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Abstract

Whoever ever had a conversation in the middle of a noisy room can understand how

badly crosstalk can affect a communication system. Crosstalk is a form of noise. It is a

major concern in electronic design. Indeed, as our communication systems grow in size

and complexity, so does the crosstalk suppression issue. And with it, the complexity

and/or the price of the solutions. Through this thesis, I would like to present you

my piece of solution to effectively reduce crosstalk at low cost within multichannel

transmission systems.

The Pie-Chart antenna concept is a simple yet effective method of designing arrays

of antennas so that emitters and receivers can communicate through highly independent

transmission channels. In a nutshell, a Pie-Chart channel (or pie channel) is defined by

its order of symmetry around a longitudinal axis, thus describing an axis-symmetric

azimuthal emission/reception diversity pattern. A different order of symmetry around

the same axis defines a physically different channel. Every pie arrays of the same order

of symmetry around this axis can communicate with each other. While transmissions

from arrays of a different order are heavily rejected through a passive form of destructive

interference noise cancellation. This concept is expendable past the limited frame of

electromagnetism (acoustic, vibrations and wave-signals in general) and its applicability

goes beyond the sole field of wireless transmission.

However very intuitive to understand and apparently fruitful in term of its applicabil-

ity, the result of preliminary state-of-the-art researches revealed that this concept have

1Contact: pier.jp.douarvil@gmail.com



seemingly not already been reported up to present (too trivial to be treated?). There-

fore, within the course of this PhD. I developed an electromagnetic model describing

the theoretical operation of the presented concept. I set and realized several experi-

ments which results show good agreement with the model’s predictions. I discussed how

could exiting devices benefit from the proposed solution. And finally, I conceptualized

new applications made possible by the Pie-Chart antenna concept. Through the hereby

manuscript, I will present you a synthesis of this journey and its major outcomes.

This thesis is my modest contribution to the accretion and the transmission of

mankind knowledges. As a matter of fact, it is written so that to be understandable by

anyone having knowledges in euclidean geometry, basis in electricity, linear algebra as

well as differential and integral calculus. May this humble piece of work be wisely used

to your fulfillment.



A Glance At...

ı̂

̂

Figure 1: This figure can be seen as the conductor layout of a flat (e.g. tracks of a

PCB) 4 channels Pie-Chart inductive emitter (or receiver). Red and green oriented

paths would respectively represent the 2nd and 3rd channels emitter’s (receiver’s) track.

They both are 2nd order Pie-Chart arrays. Blue oriented path would represent the 4th

channel emitter’s (receiver’s) track. It is a 3rd order Pie-Chart array. White oriented

outer circle would represent the 1st channel emitter’s (receiver’s) track. It is a special

1st order Pie-Chart antenna: it has infinite number of plane of anti-symmetry. Plus

and minus signs indicate the magnetic field’s orientation along the k̂ axis given the

correspondingly colored current paths.

This figure can also be seen as the cross-section of a 4 channels Pie-Chart cable, or that of

4 channels Pie-Chart non-contact linear sliding connection: plus and minus signs would

then indicate the location of the conductors and the orientation of their current along

the k̂ axis while the colored oriented paths would indicate the corresponding magnetic

field’s orientation. In the case of a cable however, the 1st channel is incomplete (only

one wire represented by the white plus sign). A concentric cylindrical conductive sleeve

braided around the whole cable would provide an ideal return line for this channel as it

will also provide additional shielding to the cable. In other word, it may represent the

cross section of a true form of 4 channels coaxial cable!
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Symbols and Abbreviations

Abbreviation Meaning Unit

TAWT Transverse Axis Wind Turbine NA

µ vacuum permeability H/m

ε vacuum permittivity F/m

~H Magnetic field A/m

~B Magnetic flux density T

~E Electric field N/C

~D Electric flux density C/m2

~i Electric current A

~J Electric current density A/m2

R electric resistance Ω

ESR Equivalent Serial Resistance Ω
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Chapter 1

Introduction

BEWARE: uninitiated readers who got intimidated by the long title,

some specific terms in the abstract, or this unexpected BEWARE state-

ment, might be shocked at how easy to understand is the Pie-Chart

antenna concept. To them, I will remind this idiom:

“One should not judge a book by its cover.”

1.1 Context

S
e
n
so

rs

Blade axis

Rotor axis

Figure 1.1: CAD view of a highly reconfigurable Wollongong VAWT prototype.

This PhD research project was initially intended at characterizing and improving

4 1.1



CHAPTER 1. INTRODUCTION

the performance of the so called Wollongong Transverse Axis Wind Turbine (TAWT).

As you can see on the Fig. 1.1, the blades of a Wollongong TAWT rotates about an

axis, which one is orbiting around the rotor’s central axis. The Pie-Chart antenna

concept arose from a very practical concern: how to monitor in real-time the output of

the transducers placed on a moving blade from a stationary platform. This problem is

commonly addressed using batteries, slip rings and/or widespread wireless technologies

such as W-LAN, Bluetooth, ZigBee, etc. [1–4].

Slip rings are very popular for transmitting high power or multiple signal in a small

package. However, not only they are subject to the same electromagnetic design chal-

lenges as non-contact Multiple-Inputs Multiple-Outputs (MIMO) devices at high fre-

quency (e.g. electrical path length, impedance matching, crosstalk) but they also re-

quire periodic servicing due to mechanical wear [5]. On the other hand, wireless data

transmission protocols such as Bluetooth or W-LAN are currently not suited for wireless

transmission of substantial electric power. As a result, Near-Field Wireless Transmis-

sion of Power and Information technologies (NFWTPI) are increasingly considered as a

viable alternative solution: more than 80000 patents were filled in 2014 [6] on the theme

of “Wireless power transmission”.

1.2 About Crosstalk

Imagine you listening to a friend in a quiet room (Fig. 1.2). You, the receiver, and

your friend, the emitter, are forming a conversation channel. Now add 2 more speakers,

speaking to 2 other listeners in this same room. They form 2 different conversation

channels. Yet, because you are all in the same room, every listener can hear more or

less every speaker. This is crosstalk. And, if the speakers are all close together, speak

with similar tone, speed and volume as your friend do, you may find it difficult or

even impossible to follow your own friend’s speech. In summary, crosstalk is a form of

signal disturbance, of noise, which is due to the leakage of energy from an ”agressor”

transmission system into a ”victim”. It may affect sound speakers and microphones,

capacitive antennas, inductive antennas or more generally electromagnetic devices. This

disturbance may result in a mere increase of Bit Error Rate (BER) to a complete

communication disruption or even cause hardware damages. For example it is one

of the first limit to the maximum length, operating frequency or number of channels of

Ethernet cables.

1.2. ABOUT CROSSTALK 5



CHAPTER 1. INTRODUCTION

You

Listener 2

Listener 3

Cross-channel interference

Friend

Speaker 2

Speaker 3

Figure 1.2: Basic illustration of crosstalk disturbance.

1.3 Stakes and Solutions

What if we could increase data rate while reducing bit error rate, development time and

production cost of wired and wireless signal transmissions systems? In this manuscript

we present our contribution to those concerns in the form of a simple concept: the

Pie-Chart antenna.

Crosstalk is a challenging issue for compact high data rate MIMO NFWTPI de-

vices. Given the current limitations of semi-conductor based solid-state electrical com-

ponents [7], the higher the handled electric power the lower must be its carrier frequency.

Therefore high power compact NFWTPI devices commonly rely on a low frequency

power supply channel separated from a high frequency data channel. Crosstalk is then

mitigated using a combination of high cross-channel reluctance(shielding included), elec-

tronic filters, or other exotic active solutions [8–11] thus limiting the systems simplicity,

compactness, weight or reliability.

In his paper [12], T. Bieler proposes a very simple and compact crosstalk cancella-

tion solution: power and information are transmitted by induction on two physically

distinct channels. Each channel consists in a coil of specific geometry organized so that

the mutual inductance between two different channels is reduced to the minimum. The

beauty of his solution lies in that, however the power coil is almost wound into the data

coil, crosstalk is very low. When dealing with high power antennas in near-field to data

transmission systems, such a solution can significantly reduce the need for magnetic

guides, shielding or electronic components [20], hence potentially lowering weight, size,

complexity, cost and increasing reliability of transmission systems. The Pie-Chart an-

tenna concept is an extension of T. Bieler’s solution to higher number of channels. In

6 1.3. STAKES AND SOLUTIONS

--••:es-.. .. _ .. -.. .. ,• ,• •. . , ,• ・.、, ... 
・ヽ・. . ,• 
9、... , ヽ．．．．、. . .. .. . . .. ．． 
・-・ 
．． ．．．竺

.・. . ... .. . . ．．．． 、..、..● ., 
:ヽ、 •. 
: ヽ・ • • C•. ・、.・.. ・. .. . ヽ‘•. .. 、.... .. -.. ．．．． 

•••',; c-

I I 

‘` ーノ

．． ヽ

．． ヽ



CHAPTER 1. INTRODUCTION

it most basic expression, it can be assimilated as a form of mutual inductance cancel-

lation using symmetries. What makes it interesting is its simplicity and its capacity to

suppress crosstalk among a theoretically infinite number of channels.

In this thesis, we describe the theory behind this concept, a wide variety of poten-

tial applications, from telecommunication to metrology, and the limits of the concept.

We extensively illustrate crosstalk suppression’s effectiveness of the different Pie-Charts

antennas models through the results of numerical and real experiments detailed in this

manuscript. Its content is presented as an enriched compilation of researches published

in the context of this PhD.

1.3. STAKES AND SOLUTIONS 7
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Chapter 2

Pie-chart Basics

2.1 Prerequisite

In the following we consider a working medium of linear homogeneous isotropic elec-

tromagnetic properties filling an infinite tridimensional euclidean space. The medium

has a magnetic permeability µ = µ0µr and relative permittivity ε = ε0εr, where µr

is its relative permeability, εr its relative permittivity, µ0 = 4π × 107 T m A−1 and

ε0 = µ0
−1c−2F m−1. The default Cartesian frame of reference is defined as (O; ı̂, ̂, k̂).

2.1.1 Definitions

Reflexive Symmetry Function

Suppose a plane Q~n, ~A normal to a vector ~n = nx̂ı +ny ̂ +nzk̂ 6= ~0 and including a point

A located by ~A =
#    ”

OA = Ax̂ı +Ay ̂ +Azk̂. The function Z(~P , ~n, ~A) which associates to

any point P its orthogonal symmetric
~n, ~A

P̃ by the plane Q~n, ~A (Fig. 2.1) is defined by:

Z : (R3,R3,R3) → R3

(~P , ~n, ~A) 7→ P̃ =
1

~n2
(2 [B] ~A+ [C] ~P )

(2.1)

where [B] = ~nT × ~n (~n is a row vector) and [C] = ~n2× [I]3− 2 [B] ([I]3 is the 3× 3 unit

matrix). Then:

• Z is an isometry of the euclidean space.

8 2.1



CHAPTER 2. PIE-CHART BASICS

• For any given vectors ~U and ~V :

~n, ~A

Ũ −
~n, ~A

Ṽ =

~n, ~A

~̃U − ~V (2.2)

~n,~0

Ũ ×
~n,~0

Ṽ = −
~n,~0

~̃U × ~V (2.3)

~n,~0

Ũ ·
~n,~0

Ṽ = ~U · ~V (2.4)

n̂

A
Q~n, ~A

ı̂

̂

k̂

O P

~n, ~A

P̃

Figure 2.1:
~n, ~A

P̃ symmetric of P through Q~n, ~A.

Antenna

The term antenna refers to any closed oriented 3D path. We model it as a parametric

curve:

ζ :]a, b[ → R3

t 7→ ~ζ(t) =


x(t)

y(t)

z(t)


ı̂,̂,k̂

(2.5)

differentiable on ]a, b[ where limt→a ~ζ(t) = limt→b ~ζ(t) are respectively the positive and

negative antenna’s terminals.

The electric current ~i(t) through ζ is defined at each point ~ζ(t) by:

~i(t) = i(t) ·
~ζ ′(t)

‖~ζ ′(t)‖
(2.6)

where i(t) ∈ R is the current intensity and ~ζ ′(t) / ‖~ζ ′(t)‖ is the curve’s orientation vector

at ~ζ(t).

2.1. PREREQUISITE 9
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CHAPTER 2. PIE-CHART BASICS

Array

An array [of antennas] refers to a tuple of n antennas ~ζi, where n ∈ N, all linked to

a common signal S via transfer functions of their electric current ~ii(t, S) or electric

potential Vi(t, S) at each point ~ζi(t).

Magneto-static Approximation

In this paper, we consider that, at any instant, the current’s wavelength is long enough

to be consider of uniform intensity along each individual filamentary antenna it flows in.

Therefore the mutual inductance Mi,j between two antennas ζi and ζj can be determined

using the following Neumann Equation [13]:

Mi,j =
µ

4π
·
∮
ζi

∮
ζj

#”

dli ·
#”

dlj

‖~ri,j‖
(2.7)

where
#”

dli =
#”

ζ ′i(ti) dti ,
#”

dlj =
#”

ζ ′j(tj) dtj and ~ri,j =
#”

ζ j(tj) −
#”

ζ i(ti). Given that
#”

dli and
#”

dlj are independent, this equation leads to Mi,j = Mj,i.

2.1.2 Mutual inductance cancellation

In this subsection the parameters ~n and ~A are constants. Readers may refer to Fig. 2.2

of the Subsection 2.1.2 for visual reference.

Emitters Geometry

ζE is an emitting array of m geometrically distinct antennas such as Q~n, ~A is a plane of

anti-symmetry of ζE (symmetric paths but reverse symmetric orientation). That is to

say, the elements ζEi
of ζE are constrained in shape and orientation in the manner:

∀i ≤ m, i ∈ N∗ : ∃!j/ζEi
:

]− e, e[ → R3

α 7→

∣∣∣∣∣∣∣∣
~ζEi

(α) =
~n, ~A

ζ̃Ej
(−α)

~ζ ′Ei
(α) = −

~n,~0

ζ̃ ′Ej
(−α)

(2.8)

10 2.1. PREREQUISITE



CHAPTER 2. PIE-CHART BASICS

For conciseness, we will use the notation ζEi
=

~n, ~A−↽⇀−
ζEj

to represent this relation of reflexive

anti-symmetry by the plane Q~n, ~A between the two individual antennas ζEi
and ζEj

.

By extension, we will use this same notation ζE =

~n, ~A−↽⇀−
ζE to represent the reflexive anti-

symmetry relation between two arrays ζE and

~n, ~A−↽⇀−
ζE.

ζF is an emitting antenna array of n geometrically distinct antennas such as Q~n, ~A

is a plane of symmetry of ζF . That is to say, the elements ζFi
of ζF are constrained in

shape and orientation in the manner:

∀i ≤ n, i ∈ N∗ : ∃!j/ ζFi
:

]− f, f [ → R3

α 7→

∣∣∣∣∣∣∣∣
~ζFi

(α) =
~n, ~A

ζ̃Fj
(α)

~ζ ′Fi
(α) =

~n,~0

ζ̃ ′Fj
(α)

(2.9)

For conciseness, we will use the notation ζFi
=

~n, ~A
↽↼−−
ζFj

to represent this relation of reflexive

symmetry by the plane Q~n, ~A between the two individual antennas ζFi
and ζFj

. By

extension, we will use this same notation ζF =

~n, ~A
↽↼−−
ζF to represent the reflexive symmetry

relation between two arrays ζF and

~n, ~A
↽↼−−
ζF .

Receivers Geometry

ζG and ζH are receiving arrays of respectively o and p geometrically distinct antennas

defined on ]− g, g[ and ]− h, h[ such as:

ζG =

~n, ~A−↽⇀−
ζG (2.10)

ζH =

~n, ~A
↽↼−−
ζH (2.11)

2.1. PREREQUISITE 11
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Mutual Inductance

Considering the above described antenna configuration, we can determined the mutual

inductance between each couple of antennas of ζE and ζF as:

∀(i, k) ≤ (m,n), (i, k) ∈ N2∗ :

MEi,Fk

=
µ

4π
·
∫ e
−e

∫ f
−f

−
~n, ~A

ζ̃ ′Ej
(−α) ·

~n, ~A

ζ̃ ′Fl
(β)

‖
~n, ~A

ζ̃Fl
(β)−

~n, ~A

ζ̃Ej
(−α)‖

dβ dα

=
µ

4π
·
∫ e
−e

∫ −f
f

−
~n, ~A

ζ̃ ′Ej
(γ) ·

~n, ~A

ζ̃ ′Fl
(β)

‖
~n, ~A

ζ̃Fl
(β)−

~n, ~A

ζ̃Ej
(γ)‖

dγ dβ

= −MEj ,Fl

(2.12)

where ζEi
=

~n, ~A−↽⇀−
ζEj

and ζFk
=

~n, ~A
↽↼−−
ζFl

. Similarly, we can establish that:

(i, k) ∈ N2∗ :

∀(i, k) ≤ (m, o) : MEi,Gk
= MEj ,Gl

(2.13)

∀(i, k) ≤ (m, p) : MEi,Hk
= −MEj ,Hl

(2.14)

∀(i, k) ≤ (n, o) : MFi,Gk
= −MFj ,Gl

(2.15)

∀(i, k) ≤ (n, p) : MFi,Hk
= MFj ,Hl

(2.16)

∀(i, k) ≤ (o, p) : MGi,Hk
= −MGj ,Hl

(2.17)

i ∈ N∗ :

∀i ≤ m : MEi,Ei
= MEj ,Ej

(2.18)

∀i ≤ n : MFi,Fi
= MFj ,Fj

(2.19)

∀i ≤ o : MGi,Gi
= MGj ,Gj

(2.20)

∀i ≤ p : MHi,Hi
= MHj ,Hj

(2.21)

where ζGi
=

~n, ~A−↽⇀−
ζGj

and ζHk
=

~n, ~A
↽↼−−
ζHl

.

Given the above relations, the fact that the EMF ∆Vi across the terminals of an

inductor ζi induced by the current of uniform intensity ij flowing through an antenna

12 2.1. PREREQUISITE
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ζj can be determined at any instant t using Faraday’s law as follow

∆Vi = Mij

d ij

dt
(2.22)

and reminding that every antenna’s current or electromotive force (EMF) of a given

array are linked to one common signal via transfer functions (cf. Section 2.1.1), one can

think of ways to combine the antennas so that the output signal SG(t) of ζG depends

only on the input signal SE(t) of ζE and the output signal SH(t) of ζH only on the

input signal SF (t) of ζF . In the following subsection, we present the simplest antenna

combination which meets those requirements.

Mutual Inductance Compensation Layout

We combine each emitting antenna ζEi
of ζE with its anti-symmetric ζEj

such as at each

instant t :

∀i ∈ N∗, i ≤ m :

ζEi
∪ ζEj

⇔
diEi

dt
=
diEj

dt
= FEi

(SE(t)) (2.23)

where FEi
is an arbitrary transfer function. Similarly, we combine each emitting antenna

ζFi
of ζF with its symmetric ζFj

such as at each instant t :

∀i ∈ N∗, i ≤ n :

ζFi
∪ ζFj

⇔
d iFi

dt
=
d iFj

dt
= FFi

(SF (t)) (2.24)

where FFi
is an arbitrary transfer function.

We now combine each receiving antennas ζGi
of ζG with its anti-symmetric ζGj

such

as at each instant t:

∀i ∈ N∗, i ≤ o :

ζGi
∪ ζGj

⇔ SG(t) = FG(G1, . . . ,Gi, . . . ,Go) (2.25)

where FG is an arbitrary transfer function, Gi = ∆VGi
+ ∆VGj

and ∆VGi
is the EMF

across the terminals of ζGi
. Similarly, we combine each receiving antennas ζHi

of ζH

with its symmetric ζHj
such as at each instant t:

∀i ∈ N∗, i ≤ p :

ζHi
∪ ζHj

⇔ SH(t) = FH(H1, . . . ,Hi, . . . ,Hp) (2.26)

2.1. PREREQUISITE 13
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where FH is an arbitrary transfer function, Hi = ∆VHi
+ ∆VHj

and ∆VHi
is the EMF

across the terminals of ζHi
.

In practice, this combination can be achieved simply by connecting each ζEi
in series1

with ζEj
, each ζFi

in series1 with ζFj
, each ζGi

in series1 with ζGj
and each ζHi

in series1

with ζHj
.

Proof

Given ζEi
=

~n, ~A−↽⇀−
ζEj

, ζFk
=

~n, ~A
↽↼−−
ζFl

, ζGi
=

~n, ~A−↽⇀−
ζGj

, ζHk
=

~n, ~A
↽↼−−
ζHl

, and based on relations (2.13),

(2.14) and (3.18) every Gi can be expressed as a function of the input signals SE(t) and

SF (t) so that:

∀i ∈ N2∗, i ≤ o :

Gi = ∆VGi
+ ∆VGj

+

(
m∑
k=1

MGi,Ek
· FEk

(SE) +MGj ,El
· FEl

(SE)

)

+

(
n∑
k=1

MGi,Fk
· FFk

(SF ) +MGj ,Fl
· FFl

(SF )

)

Gi = 2
m∑
k=1

MGi,Ek
· FEk

(SE) (2.27)

Thus the output signal SG(t) of the anti-symmetric antenna array ζG is independent of

the input signal SF (t).

Similarly, based on relations (2.15) and (2.16) every Hi can be expressed function of

the input signals SE(t) and SF (t) so that:

∀i ∈ N2∗, i ≤ p :

Hi = 2
n∑
k=1

MHi,Fk
· FFk

(SF (t)) (2.28)

Thus the output signal SH(t) of the symmetric antenna array ζH is independent of the

input signal SE(t).

1In theory parallel connection should work as well. In practice the slight differences between each

antenna’s Equivalent Series Resistance would require a balancing circuit to achieve perfect crosstalk

cancellation. Parallel connection may thus be a more flexible combination method yet more complicated

to put in application. Of course, parallel and series connection are not the only possibilities. . .

14 2.1. PREREQUISITE
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Partial Conclusion

Given a set of parameters ~n and ~A, we show that a channel {SG, SE} of Q~n, ~A anti-

symmetric emitting (ζE) and receiving (ζG) arrays can, in practice, be made independent

of another channel {SH , SF} of Q~n, ~A symmetric emitting (ζF ) and receiving (ζH) arrays

using elementary combination method (series connection, parallel connection, . . . ).

Although the conclusion drown here is a special case encompassed by the maximal

ratio combining technique (MRC) [14,15], the approach presented here is original in that

it eases a lot the design process of multichannel antenna design, as we will illustrate it in

the following example. More importantly, this is a fundamental element of the Pie-Chart

antenna concept presented in the next section.

Example: Serial Layout

Q~n, ~A

ζE1 ζF1ζG1ζH1

ζG2ζH2

ζE1a

ζE1b

n̂

A

ζF1a

ζF1b

1

4

5

9

12

8

13

20

16

17

21

28

24

25

2

3

6

10

7

11

14

19

15

18

22

27

23

26

Pt x y z Pt x y z Pt x y z

1 0 3.5 0 2 1.5 3.5 4.5 3 1.5 0 4.5

4 0 0 0 5 5 3.5 0 6 6.5 3.5 4.5

7 6.5 2.5 4.5 8 5 1 0 9 5 0 0

10 6.5 0 4.5 11 6.5 1 4.5 12 5 2.5 0

13 3.5 3.5 0 14 4.5 3.5 3 15 4.5 2 3

16 3.5 2 0 17 3.5 1.5 0 18 4.5 1.5 3

19 4.5 0 3 20 3.5 0 0 21 2 3.5 0

22 3 3.5 3 23 3 2 3 24 2 2 0

25 2 1.5 0 26 3 1.5 3 27 3 0 3

28 2 0 0 A -1 1.75 0 n̂ 0 1 0

Figure 2.2: Arbitrary symmetric and anti-symmetric arrays of antennas. Arrows indicate

the antenna’s orientation. 3D coordinates of the points 1 to 28 are expressed in meters.

Notice that ζE1 and ζF are homeomorphic to their symmetric/anti-symmetric. For a

better visualization of the situation, they can be seen as the serial combination of the

manifold red dashed paths ζE1a and ζE1b
, respectively ζF1a and ζF1b

.

Lets consider the emitting arrays ζE = ζE1 and ζF = ζF1 and the receiving arrays

ζG = ζG1 ∪ ζG2 and ζH = ζH1 ∪ ζH2 illustrated on Fig. 2.2. They are connected in serial

to their input/output signal as illustrated on Fig. 2.3. Paths are made of isotropic

homogenous conductive material of 5 mm radius circular cross section. ζE and ζG are

Q~n, ~A anti-symmetric arrays, ζF and ζH are Q~n, ~A symmetric ones. The conveniently built

matrix of inductance [21], numerically evaluated using the Neumann Equation (2.7), is

2.1. PREREQUISITE 15
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CHAPTER 2. PIE-CHART BASICS

provided in the table associated with the Figure 2.3.

SE(t), SF (t), SG(t) and SH(t) are measured (receiver) or imposed (emitter) time-

dependent EMF signals. Each signal can be expressed function of the others. For

example:

SE(t) = ∆VRE
+ ∆VE1

= iE ·RE

+ME,E ·
d iE(t)

dt

+ME,F ·
d iF (t)

dt

+ (ME,G1 +ME,G2) ·
d iG(t)

dt

+ (ME,H1 +ME,H2) ·
d iH(t)

dt
(2.29)

Repeating this process for every antennas and given the inductance in Table 2.1.2,

expressions obtained for each signal are reduced to:

SE(t) = iE ·RE +ME,E ·
d iE

dt

+ (ME,G1 +ME,G2) ·
d iG

dt
(2.30)

SF (t) = iF ·RF +MF,F ·
d iE

dt

+ (MF,H1 +MF,H2) ·
d iH

dt
(2.31)

SG(t) = iG ·RG + (MG1,G1 +MG2,G2) ·
d iG

dt

+ (MG1,E +MG2,E) ·
d iE

dt
(2.32)

SH(t) = iH ·RH + (MH1,H1 +MH2,H2) ·
d iH

dt

+ (MH1,F +MH2,F ) ·
d iF

dt
(2.33)

The above studied system is thus equivalent to an inductive transmission device

having two independent channels: the “anti-symmetric” channel Ch1 = {ζE, ζG} and

the “symmetric” channel Ch2 = {ζF , ζH}.

16 2.1. PREREQUISITE
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i Gi H

i Fi E

ζF1

RE RF

ζE1

SFSE

ζG1 ζG2

RG

ζH2ζH1

RH

SGSH

∆VE1∆VRE
∆VF1 ∆VRF

∆VRH∆VH1
∆VH2

∆VG1
∆VG2

∆VRG

(µH) ME1,j MF1,j MG1,j MG2,j MH1,j MH2,j

Mi,E1 20.10 0.000 0.183 0.183 0.441 -0.441

Mi,F1
0.000 27.21 0.398 -0.398 0.066 0.066

Mi,G1 0.183 0.398 10.11 -0.335 0.423 -0.018

Mi,G2
0.183 -0.398 -0.335 10.11 0.018 -0.423

Mi,H1 0.441 0.066 0.423 0.018 10.11 0.335

Mi,H2
-0.441 0.066 -0.018 -0.423 0.335 10.11

Figure 2.3: Electric circuit of the simple 2 channels inductive transmission device pre-

sented Fig. 2.2 (left picture) and the associated inductance matrix numerically evaluated

(right table). In this example, antennas ζH1 and ζH2 of the ζH array are combined in a

serial fashion. Same goes for the antennas of the ζG array.

2.2 Pie-Chart Antenna Model

2.2.1 Iterative Building Process

Lets consider a plane Q~n, ~A and a vector ~n0 perpendicular to ~n. We recursively construct

any vector ~ni parallel to Q~n, ~A so that n̂i+1 is the vector resulting from the rotation of

n̂i around the (O : ~n) axis by an angle θi+1 = π
2i+1 . Hence ~ni+1 satisfies:

n̂i+1 = [R]n̂θi+1
× n̂i (2.35)

where n̂ = ~n
‖~n‖ and [R]n̂θi+1

is the rotation matrix (2.34). In our case, this is equivalent

to:

∀i ∈ N,

∣∣∣∣∣∣∣∣∣∣
~ni 6= ~0

n̂ · n̂0 = 0

n̂i × n̂i+1 = − sin(θi+1)n̂

n̂i · n̂i+1 = cos(θi+1)

(2.36)

Lets consider an arbitrary elemental array ξX . We construct an m order Pie-Chart

array ζmX by recursively applying the symmetry function Z as follow (Fig. 2.4):

∀m ∈ N∗,∀i < m, i ∈ N∗ : ∣∣∣∣∣∣∣∣∣∣∣

ζmX(0) = ξX

ζmX(i) = ζmX(i−1) ∪
~ni−1, ~A
↽↼−−
ζmX(i−1)

ζmX = ζmX(m) = ζmX(m−1) ∪
~nm−1, ~A−↽⇀−
ζmX(m−1)

(2.37)

2.2. PIE-CHART ANTENNA MODEL 17
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Q
~u
0
, ~A

Q~u1, ~A

Q
~u
2 , ~AQ

~u
3 , ~A

Q
~u
4 , ~A

Figure 2.4: This radial fractal tree is an intuitive way to visualize the geometric building

process of any n order Pie-Chart array. Reading starts at the center with the geometry

of a 1st order Pie-Chart antenna, result of the union of a red triangle with its yellow anti-

symmetric one about the Q~u0, ~A
plane (point A is the center of the figure). Progressing

on the first green ring (the smallest one), the geometry of a 2nd order array is composed

of two antennas, result of the union of a red triangle and its blue symmetric about the

Q~u0, ~A
plane with their yellow and cyan anti-symmetric one about the Q~u1, ~A

plane. And

so on and so forth. Therefore, antennas on the most outer green ring can be combined

into a 5th order Pie-Chart array. In practice, red/yellow figures are combined with the

blue/cyan one so that current flowing through red/yellow figures flows in the opposite

direction of that flowing through blue/cyan ones.

[R]n̂θi+1
=


n2
x(1− C) + C nxny(1− C)− nzS nxnz(1− C) + nyS

nxny(1− C) + nzS n2
y(1− C) + C nynz(1− C)− nxS

nxnz(1− C)− nyS nynz(1− C) + nxS n2
z(1− C) + C

 (2.34)

where C = cos(θi+1) and S = sin(θi+1).

2.2.2 Proof of the Crosstalk Cancellation

• Suppose that Q~ni, ~A
is the median plane between Q~ni−1, ~A

and Q~n0, ~A
such as −~n0 =

~ni,~0

~̃ni−1. Then based on (2.36) we deduce the following:∣∣∣∣∣ n̂i × n̂0 = − sin(θi)n̂

n̂i · n̂0 = cos(θi)
(2.38)
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which is equivalent to:

n̂0 = [R]n̂θi × n̂i (2.39)

Taking notice that θi+1 = θi/2 and remembering that n̂i+1 = [R]n̂θi+1
× n̂i, we can

deduce that n̂0 = [R]n̂θi/2× ([R]n̂θi/2× n̂i) = [R]n̂θi+1
× n̂i+1. Therefore Q~ni+1, ~A

is the

median plane between Q~ni, ~A
and Q~n0, ~A

such as −n̂0 = Z(n̂i, ~ni+1,~0).

• Based on (2.36) we know that n̂1 = [R]n̂π/2 × n̂0, thus giving −n̂0 = [R]n̂π/2 × n̂1.

This is equivalent to say that Q~n1, ~A
is the median plane between Q~n0, ~A

and Q~n0, ~A

such as −n̂0 = Z(n̂i, ~ni+1,~0).

We can thus deduce that the last building plane of symmetry Q~ni, ~A
of a Pie-Chart

array is the median plane between Q~ni−1, ~A
and Q~n0, ~A

such as −~n0 = Z(~ni−1, ~ni,~0).

Lets consider a body Ωa mirror symmetric about two planes Q~na, ~A
and Q~nb, ~A

, and

the body Ωb defined by Ωb = Z(Ωa, ~nc, ~A). Given that Z is an isometry of the euclidean

space, we can conclude that Ωb is mirror symmetric about the two planes Z(Q~na, ~A
, ~nc, ~A)

and Z(Q~nb, ~A
, ~nc, ~A).

Lets set ~nc so that Q~nc, ~A
is a median plane between Q~na, ~A

and Q~nb, ~A
. This either

means that n̂a =

~nc,~0˜̂nb or −n̂a =

~nc,~0˜̂nb, thus resulting in:

~nc, ~A

Q̃~na, ~A
= Q~nb, ~A

(2.40)

Indeed Ωb stays mirror symmetric about the planes Q~na, ~A
and Q~nb, ~A

. Applying this

result to oriented paths, we can conclude that:

ζm =

~nm−2, ~A
↽↼−−
ζm =

~n0, ~A
↽↼−−
ζm =

~nm−1, ~A−↽⇀−
ζm (2.41)

This same statement also means that ζm admits
~nm−2, ~A

Q̃~nm−1, ~A
as a plane of symmetry, as

well as Z(
~nm−2, ~A

Q̃~nm−1, ~A
,
~nm−2, ~A

ñm−1, ~A), etc.. Indeed symmetry planes of ζm are defined at a

rotation [R]n̂iθm−2
of Q~nm−2 , and antisymmetry planes at a rotation [R]n̂iθm−2

of Q~nm−1 .

Remembering that θi+1 = θi/2, then ∀i ∈ [1;m], Q~nm−i, ~A
is a plane of antisymmetry of

ζm. Which allows us to say:

Any m order Pie-Chart array ζm is decoupled with any lower order Pie-Chart array

sharing the same building parameters ~A, n̂ and n̂0.

2.2. PIE-CHART ANTENNA MODEL 19
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2.3 Experiments

In the following section we present two of the experiments we conducted to evaluate the

applicability of the above theoretical model.

2.3.1 Three-channels PCB Pie-Chart Array

The use of symmetry to reduce inductive crosstalk is a well known technique [17]. How-

ever, up to current literature, this technique alone seems effective up to a maximum

of 2 independent channels per axis (i.e., a maximum of 6 channels in a 3D space). In

the following experiments, we measure how effective is the proposed Pie-Chart antenna

concept to overcome this limit of 2 independent channels per axis.

Design and Manufacture

For speed and accuracy reasons, we decided to make the antennas by the mean of PCB

etching. Insulation is ensured by a layer of about 0.1 mm thick rubber. We designed

the antennas based on the following requirements:

• at least 3 coplanar channels, because 2 coplanar channels case is part of common

knowledge, well documented and used in various applications.

• self-inductance of every antennas must be close in order to lower the probability

that the observed crosstalk attenuation is due to a difference between channel’s

pass-band frequency.

• given the characteristics of the used power supply (50 Ω ±10 V, up to 15 MHz

sinusoidal waveform generator), antenna’s self-inductance and electrical length

must be chosen so that antennas are exploitable at frequencies lower than 15 MHz

('20 m long wavelength).

Therefore we needed a mean to evaluate the inductance matrix of the system while

designing the antennas. For this purpose, we wrote a rudimentary computer program

(cf. Appendix B) which returns the mutual inductance between any pair of arbitrary

geometry antennas based on Neumann Equation (2.7). The final circuit shown Fig. 2.5

were etched on a standard 35 µm copper plated 150 × 100mm large 1.6 mm thick glass

Fiber Reinforced Epoxy board and thin-coated with rubber as illustrated on Fig. 2.6.

20 2.3. EXPERIMENTS
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~u
0

~u1~u2

Figure 2.5: Tracks of the experimental PCB Pie-Chart array. 1st channel is composed of

the 1st order red Pie-Chart antenna, 2nd channel is composed of the 2nd order green Pie-

Chart antenna and the 3rd channel is composed of the 3rd order blue Pie-Chart antenna.

Colored arrows indicate the orientation of the current inside the corresponding antenna.

Vector ~u0, ~u1 and ~u2 are the normals of the construction planes Q~n0, ~A
to Q~n2, ~A

. Small

black squares are the antenna’s terminals. Cyan line represents a link on the rear side

of the PCB. Black dashed rectangle is the 150× 100mm outer limit of the PCB.

Numerical Results

We consider a stack of the above presented two tri-channel arrays: one PCB is put

up-side-down on top of the other and separated by a distance h = 1 mm as shown at

the top right corner of the photograph Fig. 2.6. The numerically evaluated inductance

matrix is given in the table of the Fig. 2.6 given that ζBi is the ith channel of the bottom

PCB array and ζT i is the ith channel of the top PCB array.

The highlighted main diagonal shows that the self-inductance of each antenna is

close to 14 µH. Lightly highlighted second diagonals shows that each co-channel’s mutual

inductance, about 12 µH, is closed to antennas self-inductance. Given the formula (2.42)

2.3. EXPERIMENTS 21
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ı̂

̂

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1 17.69 -0.004 0.004 -15.29 -0.004 -0.003

Mi,B2 -0.004 18.00. -0.017 -0.004 15.23 -0.017

Mi,B3 0.004 -0.017 18.21 -0.003 -0.017 15.06

Mi,T1 -15.29 -0.004 -0.003 17.69 -0.004 0.004

Mi,T2 -0.004 15.23 -0.017 -0.004 18.00 -0.017

Mi,T3 -0.003 -0.017 15.06 0.004 -0.017 18.21

Figure 2.6: Photograph of the experimental 3 channels PCB type Pie-Chart array (left

picture) and the associated inductance matrix numerically evaluated (right table). Cir-

cuit tracks presented Fig. 2.5 were etched on two 150 × 100mm boards. Those PCB

were then coated with a thin layer of colored rubber (red surface). Unit vectors ı̂ of

the X axis and ̂ of the Y axis are indicated on the top right corner image in testing

configuration (i.e., one PCB flipped upside down on top of the other PCB about the Y

axis).

[18], we can thus expect a minimum co-channel magnetic coupling factor min(kco) =

kB1,T1 = 86 %.

∀(i, j) ∈ N : ki,j =

√√√√ M2
i,j

Mi,i ×Mj,j

(2.42)

In comparison, the evaluated cross-channel’s mutual inductances are not higher than

10 nH. Therefore, we can expect a maximum cross-channel magnetic coupling factor of

max(kcross) = kB1,B3 = 7.2× 10−2 %. In this configuration, assuming that the transmis-

sion of power is approximately proportional to k2 [19], this corresponds to an expected

minimal Adjacent Channel Rejection Ratio (ACRR, selectivity or signal to noise power

ratio) min(Si,j) = SB3,T2 ' 59 dB given2:

Si,j = min

 20 log10

ki1,i2
ki1,j

  (2.43)

where antennas ζi1 and ζi2 are two different antennas of the channel i and ζj is an

antenna of the channel j. Notice that this equation leads to Si,j ∝ (Mj,j/Mi,i)
1/2. From

a crosstalk reduction stand point, this means that a given multichannel inductive system

would generally benefit from designing higher power channels with proportionally higher

2Based on (2.42), Mi,j = Mj,i implies ki,j = kj,i ; however, regarding (2.43), this does NOT imply

that Si,j = Sj,i.
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self-inductance than lower power channels.

The same evaluation procedure was repeated in different configurations. Fig. 2.7

illustrates the expected evolution of the minimum ACRR between channels function of

the PCB misalignment (translation only) along the x, y and z axis.
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Figure 2.7: Numerically evaluated impact of the PCB array misalignment along the x

(a), y (b) and z axis (c) on the Adjacent Channel Rejection Ratio (ACRR).

Experimental Setup

We would like to experimentally determine the ACRR and the mutual inductance matrix

of the system at position (0, 0, 1)O;̂ı,̂,k̂ (no x, y misalignment, 1 mm gap).

An antenna can be configured on the fly as emitter (connected to power supply) or

receiver (disconnected to power supply) thanks to the routing circuit shown Fig. 2.8.
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Figure 2.8: Routing circuit for experimental evaluation of up to 6 antenna system’s

inductance matrix. Signal supplied by the AC generator through 91.6 µF ceramic cou-

pling capacitors is balanced with a pair of 1.12 kΩ resistors. It is then routed to only

one emitting antenna ζi by closing the switches PWi (configuration XPi). Probed

points {α, β} are connected to oscilloscope’s 1st and 2nd inputs (Tp1 and Tp2). Probed

points {γB1, δB1} to {γT3, δT3} are pairwise routable to the 3rd and 4th inputs of the

oscilloscope (Tp3 and Tp4) via the switches DAQB1 to DAQT3. A complete data set

consists of a record of {α, β, γB1, δB1} to {α, β, γT3, δT3} for each configuration XPi (6

configurations). For safety reasons and measurement consistency, given a configuration

XPi, when a signal ∆γjδj (j 6= i) is being measured, the switch Gndj is closed to

balance the signal (Gnd switches are otherwise open). All represented ground points

are oscilloscope’s ground (independent from generator’s ground). 1.12 kΩ, 10.0 Ω and

147.2 Ω resistors are thin film carbon resistors. ∆αβ is the time reference signal of each

{α, β, γx, δx} record.

Resistor Ri represents the Equivalent Series Resistance (ESR) of the antenna ζi. Their

value are given in Table A.1 of the Appendix.

Given the circuit presented Fig. 2.8 and assuming that components properties are

not significantly altered over the 150 Hz to 15 MHz frequency range, we can deduce the
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5888×[∆γδ]−[R]×(294.4 [∆αβ]−314.4 [∆γδ]) = [M]×
d (294.4 [∆αβ]− 314.4 [∆γδ])

dt
(2.45)

5888

XPB1

↓
XPT3

↓
∆γδB1 · · · ∆γδB1

...
...

∆γδT3 ∆γδT3

 −

RB1 0

. . .

0 RT3

×
294.4


∆αβ · · · ∆γδB1

...
. . .

...

∆γδT3 ∆αβ

− 314.4


∆γδB1 · · · ∆γδB1

...
...

∆γδT3 ∆γδT3




=


MB1,B1 · · · MT3,B1

...
. . .

MB1,T3 MT3,T3

× d

dt

294.4


∆αβ · · · ∆γδB1

...
. . .

...

∆γδT3 ∆αβ

− 314.4


∆γδB1 · · · ∆γδB1

...
...

∆γδT3 ∆γδT3




[M] = (5888× [∆γδ]− [R]× (294.4 [∆αβ]− 314.4 [∆γδ]))

×

d (294.4 [∆αβ]− 314.4 [∆γδ])

dt

−1

(2.46)

relation:

∆VB1 = ∆δγB1 −RB1

294.4∆βα− 314.4∆δγB1

5888

= ∆δγB1 −RB1(
∆βα

314.4
−

∆δγB1

294.4
)

=
∑

Mi,B1

d Ii

dt
(2.44)

where ∆δγB1 is the electric potential difference γB1− δB1 and ∆βα the difference α−β.

This assumes that ζB1 is in emitter mode. When ζB1 is in receiver mode, we simply

consider that ∆βα = ∆δγB1 in Equation (2.44). Same goes for the five other antennas.

Hence, by recording the electric potential {α, β, γB1, δB1} to {α, β, γT3, δT3} for 6 inde-

pendent emitter/receiver configurations, namely configuration XPB1 to XPT3, we can

deduce the relations (2.45) and (2.46).

In practice, configuration XPi consisted in setting only the antenna ζi as an emitter,

the five others being set as receivers. This minimizes the risk of non reversibility of the

matrix d(294.4 [∆αβ]− 314.4 [∆γδ])/dt.

Measurement points Tp1 to Tp4 were connected to the 1 MΩ inputs of a 4 channels

oscilloscope (ref: Agilent 2024A) via 1.2 m unterminated crocodile clip ended 50 Ω coax-
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ial cable, as can be seen on Fig. 2.9. All four coaxial cables were twisted in one strand

between the measurement points and the oscilloscope inputs to reduce ground loops.

Measurements were performed inside an anechoic chamber at 20 ◦C.

Figure 2.9: View of the PCB array experimental setup. On the left the Device Under

Test (DUT), on the right the board used for routing power to the desired antenna

and signal to the oscilloscope’s inputs. Equivalent circuitry achieved with this board is

depicted Fig. 2.8.
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Figure 2.10: ACRR of PCB array calculated from experiment data at different frequen-

cies.
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Results

Net electric power Pj received by the 294.4 Ω + Rj load of an antenna ζj is accessible

via the electric current matrices [Iζ] (Cf. Table A.9 to Table A.14 in Appendix) by the

relation Pj = (294.4 + Rj)Iζj
2. Assuming that crosstalk is globally low between every

channels, which is apparently the case up to 1.5 MHz, then Si,j ' 20 log10((294.4 +

Ri)Iζi/((294.4 + Rj)Iζj), where ζi is the antenna connected to the power source, gives

a good estimation of the ACRR. Results shows a typical channel selectivity of 55 dB to

70 dB from 150 Hz to 150 kHz (Cf. Fig. 2.10).

The inductance matrices were automatically computed using an Octave script pro-

ceeding in the following manner:

• the amplitude and phase of the sinusoidal signals ∆αβ and ∆γδ were deter-

mined by fitting an ideal sinusoid to the raw signal using a bisection method with

threshold of 1× 10−5◦ on phase angle, 5× 10−5 V on peak-to-peak amplitude and

1× 10−5 V on common mode.

• those information and the measured ESR of each antenna (Cf. Appendix A Table

A.1) were injected into the Equation (2.46).

Results are presented Appendix A Tables A.15 to A.20.

2.3.2 2 Channels Rotary Pie-Chart Array

The presented geometry was designed to address the main drawback of the “Circle”

geometry proposed in [12]: a sensible level of interferences, even for the optimized

“Circle” geometry tested in [16]. Unfortunately this last paper do not provide enough

details to estimate the ACRR of their model. Our particular version is a basic rotary

type of 2 channels Pie-Chart array designed to improve ACRR of rotating type of Near

Field Wireless Transmission of Power and Information device (NFWTPI).

Design and Manufacture

From a time perspective, the rotary prototype was built and tested prior to the PCB

one. At that time, primary design constraint was the availability of tools and materials.
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As a simple proof of concept, we came out with the design depicted Fig. 2.11. Device

was built using 48 mm inside/outside diameter PVC tube, of 0.35 mm core diameter

insulated copper wire and a drill press. In this case, “power” channel {Pin, Pout} was

designed with a higher self inductance than the “data” channel {Din, Dout}.

46.5
49

Plane of
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u
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16
.5

2

4.
5

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in 19.1016 0.0006 14.1235 0.0004

Mi,Din 0.0006 1.8618 0.0004 0.9639

Mi,Pout 14.1235 0.0004 17.2306 0.0005

Mi,Dout 0.0004 0.9639 0.0005 1.6974

Figure 2.11: Construction of the non-contact slip ring’s, or rotary array (left schematic),

and associated inductance matrix numerically evaluated (right table). Red and blue

colors on the top cross-section differentiate the orientation of electric current inside the

coils conductors. Coils Pin and Pout are each made of 14 turns of conductor, Din and

Dout are each made of 2× 3 turns of conductor.

Results

Numerical results presented in the table of the Fig. 2.11 were obtained using the same

methodology as that of the PCB array. Based on this table, we can expect a minimum

ACRR SP,D close to 91 dB and SD,P close to 67 dB. Once again we present Fig. 2.12 the

expected evolution of ACRR Si,j function of misalignment along the rotation axis (Z

axis). Fig. 2.13 shows the ACRR evaluated from the experimental results. Evaluated

inductance matrices presented in Appendix A Tables A.21 to A.26 were obtained using

similar procedure as that of the PCB array. Measured ESR used in those calculations are

presented in Appendix A Table A.2 and the current through the inductors are presented

in Table A.3 to A.8.
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Figure 2.12: Numerically evaluated impact

of the rotary array misalignment along the

z axis on the ACRR.
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Figure 2.13: ACRR of rotary array calcu-

lated from experiment data at different fre-

quencies.

2.4 Discussion

Experimental results globally agree with the theory: we observe a significant ACRR in

most of the tested configurations. However there are several discrepancies that we will

discuss in this section.

2.4.1 Symmetry of the Inductance Matrices

Up to Neumann formula, the inductance matrices should be symmetric. Lets define a

coefficient W which qualifies how symmetric is a given square matrix [M] of size n. W

is equal to 1 minus the average ratio of the difference between two diagonally opposed

terms over the range of all non-diagonal terms such as:

W = 1−
2

n2 − n

n∑
i=2

i−1∑
j=1

|(Mi,j −Mj,i|
max(M∗)−min(M∗)

(2.47)

where Mi,j is the term at the ith line jth column of [M] and M∗ are all the non diagonal

terms of [M] . Note that we consider only the real part of each term. The W factor for

inductance matrices presented Tab. A.15 to A.26 all exceeds 99 %. In comparison, the

expected W factor is about 60.6 %+10.2 %
−10.6 % for a random 4× 4 matrix and 64.4 %+6.1 %

−6.4 % for

a 6× 6 one. Model and experiments are consistent on this point.
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2.4.2 Inductance

Based on Lenz’s Law, the self inductance of a simple conductor is always positive. At

15 MHz both PCB and rotary array’s self-inductance are negative (Cf. diagonal terms

of the inductance matrices Tables A.15 to A.26). On the other hand, we can observe an

unusually large imaginary part at low

frequency.

Stray capacitance may intuitively explain the negative self-inductance at high fre-

quency. On the large imaginary part issue, we must acknowledge that an inductance’s

imaginary part is homogeneous to the real part of a complex impedance, i.e., a resis-

tance. Indeed, the issue lies in the poor conditioning of the matrix [M] with respect to

the ESR matrix [R] at low frequency.

Using a SPICE program to simulate the behavior of a simplified version of the

PCB array experimental setup (Cf. Fig. 2.14), we observed that the ±0.01 Ω mea-

surement tolerance on [R] corresponds to about ±10 µH deviation on the calculated

self-inductance’s imaginary part. In the mean time, we also noticed that even 90 pF

per probe + oscilloscope input capacitance (very conservative value considering that we

used straight 1.2 m unterminated lossless coaxial cables) is enough to significantly bias

the calculated value of [M] above 3 MHz (Cf. Fig. 2.15). Hence the negative values

obtained at 15 MHz.

Notice that however a negative self-inductance might be alarming, negative mutual

inductance isn’t. The observed negative co-channel mutual inductance MB2,T2 is con-

sistent over the whole test frequency range. Indeed, this simply denotes that either ζB2

or ζT2 was plugged in reverse polarity.

2.4.3 Coupling and Selectivity

In the numerical analysis Section 2.3.1, we would expect the ACRR of the PCB array to

tend to infinity at position (0, 0, 1)O;̂ı,̂,k̂ between every channels. Instead we observed fil-

tering capabilities globally lower than 100 dB at that position. Furthermore, the highest

filtering position varies from channel to channel.

Indeed, unlike the simple loop geometry used in example 2.1.2, the spiral geome-

try used here is not perfectly symmetric. To a smaller extend this might be due to
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Figure 2.14: Schematic of the portion of the tested circuit simulated with the software

ngspice-26. Parasitic capacitance are highlighted with blurry red dots. Scope inputs α,

β, γ and δ are that presented in Fig. 2.8. Results of the simulation are presented Fig.

2.15.
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Figure 2.15: Comparison of the signal (294.4 × ∆αβ − 314.4∆γδ)/5888 between the

simulated circuit Fig. 2.14 and the real antenna ζB1. The result allows to estimate

the resonance frequency, above which the capacitive impedance will dominate over the

inductance of a 14 µF antenna, thus leading to wrong calculation of the self inductance

with our method (negative values). This is put in perspective with an ideal situation

where the circuit would not contain parasitic capacitance. Their is not enough measure-

ment points to precisely determine the resonance frequency of the real device. However,

the curve obtained from simulation fits well enough the measurements to conclude that

at 15 MHz the system definitely operates above its resonance frequency.

the numerical bias introduced by numerical round-off and the limited resolution of the

numerical model.

The ACRR of the experimental rotary array is substantial over the whole tested

frequency range: above 20 dB. However, it is about 3 orders of magnitude lower than
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the expected values from numerical evaluation.

It is reasonable to think that this high discrepancy is mainly due to the relatively

poor building accuracy of the experimental device (machined with a drill press) and of

the acquisition system. As can be seen on Fig. 2.12 a misalignment of only 0.1 mm

could account for this difference. This might be further emphasize by the low number

of turns (higher sensitivity to random error) and by the compactness of the system in

comparison to the PCB array.

Based on its definition (Equations (2.43) and (2.42)), ACRR’s should be independent

of the operating frequency. For both experimental devices, the calculated absolute ratio

between co-channel and cross-channel coupling is higher than 10 (20 dB of ACRR) up

to 1.5 MHz. Above that frequency, the ratio collapses to as low as 1.7 (about 5 dB).

This phenomenon was not predicted by the presented Pie-Chart antenna model.

It is tempting to think that this is another consequence of the stray mutual capac-

itance between channels. Yet, given how randomly affected each ACRR seemed to be

(at 15 MHz S3,1 ' 10 dB whereas S2,3 ' 40 dB) we would expect an equally random

capacitive coupling matrix for the system. Considering how similar we tried to make

each antenna of the PCB device (similar self-inductance, similar total wire length hence

the similar antenna ESR seen Table A.1, similar copper trace surface area) and the fact

that each pair of wire were twisted, we would not expect the capacitance matrix of the

system to be random. Similarly, explaining the sudden increase of SD,P of the rotary

array might be a not-so-obvious task.
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Chapter 3

Refined Model

“Essentially, all models are wrong, but some are useful [22]”

In our previous model, we concluded that the low cross-channel mutual inductance

accounts for the very high theoretical ACRR of pie-chart configuration. However, as

mutual inductance has no tangible reality at high frequencies, our previous approach

using Neumann’s equation leads to incomplete or misleading conclusion when signal

wavelength is of the same order of magnitude as the cord length of a pie-chart array. In

this chapter we will refine our model using progressively more accurate laws of Classical

ElectroMagnetics, thus naturally pointing out specificities of the Pie-Chart Antenna

concept.

3.1 Quasi-static magnetism: Biot-Savart approach

As long as the signal wavelength is orders of magnitude higher than the antenna’s chord,

the magnetostatic approximation often comes in handy for simplifying magnetic induc-

tion analysis. But as the wavelength get closer to antenna’s chord length (quasi static

current state), ”strange” phenomenon arise which could eventually lead to significantly

reduce the crosstalk suppression capabilities of a Pie-Chart array if build as described

earlier.

We will consider the exact same configuration as described previously. However, in

this subsection we will not directly use the mutual inductance but instead the magnetic

flux to highlight one specificity of the Pie-Chart concept.
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In that regard, we remind here the relation between the magnetic flux and the mutual

inductance:

Φi,j = Mi,j · ii (3.1)

where Φi,j is the flux of the magnetic field ~Bi,j generated by the current ii flowing

through ζi into the surface Sj bordered by the closed loop ζj.

Lets introduce the ruled open surfaces Si defined by the collection of segments

[A, ζi(γ)]. A point Ni of Si is defined by
#    ”

AN i(γ, δ) = δ · #  ”

Aζ i(γ) with δ ∈ [0; 1]. A

small element of Si is:

#  ”

dSi(γ, δ) = ( dδ · #  ”

Aζ i(γ) )× ( δ · #”

dli(γ) ) (3.2)

The magnetic flux Φi,j from the magnetic field ~Bi,j( ~Ni(γ, δ)) generated by the current

~ii flowing through each point ζi(γ) into each element dSj(γ, δ) of Sj is expressed as:

Φi,j =

∫
Sj

~Bi,j( ~Nj) ·
#  ”

dSj (3.3)

Focusing on the arrays ζE and ζF , we can write the following:

ΦEiFk
=

∫ 1

δ=0

δ · [
∫
ζFk

~BEi,Fk
· ( #  ”

AζFk
× #”

dlFk
)] · dδ (3.4)

with
#”

dlFk
=

~ζ′Fk

‖~ζ′Fk
‖
· dα. Based on Biot-Savart law, the magnetic field ~BEi,Fk

( ~NFk
(γ, δ)) is

known as:

~BEi,Fk
( ~NFk

(γ, δ)) =
µ0

4π

∫ e

−e

~iEi
(α)× ~rFkEi

(γ, α, δ)

‖~rFkEi
(γ, α, δ)‖3

dα (3.5)

where ~rFkEi
(γ, α, δ) = ~NFk

(γ, δ) − ~ζEi
(α). Taking notice that ζEj

(α) =

~n, ~A−↽⇀−
ζEi

(−α) and

~NFl
(γ, δ) = Z(NFk

(γ, δ), ~n, ~A) then carrying the necessary algebra, we establish for every

point NFk
(γ, δ) of SFk

and NFl
(γ, δ) of SFl

:

~BEj ,Fl
=
iEj

iEi

1

~n2
[C]

µ0

4π
×
∫ e

−e

~iEi
(−α)× ~rFkEi

(γ,−α, δ)
‖~rFkEi

(γ,−α, δ)‖3
dα

~BEj ,Fl
( ~NFl

(γ, δ)) =
iEj

iEi

~n,~0

B̃Ei,Fk
( ~NFk

(γ, δ) ) (3.6)

Injecting (3.6) into (3.4), we get:

ΦEj ,Fl
=

∫ 1

δ=0

δ · [
∫
ζFl

iEj

iEi

~n,~0

B̃Ei,Fk
· (

~n,~0

ÃζFk
×

~n,~0

d̃lFk
)︸ ︷︷ ︸

−

~n,~0

˜#  ”

AζFk
× #”

dlFk

] · dδ (3.7)
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Thus resulting in1:

ΦEj ,Fl
= −

iEj

iEi

ΦEi,Fk
(3.8)

Proceeding similarly for every couple of array, reaching the partial conclusion 2.1.2

is straightforward.

Here however, this approach using Biot-Savart law reveals that the control of the

currents symmetry/anti-symmetry through antennas of a pie array is of utmost impor-

tance. From a practical point of view, improper control could result in signal distortion

or poor crosstalk suppression capabilities. Fortunately, proper operation can usually be

achieved at high frequency using careful symmetric design and balanced current feed.

3.2 Magnetodynamic: Faraday’s filamentary loop

At high frequency current can no longer be considered uniform along the antenna path

and the magnetic field has a propagation pattern influenced by relativistic effects. To

deals we some specificities of the field at those frequencies, we propose to refine the Pie-

Chart antenna model using the Jeffimenko’s equation [23] for the B-field at retarded

time between closed static filamentary antennas2:

~BEj ,Fl
( ~NFl

(γ, δ), t) =
µ0

4π
(

B1︷ ︸︸ ︷∫ e

−e

~iEj
(α, τ)× ~rFl,Ej

(γ, α, δ)

‖~rFl,Ej
(γ, α, δ)‖3

dα

+

∫ e

−e

~̇iEj
(α, τ)× ~rFl,Ej

(γ, α, δ)

c‖~rFl,Ej
(γ, α, δ)‖2

dα︸ ︷︷ ︸
B2

) (3.9)

where τ = t − ‖~rFkEi
‖/c = t − ‖~rFlEj

‖/c with t being the time for which ~BEi,Fk
is

evaluated.

Now lets assume that currents are no longer symmetric (or anti-symmetric) within

1this result is true whatever the chosen definition of the open surfaces Sm if bordered by the contour

ζm and oriented by
#”

dlm because of the conservative nature of the magnetic flux
2We chose the filamentary approximation for the only sake of simplicity. The same conclusion is

reachable using the volumetric integration of the current density J .
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the arrays, but that their first order time derivative are. This can be written as:

∀i ≤ m : ~̇iEi
(α, t) = −~̇iEj

(−α, t) (3.10)

∀i ≤ n : ~̇iFi
(α, t) = ~̇iFj

(α, t) (3.11)

Thus giving:

∀i ≤ m : ~iEj
(α, t) = (W − iEi

(−α, t)) · ı̂Ei
(−α) (3.12)

∀i ≤ n : ~iFj
(α, t) = (X + iFi

(α, t)) · ı̂Fi
(α) (3.13)

where W and X are some arbitrary constants. Therefore, if every arrays maintain their

symmetry or anti-symmetry over time:

B1(t) =
1

~n2
[C]× (

∫ e

−e

~iEi
(−α, τ)× ~rFkEi

(γ,−α, δ)
‖~rFkEi

(γ,−α, δ)‖3
dα

+ W

∫ e

−e

ı̂Ei
(−α)× ~rFkEi

(γ,−α, δ)
‖~rFkEi

(γ,−α, δ)‖3
dα︸ ︷︷ ︸

F(γ,δ)

) (3.14)

and:

B2(t) =
1

~n2
[C]×

∫ e

−e

~̇iEi
(−α, τ)× ~rFkEi

(γ,−α, δ)
‖~rFkEi

(γ,−α, δ)‖3
dα (3.15)

which results in:

~BEj ,Fl
( ~NFl

(γ, δ), t) =
~n,~0

B̃Ei,Fk
( ~NFl

(γ, δ), t) +
~n,~0

F̃(γ, δ) (3.16)

⇒
d ~BEj ,Fl

( ~NFl
(γ, δ), t)

dt
=

d
~n,~0

B̃Ei,Fk
( ~NFl

(γ, δ), t)

dt
(3.17)

We remind here that the EMF ∆Vj(ii) across the terminal of an inductor ζj induced

by the current of time varying intensity ii(t) flowing through an antenna ζi can be

determined at any instant t using the bellow expression of Faraday’s law of induction:

∆Vj(ii(t)) =
d Φi,j(t)

dt
(3.18)

Therefore the above equation (3.17) leads to:

∆VFl
(iEj

) =
d ΦEj ,Fl

dt
= −

d ΦEi,Fk

dt
= −∆VFk

(iEi
) (3.19)

Similarly, we can establish that:
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(i, k) ∈ N2∗ :

∀(i, k) ≤ (n, o) : ∆VFi
(iGk

) = −∆VFj
(iGl

) (3.20)

∀(i, k) ≤ (m, p) : ∆VEi
(iHk

) = −∆VEj
(iHl

) (3.21)

∀(i, k) ≤ (o, p) : ∆VGi
(iHk

) = −∆VGj
(iHl

) (3.22)

∀(i, k) ≤ (m, o) : ∆VEi
(iGk

) = ∆VEj
(iGl

) (3.23)

∀(i, k) ≤ (n, p) : ∆VFi
(iHk

) = ∆VFj
(iHl

) (3.24)

providing that:

∀i ≤ o : ~̇iGi
(α, t) = −~̇iGj

(−α, t) (3.25)

∀i ≤ p : ~̇iHi
(α, t) = ~̇iHj

(α, t) (3.26)

From this point again, reaching the partial conclusion 2.1.2 is straightforward.

However, the one important point about the presented approach is that equations

(3.14) and (3.15) were obtained under the strict assumption of the preserved symmetry

and anti-symmetry of the currents’ first order derivative at every instant in time within

emitting arrays. From a practical point of view, this means that DC bias currents can be

supplied to any antenna without altering co-channel coupling or crosstalk suppression

capabilities.
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Chapter 4

Conclusion

A specific topology of multichannel inductive array of antennas was presented. It was

shown to be theoretically efficient in filtering crosstalk. That was experimentally con-

firmed over a 150 Hz ∼ 1.5 MHz frequency range. Building process, based on iterative

symmetries, allows for very quick and cheap yet efficient design and manufacturing of

multichannel device. This design simplicity was especially exemplified with the quick

build and test of the 2 channels rotary type of inductive transmission device (wireless

“slip ring”).

Yet, we were unable to prove the effectiveness of the concept above this frequency

range because of a too high amount of stray capacitance in the test system and because

of an unexpected incoherent drop of ACRR at high frequency. Further investigations

on those issues are currently carried for a more complete understanding of the physics

at play.
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Appendix A

Detailed experimental results

Table A.1: Calculated and measured Equivalent Series Resistance Ri (PCB array)

RB1 RB2 RB3 RT1 RT2 RT3

Calculated (Ω) 4.38 4.81 5.13 4.38 4.81 5.13

Measured (Ω) 4.48 4.77 5.01 4.67 4.72 5.03

Error (%) 2.5 0.7 2.4 6.6 1.7 1.9

Table A.2: Calculated and measured Equivalent Series Resistance Ri (rotary array)

RPin RDin RPout RDout

Calculated (Ω) 0.50 0.22 0.46 0.20

Measured (Ω) 0.52 0.16 0.45 0.23

Error (%) 3 28 3 13
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APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Table A.3: Current through the inductors evaluated at 150 Hz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
129.12
−0.05◦

0.00
64.95◦

0.01
−90.13◦

0.00
131.20◦

IζDin
0.00
87.32◦

129.82
−0.01◦

0.00
84.04◦

0.00
90.55◦

IζPout
0.01
−90.14◦

0.00
96.99◦

129.22
−0.05◦

0.00
−71.59◦

IζDout
0.00
−60.46◦

0.00
89.37◦

0.00
−78.92◦

129.71
−0.00◦

Table A.4: Current through the inductors evaluated at 1.5 kHz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
140.70
−0.53◦

0.00
88.43◦

0.06
−90.62◦

0.00
−139.11◦

IζDin
0.00
87.41◦

141.63
−0.06◦

0.00
88.48◦

0.00
89.85◦

IζPout
0.06
−90.67◦

0.00
91.15◦

140.91
−0.48◦

0.00
−90.02◦

IζDout
0.00
−88.52◦

0.00
89.73◦

0.00
−90.41◦

141.44
−0.05◦

Table A.5: Current through the inductors evaluated at 15 kHz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
141.29
−5.33◦

0.00
89.48◦

0.61
−95.28◦

0.00
166.05◦

IζDin
0.00
84.47◦

142.25
−0.56◦

0.00
84.82◦

0.04
89.35◦

IζPout
0.61
−95.74◦

0.00
89.19◦

141.43
−4.85◦

0.00
−91.29◦

IζDout
0.00
80.15◦

0.04
89.32◦

0.00
−94.23◦

142.05
−0.53◦
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Table A.6: Current through the inductors evaluated at 150 kHz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
133.35
−41.55◦

0.01
77.03◦

5.79
−133.17◦

0.00
174.37◦

IζDin
0.01
44.62◦

141.31
−5.52◦

0.03
48.92◦

0.38
83.84◦

IζPout
5.75
−135.47◦

0.03
79.98◦

134.46
−39.01◦

0.02
−100.01◦

IζDout
0.00
124.15◦

0.38
83.55◦

0.01
−130.52◦

141.13
−5.18◦

Table A.7: Current through the inductors evaluated at 1.5 MHz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
37.77
−59.39◦

0.10
−15.46◦

18.30
171.32◦

0.08
95.55◦

IζDin
0.04
−4.43◦

133.47
−41.80◦

0.09
12.73◦

3.58
44.29◦

IζPout
17.12
172.33◦

0.23
15.00◦

41.59
−58.09◦

0.14
−173.44◦

IζDout
0.03
96.83◦

3.57
43.00◦

0.06
−173.03◦

134.14
−40.02◦

41



APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Table A.8: Current through the inductors evaluated at 15 MHz (rotary array)

(mA) XP1 XP2 XP3 XP4

IζPin
198.55
109.43◦

0.11
104.76◦

3.21
17.84◦

0.15
−24.53◦

IζDin
0.18
99.15◦

126.64
118.17◦

0.32
−178.64◦

15.89
−140.40◦

IζPout
3.19
18.22◦

0.24
−179.13◦

188.70
106.11◦

0.40
15.19◦

IζDout
0.30
−2.90◦

17.19
−137.41◦

0.74
25.57◦

115.89
115.65◦

Table A.9: Current through the inductors evaluated at 150 Hz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

121.66
−0.04◦

0.00
67.99◦

0.00
−134.34◦

0.01
−90.10◦

0.00
29.72◦

0.00
3.64◦

IζB2

0.00
31.01◦

121.07
−0.04◦

0.00
175.45◦

0.00
25.98◦

0.01
89.88◦

0.00
−90.19◦

IζB3

0.00
−23.31◦

0.00
113.23◦

120.65
−0.04◦

0.00
14.07◦

0.00
−46.67◦

0.01
−90.08◦

IζT1

0.01
−90.08◦

0.00
83.31◦

0.00
94.08◦

121.23
−0.04◦

0.00
68.65◦

0.00
63.99◦

IζT2

0.00
105.42◦

0.01
89.94◦

0.00
−96.83◦

0.00
171.64◦

121.17
−0.04◦

0.00
−172.91◦

IζT3

0.00
40.67◦

0.00
−126.74◦

0.01
−90.05◦

0.00
64.59◦

0.00
−22.46◦

120.57
−0.04◦
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Table A.10: Current through the inductors evaluated at 1.5 kHz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

131.83
−0.38◦

0.00
85.74◦

0.00
86.10◦

0.06
−90.52◦

0.00
84.50◦

0.00
83.55◦

IζB2

0.00
91.49◦

131.18
−0.38◦

0.00
92.85◦

0.00
86.85◦

0.06
89.46◦

0.00
−99.30◦

IζB3

0.00
83.11◦

0.00
77.45◦

130.62
−0.38◦

0.00
87.63◦

0.00
−91.89◦

0.06
−90.53◦

IζT1

0.06
−90.54◦

0.00
88.76◦

0.00
95.11◦

131.36
−0.38◦

0.00
77.99◦

0.00
80.66◦

IζT2

0.00
90.54◦

0.06
89.46◦

0.00
−89.31◦

0.00
90.95◦

131.22
−0.38◦

0.00
−123.75◦

IζT3

0.00
85.50◦

0.00
−92.06◦

0.06
−90.54◦

0.00
86.03◦

0.00
−146.17◦

130.58
−0.38◦

Table A.11: Current through the inductors evaluated at 15 kHz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

132.41
−4.03◦

0.00
85.08◦

0.00
84.29◦

0.61
−94.45◦

0.00
87.22◦

0.00
84.17◦

IζB2

0.00
82.52◦

131.75
−4.03◦

0.00
79.27◦

0.00
82.46◦

0.60
85.50◦

0.00
−92.24◦

IζB3

0.00
76.24◦

0.00
81.22◦

131.21
−3.99◦

0.00
80.05◦

0.00
−93.24◦

0.58
−94.47◦

IζT1

0.61
−94.48◦

0.00
85.36◦

0.00
84.04◦

131.92
−4.00◦

0.00
85.75◦

0.00
83.37◦

IζT2

0.00
80.82◦

0.60
85.51◦

0.00
−92.56◦

0.00
79.98◦

131.78
−4.03◦

0.00
−82.99◦

IζT3

0.00
78.87◦

0.00
−91.57◦

0.58
−94.47◦

0.00
80.69◦

0.00
−82.39◦

131.10
−3.98◦
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Table A.12: Current through the inductors evaluated at 150 kHz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

126.18
−34.47◦

0.00
50.76◦

0.00
60.41◦

5.77
−128.19◦

0.00
61.81◦

0.00
52.90◦

IζB2

0.00
55.99◦

125.40
−34.48◦

0.00
50.68◦

0.00
55.77◦

5.75
51.45◦

0.00
−130.58◦

IζB3

0.00
65.73◦

0.00
53.39◦

124.92
−34.23◦

0.00
49.34◦

0.01
−131.49◦

5.47
−128.32◦

IζT1

5.72
−128.39◦

0.00
58.87◦

0.00
63.55◦

125.71
−34.27◦

0.00
83.34◦

0.00
57.68◦

IζT2

0.00
57.63◦

5.69
51.51◦

0.01
−131.57◦

0.00
59.52◦

125.45
−34.48◦

0.00
−141.09◦

IζT3

0.00
50.75◦

0.00
−130.01◦

5.47
−128.38◦

0.00
49.21◦

0.00
−141.29◦

124.86
−34.10◦

Table A.13: Current through the inductors evaluated at 1.5 MHz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

38.34
−52.80◦

0.11
−58.33◦

0.03
−38.38◦

18.70
175.88◦

0.04
88.63◦

0.02
11.29◦

IζB2

0.03
90.52◦

38.21
−52.84◦

0.02
104.15◦

0.03
85.94◦

18.51
−4.76◦

0.05
124.61◦

IζB3

0.03
102.30◦

0.03
108.77◦

39.29
−55.74◦

0.03
86.78◦

0.04
130.94◦

17.93
174.06◦

IζT1

18.75
175.83◦

0.01
42.26◦

0.06
103.37◦

38.21
−52.82◦

0.16
109.62◦

0.08
103.78◦

IζT2

0.03
101.83◦

18.43
−4.73◦

0.05
122.09◦

0.04
104.32◦

38.50
−52.56◦

0.03
109.32◦

IζT3

0.04
108.18◦

0.05
127.96◦

17.82
174.06◦

0.04
101.02◦

0.04
112.68◦

39.25
−54.54◦
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Table A.14: Current through the inductors evaluated at 15 MHz (PCB array)

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1

198.25
104.56◦

0.07
92.68◦

0.31
138.54◦

6.02
13.80◦

0.09
8.76◦

0.57
6.10◦

IζB2

0.08
66.82◦

183.01
104.31◦

0.10
8.02◦

0.08
76.93◦

5.87
−164.94◦

0.06
57.71◦

IζB3

0.37
140.20◦

0.03
23.34◦

194.39
104.98◦

0.54
172.09◦

0.06
52.31◦

1.97
23.38◦

IζT1

6.01
15.39◦

0.12
112.53◦

0.56
175.93◦

186.25
101.77◦

0.12
35.02◦

0.31
11.85◦

IζT2

0.07
40.07◦

5.53
−163.50◦

0.06
77.61◦

0.08
37.55◦

198.82
101.71◦

0.07
122.07◦

IζT3

0.47
1.79◦

0.06
49.38◦

1.90
23.86◦

0.35
1.00◦

0.07
141.85◦

206.94
103.98◦

Table A.15: Evaluated PCB array’s inductance matrix at 150 Hz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

16.540
−96.211

-0.010
+0.004

0.003
−0.003

14.283
−0.016

-0.011
+0.019

-0.001
+0.015

Mi,B2

-0.004
+0.007

17.119
+39.142

-0.002
−0.021

-0.002
+0.004

-14.303
+0.020

0.007
−0.000

Mi,B3

0.001
+0.003

-0.011
−0.005

17.795
+121.928

-0.005
+0.020

0.009
+0.009

13.835
−0.010

Mi,T1

14.298
−0.008

-0.014
+0.002

-0.023
−0.002

16.685
−307.465

-0.008
+0.003

-0.013
+0.006

Mi,T2

-0.014
−0.004

-14.299
+0.005

0.023
−0.003

-0.002
−0.015

16.457
+80.503

0.003
−0.023

Mi,T3

-0.007
+0.008

0.012
−0.009

13.842
−0.002

-0.013
+0.006

0.008
+0.019

16.440
+89.336

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.16: Evaluated PCB array’s inductance matrix at 1.5 kHz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

16.499
−9.046

-0.008
+0.001

-0.003
+0.000

14.559
−0.029

-0.005
+0.000

-0.008
+0.001

Mi,B2

-0.010
−0.000

16.659
+4.786

-0.006
−0.000

-0.010
+0.000

-14.567
+0.032

0.007
−0.001

Mi,B3

-0.003
+0.000

-0.005
+0.001

16.635
+13.168

-0.006
+0.000

0.012
−0.000

14.084
−0.032

Mi,T1

14.558
−0.033

-0.009
+0.000

-0.006
−0.001

16.430
−29.744

-0.004
+0.001

-0.008
+0.001

Mi,T2

-0.008
−0.000

-14.569
+0.033

0.011
+0.000

-0.006
−0.000

16.619
+9.185

0.001
−0.001

Mi,T3

-0.007
+0.000

0.009
−0.000

14.089
−0.031

-0.009
+0.001

0.001
−0.001

16.525
+10.095

Table A.17: Evaluated PCB array’s inductance matrix at 15 kHz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

17.324
−0.813

-0.009
+0.000

-0.003
+0.000

14.551
−0.035

-0.006
−0.000

-0.008
+0.000

Mi,B2

-0.010
+0.001

17.548
+0.586

-0.004
+0.000

-0.009
+0.001

-14.562
+0.038

0.008
+0.000

Mi,B3

-0.004
+0.001

-0.005
+0.000

17.569
+1.425

-0.006
+0.001

0.012
+0.000

14.082
−0.043

Mi,T1

14.551
−0.035

-0.008
+0.000

-0.005
+0.000

17.335
−2.887

-0.005
+0.000

-0.009
+0.000

Mi,T2

-0.007
+0.001

-14.559
+0.037

0.012
+0.000

-0.006
+0.001

17.540
+1.008

0.002
+0.000

Mi,T3

-0.006
+0.001

0.009
+0.000

14.083
−0.040

-0.008
+0.001

0.002
+0.000

17.519
+1.094

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.18: Evaluated PCB array’s inductance matrix at 150 kHz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

17.534
−0.289

-0.009
+0.000

-0.003
−0.001

14.578
−0.192

-0.006
−0.001

-0.007
−0.000

Mi,B2

-0.008
−0.001

17.776
−0.168

-0.003
−0.000

-0.008
−0.001

-14.581
+0.221

0.009
−0.001

Mi,B3

-0.002
−0.001

-0.003
−0.000

17.776
−0.128

-0.004
−0.000

0.014
−0.001

13.936
−0.248

Mi,T1

14.418
−0.188

-0.008
−0.001

-0.004
−0.001

17.556
−0.509

-0.003
−0.002

-0.007
−0.001

Mi,T2

-0.005
−0.000

-14.421
+0.204

0.014
−0.001

-0.004
−0.000

17.759
−0.152

0.003
−0.001

Mi,T3

-0.004
−0.000

0.011
−0.001

13.937
−0.233

-0.007
−0.000

0.003
−0.001

17.724
−0.181

Table A.19: Evaluated PCB array’s inductance matrix at 1.5 MHz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

22.917
−2.770

-0.124
+0.074

0.015
+0.008

20.072
−2.707

0.136
−0.062

0.022
−0.016

Mi,B2

-0.007
−0.041

22.876
−3.062

-0.001
−0.021

-0.008
−0.034

-19.783
+3.095

0.019
−0.042

Mi,B3

0.049
−0.041

0.014
−0.035

21.938
−2.536

0.042
−0.033

0.023
−0.033

18.388
−2.851

Mi,T1

20.025
−2.743

-0.149
+0.008

0.049
−0.076

22.846
−2.731

0.112
−0.128

0.054
−0.099

Mi,T2

0.010
−0.030

-19.883
+3.039

0.034
−0.048

0.013
−0.036

22.829
−3.138

0.013
−0.030

Mi,T3

0.057
−0.050

0.029
−0.043

18.448
−2.572

0.049
−0.045

0.006
−0.038

21.921
−2.942

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.20: Evaluated PCB array’s inductance matrix at 15 MHz1

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1

-0.560
+0.393

0.000
+0.001

-0.002
+0.004

0.090
−0.015

0.001
−0.000

0.007
−0.002

Mi,B2

0.001
+0.001

-0.609
+0.408

0.001
−0.000

0.001
+0.001

-0.083
+0.013

0.001
+0.000

Mi,B3

-0.002
+0.005

0.000
−0.000

-0.571
+0.406

-0.007
+0.004

0.001
+0.000

0.027
−0.001

Mi,T1

0.085
−0.017

0.000
+0.002

-0.007
+0.004

-0.602
+0.374

0.002
+0.000

0.004
−0.001

Mi,T2

0.001
+0.000

-0.085
+0.014

0.000
+0.001

0.001
+0.000

-0.565
+0.369

-0.000
+0.001

Mi,T3

0.006
−0.003

0.001
+0.000

0.028
−0.001

0.005
−0.002

-0.000
+0.001

-0.538
+0.387

Table A.21: Evaluated rotary array’s inductance matrix at 150 Hz1

Mi,P in

18.811
−10.388

-0.027
+0.013

13.279
−0.017

-0.002
−0.002

Mi,Din

-0.033
+0.002

1.918
−9.111

-0.067
+0.007

-0.828
−0.008

Mi,Pout

13.280
−0.020

-0.066
−0.008

17.008
−10.514

0.029
+0.010

Mi,Dout

0.013
+0.007

-0.819
+0.009

0.034
+0.007

1.728
−11.318

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.22: Evaluated rotary array’s inductance matrix at 1.5 kHz1

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in

18.945
−1.185

-0.027
+0.001

13.529
−0.024

0.001
−0.001

Mi,Din

-0.030
+0.001

1.930
−0.859

-0.061
+0.001

-0.826
+0.001

Mi,Pout

13.532
−0.025

-0.059
−0.001

17.050
−0.906

0.035
+0.000

Mi,Dout

0.014
+0.001

-0.826
+0.003

0.032
+0.000

1.792
−1.042

Table A.23: Evaluated rotary array’s inductance matrix at 15 kHz1

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in

19.070
−0.179

-0.028
−0.000

13.524
−0.020

-0.000
−0.000

Mi,Din

-0.030
−0.000

1.973
−0.083

-0.061
+0.000

-0.835
+0.001

Mi,Pout

13.524
−0.022

-0.061
−0.000

17.286
−0.164

0.035
−0.000

Mi,Dout

-0.001
+0.000

-0.835
+0.001

0.033
+0.000

1.855
−0.101

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.24: Evaluated rotary array’s inductance matrix at 150 kHz1

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in

18.946
−0.328

-0.029
−0.001

13.512
−0.164

0.000
−0.000

Mi,Din

-0.030
−0.001

1.941
−0.040

-0.062
+0.000

-0.841
+0.009

Mi,Pout

13.510
−0.183

-0.061
+0.000

17.196
−0.240

0.036
−0.001

Mi,Dout

-0.000
+0.000

-0.842
+0.009

0.035
−0.001

1.826
−0.036

Table A.25: Evaluated rotary array’s inductance matrix at 1.5 MHz1

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in

22.839
−2.335

-0.047
−0.008

17.774
−1.996

0.010
−0.010

Mi,Din

-0.049
−0.011

1.915
−0.113

-0.078
−0.002

-0.839
+0.032

Mi,Pout

17.689
−1.944

-0.080
−0.005

20.817
−2.016

0.047
−0.014

Mi,Dout

0.010
−0.007

-0.840
+0.028

0.046
−0.013

1.808
−0.116

1Notice that the real part is the actual inductance whereas the imaginary part is homogeneous to a

resistance.
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Table A.26: Evaluated rotary array’s inductance matrix at 15 MHz1

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in

-0.546
+0.398

0.001
+0.002

0.047
−0.008

0.002
−0.003

Mi,Din

0.001
+0.002

-0.782
+0.662

-0.004
+0.001

-0.354
+0.023

Mi,Pout

0.044
−0.010

-0.004
+0.002

-0.586
+0.373

0.009
−0.003

Mi,Dout

0.003
−0.003

-0.353
+0.031

0.010
−0.001

-0.868
+0.662
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Appendix B

Numerical evaluation program

B.1 Usage

From a user point of view this code is very simple: it consists of a GNU Octave function

which returns the inductance matrix for provided filamentary paths and their cross-

section extrusion points. Below is the function’s prototype:

output = inductance ( inductor , . . .

s e c t i on , radius , . . .

[ r e s o l u t i o n , p lo t Input ] )

• inductor is an m*1 cell of n-lines*3-columns matrices. Each line i of a matrix

is interpreted as the 3D coordinates of the ith vertex of an induction path. Note

that the circuit is automatically closed by a straight line during execution.

• section is an m*1 or 1*1 cell of n-lines*2-columns matrices. Each line i of a

matrix is interpreted as the 2D coordinates of an integration point of the corre-

sponding circuit’s cross section.

• area is an m*1 vector of positive scalar which ith value indicates the cross-section

area of the ith induction path.

• resolution is an optional positive scalar indicating the smallest desired length of

the elements of the refined inputted paths. Default parameter 0 is interpreted as

no refinement.
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• plotInput is an optional boolean indicating whether or not to plot the inputted

geometry. Default parameter is true.

• output is an n-lines*n-column matrix returning the mutual inductanceMij between

the ith and the jth induction path.

All inputted distances are considered meters. Permeability µ is considered constant

and uniform, equal to µ = 4π1̇0−7 H m−1. Output result is expressed in Henri.

Example 1: We propose to calculate the mutual inductance between two coplanar

toroidal circuits of mean-line radius R1 = 10 m, R2 = 5 m and cross sectional radius

r1 = 0.5 m and r2 = 0.25 m . The total cross-section area is given by A = 2 × (πr2).

Mean lines are approximated by 361 points loops. Inductance can be calculated with

the following set of commands:

r1 = 0 . 5 ;

r2 = 0 . 2 5 ;

x = cos ( [ 0 : pi /180:2∗ pi ] ) ;

y = sin ( [ 0 : pi /180:2∗ pi ] ) ;

R1 = [ x ( : ) . ∗ 1 0 , y ( : ) . ∗ 1 0 , . . .

zeros ( 3 6 1 , 1 ) ] ;

R2 = [ x ( : ) . ∗ 5 , y ( : ) . ∗ 5 , zeros ( 3 6 1 , 1 ) ] ;

A = [ r1 ˆ2 ; r2 ˆ 2 ] . ∗ pi ;

mutual = inductance ({R1 ; R2 } , . . .

{ [ 0 , 0 ]} , A)

Above code generates the bellow Fig. B.1 and results in:

-10 -5 0 5 10

-10 -5
0510

-1
1

Figure B.1: Plot of the geometry of the Example 1

mutual =

3.7848 e−005 5 .4860 e−006

5 .4860 e−006 1 .3692 e−005
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where 3.7848e − 005 is an approximation of R1 loop self inductance, 1.3692e − 005

is an approximation of R2 loop self inductance and is an approximation of their mutual

inductance.

Example 2: We propose to improve the self inductance approximation of R1 loop

by increasing the number of cross-section integration paths. We approximate the cross-

section by a grid of regular triangles (Fig. B.2). Integration paths are the result of

the extrusion of cross-section integration points (grid’s faces center) along the mean-line

R1. We store 2D coordinates of those integration points in a 24lines*2columns text file

called section.dat.

[0.000;0.159]

[0.137;0.079]

[0.137;-0.079]

[-0.000;-0.159]

[-0.137;-0.079]

[-0.137;0.079]

[-0.275;0.159]

[-0.275;0.317]

[-0.137;0.397]

[0.000;0.317]

[0.137;0.397]

[0.275;0.317]

[0.275;0.159]

[0.412;0.079]

[0.412;-0.079]

[0.275;-0.159]

[0.275;-0.317]

[0.137;-0.397]

[0.000;-0.317]

[-0.137;-0.397]

[-0.275;-0.317]

[-0.275;-0.159]

[-0.412;-0.079]

[-0.412;0.079]

Figure B.2: Integrations point (red dot) are the face center of a regular grid of triangles

(black lines) of total area equal to that of the ideal circular cross-section(green circle)

Inductance can be calculated with the following set of commands:

r1 = 0 . 5 ;

x = cos ( [ 0 : pi /180:2∗ pi ] ) ;

y = sin ( [ 0 : pi /180:2∗ pi ] ) ;

R1 = [ x ( : ) . ∗ 1 0 , y ( : ) . ∗ 1 0 , . . .

zeros ( 3 6 1 , 1 ) ] ;

A = pi∗ r1 ˆ2 ;

f i d = fopen ( ’ s e c t i o n . dat ’ , ’ r ’ ) ;

s e c t i o n = fscanf ( f i d , ’%g %g ’ , . . .

[ 2 , i n f ] ) ’ ;

fc lose ( f i d ) ;
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s e l f = inductance ({R1} , { s e c t i o n } , A) ;

Above code generates the bellow Fig. B.3 and results in:

3
4-0.8

2
1

-0.6
-0.4
-0.2
0

0.2
0.4
0.6

7
8

9
10

0.8

Figure B.3: Plot of a portion of the geometry of the Example 2. Red dots represents

cross-section’s integration points from which are extruded the blue integration paths

along the red dotted mean line.

s e l f = 4.1388 e−005

Here the error compared to the theoretical value of 41.8 µH is about 1 %. We can try to

improve the approximation by increasing the resolution of the paths by running those

commands:

s e l f = inductance ({R1} , { s e c t i o n } , . . .

A, 0 . 05 , 0 ) ;

which results in:

s e l f = 4.1958 e−005

It is important to note that those theoretical results might be quite different from reality

due, for example, to the fact that the current is considered flowing in a conductor of

magnetic permeability equal to µ0. A better approach would consist for example in

computing separately the internal and the external inductance as explained in [12].

B.2 Results

This code allow me to balance the self-inductance of each coil, progressively turning the

design from Fig. B.4 to Fig. B.5 and finally to Fig. B.6.
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u0

u1

u2

Figure B.4: Initial PCB antenna track design

X

Y

Figure B.5: First PCB antenna track design iteration

~u
0

~u1~u2

Figure B.6: Final track design
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The final inductance matrix is given Fig. 2.6. Those results was obtained within a

couple of hours of calculation, highlighting the fact that, given the pretty low level of

complexity of the base problem, it was still quite a time consuming calculation.
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