated estimation error of 9.039%, achieving the targeted goal of 
RMSE within 10%. The coverage map offered insights into the variation 
among plots, and the coverage trends for each plot provided valuable 
information about the growth trajectory of paddy rice. 

 
However, several challenges and issues need to be addressed, including 

the variability in estimation coverage during the growing season, the 
influence of floating weeds, and the dependency on weather conditions for 
satellite imagery. Our future efforts will focus on refining the analysis 
method to mitigate these challenges, ultimately enhancing the accuracy and 
stability of the estimation process. 

 
Anticipating advancements in satellite technology, higher-resolution and 

more frequent satellite imagery will become available. Leveraging these 
evolving technologies is crucial for achieving heightened accuracy in our 
analysis. As articulated in the introduction, we aspire to promote the adoption 
of remote sensing technology within the agricultural industry, where the 
demand for efficient agricultural production is paramount. This pursuit 
aligns with the broader goal of leveraging technology to enhance and 
streamline agricultural practices. 
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Appendix 

Figure A-1. Diffuse Reflection 
 
 

Figure A-2. Paddy Rice Growth Stages illustration [40] 
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