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Abstract:

Background and Aims: It is known that an esophagus presenting with 
multiple Lugol-voiding lesions (LVLs) after iodine staining is high-risk for 
esophageal cancer; however, it is preferable to identify high-risk cases 
without iodine staining because iodine causes discomfort and prolongs 
examination times. In this work, we assessed the capability of an 
artificial intelligence (AI) system to predict multiple LVLs from non-
iodine-stained images as well as high-risk cases for esophageal cancer. 
Methods: We constructed the AI system by preparing 6634 non-iodine-
stained images from 595 cases that underwent endoscopic examination 
with iodine staining as the training dataset. Its diagnostic capability was 
then compared with the abilities of 10 experienced endoscopists on an 
independent validation dataset (667 images from 72 cases). 
Results: The sensitivity, specificity, and accuracy of each case for the AI 
system to predict multiple LVLs were 84.4%, 70.0%, and 76.4%, 
respectively, versus 46.9%, 77.5%, and 63.9%, respectively, for the 
endoscopists. The AI system had significantly higher sensitivity than 9 
out of 10 experienced endoscopists. We found six endoscopic findings 
that were significantly more frequent in patients with multiple LVLs, 

Endoscopy

I Endoscopy I 、Thieme



For Peer Review

however the AI system was superior to them to predict multiple LVLs in 
sensitivity. Moreover, the cases for which the AI system predicted 
multiple LVLs had significantly more cancers in the esophagus and head 
and neck than those for which it did not. 
Conclusion: The AI system could predict multiple LVLs with high 
sensitivity from non-iodine-stained images. Thus, it will enable 
endoscopists to apply iodine staining more judiciously. 
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Figs. 1 and 2

Please add lower case figure tags to the individual images, as shown in the image 

guide; then, please delete the image guide.
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Background It is known that an esophagus with multiple Lugol-voiding lesions (LVLs) 

after iodine staining is high risk for esophageal cancer; however, it is preferable to 

identify high-risk cases without staining because iodine causes discomfort and prolongs 

examination times. This study assessed the capability of an artificial intelligence (AI) 

system to predict multiple LVLs from images that had not been stained with iodine as 

well as patients at high risk for esophageal cancer.

Methods We constructed the AI system by preparing a training set of 6634 images from 

white-light and narrow-band imaging in 595 patients before they underwent endoscopic 

examination with iodine staining. Diagnostic performance was evaluated on an 

independent validation dataset (667 images from 72 patients) and compared with that 

of 10 experienced endoscopists 

Results The sensitivity, specificity, and accuracy of the AI system to predict multiple 

LVLs were 84.4%, 70.0%, and 76.4%, respectively, compared with 46.9%, 77.5%, and 

63.9%, respectively, for the endoscopists. The AI system had significantly higher 

sensitivity than 9/10 experienced endoscopists. We also identified six endoscopic 

findings that were significantly more frequent in patients with multiple LVLs; however, 

the AI system had greater sensitivity than these findings for the prediction of multiple 

LVLs. Moreover, patients with AI-predicted multiple LVLs had significantly more 

cancers in the esophagus and head and neck than patients without predicted multiple 

LVLs.

Conclusion The AI system could predict multiple LVLs with high sensitivity from 

images without iodine staining. The system could enable endoscopists to apply iodine 

staining more judiciously.
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Introduction
Esophageal cancer is the seventh most common cancer and the sixth leading cause of 

cancer deaths, with more than 500 000 deaths per year globally [1]. Esophageal cancer 

is classified histologically into esophageal squamous cell carcinoma (ESCC), which is 

common in South America and Asia (including Japan), and adenocarcinoma [1]. 

Advanced ESCC has a poor prognosis; however, if detected in the early stages, ESCC 

can be treated with minimally invasive treatments such as endoscopic resection, with a 

good prognosis [2–4]. Therefore, early detection is very important. However, the 

detection of superficial ESCC with white-light imaging (WLI) alone is quite difficult, 

even by esophagogastroduodenoscopy (EGD). Narrow-band imaging (NBI) is useful 

for detecting superficial ESCC [5–9]; however, it has been reported that even with the 

use of NBI, inexperienced endoscopists have a low detection rate of only 53% [10]. 

Chromoendoscopy with Lugol’s iodine staining is a useful way to detect ESCC with 

high sensitivity. However, owing to chest discomfort and prolonged procedure time 

[11–13], iodine is not usually used in screening EGD, except for very limited cases at 

high risk for ESCC such as patients with a history of ESCC or head and neck squamous 

cell carcinoma (HNSCC). It would be more useful if we could identify patients at high 

risk for ESCC by using endoscopic findings without staining, similarly to how we 

recognize gastric atrophy as a high-risk finding for gastric cancer during EGD. 

When using Lugol’s iodine staining as chromoendoscopy, a spotty unstained area is 

observed in noncancerous epithelium, which we call a Lugol-voiding lesion (LVL). It 

is well known that patients with multiple LVLs after iodine staining will more 

frequently have both synchronous and metachronous ESCCs and HNSCCs after 

endoscopic resection of ESCC [14–18]. Multiple LVLs are associated with heavy 

smoking and drinking, and a low consumption of green-yellow vegetables [14]. 
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Esophagus with multiple LVLs has been documented with TP53-mutated cells in 

physiologically normal epithelium, including many precancerous foci as well as 

multifocal cancers [14,19], also known as the field effect [20,21]. Thus, patients with 

multiple LVLs are good candidates for targeted screening for ESCCs and HNSCCs by 

EGD, as they have a high risk for these cancers. However, it is difficult to diagnose an 

esophagus with multiple LVLs by EGD without iodine chromoendoscopy.

Recently, artificial intelligence (AI) has made remarkable progress in image recognition 

with deep learning in various medical fields [22–24]. We have also reported the 

effective application of AI systems in endoscopic diagnosis, such as in detection and 

invasion depth diagnosis of esophageal cancer [25,26], and detection of gastric [27] and 

pharyngeal [28] cancer using EGD images.

In this study, we developed an AI diagnostic system to predict the presence of multiple 

LVLs in the esophagus from EGD images that had not been stained with iodine. The 

aim of the system was to detect multiple LVLs that could not be detected by 

endoscopists without iodine staining and to identify patients at high risk of ESCCs and 

HNSCCs.

Methods

Training dataset
A deep learning-based AI system was developed to predict the presence of multiple 

LVLs without using Lugol’s iodine chromoendoscopy. The system was trained on 

endoscopic images captured in daily clinical practice at the Cancer Institute Hospital, 

Tokyo, Japan, from April 2015 to October 2018. Informed consent was obtained from 

all patients included in the study. All endoscopic images were taken by a high-

resolution endoscope (GIF-H290Z; Olympus Medical Systems, Co., Ltd., Tokyo, 
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Japan) and a high-resolution endoscopic video system (EVIS LUCERA ELITE CV-

290/ CLV-290SL; Olympus Medical Systems). The structure enhancement was set to 

A-mode level 5 for WLI and B-mode level 8 for NBI. Each image was saved as a jpeg 

file.

For the study, two experienced endoscopists (T.Y. and Y.I.) included non-magnified 

images of WLI and NBI taken from patients who underwent Lugol’s iodine staining 

(0.75%). We excluded patients with a history of esophagectomy and chemotherapy or 

radiation to the esophagus. We also excluded images showing esophageal cancer or 

those of poor quality resulting from poor insufflation, post-biopsy bleeding, halation, 

blurring, defocus, or mucus. After selection, the two experienced endoscopists 

classified each image as non-multiple (Grade A/B) or multiple (Grade C) LVLs based 

on the subsequent Lugol chromoendoscopic images and according to the criteria of 

Katada et al. (Fig. 1a–c) [14], with grade C as an independent indicator of high risk for 

cancer (Grade A: no LVLs per endoscopic view; Grade B: 1–9 LVLs per endoscopic 

view; and Grade C: 10 or more LVLs per endoscopic view). Disagreements in diagnosis 

were resolved throughout discussion until a consensus was reached. These diagnoses 

were used as the gold standard.

We used these 6634 images from 595 patients as the training set: 3898 images (WLI 

1954 images, NBI 1944 images) from 407 patients with non-multiple LVLs (grade A 

or B), and 2736 images (WLI 1294 images, NBI 1442 images) from 188 patients with 

multiple LVLs (Grade C). This selection was used as independent images without 

linking multiple images from the same patient. The training dataset included not only 

the internal training dataset but also the internal validation dataset. We trained the 

neural network of our AI system using the internal training dataset and tuned the 

hyperparameters of the neural network via the internal validation dataset. The 
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hyperparameters included weight decay, base learning rate, momentum, gamma, and 

number of iterations. The weight decay reduced the overfitting of the neural network. 

The learning rate of the neural network was initialized to the base learning rate at the 

start of training. The momentum was a hyperparameter of the optimizer, and the gamma 

was the multiplicative factor of the learning rate decay. The parameters of the neural 

network were updated multiple times, as specified by “number of iterations.” We used 

the settings of weight decay 0.0002, momentum 0.9, base learning rate 0.0001, gamma 

0.5, and number of iterations 709900.

AI diagnostic system
We constructed the diagnostic system based on the deep neural network GoogLeNet 

[29]. GoogLeNet is a convolutional neural network (CNN) consisting of 22 layers. It 

was the ideal system for developing our dataset because it can classify 1000 classes and 

can be easily used by most computers. Moreover, using a larger CNN would have made 

it difficult to suppress overfitting in the CNN learning system from our dataset. The 

Caffe deep learning framework, originally developed at the Berkeley Vision and 

Learning Center [30], was then used to train and validate the CNN system. 

To optimize our images for GoogLeNet, we resized them to 224 × 224 pixels, and 

subsequently rotated them for augmentation as preprocessing. We used a pretrained 

model that learned natural-image features through ImageNet [31]. This procedure, 

known as transfer learning, is useful even with a small training dataset. In the validation 

phase, the trained neural network generated a continuous number between zero and one 

for non-multiple LVLs or multiple LVLs, corresponding to the probability of the 

condition being present in the image. 
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Validation of the AI system and endoscopists’ diagnosis
To evaluate the diagnostic accuracy of the AI system, an independent validation dataset 

was prepared. Endoscopic images captured from patients at the Cancer Institute 

Hospital from November 2018 to July 2019 were collected. Nonmagnified images of 

WLI and NBI from consecutive patients who also underwent subsequent Lugol’s iodine 

staining were included based on the same criteria as the training set. However, to avoid 

bias, we did not exclude images of poor quality resulting from poor insufflation, post-

biopsy bleeding, halation, blurring, defocus, or mucus. After confirming the selected 

validation images, the multiple LVLs were also classified by two experienced 

endoscopists (T.Y. and Y.I.) using the iodine-stained images, and these classifications 

were used as the gold standard for validation of AI and endoscopists. 

The validation dataset included 667 images from 72 patients (WLI 300 images, NBI 

367 images), including 325 images (WLI 165 images, NBI 160 images) from 40 

patients with non-multiple LVLs and 342 images (WLI 135 images, NBI 207 images) 

from 32 patients with multiple LVLs (Fig. 1d–i). Multiple images from the same patient 

were presented as a series of image sets for prediction of multiple LVLs. The diagnostic 

performance of the AI system for predicting multiple LVLs was then evaluated using 

the validation dataset (see Fig. 1s in the online-only Supplementary material). 

To compare the diagnostic performance of the AI system with that of endoscopists, 10 

board-certified endoscopists from Japan Gastroenterological Endoscopy Society were 

invited to review the same validation dataset for presence of multiple LVLs. 

Endoscopists had 8–17 years of experience as doctors and had performed 3500 to 18 

000 endoscopic examinations.

Page 9 of 33 Endoscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Characteristic endoscopic findings to predict multiple LVLs
We selected endoscopic features that would help to identify multiple LVLs, based on 

discussions of common findings that we had observed during our daily clinical practice 

and subsequently confirmed on dozens of endoscopic still images. The features of the 

esophageal mucosa on WLI or NBI that were identified as being characteristic or 

potentially predictive of multiple LVLs were as follows: 1) few glycogenic acanthosis 

(<2 per endoscopic image), 2) keratosis, 3) coarse mucosa, 4) invisible mucosal vessels 

on WLI, 5) reddish background mucosa on WLI, and 6) brownish background mucosa 

on NBI (Fig. 2). Three experienced endoscopists reviewed all the validation set images, 

evaluated these endoscopic findings in each image, and determined the endoscopists’ 

diagnosis as a majority decision. 

Outcome measures 
The trained AI system and the 10 board-certified endoscopists determined whether the 

images of the validation dataset showed non-multiple or multiple LVLs. Endoscopists 

made a decision for each image, and the majority decision was taken for each patient. 

The main outcome measures were sensitivity, specificity, positive predictive value 

(PPV), and negative predictive value (NPV) to predict multiple LVLs. These values 

were calculated as follows:

Sensitivity = No. of patients correctly classified with multiple LVLs by AI or endoscopists
Total no. of patients with multiple LVLs

Specificity = No. of patients correctly classified with non-multiple LVLs by AI or endoscopists
Total no. of patients with non-multiple LVLs

PPV =  No. of patients correctly classified with multiple LVLs by AI or endoscopists
No. of patients actually diagnosed with multiple LVLs by AI or endoscopists
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NPV = No. of patients correctly classified with non-multiple LVLs by AI or endoscopists
No. of patients actually diagnosed with non-multiple LVLs by AI or endoscopists

We retrospectively recorded the number of new ESCCs and HNSCCs detected during 

regular EGD in patients included in the validation dataset. We included only the cancers 

detected during the observation period and did not include the trigger cancer for annual 

(sometimes every 6 months) EGD. We subsequently calculated the incidence of cancers 

per 100 person–years.

Statistical analysis
Pearson’s chi-squared test or Fisher’s exact test was used to compare categorical 

variables of patients and endoscopic findings. A two-sided McNemar test was used to 

compare the diagnostic performance to predict multiple LVLs between the AI system 

and the majority decision of the 10 endoscopists. The person–year method was used to 

calculate the total number of ESCCs and HNSCCs, and to compare the incidence rates 

per 100 person–years; this measurement considers both the number of patients and the 

observation period for each patient. The Wald test was used to compare the person–

year method. The interobserver agreement among the endoscopists was calculated 

based on Fleiss’ kappa. A P value of <0.05 was considered to indicate statistical 

significance. All calculations were performed using EZR version 1.27 (Saitama 

Medical Center, Jichi Medical University, Japan) [32].

Ethics 
The study was approved by the Institutional Review Board of the Cancer Institute 

Hospital (No. 2016–1171) and the Japan Medical Association (ID JMA-IIA00283).
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Results

Characteristics of patients in the validation dataset
The characteristics of the patients in the validation dataset are shown in Table 1. The 

ratios of heavy drinkers and current smokers were significantly higher in patients with 

multiple LVLs than in patients with non-multiple LVLs, whereas there was no 

difference in age, sex, or flushing reaction between the two groups. 

During the observation period, patients with non-multiple LVLs had 5.6 ESCCs and 

0.3 HNSCCs per 100 person–years as newly detected cancers, whereas patients with 

multiple LVLs had 13.3 ESCCs and 4.8 HNSCCs per 100 person–years. 

Diagnostic performance of AI and endoscopists
The mean diagnostic times for analyzing the validation dataset of 667 images by the AI 

system and endoscopists were 60.0 seconds (standard deviation [SD] 0.7) and 

121.0 minutes (SD 26.2), respectively. The AI system correctly diagnosed 84.4% 

(27/32) of patients with multiple LVLs and 70.0% (28/40) of patients with non-multiple 

LVLs, whereas the experienced endoscopists correctly diagnosed a median 46.9% 

(15/32) and 77.5% (31/40), respectively. The accuracy of predicting patients with 

multiple LVLs was 76.4% for the AI system and 63.9% for the experienced 

endoscopists. The sensitivity of the AI system was significantly higher than that of the 

experienced endoscopists, whereas the specificity and accuracy were comparable 

(Table 2). The sensitivity of the AI system was significantly higher than that of 9/10 

endoscopists. The interobserver agreement value among the endoscopists was 0.264.

Characteristic endoscopic findings to predict multiple LVLs
The findings of few (<2) glycogenic acanthosis per endoscopic image, keratosis, coarse 

mucosa, reddish background mucosa on WLI, invisible mucosal vessels on WLI, and 
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brownish background mucosa on NBI were significantly more frequent in patients with 

multiple LVLs than in those with non-multiple LVLs (Table 3). 

For all images, the AI system had a sensitivity of 81.6% (279/342) and could predict 

significantly more multiple LVLs than the findings of few glycogenic acanthosis (<2 

per endoscopic image), keratosis, and coarse mucosa (Fig. 3a). On WLI images, the AI 

system had a sensitivity of 81.5% (110/135) and could predict significantly more 

multiple LVLs than reddish background mucosa (Fig. 3b). On NBI images, the AI 

system had a sensitivity of 81.6% (169/207) and could predict significantly more 

multiple LVLs than the finding of brownish background mucosa (Fig. 3c). The AI 

system was more sensitive than all endoscopic findings; among the endoscopic 

findings, the invisible mucosal vessels on WLI resulted in the highest sensitivity 

(76.3%) for predicting multiple LVLs.

Risk stratification of ESCC and HNSCC by AI diagnostic system
The patients whom the AI system classified as having multiple LVLs had 11.2 ESCCs 

and 3.4 HNSCCs, resulting in a total of 14.6 ESCCs and HNSCCs per 100 person–

years during the observation period. The patients whom the AI system classified as 

having non-multiple LVLs had 6.1 ESCCs and 0.9 HNSCCs, resulting in a total of 7.0 

ESCCs and HNSCCs per 100 person–years during the observation period. The patients 

whom the AI system classified as having multiple LVLs had significantly more frequent 

ESCCs (P < 0.05) and total ESCCs and HNSCCs (P < 0.01) than those with non-

multiple LVLs, although the frequency of HNSCCs was not significant (P = 0.06). As 

assumed, the AI system was able to stratify the risk of newly detected cancers as well 

as detecting existing multiple LVLs.
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Discussion
The AI system developed in the current study could predict the presence of multiple 

LVLs with high sensitivity and could also predict patients at high risk for ESCC and 

HNSCC from endoscopic images of the esophagus that had not been stained with 

iodine. The sensitivity of the AI system to predict multiple LVLs was superior to that 

of experienced endoscopists. To the best of our knowledge, this is the first report of an 

AI system developed to predict the presence of multiple LVLs and stratify the risk of 

ESCC and HNSCC.

Conventionally, heavy drinking, smoking, and flushing reaction have been known as 

risk factors for ESCC [14,33]. Flushing reaction is the blushing of the face typically as 

a result of drinking one glass of beer in individuals with heterozygous deficiency of 

aldehyde dehydrogenase 2, causing severe acetaldehydemia [34]. The endoscopic 

findings of multiple LVLs after iodine staining reflect all these risk factors and stratify 

the risks of ESCC and HNSCC [14,33]. Multiple LVLs are fairly useful for determining 

the surveillance schedule after treatment for ESCC or HNSCC; however, we cannot 

know whether multiple LVLs are present until we conduct iodine staining because there 

are no widely used findings of EGD to detect multiple LVLs effectively from images 

that have not been stained with iodine. This means that we usually only know the risk 

after we have detected cancer or a suspicious cancer lesion. Using this AI system, we 

can determine the risk for ESCC at the first EGD in every patient after taking some 

images of the esophagus, which will generalize the concept of risk stratification of 

multiple LVLs.

In this study, we assessed six endoscopic findings that might predict multiple LVLs 

from images that have not been stained with iodine. All these findings were 

significantly more frequent in patients with multiple LVLs. Although the sensitivities 
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of “few glycogenic acanthosis” and “invisible mucosal vessels” were relatively high, at 

72.2% and 76.3%, the sensitivity of the endoscopists was as low as 46.9%, which was 

not sufficient. This is because the above two features are both negative findings for 

multiple LVLs (i.e. few glycogenic acanthosis and invisible mucosal vessels). The 

remaining features identified were not individually useful, as they had low sensitivity. 

Conversely, the AI system showed a higher sensitivity than each endoscopic finding 

and compared with experienced endoscopists. The sensitivity of the AI system did not 

differ between WLI and NBI. Even in the analysis of characteristic endoscopic findings, 

there was no remarkable finding exclusively from WLI or NBI; unlike cancer detection, 

there was no difference between WLI and NBI in predicting multiple LVLs.

Matsuno et al. [35] reported that the finding of multiple foci of dilated vessels (MDVs) 

was useful for predicting multiple LVLs. However, it was difficult to recognize MDVs 

in non-magnified still images because we had limited information about MDVs, which 

appeared small and faint. It appears that we would require further training to recognize 

and use MDVs as a characteristic endoscopic finding of multiple LVLs. In the original 

report, MDV had high specificity and accuracy; however, the sensitivity was not high, 

at 55%. To recognize the high-risk cases more easily and avoid missing cancers, we 

believe that the most important diagnostic parameter is sensitivity, for which the AI 

system showed the highest value.

The specificity and PPV of the AI system, as well as those of the endoscopists, were 

low, thus including more false positives. However, in clinical settings, false positives 

are generally more acceptable than false negatives, as the detection of high-risk 

individuals would be maximized. Further training using still images and endoscopic 

videos, in combination with laboratory data, would improve this system. In particular, 

AI training would be more effective if endoscopic videos that also include many still 
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images were used. For validation, it would be more useful and convenient if we could 

predict multiple LVLs from endoscopic videos in clinical practice, allowing automatic 

feedback without the need to capture still images.

This study has some limitations. First, as this was a single-center retrospective study, 

we cannot deny the possibility of overfitting, although training data and validation data 

were completely independent. As a next step, we are considering verification at other 

institutions. Second, we used a single type of endoscope and endoscopic video system 

only. Further validation using other endoscopes and systems will generalize this result. 

Third, patients who had undergone chemoradiation were excluded because they do not 

show typical multiple LVLs after iodine staining; however, we think that this exclusion 

was acceptable as the number of such cases was small. Fourth, the study may suffer 

from bias because the study center specialized in cancer treatment and most of the 

included patients therefore had some history of cancer, including ESCC and HNSCC, 

which may lead to a higher incidence of ESCC than in the general population. Fifth, as 

patients included in the validation dataset only had a short observation period, newly 

detected ESCCs and HNSCCs may have included cancers that were missed at the index 

EGD.

In conclusion, we developed an AI system that could predict the presence of multiple 

LVLs with high sensitivity and identify patients at high risk for cancer using images 

that had not been stained with iodine. Although the system requires further validation 

in multicenter and clinical studies, using not only still images but also videos, the 

current system could enable endoscopists to utilize iodine staining more judiciously.
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Fig. 1 Representative images for each grade of Lugol-voiding lesions (LVLs). 

The endoscopic images are divided into the following three categories 

according to the number of LVLs. We defined Grade A/B as non-multiple LVLs 

and Grade C as multiple LVLs. a  Grade A: no LVLs per endoscopic view. 

b  Grade B: 1–9 LVLs per endoscopic view. c  Grade C: 10 or more LVLs per 

endoscopic view. d  White-light imaging (WLI) of LVLs Grade A. e  WLI of 

LVLs Grade B. f  WLI of LVLs Grade C. g  Narrow-band imaging (NBI) of 

LVLs Grade A. h  NBI of LVLs Grade B. i  NBI of LVLs Grade C.

Fig. 2 Characteristic endoscopic findings in white-light imaging (WLI) and 

narrow-band imaging (NBI) to classify the grade of Lugol-voiding lesions 

(LVLs). a  Glycogenic acanthosis (arrow) in WLI. b  Glycogenic acanthosis 

(arrow) in NBI. c  Keratosis (arrow) in WLI. d  Keratosis (arrow) in NBI. 

e  Coarse mucosa in WLI. f  Coarse mucosa in NBI. g  Visible mucosal 

vessels in WLI. h  Reddish background mucosa in WLI. i  Brownish 
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background mucosa in NBI. Positive findings of c–f, h, i, and negative findings 

of a, b, g suggest multiple LVLs.

Fig. 3 Sensitivity of the artificial intelligence (AI) system diagnosis and 

characteristic endoscopic findings to predict multiple Lugol-voiding lesions 

(LVLs) for each image. The sensitivity of the AI system was significantly 

higher than that of most endoscopic findings. a  Sensitivity in all images. 

b  Sensitivity in white-light imaging (WLI). c  Sensitivity in narrow-band 

imaging (NBI). *Significant difference between two groups (P < 0.01).
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Table 1 Patient characteristics of the validation dataset.

Characteristics Non-multiple 
LVLs (n = 40)

Multiple 
LVLs 
(n = 32)

P 
value

Sex, male/female, n 36/4 32/0 0.12

Age, median (range), years 70.5 (48–82) 70 (51–84) 0.67

Alcohol intake1, never or rarely/light or 
moderate/heavy, n

7/27/6 2/15/15 <0.05

Flushing, yes/no, n 31/9 26/6 0.78

Smoking, never/former/current, n 7/28/5 4/16/12 <0.05

Person–years 286 210

Esophagus <0.01

  SCC, n 16 28

  Per 100 person–years 5.6 13.3

Head and neck <0.01

  SCC, n 1 10

  Per 100 person–years 0.3 4.8

Esophagus, head and neck <0.01

  SCC, n 17 38

  Per 100 person–years 5.9 18.1

LVL, Lugol-voiding lesion; SCC, squamous cell carcinoma.

1Never or rare, <1 unit/week; light or moderate, <1–17.9 units/week; heavy, ≥18 units/week (1 
unit =22 g ethanol).
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Table 2 Diagnostic performance to predict patients with multiple Lugol-voiding 

lesions.

Sensitivity, 

% (95%CI)

Specificity, 

% (95%CI)

PPV, % 

(95%CI)

NPV, % 

(95%CI)

Accuracy, % 

(95%CI) 

AI diagnosis 84.4 70.0 69.2 84.8 76.4

Endoscopists’ 

diagnosis (median)

46.9

(40.1–58.7)

77.5

(75.2–80.3)

62.5

(58.6–

67.9)

64.6

(62.1–

70.4)

63.9

(61.3–69.0)

P value1 <0.05 0.15 – – 0.68

PPV, positive predictive value; NPV, negative predictive value, CI, confidence interval; AI, 
artificial intelligence.

1Comparison between AI diagnosis and experienced endoscopists’ diagnosis by majority 
(McNemar test).
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Table 3 Relationship between characteristic endoscopic findings and the 

grade of Lugol-voiding lesions.

No. of imagesEndoscopic finding

Non-multiple LVLs
n = 325

Multiple LVLs
n = 342

P 
value

Few glycogenic acanthosis1 (+/–) 122/203 247/95 <0.01

Keratosis (+/–) 27/298 125/217 <0.01

Coarse mucosa (+/–) 41/284 177/165 <0.01

Reddish background mucosa in WLI (+/–) 14/151 48/87 <0.01

Invisible mucosal vessels in WLI (+/–) 92/73 103/32 <0.01

Brownish background mucosa in NBI (+/–
)

9/151 84/123 <0.01

LVL, Lugol-voiding lesion; WLI, white-light imaging; NBI, narrow-band imaging.

1<2 per endoscopic view.
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In brief
This study developed and evaluated an artificial intelligence (AI) system for predicting 

the presence of multiple Lugol-voiding lesions (LVLs) from images that had not been 

stained with iodine. The AI system achieved significantly higher sensitivity rates than 

a group of 10 experienced endoscopists. This finding is important as it could indirectly 

lead to higher detection rates of (pre-)cancerous lesions in the esophagus and head and 

neck region in screening programs.
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Figure 3. The sensitivity of the AI system diagnosis and characteristic endoscopic findings to predict multiple 
LVLs for each image. 
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Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the 

esophagus and patients at high risk for esophageal squamous cell carcinoma

Yohei Ikenoyama1

Supplementary material
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Fig. 1s Flow chart of the study design.
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丁丁
The Al system 

The training dataset 

• From April 2015 to October 2018 

• 3898 images of non-multiple LVL 

• 2736 images of multiple LVLs 

Endoscopists 

The validation dataset 

• From November 2018 to July 2019 

• 325 images of non-multiple LVLs 

• 342 images of multiple LVLs 

Validation The evaluation of diagnostic performance 

for each case to predict multiple LVLs 

(Al system v.s. 10 endoscopists) 

The evaluation of endoscopic findings 
for each image to predict multiple LVL 

(3 experienced endoscopists) 
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Title and ab墨tract

Title 1 Identify the study as developing and/or validating a multivariable prediction model. 
I 

the taraet oooulation, and the outcome to be oredicted. 

Abstract 2 
Provide a summary of objectives, study design, setting, participants, sample size, 

3 oredictors, outcome, statistical analvsis, results, and conclusions. 

Introduction 
Explain the medical context (including whether diagnostic or prognostic) and 

5,6 
Background 

3a rationale for developing or validating the multivariable prediction model, including 
references to existinQ models. 

and objectives 
Specify the objectives, including whether the study describes the development or 

3b 
validation of the model or both 

5,6 

Method霧

4a 
Describe the study design or source of data (e.g., randomized trial, cohort, or 
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Source of data 

Specify the key study dates, including start of accrual; end of accrual; and, if 
4b 

aoolicable end of follow-uo 7 

5a 
Specify key elements of the study setting (e.g., primary care, secondary care, 

7 
Qeneral population) includinQ number and location of centres. 

Participants 
Sb Describe elioibilitv criteria for participants. 78 
5c Give details of treatments received, if relevant NA 

6a 
Clearly define the outcome that is predicted by the prediction model, including how 

12 
Outcome and when assessed. 

Sb Reoort anv actions to bhnd assessment of the outcome to be ored,cted NA 

7a 
Clearly define all predictors used in developing or validating the multivariable 

7-10 
Predictors 

orediction madel, includina how and when thev were measured 

7b 
Report any actions lo blind assessment of predictors for the outcome and other 

NA predictors 

Sample size 8 Explain how the study size was arrived at. NA 

Missing data ， Describe how missing data were handled (e g , complete-case analysis, single 
NA 

imputation, multiple imputation) with details of anv imputation method. 

10a Describe how oredictors were handled in the analvses 12 
Statistical 

10b Specify ntylp. ae nod f model, all model-building procedures (including any predictor 
8,9 analysis selectio method for internal validation 

methods 
10d 

Specify all measures used to assess model performance and, if relevant, to 
12 

comoare multiole models. 
Risk Qroups 11 Provide details on how risk Qroups were created, if done NA  

Results 
Describe the flow of participants through the study, including the number of 

13a participants with and without the outcome and, if applicable, a summary of the 13,14 

Participants 
follow-uo lime A diaaram mav be heloful 

Describe the characteristics of the participants (basic demographics, clinical 
13b features, available predictors), including the number of participants with missing 13,14 

data for oredictors and outcome. 

Model 
14a Specify the number of participants and outcome events in each analysis 10 II 

development 14b 
If done, report the unadjusted association between each candidate predictor and 

NA 
outcome. 

Present the full prediction model to allow predictions for individuals (i e , all 
Model 15a regression coefficients, and model intercept or baseline survival at a given time NA 
specification oointl. 

15b Exolain how to the use the orediction model. 9,10 

Model 
16 Report performance measures (with Cls) for the prediction model 14,15 

oerformance 
Discus霧Ion

Limitations 18 
Discuss any limitations of the study (such as nonrepresentative sample, few events 18,19 
oer oredictor missina data). 

Interpretation 
19b Give an overall interpretation of the results, considering objectives, limitations, and 

16-18 
results from similar studies, and other relevant evidence. 

Implications 20 Discuss the potential clinical use of the model and implications for future research 18,19 

〇廿18『Information

Supplementary 
21 

Provide information about the availability of supplementary resources, such as study 19,20 
information orotocol Web calculator and data sets. 
FundinQ 22 Give the source of fundinQ and the role of the funders for the present study. NA 

We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document 


