博士論文

超伝導送電システムに向けた

状態監視・診断技術に関する基礎研究

(Basic Research on Condition Monitoring and Diagnosis Technology for Superconducting Power Transmission System)

令和 2年 2月

三重大学大学院生物資源学研究科

小林祐介

1.	序論		1
	1.1 設	備診断技術の重要性	1
	1.2 設付	備管理の歴史と現況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	1.3 設付	備保全の方式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	1.3.1	事後保全	6
	1.3.2	予防保全	7
	1.4 設付	備診断技術とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	1.5 設付	備診断システムの基本構成	9
	1.5.1	振動信号測定	11
	1.5.2	信号処理	14
	1.5.3	特徵解析	17
	1.5.3.1	有次元特徴パラメータとは	17
	1.5.3.2	無次元特徴パラメータとは	18
	1.5.4	簡易診断	19
	1.5.5	精密診断	23
	1.6 超	伝導ケーブル	27
	1.7 超	伝導ケーブルの冷却システム	28
	1.7.1	液体窒素循環ポンプ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	1.7.2	冷凍機	30
	1.8 超	伝導ケーブルに向けた設備診断	
2.	回転	式液体窒素循環ポンプに向けた自動診断法(1) ^[25]	35
	2.1 は	じめに	35
	2.2 軸	受診断のフロー	
	2.2.1	全体のフロー	
	2.2.2	簡易診断	
	2.2.3	精密診断	40
	2.3 検討	証実験のための装置と測定条件	42
	2.4 軸	受診断パラメータの決定	44
	2.4.1	簡易診断における閾値の決定	44
	2.4.2	精密診断における決定木の作成	48
	2.5 軸	受診断の検証	
	2.6 結	验	54
3.	回転	式液体窒素循環ポンプに向けた自動診断法(2)	56
	3.1 は	じめに	
	3.2 軸望	受診断のフロー	

3.2.1	全体のフロー	
3.2.2	精密診断	
3.2.3	ファジィ診断	
3.3 検討	涯	
3.3.1	学習段階	
3.3.2	診断段階	
3.4 結調		
4. イン	バータ制御冷凍機に向けた自動診断法	
4.1 は	じめに	
4.2 自算	動診断のフロー	
4.2.1	全体のフロー	
4.2.2	DP マッチング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.2.3	主成分分析法	
4.2.3.1	統計フィルタ処理	
4.2.3.2	マルチバンドフィルタ	74
4.2.3.3	周波数領域のヒストグラム	75
4.3 実際	験装置による検証	
4.3.1	実験装置と測定条件	
4.3.2	回転数同定の検証実験	
4.3.3	診断の検証実験	
4.4 結詞		
5. 転が	り軸受の複合異常に向けた知的診断法 ^[54]	
5.1 は	じめに	
5.2 原理	理	
5.2.1	TFWD······	
5.2.2	ELM に基づいた判別法	
5.3 検討	証実験	
5.4 結詞		
6. 結言		

要 旨

超伝導ケーブルは「電気抵抗ゼロで送電することができる」超伝導の性 質を利用したケーブルで、高効率送電や電圧降下削減、変電所の負荷平準 化・削減が期待される。一方で、超伝導ケーブルは、超伝導状態を保つた めに、冷媒を常に流して超伝導材料を一定の温度以下に冷やし続ける必要 がある。そこで、超伝導ケーブル冷却における主要な機器である液体窒素 循環ポンプや冷凍機などの不具合を事前に検出することを目的とし、超伝 導送電システムに向けた状態監視・診断技術に関する基礎研究を行った。 具体的には、回転式液体窒素循環ポンプに向けた自動診断法、インバータ 制御冷凍機に向けた自動診断法、転がり軸受式液体窒素循環ポンプなどに 使用される転がり軸受の複合異常に向けた知的診断法についての研究を行った。

回転式液体窒素循環ポンプに向けた自動診断法では軸受異常から離れた 場所での自動診断法について研究を行った。回転式液体窒素循環ポンプで は軸受が極低温部にあることがほとんどであり、極低温部に加速度センサ を取り付けるのは困難であるため、軸受から離れた常温部で診断する方法 について検討が必要となる。そこで、遺伝的アルゴリズムおよびタブー探 索法を用いた簡易診断とハイパスフィルタ後の包絡線スペクトルから算出 した軸受診断専用パラメータに決定木を用いる精密診断とを組み合わせた 手法を提案し、回転機械設備を模擬した実験装置を用いて得られたデータ から閾値・決定木を設定した。また、異なる試番を用いて、設定した閾値・ 決定木の妥当性を検証し、様々なアルゴリズムを適用することで離れた場 所での衝撃系異常が検出可能であることを確認した。さらに、決定木の代 わりに可能性理論とファジィ推論を用いた精密診断法も提案し、有用性を 確認した。回転式液体窒素循環ポンプに限らず、現場の設備には軸受近傍 に加速度センサを取り付けるのが難しい設備もあり、そのような設備にも 本手法を適用することが可能である。

インバータ制御冷凍機に向けた自動診断法では超伝導ケーブル冷却で今 後主流になるブレイトン冷凍機に着目し、インバータ制御回転機械の自動 診断法について研究を行った。インバータ制御回転機械は負荷のよって回 転数が変化してしまい、回転数が変化すると故障診断のために測定した振 動加速度信号は時間と共に大きく性質が変化してしまうため、従来から提 案されている故障診断手法のインバータ制御機器への適用は難しい。そこ で、インバータ制御機器に対し、DPマッチングを用いて振動加速度センサ のデータから自動的に回転数を同定し、その後従来から提案されている診 断法を適用する手法を提案した。また、提案した手法を検証するため、回 転機械設備を模擬した実験装置を用いた試験を行った。実験装置による検 証では、DPマッチングにより100 rpmの精度で回転数を同定できることを 確認し、また、その後の主成分分析法により正しく正常・異常を判別でき ることを確認した。本手法はブレイトン冷凍機に限らず、超伝導ケーブル 冷却システムにも使用されるチラー(冷却水循環装置、液体窒素循環ポン プや冷凍機の冷却水循環に使用)や一般に利用されているエアコンなど、 幅広いインバータ制御回転機に適用することが可能である。

転がり軸受の複合異常に向けた知的診断法では、転がり軸受式液体窒素循 環ポンプや冷却水循環ポンプなどに使用される転がり軸受の中期段階の異 常にみられる複合異常(複数の傷による異常)の診断法について研究を行 った。転がり軸受における単一異常診断に関する理論と方法は確立されて おり、また軸受複合異常によって引き起こされるパス周波数は理論と実験 の両方で同じであることは分かっているが、転がり軸受において複数欠陥 を同定する精密診断手法はまだ提案されていない。そこで、本研究では、 時間-周波数領域波形分布という特徴抽出手法を提案し、エクストリーム・ ラーニング・マシンと連続診断法による知的軸受異常診断手法を提案した。 本手法は当然一般の転がり軸受に適用可能である。

1. 序論

1.1 設備診断技術の重要性

設備診断技術の重要性は、「安全・安心」、「企業競争力」、 「地球環境」、「省エネルギー」というキーワードで表すこ とができる。

(1) 社会安全・安心のために重要な設備の重大事故を未然 に防止

設備とは、工業、農業、商業、建築業および社会インフラ ストラクチャなどに備え付けられた機器や施設の事を指し、 陸海空の全ての業界や分野に設備がある。重要な設備のトラ ブルや事故を未然に防ぐ設備診断技術は安全・安心で持続可 能な経済発展に大きく貢献するものである。

しかし、近年橋梁崩壊、飛行機事故、機械設備診断事故、 工場火災、爆発など、重要設備事故が発生しており、多大な 人的、経済的な損失をもたらし、時には地球環境にも大きな 悪影響を与えてしまう。

(2)地球環境時代における設備診断技術の大きな役割

20世紀の大量生産・大量消費の時代においては、設備の取 替や更新が比較的頻繁に行われ、また設備の構造や機能が現 在に比べ比較的簡単で、人員による設備診断・保全も比較的 容易に行えたため、設備診断技術の重要性は顕著に注目され ていなかった。一方、21世紀の地球環境時代においては、省 エネルギー、省資源のために、設備の延命化(なるべく長く 使用する)、リサイクル及びリユースが提唱されているが、 安全・安心を確保したうえでの設備の延命化、リサイクル、 リユースは言うまでもない重要なことである。

すなわち、設備の延命化を実施した場合は、設備の故障率 が上昇しやすいので、設備診断技術により状態監視・診断を 行い、効率良い計画保全で安全を確保する必要がある。

(3) 生産効率向上及び生産コストの削減による企業競争能 力の向上

現在の製造業では、益々激しい経済競争の中で極限までコ スト削減をして生産活動を行っており、一度重要な設備の稼 働が突然な故障でストップすると、生産に大きな損失をもた らすだけでなく、修復にも莫大な費用と貴重な時間が必要で あり、企業の利益・信頼・存続に直結する問題に発展しかね ない。企業の業績が生産高と利益で決まり、特に利益率は企 業の競争力を測るための最重要な指標である。利益率は生産 コストの削減により大きく向上することができる。

設備診断技術は生産コストの削減及び生産損失の防止に大 きく貢献できる。その理由は大まかに言えば、突然なトラブ ルや事故の防止、無駄なメンテナンス費用の削減、生産効率 の向上によって利益率(競争力)の向上を実現させることに ある。

(4)設備の最適状態保存・省電力による設備の使用寿命延長

回転機械設備に異常が発生したときに、無駄な電力などの 消費が増加する。例えば、回転軸のミスアライメントが発生 した時に、1.3 mmのミスアライメントで 8.4 %の無駄なエネ ルギーの増加となる。また、無駄なエネルギーの増加だけで なく、回転軸上の部品の寿命にも重大な悪影響を与える。例 えば、回転軸のミスアライメントが発生すると、軸受とメカ ニカルシールの寿命は大幅に短縮してしまう。もちろん、軸 自身や歯車などの使用寿命も大幅に短縮し、回転機械の突然 破壊の確率もかなり高くなる。よって、設備診断技術で回転 のミスアライメントを早期に検出し、早期に対策を取る必要 がある。

設備診断による省エネルギーのもう一例はポンプである^[1]。 世界の電気エネルギーの約 20 %はポンプが消費し、産業界で はエネルギー消費の約 50 %がポンプである。図 1-1 に示すよ うにポンプの一生に必要な費用例は電力費:95 %、メンテナ ンス費:4%、ポンプの購入・設備費:1%である。

表 1-1 に示す例のように、異常のあるポンプに対して、設備診断を適用し、保全(修復・整備)を行った結果、最大 19%の効率向上の効果が得られた^[1]。表 1-1 の割合で単純に計算すると、約 20%の電気エネルギーの節約となり、ポンプの購入・設備費の 20 倍に相当する費用の削減となる。よって、診断・保全の省エネルギーの効果が大きいことがわかる。

図 1-1 ポンプの一生に必要なコスト例

ポンプの例	診 断・保 全 前	診 断・保 全 後	診断・保全の効果
(No.)	(効 率 、 %)	(効率、%)	(効 率 向 上 分 、 %)
1	69	86	19
2	74	84	12
3	77	84	9
4	74	87	15
5	73	86	15

表 1-1 ポンプの診断・保全による省エネルギー効果例[1]

1.2設備管理の歴史と現況

日本の設備管理の歴史を概観してみる。図 1-2 に示すよう に、1950 年代の始めに予防保全(Preventive Maintenance:以 下、PM)が導入されたが、60 年代後半から 70 年代初期に、 その欠点を是正する目的で、現在の主要な保全方式となって いる「全員参加の生産保全(Total Productive Maintenance: TPM)」、「予知保全/状態基準保全(Predictive Maintenance /Condition Based Maintenance: PDM/CBM)」及び「信頼性 中心保全(Reliability Centered Maintenance: RCM)」が開発 もしくは導入された。

80 年代から 90 年代の前半にかけて、設備の生涯コストを 最適化する「ライフサイクル保全(Life Cycle Maintenance: LCM)」、「保全管理コンピュータシステム(Computerized Maintenance Management System: CMMS)」が導入され、次 いで「リスク管理点検技術(Risk Informed Inspection: RII)」 が導入された。

IT 時代を迎えた 90 年代後半は、従来の CMMS が「企業資産管理システム (Enterprise Asset Management : EAM) 」へ、 CBM が「プラント資産管理システム (Plant Asset Management: PAM)」へと進化して、現在に至っている。

図 1-2 日本における設備管理関連技術の歴史

1.3 設備保全の方式

設備保全は、組織の目的に照らしても最も適した方式である必要があり、経済性の判断に基づき設備の生産性を最大限に高める保全が必要である^[2]。設備保全には図 1-3 に示すような方式がある^[1]。

図 1-3 設備保全方式^[1]

1.3.1 事後保全

事後保全とは壊れたら直すという保全方式であり、生産設備の休止損害が無視できる場合などに、故障してから修理を 行う保全方式である。修理作業の発生は突発的で事前に計画 を立て難しく、要員・材料・機材手配などが効率面で不利に なりがちであるが、生産性の見地から総合的にみて、事後保 全が有利であると判断される場合に採用する。

(1) 緊急事後保全(EBM)

予防保全対象の設備が突発的な故障で停止したときに、 直 ちに修理を行う。

(2) 計画事後保全(PBM)

仮に故障しても代替により作業の振替が効く場合やあえて 故障してから修理した方が保全コストが経済的である場合、 故障してから修理を行う保全である。

(3) 非計画事後保全(UBM)

予防の概念や経済性の追求もなく、なり行き任せの事後修 理をいう。

1.3.2 予防保全

予防保全とは設備が故障する前に、あるいは設備を故障さ せないために予防措置をとる保全方式であり、次のような方 式がある。

日常保全(DM)

清掃、給油、芯出しなどにより劣化や故障を防ぐ日常的な 装置管理活動(なお、日常保全はプロアクテイブ保全

- (Proactive Maintenance) ともいわれている)
- (2) 時間基準保全(TBM)

時間単位で従来の経験あるいは法律規制によって周期を決めて定期的に分解・点検・設備して不良を取替えるオーバホ ール型保全

(3) 状態基準保全(CBM)

設備の劣化状況や性能を診断し、その診断状況をもとに保 全活動を展開する方法^[3]

(4)総合予防保全

日常保全、時間基準保全、状態基準保全を最適に組み合わせて行う保全

1.4 設備診断技術とは

装置や機械類の異常や故障が生産及び品質に与える影響も 従来と比較できないほど大きくなり、従来単独の技術分野と して発達を遂げてきた品質管理や生産管理も、設備保全を無 視して遂行不可能となりつつある。

このように重要性を増やした装置や機械類を効率よく維持

管理するために必要なことは、何をおいてもその対象となる 設備の状態を定量的に把握することである。つまり、設備の 故障の原因を明らかにし、最小のコストと時間で修復し2度 と故障を起こさないように対策をとるために、設備に印加さ れ、その故障の原因となる諸ストレス、設備の病気である劣 化や故障、設備のアウトプットである性能及び機能の状態を 正確に把握しなければならない。

設備診断技術とは、以上のような目的をもって開発された 設備保全のための新しくかつ強力な技術で、次のように定義 される。

「設備の状態すなわち、

(1)設備劣化の原因である諸ストレス

(2) 劣化の程度や故障の種類

(3) 性能や機能

を定量的に把握し、正しい保全アクションを決定するための技術」

したがって、設備診断技術は単なる故障検出技術とか点検の計器化技術と解釈してはいけない。設備診断技術は一般に 次の4 つの要素技術から構成されている^[4]。

(1)諸パラメータを推測するための検出技術

(2) 雑音を除去する信号処理技術

(3) 異常の種類や過酷度を決める識別技術

(4)設備状態の将来を予測する予測技術

図 1-4 はこの関係を示したものである。

図 1-4 設備診断に必要な技術

1.5設備診断システムの基本構成

回転機械設備の状態診断は図 1-5 に示しているように、人間の病気診断とよく似ている^[1]。

設備診断技術は大きく分ければ、計測、簡易診断技術、精 密診断技術から構成される。簡易診断の役割は病気診断の定 期健康診断に相当し、精密診断の役割は、簡易診断で異常が 発見された後異常種類を同定することである。これらは医学 における看護師と医師の関係に相当する。つまり、病気を早 期に発見して治療し、さらに少ない保険費用で健康を維持す るためのシステムは、人の場合も設備の場合もいわば同様で ある。

設備診断は主に以下のような方式がある。

- (1)人間五感による診断(人間の感覚+人間の判断)
 - 検出:人間の感覚(触る、聞く、見る、嗅ぐ、味わう)

診断:人間の判断

(2)装置による補助診断(装置の感覚・計算能力+人間の
判断)

検出:センサ(振動、音響、応力など)

診断:人間が解析装置(振動計や FFT アナライザなど) を用いて判定・識別、主に振動値やスペクトルを 見て判定・識別する

(3) 準知的診断装置システムによる補助診断

(装置の感覚・計算能力+コンピュータ+人間の判断) 検出:センサ(振動、音響、応力など)

- 診断:人間がある程度知能化された準知的診断装置シス テム(ハードウェア+ソフトウェア)を用いて判 定・識別準知的診断装置システムの診断結果を参 考にして判定・識別する
- (4) 知的診断装置システムによる自動診断

(装置の感覚・計算能力+コンピュータ知能)

検出:センサ(振動、音響、応力など)

診断:人間のかわりに知的診断装置システム(ハードウ ェア+ソフトウェア)が自動的に用いて判定・識 別する

よって、回転機械設備の状態診断には図 1-4 に示すような 技術が必要であり、これらの技術に対応する診断処理は図 1-6 に示す^[1]。ここで各処理について簡単に説明する。

図 1-5 設備診断と病気診断[1]

図 1-6 設備診断処理の流れ[1]

1.5.1 振動信号測定

ここで、振動加速度センサの測定ポイントと測定方向を決 定するときに、主に注意すべきことを紹介する[1]。

(1) できるだけ診断対象の部品に近い所に測定ポイントを 決定

例えば、図 1-7 に示す設備の場合、①と②の箇所でポンプ

診断、②と③の箇所で変速機診断、③と④の箇所で継ぎ手診 断、④と⑤の箇所でモータ診断のために振動を測定する。

(2)できるだけ3方向(水平方向、垂直方向、軸方向)の振動を測定

精密診断異常状態の識別のために多方向の測定情報が必要な場合もある。

(3) 測定は常に同じ点で行う

図 1-8(a)に示すように、常に同じポイントで測定するため に、測定ポイントにマークをつける必要がある。図 1-8(b)示 すように、測定ポイントがずれると、同じ機械の状態であっ ても振動値が大きく違う可能性があるため、誤診断を招き得 る。

(4) 押し当て式の加速度センサについては先端の接触状態 と傾きに注意

図 1-9 に示すように接触面の凸凹や窪みなどによるセンサ 先端との接触が良くなければ、接触共振周波数がかわり、測 定データの精度も悪くなる。また、測定時にセンサの傾きは 10 °以内にすべきである。

(5) 固定型の加速度センサと被測面との接触に注意

固定型の加速度センサはマグネット式、接着式及びネジ式 があり、いずれも図 1-10 のように被側面との接触に注意する 必要がある。

図 1-7 振動加速度の測定ポイント例

図 1-9 押し当て式センサの注意事項

х

×

×

1.5.2 信号処理

設備診断時の信号処理の主な内容は、異常検出の感度と精度を高めるために、測定した信号からノイズを除去することである^[5]。設備診断の場合、異常が発生した時に生じた異常振動の信号(異常信号と呼ぶ)は診断にとって有用な信号であり、他の信号成分はノイズと見なす。この意味で設備の正常状態時の振動信号(正常信号と呼ぶ)も設備診断にとってはノイズである。

例えば、図 1-11 の例に示すように、ノイズを除去するため によく用いられるフィルタにはローパスフィルタ、ハイパス フィルタおよびバンドパスフィルタがある。

回転機械を診断する場合、異常信号を抽出するための最適 なカットオフ周波数(周波数帯域)は異常種類ごとに異なり ^[6]、また同じ異常種類でも設備ごとに若干異なるが、回転機 械の主な異常種類とその周波数帯域は大まかに分類できる。

(1)構造系異常(あるいは、低周波数帯域の異常)

アンバランス、軸ミスアライメント、ゆるみ、軸曲がり、 滑り軸受の一部異常、軸受や歯車の末期異常などあり、低周 波数帯域(<1 kHz)の特徴信号が現れる。

(2) 自励系異常(あるいは、中周波数帯域の異常)

一部の歯車異常(磨耗、偏心、ミスアライメントなど)、
滑り軸受の一部異常、一部の流体的な異常、共振などであり、
中周波数帯域(<5 kHz)の特徴信号が現れる。

(3) 衝撃系異常(あるいは、高周波数帯域の異常)

軸受傷、歯車局所異常、回転部の局所接触、緩みに伴う衝撃などであり、高周波数領域(>5kHz)の特徴信号が現れる。

図 1-11 ロー・ハイ・バンドパスフィルタ

1.5.3 特 徴 解 析

回転機械の振動診断の場合、振動を計測し、振動信号の特徴から設備の状態を推定している。振動信号の特徴を表し設備状態も鋭敏に反映する、振動信号から算出されたパラメータを診断用の「特徴パラメータ」という。設備診断用の特徴パラメータは「有次元特徴パラメータ」と「無次元特徴パラメータ」に分けることができる。

特徴パラメータは、時系列信号から求めた時間領域の特徴 パラメータ、およびスペクトルから求めた周波数領域の特徴 パラメータなどがある。どのような特徴パラメータを用いる は診断の内容や異常の種類などによって異なる。

現在市販の回転機械診断用の装置は殆ど有次元特徴パラメ ータを使用したものであるが、有・無次元特徴パラメータを 総合した回転機械診断法が有効と考えられる。

数個の無次元特徴パラメータを総合して、状態を判別する こともできる^{[5],[7]-[9]}。例えば、主成分分析法や正準判別法な どが設備診断に適用されている。

1.5.3.1 有次元特徴パラメータとは

有次元特徴パラメータは、信号の平均値、実効値、ピーク 値などどのように単位(速度、加速度など)を持ち、信号の 振動幅の大きさを表す。

有次元特徴パラメータは次のような性質を持つ。

(1)設備の大きさによって正常状態でも振動レベルが違うので、判定基準も違う

(2)同じ設備で正常状態であっても、回転数や負荷数が変 動すると大きく変化する

(3) 早期異常の時、その値が顕著に変化しないため、異常

の早期検出に適なさい

(4) 値は、殆どの設備においては異常時に大きくなるが、 中には異常時に逆に小さくなる設備や部品もある

(5) 異常種類の識別(精密診断)には用いられない

1.5.3.2 無次元特徴パラメータとは

無次元特徴パラメータは、従来の統計学で使われている歪 度、尖度などのような特徴パラメータで、単位を持たず、信 号の大きさに関係なく、信号の特徴を反映する。

無次元特徴パラメータは次のような特徴を持つ。

(1) 振動波形の形状さえ相似すれば、値は設備の大小に関係なく、ほぼ一定である

(2) 値は回転数の変化に影響されにくい

(3) 異常種類によって敏感と鈍感なものがある

(4) 値の大小は異常種類によって違う

(5) 一般に危険レベル(設備を停止すべきレベル)の設定 が困難である

例えば、尖度、歪度、波高率については異常状態の振動波形の形に反応して値が変化する。正常状態時に比べ、尖度、 歪度、波高率の値が変化したときに、どのような異常状態が 起きている可能性があるかを表 1-2 に示している^[1]。

表 1-2 各無次元特徴パラメータ値と異常種類との関係(文献 [1]より著者作成)

正常状態に比べて	歪 度	尖 度	波 高 率
		アンバランス	
小さい	稀	緩み	稀
		軸曲がり	
	歯車摩耗	軸受傷	軸受傷
大きい	緩み	歯 車 局 所 異 常	歯 車 局 所 的 異 常
	非 線 形 振 動	衝 撃 的 な 振 動	衝 撃 的 な 振 動

1.5.4 簡易診断

簡易診断の役割は、設備状態を特徴パラメータにより定量 的に評価し、異常の有無(状態変化の有無)及び異常の程度 (注意・危険状態)を判別すると共に、設備状態の傾向を管 理することである^[10]。簡易診断の精度が良ければ、殆どの重 大事項を未然に防ぐことができる。

簡易診断の検査対象として、例えば、振動値(加速度、速 度、変位)または音、温度などが挙げられる。判定基準とし て注意値、危険値などの闘値を設定し設備状態を評価する。 図 1-12 に振動値の判定基準の例を示す。

一般に簡易診断用の有次元特徴パラメータは設備の状態変 化だけでなく、負荷の変動によっても変化する。そのために 簡易診断の場合、判定基準の決定は重要である。統計検定理 論や可能性理論などによる判定基準の決定法が提案されてい る。

有次元特徴パラメータは波形の大きさを表すため、一般に 現場では、振動の強さの指標として回転機械状態(正常、注 意、危険)の判定に用いられる。運転条件(負荷と回転速度) が一定な回転機械の有次元特徴パラメータの判定基準は国際 規格(ISO)や各国によって与えられたものがある。

判定基準の例を図 1-13 に示す。このような判定基準は、与 えられた有次元特徴パラメータの値をそのまま状態判定に用 いられるため、「絶対判定基準」という。

絶対判定基準は多くの現場実験や経験によりまとめた平均 的な基準であり、一般に状態判定の目安として使用されてい るが、全ての現場設備に完璧に適用するとはかぎらない。

しかし、図 1-13 の低周波領域(1 kHz 以下)における絶対 判定基準から分かるように、機械の種類の違いによって絶対 判定基準の値は異なるものの、各状態範囲の境界値の比率は 一定(約 2.5)であることが分かる。この性質を利用して、図 1-14 のように、全ての回転機械設備に適用できる。「相対判 定基準」を定義する。

低周波領域(1 kHz 以下)における振動速度の実効値に関 しては、基準状態(正常状態)の限界値を Coとすれば、注意 状態と危険状態の限界値はそれぞれ 2.5CoK と 6.3CoK とすれ ばよい。ここで、K は調整係数で、1 を基本とするが、設備の 種類や重要度によって変更する。

Coは統計理論により正常状態の 99.9%信頼領域として次のように求める。

$$C_0 = \bar{P}_i + 3S_i \tag{1-1}$$

ここで、*P_iとS_i*はそれぞれ特徴パラメータ *P_i*の平均値と標準偏 差である。なお、実際に現場で測定した振動の実効値などの 特徴パラメータは必ずしも正規分布に従うとは限らないので、 上記の*P_iとS_iを*求めるときには注意を払う必要がある。

他の周波数領域における相対判定基準も絶対判定基準の参照により作成できる。例えば、中周波数領域(<5kHz)にお

いては、相対判定基準の例として図 1-14 の B に示す。この領域では振動加速度の実効値を用いて、「自励系」異常状態の 簡易診断を行う。また、高周波数領域(5 kHz)の相対判定基 準の例は、図 1-13 の C に示す。この領域は主に「局所衝撃系」 異常状態の簡易診断に適している。

図 1-12 振動値の傾向管理例

区分境界の値	クラス I	クラスⅡ	クラスⅢ	クラスⅣ
45.0				
28.0				D
11.2		D	D	С
4.5	D	c 1	C	в
2.8	С	B 6	B 5.5倍16	зв
	в	▼ 2.5倍8dl	3	А
0.45	А	А	A	

A:良好(優) 正常状態で何もする必要がない

B:順調(良) やや正常状態、補修の必要がなし、注意が必要

C:不調(可) 要注意状態、保全費用の節約のため近い日時に修理が必要 D:危険(不可) 危険な状態で直ちに修復が必要

図 1-13 低周波領域(1 kHz 以下)における絶対判定基準の

例

相対判定基準

Δ	B C		
1		危険領域	止
$6.3C_0K$ 2.0	$C_0 K 3.0 C_0 K$	44 781 25 46	常
250 1 15	CV 15CV	注息识现	0
2.5C ₀ K 1.5	$C_0 \Lambda$ 1.5 $C_0 \Lambda$	許容領域	板
$C_0 \mid 0$	$C_0 \mid C_0$	HT LI PROVA	- 随
i		止常領域	估

A: 低周波数領域(<1kHz)の速度信号の RMS(mm/s)

B:中周波数領域(<5kHz)の速度信号の RMS(G)

C: 高周波数領域(>5kHz)の速度信号の RMS(G)

図 1-14 絶対判定基準と相対判定基準

1.5.5 精密診断

簡易診断で異常が検出された場合、異常種類を特定し、余 寿命を予測するために、精密診断を行う必要がある。精密診 断の手法には、大きく分けると、設備管理者がスペクトルや 特徴パラメータを用いて診断する手動法、及びニューラルネ ットワークや遺伝的アルゴリズムなどを用いた自動法がある。

手動法による精密診断は振動信号を低・中・高周波帯域に わけて測定する。各周波数帯域のサンプリング周波数(SF) は設備種類や回転数によって違うが、一般に図 1-15 に示すサ ンプリング周波数の範囲でよい。また、計算機でデータ処理 を行う場合、高周波数帯域の波形のみ測定した後、間引きを 行うことにより低・中・高周波帯域の振動波形を得ることも できる。一般に低・中周波帯域においては、振動信号のスペ クトルを用いて、特徴周波数成分(回転周波数成分、共振周 波数成分など)を確認して精密診断を行う。高周波数帯域に おいては、主に振動波形の包絡線のスペクトルを用いて軸受傷や歯車局所異常の診断を行う。

人工知能的な手法を用いた知的診断(自動診断)とは、自動フィルタや各種信号処理の手法に加えて、遺伝的アルゴリズム、ベイジアンネットワーク、ニューラルネットワーク、サポートベクトルマシン、可能性理論^[11]などを用いて設備状態の自動判別を行うことである^[12]。

① 構造系異常(<1 kHz)

構造系異常とは、異常が発生した時に低周波帯域(<1kHz、 あるいは、<20 fr、fr:回転周波数)に異常振動のスペクトル が現れる異常種類のことである。歯車の一部が破損したとか、 回転軸が回転体の中心からずれて取り付けられている場合の ように、軸中心まわりの質量分布に不均衡があると、回転軸 が周期の振動を発生する。このような状態をアンバランスと 言う。

また、低速機械のように軸継手で結ばれた2 台の回転機械 において、結合された2 本の回転軸の中心線がずれた状態で 軸を回転させると、アンバランスと同様に回転数と同じ周期 の振動を発生する。この軸ずれの状態をミスアライメントと 言う^{[8],[13]-[16]}。

回転軸系の主な異常種類はアンバランス、緩み、ミスアラ イメント、軸曲がりの部品共振などである。スペクトルによ る診断の時に注目すべき周波数成分は図 1-16 に示すように、 以下の周波数成分である^[1]。

回転周波数:fr

(アンバランス、緩み、ミスアライメント、軸曲がり、亀裂) 回転周波数の2倍:2fr

(アンバランス、緩み、ミスアライメント、軸曲がり、亀裂)

回転周波数のi倍: if_r

(緩み、ミスアライメント、軸曲がり、亀裂)

軸系の共振周波数: fso

(緩み、軸共振、接触)

軸系以外の共振周波数: fuo

(軸系以外の共振、緩み、接触)

② 衝擊系異常 (>5 kHz)

衝撃系異常とは、回転に伴って回転部分と部品の傷との衝撃、あるいは、回転部分と静止部分との接触により生じた異常振動状態のことである。

軸受異常、歯車異常、ベルト異常、リークなどのように手 で触ったり、音で聴いたりして判別できない高周波数帯域の 衝撃系異常に関しては入力信号を振動加速度の包絡線処理波 形に変換して使用している。

例えば軸受の外輪、内輪に転動体が繰り返し接触し疲労に より欠陥が発生すると微細な衝撃波を生じるようになる。歯 車やベルトなどの局所異常に関しても同様で繰り返しの疲労 により摩耗する現象と似ていることから衝撃系異常と呼ぶ。

このような衝撃系異常に関しては人間が感じる程度のレベ ルになるとかなり症状が進んでいることが多く早期の検知が 肝要となってく。無次元特徴パラメータとして振幅確率密度 関数を用いた判定手法も報告されている。

図 1-15 手動法による精密診断の流れ

1.6 超伝導ケーブル

超伝導ケーブルは「電気抵抗ゼロで送電することができる」 超伝導の性質を利用したケーブルで、直流ケーブルでは、送 電ロス無く電気を送ることができる^[17]、電圧降下なく電気を 送ることができるといった性質があり(交流ケーブルでも銅 ケーブルに比べ送電ロスは大幅に小さくなる)、銅ケーブル からの置き換えにより高効率送電や変電所の負荷平準化・削 減が期待される。超伝導ケーブルは低電圧・大電流の用途で 真価を発揮することができるため、特に鉄道への応用(図 1-17、 図 1-18)が期待されており、鉄道応用では上記の利点に加え、 鉄道特有の回生効率の向上、レール電位の抑制などが期待さ れる^{[18]-[20]}。

図 1-17 鉄道用超伝導ケーブルの外観例^[18]

図 1-18 鉄道用超伝導ケーブルの構造例

1.7 超伝導ケーブルの冷却システム

上述の通り超伝導ケーブルには様々な利点がある一方、超 伝導状態を保つために、冷媒を用いて超伝導材料を常に一定 の温度以下に冷やし続ける必要がある。

主流な冷媒である液体窒素を用いた超伝導ケーブルの冷却 システムの一例を図 1-19 に示す。冷却システムの中でも液体 窒素循環ポンプ、冷凍機が重要であり、様々な方式のものが 検討されている。

図 1-19 液体窒素を用いた超伝導ケーブル冷却システムの例

1.7.1液体窒素循環ポンプ

液体窒素循環ポンプはインペラが液体窒素温度(-200 ℃) となるため、熱侵入やメンテナンスなどに工夫が必要となる。 (1)転がり軸受ポンプ

現在最も主流なポンプであり、転がり軸受で軸を支える方 式である(図 1-20)^[21]。室温部から極低温部への熱侵入を考 慮した場合には、軸が長くなるため、下部(極低温部)にも 軸受が必要となり、軸受寿命やメンテナンスに課題がある。 一方、室温部にのみ軸受を用いる方式では、軸を長くするこ とが難しく、熱侵入が大きくなってしまうため、超伝導ケー ブルの冷却にはあまり採用されない。

(2) 磁気軸受ポンプ

極低温部転がり軸受の寿命改善のために、非接触の磁気軸 受を採用したものが開発されている^[22]。磁気軸受の採用によ り長軸でメンテナンスフリーが実現できるが、磁気制御のた め、大掛かりなポンプとなる。

(3) ガス軸受ポンプ

極低温部転がり軸受の寿命改善のためにもう一つ開発され ているのがガス軸受ポンプである^[23]。ガス軸受も非接触であ り、さらに磁気軸受よりもコンパクトであるが、高い技術レ ベルが要求される。

(4) ベローズ式ポンプ

転がり軸受ポンプ、磁気軸受ポンプ、ガス軸受ポンプはい ずれも回転式ポンプであるのに対し、ベローズ式ポンプはベ ローズを伸縮させ体積変化で液体窒素を送るポンプである (図 1-21)^[21]。回転式ポンプと比較してキャビテーション防 止が期待できるが、極低温部でベローズが伸縮するため、部 品寿命が課題となる。

-29-

図 1-20 長軸転がり軸受ポンプ[21]

図 1-21 ベローズ式ポンプ[21]

1.7.2 冷凍機

超伝導ケーブルの冷却には液体窒素温度で1~5kW程度の 冷凍能力を持つ冷凍機が必要となる^[21]。

(1) スターリング冷凍機

スターリング冷凍機(図 1-22)はピストンの往復によって スターリングサイクルで冷熱を生みだす冷凍機で、これまで 主流であった。 高効率で、コンパクトであるが、 極低温域で のピストン 摺動部を持つためメンテナンス周期に課題がある。 また、大型化も難しい。

(2) ブレイトン冷凍機

スターリング冷凍機に替わって開発された冷凍機であり (図 1-23)、タービンによって冷媒を膨張・圧縮させ、ブレ イトンサイクルで冷熱を生み出す方式の冷凍機である。ター ビンの軸受を磁気軸受にすることで極低温域での磨耗部をな くすことにより、省メンテナンス化が図られている。また、 インバータ制御により、タービンの回転数を変化させること で、熱負荷に応じた、冷凍能力を出すことができ、省エネル ギー化が図られている。10 kW を超える大型のものの方がブ レイトン冷凍機の得意とする能力域であり、超伝導ケーブル 用途に向けた 1~5 kW 程度の能力域でコンパクトなものの開 発が行われている。

(3) GM 冷凍機

GM (Gifford-McMahon) 冷凍機はピストンの動きを開閉バ ルブにより制御する方式の小型の冷凍機である^[24](図 1-24)。 クライオポンプや MRI など幅広い分野での実績があり、信頼 性が極めて高く、また、圧縮機とピストンを離して設置でき るため、冷凍機設置の自由度が高いが、1 kW を超える大型の ものの実現は難しい。

図 1-22 スターリング冷凍機[21]

図 1-23 ブレイトン冷凍機^[21]

図 1-24 GM 冷凍機^[21]

1.8 超伝導ケーブルに向けた設備診断

上述の通り超伝導ケーブルには様々な利点があるが、超伝

導状態を保つために、冷媒を常に流して超伝導材料を一定の 温度以下に冷やし続ける必要がある。

そこで、液体窒素循環ポンプや冷凍機などの不具合を事前 に検出することを目的とし、超伝導送電システムに向けた状 態監視・診断技術に関する基礎研究を行った。本論文では回 転式液体窒素循環ポンプに向けた自動診断法、インバータ制 御冷凍機に向けた自動診断法、転がり軸受の複合異常に向け た知的診断法について記載する。

回転式液体窒素循環ポンプに向けた自動診断法では軸受異 常から離れた場所での自動診断法について記載する。回転式 液体窒素循環ポンプでは軸受が極低温部にあることがほとん どであり、極低温部に加速度センサを取り付けるのは困難で あるため、軸受から離れた常温部で診断する方法について研 究を行った。回転式液体窒素循環ポンプに限らず、現場の設 備には軸受近傍に加速度センサを取り付けるのが難しい設備 もあり、そのような設備にも本手法を適用することが可能で ある。

インバータ制御冷凍機に向けた自動診断法では今後主流に なるブレイトン冷凍機に着目し、インバータ制御回転機械の 自動診断法について記載する。インバータ制御回転機械は負 荷のよって回転数が変化してしまい、回転数が変化すると故 障診断のために測定した振動加速度信号は時間と共に大きく 性質が変化してしまうため、従来から提案されている故障診 断手法のインバータ制御機器への適用は難しい。そこで、イ ンバータ制御機器に対し、DP マッチング(動的計画法 (Dynamic Programming)によるマッチング)を用いて振動加 速度センサで取得したデータのスペクトルから自動的に回転 数を同定した後、従来から提案されている診断法を適用する 手法について研究を行った。本手法はブレイトン冷凍機に限 らず、超伝導ケーブル冷却システムにも使用されるチラー(冷 却水循環装置、液体窒素循環ポンプや冷凍機の冷却水循環に 使用)や一般に利用されているエアコンなど、幅広いインバ ータ制御回転機に適用することが可能である。

転がり軸受の複合異常に向けた知的診断法では、転がり軸 受式液体窒素循環ポンプや冷却水循環ポンプなどに使用され る転がり軸受の中期段階の異常にみられる複合異常(複数の 傷による異常)の診断法について記載する。転がり軸受にお ける単一異常診断に関する理論と方法は確立されており、ま た軸受複合異常によって引き起こされるパス周波数は理論と 実験の両方で同じであることは分かっているが、転がり軸受 において複数欠陥を同定する精密診断手法はまだ提案されて いない。そこで、本研究では、時間-周波数領域波形分布とい う特徴抽出手法を提案し、エクストリーム・ラーニング・マ シンと連続診断法による知的軸受異常診断手法を提案した。 本手法は当然一般の転がり軸受に適用可能である。 2. 回転式液体窒素循環ポンプに向けた自動診断法(1)^[25] 2.1はじめに

回転機械において回転体を支持する軸受は、回転機械に欠 かせない最も重要な部品の一つである。軸受異常は初期異常 (局所の剥離による傷)、中期異常(剥離の広がりによるフ レーキング)および末期異常(転動体や保持器の破損)に分 けることができるが、末期異常に至る前に軸受異常をできる だけ早期に検出し、効果的なメンテナンスやリペアを行うこ とが重要である^{[1],[26]}。

軸受の内部に傷や損傷が生じたときには、転動体が回転に 伴って傷や損傷と衝突するため、衝撃的な異常振動が発生す る。この衝撃的な振動は軸受内輪あるいは外輪の固有振動で あり、この固有振動数は数 kHz 以上の高周波帯域にある。振 動診断により異常を早期検出するためには、この高周波帯域 の衝撃的な振動波形を加速度センサで測り、ハイパスフィル タ(High-pass filter: HPF)によりノイズを除去して抽出する ことが必要である^[26]。

しかし、現場における軸受の振動診断には、次のような二 つの問題点がある。

①軸受の種類やサイズによって軸受内輪あるいは外輪の固有振動数が異なるため、ハイパスフィルタのカットオフ周波数を適切に決定する必要がある。

②軸受の異常振動信号を敏感にキャッチするために、加速度 センサはできるだけ診断対象の軸受近傍に設置する必要があ るが、現場の設備によっては診断対象の軸受近傍に加速度セ ンサを取り付けることが難しく、診断対象の軸受から離れた 場所で軸受異常を計測・診断する場合もある。 特に回転式液体窒素循環ポンプにおいては軸受部が極低温 (-200 ℃程度)にあることがほとんどであり、加速度センサ を軸受近傍に設置することが難しい。

したがって、本研究では、上記の問題点を解決するために、 診断対象の軸受から離れた場所に加速度センサを設置して、 測定した信号から軸受異常の簡易診断・精密診断を自動的に 行う基礎的な方法について検討を行った。本報では、まず、 軸受異常振動信号を抽出するために遺伝的アルゴリズム

 (Genetic Algorithm、GA)^{[27]-[29]}とタブー探索法(Tabu Search、TS)^[30]によりハイパスフィルタの最適なカットオフ周波数を 自動的に探索・決定する方法、および決定木による軸受異常の自動診断法を提案し、これらの方法を診断対象の軸受から 離れた場所で計測した振動信号に適用して、軸受異常の自動 検出・診断の精度について検討を行った。

2.2 軸 受 診 断 の フ ロ ー

2.2.1 全体のフロー

軸受から離れた場所で軸受異常を直接診断するのは難しい ため、図 2-1 に示すフローでの診断を提案する。フロー中の 簡易診断において軸受異常の有無を診断し、異常が確認され た場合には精密診断で異常種類の同定を行う。

2.2.2 簡 易 診 断

簡易診断においては、遺伝的アルゴリズムおよびタブー探索法を組み合わせた手法により、次式に示す診断対象の時間 領域の尖り度(Kurtosis)と正常軸受の時間領域の尖り度の比 率 RK(Ratio of Kurtosis)を最大化するハイパスフィルタの 最適なカットオフ周波数を 40000 Hz までの範囲で捜索し、そ のときの RK を求める(すなわち、RK は遺伝的アルゴリズム における適応度である)。

$$RK = \frac{Kurtosis_{\text{Unknown}}}{Kurtosis_{\text{Normal}}}$$
(2-1)

ここで *Kurtosis*_{Normal} は正常であることが既知である軸受の時間領域の尖り度、*Kurtosis*_{Unknown} は診断対象軸受の時間領域の 尖り度であり、

$$Kurtosis = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^4}{N\sigma^4}$$
(2-2)

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} \tag{2-3}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}}$$
(2-4)

x_i (*i* = 1~N) は軸受から離れた加速度センサにおけるハイパ スフィルタ後の時系列加速度データである。なお、ハイパス フィルタは逆高速フーリエ変換^{[1],[5],[31],[32]}を用いて行った。 時間領域の尖り度は、正常時と比べ軸受損傷時に値が大きく なる^[4]。

なお、軸受傷の種類によって引き起こされる固有振動(リ ンギング周波数^[4])が異なり、またセンサの設置場所によっ てノイズも異なるため、各センサで計測した信号の形状や周 波数特性にも相違がある。従って、ノイズを除去して軸受傷 の特徴波形を抽出するためのフィルタの最適なカットオフ周 波数は傷種類やセンサ位置に応じて決定しなければならな い。ただし、正常の場合は、RK は理論上1(測定誤差やノイ ズの影響で RK が1より若干な変動あり)となり、また精密 診断の必要がないため、フィルタは不要である。

まず、得られた加速度データの RK を最適化(最大化)す るハイパスフィルタのカットオフ周波数を捜索する。遺伝的 アルゴリズムの条件は図 2-2 の通りである。カットオフ周波 数を長さ 8 の 2 進数(遺伝子)に変換し、図 2-2 に示す条件 で世代交代を繰り返し、RK を最適化(最大化)する遺伝子の カットオフ周波数を捜索する。

なお、人工的な手動法を用いてハイパスフィルタのカット オフ周波数を試行錯誤的に決定することは可能であるが、遺 伝的アルゴリズムを用いることで短い時間でカットオフ周波 数を自動的にかつ迅速に探索することが可能である。

遺伝的アルゴリズムだけでは局所解に陥ってしまう恐れが あるため、タブー探索法も採用する。具体的には遺伝的アル ゴリズムで得られた最適カットオフ周波数近傍の周波数を、 一度選んだ周波数は二度と選ばない(タブーとする)条件で 検索する。今回は単純に遺伝的アルゴリズムによる最適周波 数±10000 Hz の範囲を 1000 Hz 刻みで重複なく検索し(図 2-3)、その周波数における RK が現在のものを上回った場合に 最適周波数を書き換えることとする。

上記手法により得られた *RK* が閾値(閾値の設定法は 2.4.1 項で詳述)より大きいかどうかで正常、異常を判断する。

図 2-2 遺伝的アルゴリズムの流れ

図 2-3 タブー探索法の流れ

2.2.3 精密診断

軸受異常を精密に診断するために、軸受傷による衝撃的な 波形のパス周波数成分を振動波形の包絡線スペクトル(包絡 線波形を周波数解析して求めたスペクトル分布)^[4]から求め て異常種類を同定する^{[1],[26]}。

パス周波数は軸受傷によって生み出される異常衝撃波の周 期であり、

 $\frac{zf_r}{2}(1 - \frac{d}{p}\cos\alpha) \quad (\, \land \, \Uparrow \, \And \, \And \, \land \, \land \, \exists \, \wr \, \And \,) \tag{2-5}$

 $\frac{zf_r}{2}(1 + \frac{d}{p}\cos\alpha) \quad (内 輪 傷 パス周 波 数) \quad (2-6)$

 $\frac{Df_{r}}{d}(1 - \frac{d^{2}}{D^{2}}\cos\alpha) \quad (転動体傷パス周波数) \qquad (2-7)$ で求められる。ここで fr は軸回転周波数、z は転動体数、d

は転動体直径、Dはピッチ円直径、αは転動体の接触角である
[1],[4]。

本研究における精密診断では、軸受から離れた加速度セン サの生データを、簡易診断で探索した最適なハイパスフィル タを用いてフィルタリングし、包絡線処理を行った波形を用 いる。包絡線波形のスペクトルに対し、軸受傷のパス周波数 成分を反映した軸受診断専用パラメータを次式のように提案 し、決定木による自動診断法(異常種類の自動識別法)を提 案する。

$$SPx = \frac{N \cdot \sum_{i=1}^{M} S_{fpx_i}}{\sum_{j=1}^{N} S_j}$$
(2-8)

ここで S_j は周波数 j Hz におけるスペクトル成分の高さで、 fpx_i は x 状態のパス周波数の i 次高調波、i = 1, 2, ..., M(M = 3, 4, ..., 10)、x = O(外輪傷), I(内輪傷), R(転動体傷)である。SPxの分母はスペクトル全体の積分、分子はパス周波数成分の和を示している。算出したパラメータにより標準 CART アルゴリズム [33], [34]による決定木[35]-[37](閾値の設定法は 2.4.2 項で詳述)を用いて異常種類の判別を行う。

標準 CART アルゴリズムでは各ノード(ツリーモデルにおける頂点および節点)^[34]で分割する属性を ΔI を最大にするという規準で選ぶ。ここで、

$$I(t) = 1 - \sum_{i=1}^{C} P^{2}(i|t)$$
(2-9)

 $\Delta I(s, t) = I(t) - (p_{\rm L}I(t_{\rm L}) + p_{\rm R}I(t_{\rm R}))$ (2-10)

t は / - ド、C は / ラス数(異常種類数)、 P(i|t)は t においてクラス i (i = O (外輪傷), I (内輪傷), R (転動体傷))の事 $例が生起する確率、s は分割条件、<math>t_L \cdot t_R$ は分割後の2/ード、 $p_L \cdot p_R$ は分割後の事例数の割合である(図 2-4)。

図 2-4 標準 CART アルゴリズムでの分割例 (ツリーモデル)

2.3 検証実験のための装置と測定条件

回転式液体窒素循環ポンプを模擬した実験装置の写真を図 2-5 に示す。加速度センサは富士セラミックス製 SA12SC(感 度 : 10 mV/g、線形周波数範囲: 5~10000 Hz(±3 dB)、共 振周波数: 40 kHz) を使用し、軸受近傍に CH1 のセンサを取 り付けた。また、異常軸受から離れた場所で計測する場合に は、種々のノイズの混入や異常によって生じる信号の減衰の 影響によって、異常の診断が困難となる。本論文では、提案 した簡易診断、精密診断手法が異常軸受から離れた箇所での 計測においても有効であることを検証するために、異常軸受 から離れたセンサ取り付け可能な2点(軸受から 510 mm、570 mm離れた位置) にそれぞれ CH2、CH3 のセンサを取り付け て 実 験 を 行 っ た 。 CH2 の セ ン サ 位 置 は 装 置 と し て 異 常 軸 受 か ら距離があるだけであるが、CH3のセンサはベルト駆動部に 近く、より異常軸受の診断が困難な場合として設定した。軸 受は取り替えることができ、正常、外輪傷、内輪傷、転動体 傷の軸受(図 2-6)を用いた。ベルト駆動により 1800 rpm で 回転させた際の振動データを CH1、CH2及び CH3 で計測した。 サンプリング周波数は 100 kHz でサンプリング時間は 10 秒 である。

2.1 節で示した軸受傷によって生じる数 kHz 以上の高周波 帯域にある衝撃的な振動を効率的に計測するために、図 2-7 に示す加速度センサの共振特性を利用した計測を行った。

図 2-5 ポンプ設備を模擬した実験装置

(i)外輪傷

(ii)内輪傷図 2-6 衝撃系異常の軸受

(iii)転動体傷

図 2-7 加速度センサの周波数特性グラフ

2.4 軸 受 診 断 パ ラ メ ー タ の 決 定

2.4.1 簡易診断における閾値の決定

本項では簡易診断における閾値を決定した。

CH1、CH2、及び CH3 での正常 (*Kurtosis*_{Normal}の計算で用 いたものとは別の試番)、外輪傷、内輪傷、転動体の軸受を 用いた振動データでの最適なカットオフ周波数と RK の結果 を表 2-1 に示す。表 2-1 の結果より閾値を 1.3 に設定する。

なお、タブー探索法では遺伝的アルゴリズムでの最適周波数を基準に 1000 Hz 刻みで検索していたが、遺伝的アルゴリズムは 1 Hz 刻み (厳密には 40000 Hz を長さ 8 の遺伝子に変換しているので 156.8… Hz 刻み) で探索した。

CH1とCH3の外輪傷軸受データにおける遺伝的アルゴリズ ムの適応度(*RK*)の変化を図 2-8 に示す。図 2-8 によれば、 軸受近傍(CH1)では遺伝的アルゴリズムを用いなくても *RK* が閾値より十分に大きく、異常判別が可能だが、遠方(CH3) では遺伝的アルゴリズムにより何とか *RK* が閾値より大きく なっていることが分かり、異常軸受から離れた場所での診断における適切なアルゴリズム手法の重要性が伺える。

また、CH1の外輪傷軸受データにおける最適カットオフ周 波数と RKの推移を表 2-2 に示す。これは遺伝的アルゴリズム では極値解に陥ってしまったが、タブー探索法で極値解を脱 出して最適解を得た例であり、カットオフ周波数と RKの関 係を詳細に調べると図 2-9 のようになっていた。本例はタブ 一探索法の有用性を示す良い例である。 表 2-1 最適カットオフ周波数とRKの結果(閾値決定用)

CH1

異常種類	カットオフ周波数	R K
正 常	29961 Hz	1.23
外 輪 傷	38844 Hz	70.14
内 輪 傷	32785 Hz	95.23
転動体傷	16057 Hz	238.79

CH2

異常種類	カットオフ周波数	RK
正 常	800 Hz	1.01
外 輪 傷	12450 Hz	2.47
内 輪 傷	31687 Hz	4.67
転動体傷	32785 Hz	12.92

CH3

異常種類	カットオフ周波数	RK
正 常	23373 Hz	1.02
外輪傷	22602 Hz	1.35
内輪傷	30959 Hz	5.08
転動体傷	36136 Hz	1.65

図 2-8 CH1 と CH3 の外輪傷軸受データにおける遺伝的アル ゴリズムの適応度 (*RK*)の変化。世代数 0 はフィルタなしで の *RK* を表す。

表 2-2 CH1 の外輪傷軸受データにおける最適なカットオフ 周波数と RK の推移

過 程	カットオフ周波数	RK
遺伝的アルゴリズム前	0 Hz	34.58
遺伝的アルゴリズム後	30118 Hz	67.81
タ ブ ー 探 索 法 後	38844 Hz	70.14

図 2-9 CH1 の外輪傷軸受データにおけるカットオフ周波数 と RKの関係

2.4.2精密診断における決定木の作成

本項では精密診断における決定木を作成した。

CH1、CH2、及びCH3での、外輪傷、内輪傷、転動体傷の 軸受を用いた振動データに対して3次までのパス周波数の高 調波(M=3)で式(2-8)に示す軸受診断専用パラメータを算出 した結果を表 2-3に示す。計測したデータを8分割して異常 種類ごとに8つの算出結果を得ている。

なお、データを分割する目的は、信号を測定している間、 外乱(ノイズ)や回転数の若干な変化による診断結果のばら つきを対処するためである。データを分割する原則としては、 1 分割にできるだけ多くの回転回数分の波形が含まれること (10 回転分以上が望ましい)である。本研究の例の場合は、 1800 rpmの回転数に対して、10 秒間測定した波形を 8 分割 したため、1 分割に 30 回転分以上の波形データが含まれる ので、適切な分割であると考えられる。

得られた結果より図 2-10 に示す決定木を作成した。CH1 と CH2 では作成した決定木により確実に異常種類を分類できる が、CH3 では分類の際に例外が出てくる。これは CH3 が CH2 よりもさらに異常軸受から離れているためだと考えられ、各 チャンネルにおいて、複数の算出結果から多数決で最終的に 診断結果を決定する必要がある。

CH2 での外輪傷軸受データにおけるフィルタリングと包絡線処理の結果を図 2-11 に示す。回転周波数に対応するスペクトルを除去し、パス周波数に対応するスペクトルのみを抽出できていることが確認でき、最適なカットオフ周波数でのハイパスフィルタを用いた包絡線処理の有用性が確認できる。

表 2-3 軸受診断専用パラメータの算出結果(閾値決定用) (1 つの異常軸受のデータを 8 分割して得られた結果)

CH1				CH2			СНЗ				
異常種類	SPO	SP1	SPR.	異常種類	SPO	SP1	SPR.	異常種類	SP0	SPI	<i>SP</i> R
外輪傷1	17.192	1.9437	1.8702	外輪傷1	7.2439	3_5005	3.0802	外輪傷1	7.4342	2.3796	2 <i>.9</i> 357
外輪傷2	18_912	3_5248	1.4874	外輪傷2	9.7527	3_9288	1.4546	外輪傷2	4.8949	1.5213	2.305
外輪傷3	12.605	2.0851	2.6056	外輪傷3	8.2672	1.7392	2.3901	外輪傷3	6.7536	3.2581	1.6032
外輪傷4	17.672	3.6773	1.0192	外輪傷4	7_2642	2.2036	1.76	外輪傷4	7_8528	2.8357	3.7442
外輪傷5	15.593	2.8126	2.0314	外輪傷 5	8.6215	1_5186	2.0229	外輪傷 5	6.7055	3.2694	3.2891
外輪傷6	15.473	2.2095	1.7456	外輪傷 6	9.0243	1.7988	2.8165	外輪傷 6	7.3771	3_3179	2.9625
外輪傷 7	14.094	2.4402	1.6233	外輪傷 7	9_5089	2.6945	2_5482	外輪傷 7	5.0259	2_9682	4.0408
外輪傷8	16.015	2.6227	1.2015	外輪傷 8	8.6834	4_3518	2.7119	外輪傷 8	6.6856	3.1085	3.77
内輪傷1	3.8905	15.826	1.9349	内輪傷1	3.6044	7_919	2.3277	内輪傷1	4.0626	3.0314	1.4326
内輪傷 2	2.5856	16.357	2.4678	内輪傷 2	1.8187	6.8061	1 <i>.</i> 9757	内輪傷2	2.1924	2.9479	2_5816
内輪傷 3	2.9299	13.779	1_5279	内輪傷3	2.6417	9.4601	2.1972	内輪傷3	4.7022	5.679	2.3602
内輪傷4	3_3518	15_58	1.7548	内輪傷4	3.4626	8.4651	2.1987	内輪傷4	2.7707	5.8494	1.9072
内輪傷 5	3.7253	15.225	2.0198	内輪傷 5	3_9259	6_9953	3_0828	内輪傷 5	3.8413	4.7319	3_905
内輪傷6	2.3773	14_572	2 <i>.</i> 9231	内輪傷6	2.7821	6.1234	2.7944	内輪傷6	2.704	2.6698	2.3779
内輪傷 7	3.2638	11.127	2.4239	内輪傷 7	2.2087	6.8686	2.0629	内輪傷 7	2.4431	5.0864	2.479
内輪傷 8	4.0222	14.196	2.8131	内輪傷 8	3.1294	7_2997	2.9079	内輪傷 8	3_9636	4_3204	3.4328
転動体傷1	5.0164	2.647	2_528	転動体傷1	3.7455	1.8726	1.4956	転動体傷1	4_9868	3.1679	2.571
転動体傷 2	3.676	3.0716	3.3732	転動体傷 2	3.1067	1_5298	2.495	転動体傷 2	4.1288	1.7507	2.861
転動体傷 3	3_5676	2.8147	4.2596	転動体傷3	3_5401	3_3136	3_569	転動体傷 3	3.0985	3.0729	2_5261
転動体傷 4	3.6314	4.0844	2.7536	転動体傷4	2_5322	3_9593	1.8368	転動体傷4	2.3634	3.4045	2.0169
転動体傷 5	4.8975	3_3497	2.5633	転動体傷 5	2.8522	2.6154	1.8477	転動体傷 5	3.6684	3_5173	2.9895
転動体傷 6	3.0393	3_5012	2.8312	転動体傷 6	2.566	2.957	3.1929	転動体傷 6	5.4343	3.0461	3.466
転動体傷 7	3.6598	2.9385	4_3108	転動体傷 7	3.7451	3.1989	3.2805	転動体傷 7	2.7971	2.6553	3.4312
転動体傷 8	4.8813	3.7569	2.6582	転動体傷 8	3_3818	2.6123	1.9799	転動体傷 8	3.0087	3.0356	2.7371

図 2-10 精密診断の決定木

図 2-11 CH2 での外輪傷軸受データにおける生データスペクトルとフィルタリング後の包絡線スペクトル

2.5 軸 受 診 断 の 検 証

本節では、2.4 節で使用したデータとは異なる試番を用い て軸受診断の検証を行い、2.4.1 項で決定した閾値に照らして 異常有無を判定できること、2.4.2 項で作成した決定木に従っ て異常種類の判別ができることを確認した。

表 2-4 の結果より、全ての CH において、正常の場合には RK が 1.3 よりも小さく、異常軸受の場合には全ての異常種類 において RK が 1.3 よりも大きくなっていることが分かり、簡 易診断手法の妥当性が検証された。

また、表 2-5 の結果より、CH1、CH2 においては、決定木を 用いて異常種類の分別を確実に行えていることがわかり、精 密診断手法の妥当性が検証された。CH3においても多数決を 行うことで異常種類の分類ができており、軸受診断手法の妥 当性が検証された。

表 2-4 最適カットオフ周波数と RKの結果 (検証)

異常種類	カットオフ周波数	R K
正 常	29589 Hz	1.06
内輪傷	33996 Hz	110.66
外輪傷	38903 Hz	56.16
転動体傷	16295 Hz	339.66

CH1

CH2

異常種類	カットオフ周波数	RK
正 常	25726 Hz	1.01
内輪傷	32471 Hz	16.67
外輪傷	1510 Hz	2.26
転動体傷	32628 Hz	13.46

CH3

異常種類	カットオフ周波数	R K
正 常	785 Hz	1.07
内輪傷	33399 Hz	1.73
外輪傷	20477 Hz	1.78
転動体傷	32100 Hz	2.41

表 2-5 軸受診断専用パラメータの算出結果 (検証)

CH1					CI	-12			Cł	-13	
異常種類	SPO .	SP1	SPR.	異常種類	SPO	SP1	SPR.	異常種類	SPO	SPI	<i>SP</i> R
外輪傷1	20.329	3_3442	1.8005	外輪傷1	8.8316	3.417	1.761	外輪傷1	10.128	1.9491	2.8082
外輪傷2	20.888	2.2793	1_9276	外輪傷2	8_5091	2.0193	2.2679	外輪傷2	10.298	1.64	2.807
外輪傷3	17_593	2.7382	2.3106	外輪傷3	6_5067	2.4172	2.9333	外輪傷3	9_974	2.459	2.5181
外輪傷4	20.126	3.1869	2.0376	外輪傷4	10.042	2.3115	2.2713	外輪傷4	10.761	2_5097	2.7392
外輪傷 5	20_97	3_0848	2.0979	外輪傷5	8.7819	2.234	2.5932	外輪傷 5	10.825	2.6332	3_2024
外輪傷 6	20.113	2.9501	1.6797	外輪傷 6	9.0256	2.1652	2.5043	外輪傷 6	8.8632	2.9181	2.2422
外輪傷 7	18_93	3_9799	2.6761	外輪傷 7	7_6662	3.8693	2.539	外輪傷 7	9.1097	4.1743	2.3572
外輪傷 8	18.817	3.2188	2.4728	外輪傷8	9.0909	3.1927	3_9593	外輪傷 8	8_2024	2.3197	2.4672
内輪傷1	3_9105	12.011	3.0515	内輪傷1	2.6145	7_5917	2.052	内輪傷1	3.2607	4.1892	3_9748
内輪傷 2	3.2832	10_565	3.1226	内輪傷2	3_6226	7.0248	2.3819	内輪傷 2	2.9917	4.6307	2.682
内輪傷 3	3.6359	9_3834	1.4659	内輪傷 3	3_5714	7.8081	2.4819	内輪傷 3	2_5445	3.9595	2.3058
内輪傷 4	2.7942	14.414	2.6938	内輪傷4	4.0051	8.6274	2.3928	内輪傷4	3.6322	2.5611	2.8822
内輪傷 5	3.1245	9.4895	2.7013	内輪傷 5	3.0715	7.0982	2.6063	内輪傷 5	3.1201	3.2497	3.2396
内輪傷 6	4.266	11.717	2.1662	内輪傷 6	2.5547	6.6335	2.848	内輪傷 6	3_514	4.6724	2.106
内輪傷 7	3.2468	10.267	2.1531	内輪傷 7	3.2738	6.2546	2.5471	内輪傷 7	3_5955	3.0653	3.0232
内輪傷 8	3.4727	10.645	1.6804	内輪傷 8	3_5513	7.6953	2.324	内輪傷 8	3.0646	5_5968	2_5874
転動体傷1	3_5877	1.9594	3.0976	転動体傷1	3.2837	2.2274	1.9574	転動体傷1	2.8921	1.9803	3.364
転動体傷 2	4.2944	4.6867	2.8529	転動体傷 2	3_3967	3.0963	2.4829	転動体傷 2	2.7422	4.1339	2.8054
転動体傷3	6.0781	2.5118	2.1038	転動体傷 3	2.6413	3.7962	3.2482	転動体傷3	3.661	3_446	2.1518
転動体傷4	4.2699	4.0942	2.5171	転動体傷4	3.2518	2.7479	2.3703	転動体傷4	3.0651	3_5377	2.1553
転動体傷 5	3.9891	3.4264	4.0623	転動体傷 5	3.7645	2.7452	3.0834	転動体傷 5	3.365	2.366	2.9607
転動体傷 6	3.7606	3.1494	2.8757	転動体傷 6	2.8832	2_5603	2.4672	転動体傷 6	3.7502	2.2969	2_5064
転動体傷 7	4_9056	2.4112	2.6284	転動体傷 7	2.7085	2.0295	1.8097	転動体傷 7	2.9453	4.8545	2.6547
転動体傷 8	4.086	2.4137	2.3225	転動体傷 8	3_6508	1.7073	2.4277	転動体傷 8	3.3151	2.7071	2.9271

2.6 結 論

回転式液体窒素循環ポンプなど、軸受近傍に加速度センサ などを取り付けられないケースを想定し、軸受から離れた場 所で軸受異常を計測・診断する方法について検討を行った。

遺伝的アルゴリズムおよびタブー探索法を用いた簡易診断 とハイパスフィルタ後の包絡線スペクトルから算出した軸受 診断専用パラメータに決定木を用いる精密診断とを組み合わ せた手法を提案し、回転機械設備を模擬した実験装置を用い て得られたデータから閾値・決定木を設定した。

また、異なる試番を用いて、設定した閾値・決定木の妥当 性を検証し、様々なアルゴリズムを適用することで離れた場 所での衝撃系異常が検出可能であることを確認した。

なお、実際の設備においては、簡易診断の段階で RKのトレンドを記録しておき、RKの値が通常よりも大きくなった際

に何らかの軸受損傷を疑うことができる。精密診断においては、SPO、SPI、SPRという軸受精密診断専用の特徴パラメータを計算し、決定木により軸受異常種類を自動的かつ精密に同定することが可能である。

回転式液体窒素循環ポンプに向けた自動診断法(2)
 3.1はじめに

2章では精密診断に決定木を用いた診断法を提案したが、 決定木の代わりに可能性理論とファジィ推論を用いた精密診 断法も提案し、有用性を確認した^[38]。

3.2 軸 受診断のフロー

3.2.1 全体のフロー

全体のフロー図を図 3-1 に示す。簡易診断において軸受異常の有無を診断し、異常が確認された場合にはファジィ推論を用いた精密診断で異常種類の同定を行う。

精密診断においては、軸受診断専用パラメータを用いてフ アジィ診断を行い、軸受診断専用パラメータのメンバーシッ プ関数を、確率関数を用いて計算する。

図 3-1 軸受診断のフロー図

3.2.2 精密診断

図 3-2 に精密診断のフローを示す。

学習段階においては、軸受診断専用パラメータ SPO、SPI を求めた後、SPOと SPIの確立関数によって異常種類を同定 するためのメンバーシップ関数を求める。

診断段階においては、軸受け診断専用パラメータ SPO、SPI を求めた後、SPOと SPIの確立関数を計算し、SPOと SPIの 確率関数をそれぞれの軸受異常種類のメンバーシップ関数と 連続的にマッチングすることで異常種類の同定を行う。

ファジィ推論では SPx のメンバーシップ関数が軸受状態の 同定のために必要となり、メンバーシップ関数は可能性理論 を用いて SPx の確率密度関数から求めることができる。例え ば、SPx の確率密度関数が正規分布に従うとき、次式によっ て、SPx の確率密度関数は確率関数 P(SPx)に変換することが できる^{[39],[40]}。

$$P(SPx) = \sum_{k=1}^{N} \min\{\lambda_i, \lambda_k\}$$
(3-1)

ここで、λiは次式で表すとおりである。

$$\lambda_{i} = \int_{SPx_{i-1}}^{SPx_{i}} \frac{1}{\sqrt{2\pi}\sigma_{SPx}} e^{-\frac{(SPx - \overline{SPx})^{2}}{2\sigma_{SPx}^{2}}} dSPx \qquad (3-2)$$

 σ_{SPx} は SPx の標準偏差、 \overline{SPx} は SPx の平均値であり、ほぼ \overline{SPx} - $3\sigma_{SPx}$ < SPx < \overline{SPx} + $3\sigma_{SPx}$ となる。確率密度関数と確率関数の例を図 3-3 に示す。

図 3-4 に示すように、軸受の異常種類はファジィ推論により、精密に診断される。異常種類を同定するためのメンバーシップ関数は確率関数により求められる。異常種類が外輪傷か否かを同定するためのメンバーシップ関数 µ₀(SPO)と µ₀(SPO) は次のように定義される。

$$\mu_{\overline{0}}(SP0) = \begin{cases} P^{(I)}(SP0) \sqcup P^{(R)}(SP0) & SP0 \ge \max(\overline{SP0}^{(I)}, \overline{SP0}^{(R)}) \\ 1.0 & SP0 < \max(\overline{SP0}^{(I)}, \overline{SP0}^{(R)}) \end{cases}$$

$$(3-3)$$

 $\mu_0(SPO) = 1 - \mu_{\bar{0}}(SPO)$ (3-4) ここで、外輪傷を判別するための $P^{(1)}(SPO)$ 、 $P^{(R)}(SPO)$ 、 $\overline{SPO}^{(1)}$ 、 $\overline{SPO}^{(R)}$ の意味は図 3-5 に示すとおりである。図 3-5 には 2 つのセン サ (CH1 と CH3) で計測した信号から得られたメンバーシッ プ関数も示しており、詳細は次節で議論する。 異常種類が内輪傷か否かを同定するためのメンバーシップ 関数 μ₁(SPI)と μ_ī(SPI)は次のように定義される。

$$\mu_{\overline{I}}(SPI) = \begin{cases} P^{(0)}(SPI) \sqcup P^{(R)}(SPI) \quad SPI \ge \max(\overline{SPI}^{(0)}, \overline{SPI}^{(R)}) \\ 1.0 \quad SPI < \max(\overline{SPI}^{(0)}, \overline{SPI}^{(R)}) \\ \mu_{\overline{I}}(SPI) = 1 - \mu_{\overline{I}}(SPI) \end{cases}$$
(3-5)
(3-6)

ここで、外輪傷を判別するためのP⁽⁰⁾(SPI)、P^(R)(SPI)、SPI⁽⁰⁾、SPI^(R) の意味は図 3-6 に示すとおりである。図 3-6 には 2 つのセン サ(CH1 と CH3) で計測した信号から得られたメンバーシッ プ関数も示しており、詳細は次節で議論する。

図 3-2 精密診断の詳細フロー図

図 3-3 確率密度関数と確率関数の例

図 3-4 軸受診断のためのファジィ推論のフロー図

P^(O)(SPO):外輪傷異常の信号を用いて計算したSPOの確率関数
 P^(R)(SPO):転動対傷異常の信号を用いて計算したSPOの確率関数
 P^(I)(SPO):内輪傷異常の信号を用いて計算したSPOの確率関数

 $P^{(O)}(SPI)$:外輪傷異常の信号を用いて計算したSPIの確率関数 $P^{(R)}(SPI)$:転動対傷異常の信号を用いて計算したSPIの確率関数 $P^{(I)}(SPI)$:内輪傷異常の信号を用いて計算したSPIの確率関数

図 3-6 内輪傷を判別するためのメンバーシップ関数 µと µī

3.2.3 ファジィ診断

軸受の状態を C_xで表す。ここで x = O (外輪傷)、x = I (内 輪傷)、x = R (転動体傷) である。同定対象の軸受状態を C_y で表すと、図 3-4 に示す通り、C_yを同定するためのファジィ 推論の法則は次のように示される。

法則 1

前提条件 1:もしSPO > SPO*ならば、 C_y は C_o である。前提 条件 2:もしSPO < SPO*ならば、 C_y は $\overline{C_0}$ である。

入力: SPO = SPO'

結論: C_y は C_0 か $\overline{C_0}$ である。(C_y は C_0 ならば、推論終了。)

法則 2

前提条件 1:もしSPI > SPI*ならば、 C_y は C_I である。 前提条件 2:もしSPI < SPI*ならば、 C_y は C_R である。 入力: SPI = SPI'

結論: C_{V} は C_{I} か C_{R} である。

ここで、SPO*と SPI*は図 3-5、3-6 に示す通り状態判定の閾値 であり、SPO'と SPI'は軸受状態診断にために測定した信号か らの計算値である。

診断段階において得られた SPx'のメンバーシップ関数は $\mu_y(SPx')と表し、\mu_y(SPx')によって得られる <math>C_k \ge \overline{C_k}$ のメンバーシ ップ度合い(可能性)はそれぞれ $w_k \ge \overline{w_k}$ と表す。可能性は式 (3-7)、(3-8)より得られる。

$$w_k = \bigvee \left\{ \mu_{C_k}(SPx') \land \mu_{\mathcal{V}}(SPx') \right\}$$
(3-7)

 $w_{\bar{k}} = \vee \left\{ \mu_{\overline{C_k}}(SPx') \land \mu_y(SPx') \right\}$ (3-8)

提案した手法の有用性を示すため、図 3-4 のフロー図に従った軸受異常診断結果例を次節以降に示す。

3.3 検証

3.3.1 学習段階

2章と同じデータを用いて精密診断の学習を行った。

例として CH3 での測定データを用いて記述する。

表 2-3 から、学習段階におけるそれぞれの状態の SPx の SPx と σ_{SPx} は表 3-1 のとおり計算される。式(3-1)、(3-3)、(3-4)から、 外輪傷を同定するメンバーシップ関数 $\mu_0(SPO)$ と $\mu_{\overline{0}}(SPO)$ は図 3-7 に示す通りとなる。また、式(3-1)、(3-3)、(3-4)から、内 輪傷を同定するメンバーシップ関数 $\mu_1(SPI)$ と $\mu_{\overline{1}}(SPI)$ は図 3-8 に 示す通りとなる。

表 3-1 学習段階において CH3でのそれぞれの状態から計算 された <u>SPx</u>と σ_{SPx}

異常種類	S	PO	SI	PI	<i>SP</i> R	
	$\overline{SPO}^{(x)}$	$\sigma_{SP0}^{(x)}$	$\overline{SPI}^{(x)}$	$\sigma_{SPI}{}^{(x)}$	$\overline{SPR}^{(x)}$	$\sigma_{SPR}^{(x)}$
外 輪 傷	6.6	1.0	3.3	0.8	3.7	1.1
内 輪 傷	2.8	0.6	4.3	1.2	3.0	0.6
転動体傷	3.1	0.8	2.6	0.7	2.8	0.5

図 3-8 内輪傷を判定するための $\mu_{I}(SPI)$ 、 $\mu_{\bar{I}}(SPI)$ と $\mu_{v}(SPI')$

3.3.2 診断段階

表 2-5 から、診断段階におけるそれぞれの状態の SPx の SPx と σ_{SPx}は表 3-2 のとおり計算される。

式 (3-3)から (3-6)より、診断段階において得られる SPxの確率関数 $\mu_y(SPx')$ は、図 3-7 と 3-8 に示すとおりである。図 3-7 と 3-8 に示す確率関数 $\mu_y(SPx')$ は表 3-2 に示す \overline{SPx} と σ_{SPx} を用いて計算される。

表 3-3 と 3-4 にファジィ推論の法則 1、2、式(3-7)、(3-8)、 図 3-7、

3-8 から得られる、ファジィ推論の結果を示す。これらの 結果から、異常状態はすべて正しく診断され、提案した診断 手法の有用性が検証された。

提案手法の性能を確かめるため、提案手法の認識精度を人 エニューラルネットワーク^[41]、サポートベクトルマシン^[42]、 k 近傍法^[43]、畳み込みニューラルネットワーク^[44]の異常診断 に一般に使用されるアルゴリズムと比較した。比較には様々 な機械学手法の機能を持つ MATLAB Statistics and Machine Learning Toolbox 11.1 を使用した。各手法は計測信号によっ て学習し、検証結果の比較を図 3-9 に示す。

表 3-2 診断段階において CH3でのそれぞれの状態から計算 された <u>SPx</u>と σ_{SPx}

異常種類	S	PO	SI	PI	<i>SP</i> R	
	$\overline{SPO}^{(x)}$	$\sigma_{SP0}^{(x)}$	$\overline{SPI}^{(x)}$	$\sigma_{SPI}^{(x)}$	$\overline{SPR}^{(x)}$	$\sigma_{SPR}^{(x)}$
外 輪 傷	9.8	0.9	2.6	0.7	2.6	0.3
内 輪 傷	3.2	0.3	4.0	0.9	2.9	0.5
転動体傷	3.2	0.3	3.2	0.9	2.7	0.4

異常種類	µ ₀ (SP0)による確率	µ _ō (SP0)による確率	判 定
外 輪 傷	$w_{0} = 1.0$	$w_{\overline{0}} = 0.0$	0
内 輪 傷	$w_{\rm O} = 0.0$	$w_{\overline{0}} = 0.0$	ō
転動体傷	$w_{\rm O} = 0.0$	$w_{\overline{0}} = 0.0$	ō

表 3-3 ファイジィ推論の法則1による診断結果

表 3-4 ファイジィ推論の法則2による診断結果

異常種類	µ _I (SPI)による確率	µ _Ī (SPI)による確率	判 定
内輪傷	$w_{\rm I} = 1.0$	$w_{ar{ ext{I}}}=0.0$	Ι
転動体傷	$w_{\rm I} = 0.0$	$w_{\overline{I}} = 1.0$	R

3.4 結論

2章では精密診断に決定木を用いた診断法を提案したが、 決定木の代わりに可能性理論とファジィ推論を用いた精密診 断法も提案し、有用性を確認した。
4. インバータ制御冷凍機に向けた自動診断法
4.1はじめに

近年、省エネルギー化・省メンテナンス化を目的として、 ブレイトン冷凍機をはじめとした回転機械のインバータ制御 [45],[46]が主流になってきている。

これまで回転機械の設備診断に関する様々な手法が提案さ れている^{[1],[25],[26],[47]-[49]}が、そのほとんどは回転速度(以下、 回転数と記する)が一定の回転機械にのみ適用可能なもので ある。回転数が変化すると故障診断のために測定した振動加 速度信号は時間と共に大きく性質が変化してしまうため、従 来から提案されている故障診断手法のインバータ制御機器へ の適用は難しい。

そこで、インバータ制御機器に対し、DPマッチング(動的 計画法(Dynamic Programming)によるマッチング)^[50]を用 いて振動加速度センサで取得したデータのスペクトルから自 動的に回転数を同定した後、従来から提案されている診断法 を適用する手法を提案する。回転数は、パルスセンサやイン バータの出力からも計測可能であるが、必ずしも全ての機器 にパルスセンサ等を取り付けられるわけではないこと、取り 付けや配線が煩わしいことから、設備診断で用いられる振動 加速度センサを活用して診断対象機器の回転数を同定したう えで、その機器の状態を判定する手法を提案する。

また、提案手法を検証するため、回転機械設備を模擬した 実験装置を用いた実験を行い、提案手法の有効性を確認した。

4.2 自動診断のフロー

4.2.1 全体のフロー

提案するフローを図 4-1 に示す。診断対象のインバータ制

御回転機械が正常であると仮定し、診断対象機械の振動加速 度データを、あらかじめ回転数が分かっている正常状態の振 動加速度データ群とマッチングする。その後、DPマッチング でマッチした既知振動加速度データの回転数を診断対象機械 の回転数とし、主成分分析法等の従来から提案されている診 断法によって、正常・異常を判定する。正常と判定された場 合、診断対象機械はまさしく正常であるが、異常と判定され た場合、診断対象機械がまさしく異常である可能性と DPマ ッチングによる回転数のミスマッチの可能性が考えられるた め、精密に診断する必要がある。

なお、本章では回転数の自動同定法および正常か異常かと いった自動簡易診断法について報告するが、異常と判定され た後の精密診断法については、診断対象の機種や部位などに よって様々な方法があり^[1]、本章では言及していない。

4.2.2 DP マッチング

DP マッチングは音声認識や画像認識にもよく用いられる 手法で、波形の変形をある程度許容しながら波形同士のマッ チングを行う手法である(図 4-2)。

マッチング対象の2 つの離散スペクトルデータ

$$\boldsymbol{F} = (f_1, f_2, \dots, f_k, \dots, f_I), \quad I \, \overline{\mathcal{P}}$$
(4-1)

$$\boldsymbol{G} = (g_1, g_2, ..., g_k, ..., g_J), J \, \boldsymbol{\mathcal{I}}$$
(4-2)

に対し、周波数軸の伸縮対応を、図 4-3 に示すような格子グ ラフ上の点(1,1)から点(*I*,*J*)へ至るルートによって表現する ^[50]。ここで格子点を

$$p_{k} = (i_{k}, j_{k}) (1 \leq i_{k} \leq I, 1 \leq j_{k} \leq J)$$
(4-3)
とすれば、F と G の対応関係 P は

$$\boldsymbol{P} = (p_1, p_2, \dots, p_K) \tag{4-4}$$

となる。格子点の移動は k ≥ 2 において

$$p_{k} = \begin{cases} (i_{k-1} + 1, j_{k-1} + 1) \\ (i_{k-1} + 1, j_{k-1}) \\ (i_{k-1}, j_{k-1} + 1) \end{cases}$$
(4-5)

に制限される。

$$h(p_k) = \min \begin{cases} h(i_k - 1, j_k - 1) + 2d(i_k, j_k) \\ h(i_k - 1, j_k) + d(i_k, j_k) \\ h(i_k, j_k - 1) + d(i_k, j_k) \end{cases}$$
(4-6)

の漸化式 $(k \ge 2)$ により、

$$h(p_1) = 2d(p_1) = 2d((1, 1))$$
(4-7)

を初期値として $h(p_k)$ を求めると、マッチング度合 D(F, G)は $D(F, G) = \frac{1}{I+J}h(p_K)$ (4-8)

となる。ここで $d(i_k, j_k)$ は $d(i_k, j_k) = g_{j_k} - f_{i_k}$ (4-9)

である。

マッチング度合が小さいほど2 つのスペクトルデータは似 ている(マッチしている)ことを示している。

図 4-2 DP マッチングによるマッチング例

図 4-3 格子グラフ (文献 [50]より著者作成)

4.2.3 主成分分析法

本研究では、主成分分析法を用いて診断を行う。本研究で は、振動加速度波形のスペクトルの特徴を表すために、主成 分分析を行う前に、以下に示す統計フィルタ^[51]とマルチバン ドフィルタ^[52]により、信号の特徴を抽出する。また、主成分 分析では特徴パラメータの代りに、周波数領域のヒストグラ ムを用いて^[53]、設備状態を判定する。

4.2.3.1 統計フィルタ処理

統計フィルタは、周波数領域において統計検定理論を用い てフィルタ基準信号と診断信号との同じスペクトル成分をノ イズとして除去することにより特徴信号を抽出する方法であ る。

統計フィルタでは、はじめにフィルタ基準信号と診断信号 を M 個の部分に分割する。複数個のスペクトル成分を 1 セ ットとして、各セットに対して統計検定を行うことにより、 対象の周波数帯域(1 セット)における信号がノイズか、特 徴信号かを判定する。ある周波数帯域において、統計検定に よりフィルタ基準信号と診断信号のスペクトル成分の値が同 レベルであると判定されれば、この周波数帯域の診断信号に は異常情報が含んでいないことを示すため、この周波数帯域 の診断信号のスペクトル成分はノイズとして除去される(ゼ ロに設定される)。統計フィルタのイメージを図 4-4 に示す。 周波数帯域AおよびCのスペクトル成分は周波数帯域内のフ ィルタ基準信号と診断信号のスペクトル値に統計的な有意差 がないため削除される。一方、周波数帯 B においては、周波 数 帯 域 内 の フ ィ ル タ 基 準 信 号 と 診 断 信 号 の ス ペ ク ト ル 値 に 統 計的な有意差があるため、この周波数帯域のスペクトル成分 が特徴信号(予測異常信号)として残される。

識別指数(discrimination index) DIは、データ1とデータ
2(平均値と標準偏差をそれぞれ µ1と µ2、σ1と σ2とする)の
有意差有無を判定するために使用される。両者の差が大きくなると、DIの値も大きくなるため、フィルタ基準信号と診断
信号のスペクトル成分が同じレベルか否かを判断するために

$$DI = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}} \tag{4-10}$$

両者の差異を判定するときに用いる DIの閾値を SDIとする。 DIが SDIより大きいとき、この周波数帯域におけるフィルタ 基準信号と診断信号の有意差があるとする。また、DIが SDI より小さい場合、フィルタ基準信号と診断信号の有意差がな く、この周波数帯域の診断信号のスペクトル成分はノイズと してゼロに設定される。

本研究では M = 8、SDI = 1.25 に設定した。

図 4-4 統計フィルタ

4.2.3.2 マルチバンドフィルタ

構造系異常(アンバランス、ゆるみ、ミスアライメント) の検出を前提として、計測した信号から回転周波数に対応す る成分のみを抽出するために、本研究では図 4-5 に示すよう な、回転数 frの第 l 次周波数 ±2 Hz (l = 1, 2,..., 25)の成分 のみをパスするマルチバンドフィルタを用いた。

図 4-5 マルチバンドフィルタ

4.2.3.3 周波数領域のヒストグラム

周波数領域のヒストグラムとは、特定の周波数帯域におい て対象信号のスペクトルを正規化することにより縦軸の数値 が頻度に相当するような正規化スペクトルのことである。

スペクトルの正規化により周波数領域のヒストグラム(正規化スペクトル)(以下、ヒストグラムと略称する)を求める。式(4-11)は正規化スペクトルを求める一つの式である。

$$F(f) = \frac{F'(f)}{\sum_{f=f_0}^{f_N} F'(f)}$$
(4-11)

ここで、F(f)は周波数帯域 $f_0 \sim f_N$ におけるヒストグラムで、 F'(f)は対象信号のスペクトルである。

図 4-6 に示すように、周波数帯域 $f_0 \sim f_N$ において、式(4-12)

によりヒストグラムのセグメント値 Vhist iを求める。

$$V_{hist_i} = \mu_{hist_i} w_i \tag{4-12}$$

ここで、 w_i は各周波数分割区間に対応する重み係数で、 $w_i = 0$ ~ 1 となる。また、 μ_{hist_i} は式(4-13)により求めた各分割区間 のヒストグラムの平均値である。

$$\mu_{hist_i} = \frac{\sum_{j=1}^{N_i} F(j\Delta f)}{N_i}$$
(4-13)

ここで、 $F(j\Delta f)$ は周波数 $f_j = j\Delta f$ におけるヒストグラム値であり、 Δf は離散スペクトルの周波数間隔、 N_i は第 i分割区間におけるポイント数である。

図 4-7 には 64 ポイント (N_i = 64)のヒストグラムの平均 値を 1 セグメント値として、32 セグメント値の例を示して いる。フィルタリングされた信号に対するセグメント値の例 であり。特に高周波数領域においてセグメント値が 0 になっ ている。

主成分分析法では、ヒストグラムのセグメント値 $V_{hist_i}(i = 1, 2, ..., I)$ を式(4-14)によりN個の主成分($z_1 \sim z_N$)に変換する。

$$\begin{cases} z_1 \\ \vdots \\ z_N \end{cases} = \begin{bmatrix} a_{11} & \cdots & a_{1l} \\ \vdots & a_{ni} & \vdots \\ a_{N1} & \cdots & a_{Nl} \end{bmatrix} \begin{cases} V_{hist_1} \\ \vdots \\ V_{hist_l} \end{cases} = AV$$
 (4-14)

式(14)において、Aは主成分変換係数行列といい、係数 a_{ni} は診断基準とする正常状態のデータより求められる。また、診断基準データより求められたセグメントベクトルVにおける共分散行列の固有値を $\lambda_1 \sim \lambda_N$ とすると、 λ_n は第n主成分の標準偏差でもある。

J 個のサンプルデータからなるヒストグラムのセグメント 値行列 V」は式(4-15)のようになる。

$$\boldsymbol{V}_{J} = \begin{bmatrix} V_{hist_1,1} & \cdots & V_{hist_1,J} \\ \vdots & V_{hist_i,j} & \vdots \\ V_{hist_I,1} & \cdots & V_{hist_I,J} \end{bmatrix}$$
(4-15)

式(4-16)により*V_{hist_i},j*を正規化すると正規化セグメント値行列 *V*'*_Jは式(4-17)となり、主成分変換係数行列A*により変換した正 規化主成分行列*Z*'*_Jは式(4-18)のようになる。*

$$V'_{hist_i,j} = \frac{V_{hist_i,j} - \overline{V}_{hist_i,j}}{SV_{hist_i,j}}$$
(4-16)

ここで、 $\overline{V}_{hist_i,j}$ と $SV_{hist_i,j}$ はそれぞれJ 個の診断基準データにおける $V_{hist_i,j}$ の平均値と標準偏差である。

$$\boldsymbol{V}'_{J} = \begin{bmatrix} V'_{hist_1,1} & \cdots & V'_{hist_1,J} \\ \vdots & V'_{hist_i,j} & \vdots \\ V'_{hist_1,1} & \cdots & V'_{hist_1,J} \end{bmatrix}$$
(4-17)

$$\mathbf{Z'}_{J} = \begin{bmatrix} z'_{11} & \cdots & z'_{1J} \\ \vdots & z'_{nj} & \vdots \\ z'_{N1} & \cdots & z'_{NJ} \end{bmatrix}$$
(4-18)

J 個の診断基準データより得られた第 n 正規化主成分の平 均値と標準偏差をそれぞれ \bar{z}_n と Sz_n とすると、確率統計理論に より z'_{nj} が $\bar{z}_n \pm KSz_n$ の範囲内であったときに、診断対象の状 態を「診断基準データと同一」と判定する。ここで、K は係 数で、一般に K = 3 である。

また、本研究ではヒストグラムのセグメント数を *I* = 32、 サンプルデータ数を *J* = 10 とした。

図 4-6 セグメント値の計算

図 4-7 周波数領域のヒストグラム例

4.3 実験装置による検証

4.3.1 実験装置と測定条件

回転機械設備を模擬した実験装置の写真を図 4-8 に示す。 軸受近傍に振動加速度センサ(富士セラミックス製 SA12SC、 感度:10 mV/g、周波数: 5 ~ 10000 Hz)が取り付けられて いる。1600 ~ 1900 rpm で回転させた際の振動データを計測 した。サンプリング周波数は 5 kHz でサンプリング時間は 40 秒である。

また、異常を模擬したデータとして回転体に重りを着けた 動アンバランス・静アンバランスのデータ、カップリングゆ るみのデータ、台座ゆるみのデータ、回転軸を 1.77 ° ずらし たミスアライメントのデータも取得した(図 4-9)。

図 4-8 回転機械設備を模擬した実験設備

(a) 動アンバランス

(b) 静アンバランス

(c) カップリングゆるみ (d) 台座ゆるみ

(e) ミスアライメント図 4-9 異常模擬

4.3.2回転数同定の検証実験

あらかじめ回転数が分かっている正常状態の振動加速度デ ータ群を準備し、同定対象の振動加速度データがどの回転数 と同定されるか、DPマッチングの検証実験を行った。回転数 が分かっている正常状態の振動加速度データ群として 1600 rpm、1700 rpm、1800 rpm、1900 rpmのデータを準備し、同定 対象のデータは 1600 rpm、1700 rpm、1720 rpm、1740 rpm、 1760 rpm、1780 rpm、1800 rpm、1900 rpmの正常状態のデー タ(回転数が分かっている振動加速度データ群とは別の試番) を用いた。

スペクトルにおいて 1 ~ 150 Hz の範囲でマッチングした 実験結果を表 4-1 に示す。表内の値はマッチング度合 D を示 しており、値が小さいほど振動データがマッチしている。例 えば同定対象 1700 rpm のデータに対し、回転数が分かってい るデータ群 1600 rpm、1700 rpm、1800 rpm、1900 rpm とのマ ッチング値を計算したところ 1700 rpm とのマッチング値が 1.55 × 10⁻⁵ と一番小さくなり、1700 rpm とマッチしている。

実験結果より、1600 rpm、1700 rpm、1720 rpm、1740 rpm、 1800 rpm、1900 rpmのデータは最も回転数が近いデータとマ ッチしており、うまく回転数を同定できている。一方、1760 rpm と 1780 rpm のデータは 1800 rpm ではなく 1700 rpm とマ ッチしているが、1600 rpm や 1900 rpm とマッチしているわけ ではないので、100 rpm 程度の精度では問題なく回転数を同 定できていることが分かる。

参考までに各回転数でのスペクトル(正常状態)を図 4-10 に示す。人間の目で確認しても、マッチングを行うことが不 可能ではなさそうであるが、DPマッチングを用いると自動的 に、かつ定量的にマッチングすることが可能である。また、 回転数に対応するスペクトルの回転周波数成分が必ずしも大 きいわけではないため、回転数に対応する振動加速度波形の スペクトルからの回転数の同定は容易ではない。

表 4-1 には同定対象として 1700 rpm の動アンバランスのデ ータ、静アンバランスのデータ、ゆるみのデータ、ミスアラ イメントのデータを使用した際の結果も示している。DP マッ チングによると 1700 rpm や 1600 rpm、1900 rpm の正常デー タに近いと判定されたが、その後の診断により異常であると 正しく診断された(4.3.3 項)。

		周波数が分かっている加速度データ			
		1,600 rpm	1,700 rpm	1,800 rpm	1,900 rpm
同定対象	1,600 rpm	1.40E-05	1.52E-05	2.07E-05	2.41E-05
	1,700 rpm	1.58E-05	1.55E-05	1.88E-05	2.18E-05
	1,720 rpm	1.57E-05	1.55E-05	1.86E-05	2.13E-05
	1,740 rpm	1.68E-05	1.61E-05	1.79E-05	2.11E-05
	1,760 rpm	1.84E-05	1.71E-05	1.81E-05	2.04E-05
	1,780 rpm	1.92E-05	1.79E-05	1.85E-05	2.06E-05
	1,800 rpm	2.12E-05	1.94E-05	1.80E-05	1.95E-05
	1,900 rpm	2.39E-05	2.18E-05	1.96E-05	1.94E-05
	動アンバランス	2.10E-05	1.93E-05	1.99E-05	2.18E-05
	1,700 rpm				
	静アンバランス	2.07E-05	2.02E-05	2.34E-05	2.63E-05
	1,700 rpm				
	カップリングゆるみ	1.73E-05	2.08E-05	2.68E-05	2.89E-05
	1,700 rpm				
	台座ゆるみ	1.61E-05	1.96E-05	2.58E-05	2.86E-05
	1,700 rpm				
	ミスアライメント	6.14E-05	5.81E-05	5.81E-05	5.79E-05
	1,700 rpm				

表 4-1 DP マッチングによる回転数同定の検証実験結果

図 4-10 各回転数でのスペクトル(正常状態)

4.3.3 診断の検証実験

回転数の同定を行った後の、状態診断の検証実験の結果を次に示す。

診断対象が 1700 rpm と 1780 rpm の正常状態および 1700 rpm の動アンバランスと静アンバランス状態の際は、DP マッチン グによる回転数同定の結果(表 4-1)より 1700 rpm と同定さ れるため、1700 rpm の正常状態の周波数既知データを診断基 準として主成分分析を行う。

40 秒中 20 秒間の測定データに対し、統計情報フィルタと マルチバンドフィルタ処理をかけ、周波数領域のヒストグラ ムを計算し、主成分分析を行った結果を図 4-11 に示す。本研 究では、診断基準データ、診断対象データとも 20 秒間のデ ータをさらに 10 分割し、サンプルデータ数を J = 10 として おり、半数 (5 データ数) より多くの z'_{nj} が正常状態診断基 準データの $\bar{z}_n \pm 3Sz_n$ (本研究では n = 1, 2 とした)の範囲に 入っていれば正常、そうでなければ異常と判断する。

対象が 1700 rpm 正常データの場合は DP マッチングでは正 しく 1700 rpm と同定され、その後の主成分分析でも問題なく 正常と正しく判定された。

同定対象が 1780 rpm 正常データの場合は DP マッチングで は実際とは少しずれ 1700 rpm と同定されたものの、その後の 主成分分析では正常と判断された。

同定対象が 1700 rpm の動アンバランスと静アンバランスデ ータの場合は DP マッチングでは 1700 rpm 正常状態と同定さ れたものの、その後の主成分分析で、異常と正しく判定され た。

診断対象が 1700 rpm のゆるみ状態の際は、DP マッチング による回転数同定の結果(表 4-1)より 1600 rpm と同定され るため、1600 rpmの正常状態の周波数既知データを診断基準 として主成分分析を行う。主成分分析結果を図 4-12 に示す。

ゆるみ状態も DP マッチングでは 1600 rpm 正常状態と同定 されたものの、その後の主成分分析で、異常と正しく判定さ れた。

参考までに診断基準を 1600 rpm の正常データ、同定対象を 1900 rpm 正常データとした際の主成分分析結果も図 4-12 に示 す。先ほどの 80 rpm 程度のずれでは問題なく正常と判定され たが (図 4-11)、300 rpm も回転数差があれば正常データにも かかわらず異常と判定された。この結果は、回転数が変動す るインバータ制御機器に従来の分析法が適用できないことを 示す良い例であり、また本稿で提案した「状態判定の前に回 転数を自動判定する手法」の重要性を示す例である。

診断対象が 1700 rpm のミスアライメント状態の際は、DP マッチングによる回転数同定の結果(表 4-1)より 1900 rpm と同定されるため、1900 rpm の正常状態の周波数既知データ を診断基準として主成分分析を行う。主成分分析結果を図 4-13 に示す。

ミスアライメント状態も DP マッチングでは 1900 rpm 正常 状態と同定されたものの、その後の主成分分析で、異常と正 しく判定された。

本研究においては、第2 主成分まで(n = 1, 2) で主成分分 析を行ったが、正しく正常・異常を判別できることを確認した。

参考までに、異常データのスペクトルを図 4-14に示す。1700 rpm の正常データのスペクトル (図 4-10) と比較して,明ら かに異なる状態であることが確認できる。

図 4-11 診断対象が 1,700 rpm と 1,780 rpm の正常状態および 1,700 rpm の動アンバランスと静アンバランス状態の際の主 成分分析結果。グラフ内の四角破線は z'_{nj}に対する判定範囲 $\bar{z}_n \pm 3Sz_n(n = 1,2)$ を表す。

図 4-12 診断対象が 1,700 rpm のゆるみ状態の際の主成分分 析結果。グラフ内の四角破線は z'njに対する判定範囲 z_n ± 3Sz_n(n = 1,2)を表す。参考までに 1,600 rpm の正常状態の基 準データを用いた際の診断対象 1,600 rpm、 1,900 rpm の正常 状態の主成分分析結果も示している。

図 4-13 診断対象が 1,900 rpm の正常状態および 1,700 rpm の ミスアライメント状態の際の主成分分析結果。グラフ内の四 角破線は z'_{nj}に対する判定範囲 <u>z</u>_n ± 3Sz_n(n = 1,2)を表す。

図 4-14 異常状態のスペクトル

4.4 結論

本章ではブレイトン冷凍機をはじめとしたインバータ制御 機器に対し、DPマッチングを用いて振動加速度センサのデー タから自動的に回転数を同定し、その後従来から提案されて いる診断法を適用する手法を提案した。また、提案した手法 を検証するため、回転機械設備を模擬した実験装置を用いた 試験を行った。

実験装置による検証では、DP マッチングにより 100 rpm の 精度で回転数を同定できることを確認し、また、その後の主 成分分析法により正しく正常・異常を判別できることを確認 した。 5. 転がり軸受の複合異常に向けた知的診断法^[54] 5.1はじめに

転がり軸受は回転機械において回転軸を支える重要な部分 であり、軸受損傷を防止するために転がり軸受の状態を監視 することは、様々な機械において重要である。転がり軸受に 頻繁に生じる損傷の種類は、外輪傷、内輪傷および転動体傷 であり、初期段階での転がり軸受(単一傷)異常診断手法は 多く提案されているが^{[55]-[57]}、複合異常のような中期段階、 末期段階での異常診断手法はまだ確立されていない。初期段 階での異常検知と軸受交換が理想であるが、初期段階での異 常検知ができなかった場合、損傷度合は中期段階(複数の傷 とフレーキング)へと悪化し、中期段階では、軸受異常は指 数関数的に進展する。そして、可能な限り速やかに異常診断 が行われなければ、軸受破損により設備事故にまで至ってし まう。

軸受異常診断は簡易診断と精密診断からなる。簡易診断の 目的は正常と異常を区別することであり、精密診断の目的は 異常種類を判別することである。精密診断の際には、損傷位 置の探索のためにパス周波数が用いられる。パス周波数を単 一傷の軸受異常診断に適用している報告がなされており ^{[58]-[60]}、また軸受複合異常によって引き起こされるパス周波 数は理論と実験の両方で同じであることは分かっているが、 転がり軸受において複数欠陥を同定する精密診断手法はまだ 提案されていない。そこで、本研究では時間-周波数領域波形 分布(Time-Frequency Waveform Distribution: TFWD)とエク ストリーム・ラーニング・マシン(Extreme Learning Machine: ELM)を用いた新しい回転機械の知的状態診断手法を提案し た。本手法では、時間-周波数解析の後、信号の特徴を抽出す るために、時間領域波形分布(Time domain Waveform Distribution: TWD)と周波数領域波形分布(Frequency domain Waveform Distribution: FWD)を別々に計算し、その後、軸 受状態の正常・異常を区別するために ELM を用いる。軸受状 態が異常と診断された場合は、ELM を用いて損傷が単一傷か 複合異常かを判定する。また、本手法を検証するために、600 rpm、900 rpm、1200 rpm で回転する外輪傷、内輪傷、転動体 傷の転がり軸受を用いて実験を行い、転がり軸受状態診断結 果より、提案した手法の有効性を確認した。

5.2原理

5.2.1 TFWD

振幅・周波数・位相が振動信号の3 つの重要な数値表記で あり^{[1],[61]}、3 つの数値表記から振動信号の特徴を描写し、回 転機械の状態を反映する様々な特徴パラメータを計算するこ とができる。従来の手法では、特徴パラメータを計算する際、 正常状態の振動信号がガウス分布を従うとみなし、機械の状 態診断を行うために、特徴パラメータを定義し、設備状態を よく反映する特徴パラメータを選択する^[62]。しかし、従来の 手法は多くの時間を要し、また、故障診断に関する知識と経 験なしでは完成させることができない。そこで、本研究では、 TFWD による特徴抽出手法を提案する。TFWD は回転機械の 区別するために特徴パラメータより直接的にまた高感度に信 号の特徴を反映することができる。TFWD の計算法は次に示 すとおりである。

短時間フーリエ変換(Short Time Fourier Transform: STFT) によって、幅を適切に狭くした窓関数 w(t)を時間信号 x(t)に 掛け合わせ、時間軸に沿って次の式のようにフーリエ変換す る。

$$S_F(t,f) = \int_{-\infty}^{\infty} x(\tau) w'(\tau - t) e^{-2j\pi f\tau} d\tau$$
 (5-1)

*S_F(t,f)*は時間 *t*における瞬間スペクトルとみなすことができる。 *f*は周波数、τは時間変数である。診断の際に得られた離散信 号 *x*(t)については、離散 STFT が次の式によって得られる。

$$S_F\left(m\Delta t, \frac{n}{N\Delta t}\right) = \sum_{k=0}^{N-1} x(k\Delta t) w'((k - m)\Delta t) e^{\frac{-2j\pi nk}{N}}$$
(5-2)

ここで、 Δt はサンプリング周期、Nは合計サンプリング数で、 m = 0, 1, 2, ..., N - 1、n = 0, 1, 2, ..., N - 1である。

上記式に示されているように、 $S_F(m\Delta t, n / (N\Delta t))$ は二次元配 列の瞬間スペクトル値であり、行が信号時間 tに、列は周波 数fに対応し、「時系列スペクトル」と呼ばれる。時間信号 の時間-周波数解析は $S_F(m\Delta t, n / (N\Delta t))$ を用いて行われる。 S_F $(m\Delta t, n / (N\Delta t))$ の例を図 5-1 (c) に示す。

単一異常と複合異常の区別に向けて、時間信号 x(i)の特徴 を抽出するために、下記手順に沿って時間領域波形分布 (TWD(k)と表記する)を得る。

 $\begin{aligned} x(i)_{i=1 \text{ to } N} &\to |x(i)_{i=1 \text{ to } N}| \to |x(i)_{i=1 \text{ to } N}| \mathcal{O} \vdash^{\circ} - \mathcal{I} \text{ 値} \\ &= x_p(j)_{j=1 \text{ to } N_p} \\ \to x_p(j)_{j=1 \text{ to } N_p} \mathcal{O} \stackrel{\text{in } \mathcal{I}}{\to} \stackrel{\text{TWD}(k)_{k=1 \text{ to } N_p/N_g}} = \sum_{g=1}^{N_g} x_p(g) / N_g \end{aligned}$ (5-3)

本研究では Ng を試験的に 3 とする。時間領域波形分布の例を 図 5-1 (b) に示す。

周波数領域波形分布は特定の周波数帯 $f_0 = n_0 / (N\Delta t)$ から $f_1 = n_1 / (N\Delta t)$ での正規化スペクトル $S_F (m\Delta t, n / (N\Delta t))$ によって次の式のように求める。

$$S_F\left(m\Delta t, \frac{n}{N\Delta t}\right) = \frac{S'_F\left(m\Delta t, \frac{n}{N\Delta t}\right)}{\sum_{n=n_0}^{n_1} S'_F\left(m\Delta t, \frac{n}{N\Delta t}\right)}$$
(5-4)

ここで、 $S'_F(m\Delta t, n / (N\Delta t))$ は正規化前のスペクトルである。 周波数領域波形分布 ($FWD(k / (N\Delta t))$ と表記する)は次の式より得られる。

 $FWD(\frac{k}{N\Delta t} / (N\Delta t))_{k=1 \text{ to } N / N_k} = \sum_{i=1}^{N_k} (\sum_{m=1}^N S_F(m\Delta t, i / (N\Delta t)) / N) / N_k$ (5-5) 本研究では N_kを試験的に 3 とする。周波数領域波形分布の例

を図 5-1 (d) に示す。

⊠ 5-1 TFWD

5.2.2 ELM に基づいた判別法

本研究では ELM に基づいた知的診断法を自動診断に導入 する。ELM は効果的な単一隠れ層フィードフォワードニュー ラルネットワークアルゴリズムである。ELM は隠れノードの 数を設定するだけで、唯一の最適解が得られ、アルゴリズム の遂行中に、ネットワークの入力重みや隠れ要素のオフセットを調整する必要がない。

それゆえ、ELM は学習速度が速く、性能が良い。データ予 測や画像同定の分野での応用があり、ELM は現在脚光を浴び ているディープニューラルネットワークアルゴリズムと対極 をなす。高速化のポイントは、学習段階において、入力層か ら隠れ層への重みを得ることをあきらめる点である。具体的 な ELM の手順は次に示す通りである。

①入力層から隠れ層への重みをランダムに生成する

②隠れ層の出力を計算する(活性化関数によって)

③学習データの回帰係数が得られ、隠れ層から出力層への重 みとして使用できる

本研究では軸受の状態を判別するために、周波数領域波形 分布を ELM の入力として使用する。軸受状態が異常と診断さ れた場合には、単一異常と複合異常を区別するために、時間 領域波形分布を ELM の入力として使用する。軸受状態を区別 するための周波数領域波形分布と時間領域波形分布を用いた ELM の構造を図 5-2 に示す。

本研究では図 5-3 に示すフローチャートを提案する。初め に、計測信号の特徴を引き出すために STFT の後に周波数領 域波形分布と時間領域波形分布を計算する。その後、ELM に よって信号の種類を判別する。さらに、複合異常における異 常種類の判別を行う。本手法の有用性を 4.3 節の実験で検証 した。

図 5-2 状態区別のための ELM の構造。(a) 異常有無区別のための ELM の構造。(b) 異常段階区別のための ELM の構造。

図 5-3 提案したフローチャート

5.3 検証実験

本節では検証実験について記載し、また、結果について議 論する。実験で使用した回転機械を図 5-4 に示す。軸受異常 は図 5-5 に示すように人工的に作成した。振動データは水平 方向と垂直方向の 2 つの加速度センサで計測した。実際の工 場での使用環境を想定し、実験では 400 kg の静的負荷を軸に かけた。測定時間は 10 秒でサンプリング周波数は 100 kHz である。軸は 600 rpm、900 rpm、1200 rpm で回転させた。軸 受の状態は、正常、外輪傷、内輪傷、転動体傷の 4 状態であ り、実験データはそれぞれの状態で測定した。実験で使用し た複合異常軸受には表 5-1 に示すように外輪、内輪、転動体 に傷を作成した。傷の数や位置は様々であり、外輪傷は 3 タ イプ、内輪傷も 3 タイプ、転動体傷は 2 タイプ作成した。提 案手法の有用性を単一異常や複合異常を用いた実際の軸受異 常診断で検証した。図 5-3 のフローチャートに示すように、 測定した信号は、異常特徴を抽出するために、STFT の後、周 波数領域波形分布と時間領域波形分布を計算する。異常種類 を認識するために、周波数領域波形分布と時間領域波形分布 を ELM に入力する。信号の種類は周波数領域波形分布によっ て区別される。複合異常のタイプ(異常段階)は時間領域波 形分布によって区別される。例として、600 rpm における、 異常種類を区別するための周波数領域波形分布を図 5-6、図 5-7 に 示す。提案手法の有用性を外輪、内輪、転動体に複数の傷が ある軸受を用いて異常診断によって検証した。図 5-8 と表 5-2 に示すように、実験でのデータの分類精度は 100 % である。

異常軸受

図 5-4 実験で使用した回転機械

図 5-5 実験で使用した人工複合異常軸受の例。左から順に外輪傷複合異常タイプ 2、内輪複合異常タイプ 2、転動体複合異常タイプ 1 である。(複合異常タイプについては表 5-1 を参照)

回転軸受の異常タイプ	傷の数	傷の間の角度
外輪傷複合異常タイプ1	2	12°
外輪傷複合異常タイプ2	3	15°, 24°
外輪傷複合異常タイプ 3	7	20°, 16°, 24°, 12°, 8°, 28°
内輪傷複合異常タイプ1	2	15°
内輪傷複合異常タイプ2	3	15°, 30°
内輪傷複合異常タイプ 3	7	25°, 20°, 30°, 15°, 10°, 35°
転動体傷複合異常タイプ1	3	72°, 72°
転動体傷複合異常タイプ2	6	72°, 72°, 72°, 72°, 72°

表 5-1 実験で使用した軸受傷の表記法

(d)

周波数(kHz)

図 5-6 異常種類を区別するための周波数領域波形分布 (600 rpm)。(a)内輪傷。(b)外輪傷。(c)転動体傷。(d)正常。

(d)

図 5-7 軸受異常タイプ異常種類を区別するための時間領域 波形分布 (600 rpm)。(a)単一内輪傷。(b)内輪複合異常 タイプ 1。(c)内輪複合異常タイプ 3。(d)内輪複合異常タ イプ 4。

予測結果(ELM)

図 5-8 提案した一連の診断法による分類結果

rpm	異常種類分類	異常段階同定
600	100 %	100 %
900	100 %	100 %
1200	100 %	100 %

表 5-2 提案した軸受状態診断手法の精度

5.4 結論

転がり軸受は回転機械において回転軸を支える重要な部分であり、軸受損傷を防止するために転がり軸受の状態を監視

することは、様々な機械において重要である。転がり軸受に 頻繁に生じる損傷の種類は、外輪傷、内輪傷および転動体傷 である。転がり軸受における単一異常診断に関する理論と方 法は確立されており、また軸受複合異常によって引き起こさ れるパス周波数は理論と実験の両方で同じであることは分か っているが、転がり軸受において複数欠陥を同定する精密診 断手法はまだ提案されていない。

そこで、本研究では、TFWDという特徴抽出手法を提案し、 ELM と連続診断法による知的軸受異常診断手法を提案した。 さらに、提案手法の有用性を実験により確認した。実験は、 外輪、内輪、転動体に複数の傷がある軸受を用いた異常診断 によって行い、実験データの分類精度は 100 % であった。

従来の方法によって異常診断のための特徴パラメータを計 算する際、外径、内径、転動体径、転動体数などの軸受パラ メータが必要になる。しかし、実際の工場で一連の診断を行 う際、機械は分解されていないので軸受の特徴は分からない。 この場合、パス周波数を計算するのは不可能である。さらに 異なる異常種類を決定する多くの異なるパラメータが存在す るため、特徴パラメータを見つけるのは容易ではない。本研 究で提案した TFWD は、データが正規分布従うか否かにかか わらず、回転機械の状態を特徴パラメータより直接的に、ま た高感度に分類するための信号の特徴を反映することができ る。本研究で提案した ELM を用いた連続診断法はコンピュー タで行うことができる知的自動異常診断手法であり、異常診 断において早い学習速度と優れた機能を有する。今後は、ELM を用いた知的異常診断手法の普遍性を明らかにするために、

6. 結言

超伝導ケーブルには高効率送電など様々な利点があるが、 超伝導状態を保つために、冷媒を常に流して超伝導材料を一 定の温度以下に冷やし続ける必要がある。そこで、液体窒素 循環ポンプや冷凍機などの不具合を事前に検出することを目 的とし、超伝導送電システムに向けた状態監視・診断技術に 関する基礎研究を行った。具体的には、回転式液体窒素循環 ポンプに向けた自動診断法、インバータ制御冷凍機に向けた 自動診断法、転がり軸受の複合異常に向けた知的診断法につ いての研究を行った。

回転式液体窒素循環ポンプに向けた自動診断法では軸受異 常から離れた場所での自動診断法について研究を行った。回 転 式 液 体 窒 素 循 環 ポ ン プ で は 軸 受 が 極 低 温 部 に あ る こ と が ほ とんどであり、極低温部に加速度センサを取り付けるのは困 難であるため、軸受から離れた常温部で診断する方法につい て検討が必要となる。そこで、遺伝的アルゴリズムおよびタ ブー探索法を用いた簡易診断とハイパスフィルタ後の包絡線 スペクトルから算出した軸受診断専用パラメータに決定木を 用 い る 精 密 診 断 と を 組 み 合 わ せ た 手 法 を 提 案 し 、 回 転 機 械 設 備を模擬した実験装置を用いて得られたデータをから閾値・ 決定木を設定した。また、異なる試番を用いて、設定した閾 値・決定木の妥当性を検証し、様々なアルゴリズムを適用す ることで離れた場所での衝撃系異常が検出可能であることを 確 認 した。 さらに、 決 定木の代わりに可能性理 論とファジィ 推論を用いた精密診断法も提案し、有用性を確認した。回転 式液体窒素循環ポンプに限らず、現場の設備には軸受近傍に 加速度センサを取り付けるのが難しい設備もあり、そのよう な設備にも本手法を適用することが可能である。

インバータ制御冷凍機に向けた自動診断法では今後主流に なるブレイトン冷凍機に着目し、インバータ制御回転機械の 自 動 診 断 法 に つ い て 研 究 を 行 っ た 。 イ ン バ ー タ 制 御 回 転 機 械 は負荷のよって回転数が変化してしまい、回転数が変化する と故障診断のために測定した振動加速度信号は時間と共に大 きく性質が変化してしまうため、従来から提案されている故 障診断手法のインバータ制御機器への適用は難しい。そこで、 インバータ制御機器に対し、DPマッチングを用いて振動加速 度センサのデータから自動的に回転数を同定し、その後従来 から提案されている診断法を適用する手法を提案した。また、 提 案 した 手 法 を 検 証 す る た め 、 回 転 機 械 設 備 を 模 擬 し た 実 験 装 置 を 用 い た 試 験 を 行 っ た 。 実 験 装 置 に よ る 検 証 で は 、DP マ ッチングにより 100 rpm の精度で回転数を同定できることを 確認し、また、その後の主成分分析法により正しく正常・異 常を判別できることを確認した。本手法はブレイトン冷凍機 に限らず、超伝導ケーブル冷却システムにも使用されるチラ 一(冷却水循環装置、液体窒素循環ポンプや冷凍機の冷却水 循環に使用)や一般に利用されているエアコンなど、幅広い インバータ制御回転機に適用することが可能である。

転がり軸受の複合異常に向けた知的診断法では、転がり軸 受式液体窒素循環ポンプや冷却水循環ポンプなどに使用され る転がり軸受の中期段階の異常にみられる複合異常(複数の 傷による異常)の診断法について記載する。転がり軸受にお ける単一異常診断に関する理論と方法は確立されており、ま た軸受複合異常によって引き起こされるパス周波数は理論と 実験の両方で同じであることは分かっているが、転がり軸受 において複数欠陥を同定する精密診断手法はまだ提案されて いない。そこで、本研究では、時間-周波数領域波形分布とい う特徴抽出手法を提案し、エクストリーム・ラーニング・マシンと連続診断法による知的軸受異常診断手法を提案した。 本手法は当然一般の転がり軸受に適用可能である。

謝 辞

本成果の一部は国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務の結果得られたものです。

本論文の作成に際し、当初から直接的なご指導をいただい た、三重大学大学院 生物資源学研究科共生環境学専攻環 境・生産科学講座 陳山鵬教授に感謝申し上げます。陳山鵬 教授には、三重大学に入学前から、様々な面においてご指導 いただきました。

また、三重大学に在学中においてご指導とご支援をいただ いた同環境・生産科学講座 宋瀏陽研究員に感謝申し上げま す。

さらに、本論文について審査・指導いただいた先生方々(順 不同:亀岡孝治教授、村上克介教授、王秀崙教授、鬼頭孝治 教授)に感謝申し上げます。

参考文献

- [1] 陳山 鵬:設備保全・診断技術の概要、振動信号計測、信号処理、簡易診断、精密診断、「回転機械設備診断の基礎と応用」、DET LLP.出版、三重、pp. 1-18, 31-120 (2015)
- [2] 里永 憲昭、陳山 鵬:化学プラントにおける設備診断の 現状と課題、潤滑経済、11 月号、pp. 28-35 (2007)
- [3] 豊田 利夫:予知保全(CBM)方式の考え方、「予知保全(CBM)の進め方」、日本プラントメンテナンス協会、 東京、pp. 8-55(1998)
- [4] 豊田 利夫:設備診断技術と予知保全、「回転機械診断の進め方」、日本プラントメンテナンス協会、東京、pp. 9-40 (1999)
- [5] 豊田 利夫:ころがり軸受診断のための信号処理、「設備診断のための信号処理の進め方」、日本プラントメンテナンス協会、東京、pp. 177 (1996)
- [6] 豊田 利夫、陳 鵬、溝田 武人:スペクトルの統計的検定による故障信号の抽出、精密工学会誌、Vol. 58、No. 6、 pp. 1041-1046 (1992)
- [7] 陳 鵬、豊田 利夫:有・無次元特徴パラメータの総合に よる設備診断法及び歯車異常診断への応用、評価・診断 に関するシンポジウム講演論文集、社団法人日本機械学 会、pp. 112-117 (2002)
- [8] 陳山 鵬、宮崎 修治、橋本 和也:低速軸受の最新診断法、 評価・診断に関するシンポジウム講演論文集、社団法人 日本機械学会、pp. 1-3、(2004)
- [9] Peng Chen, Toshio Toyota and Zhengjia He: Automated Function Generation of Symptom Parameters and Application to Fault Diagnosis of Machinery in Variable

Operation-conditions, IEEE Transactions on System, Men, and Cybernetics (Part A), Vol. 31, pp. 775-781 (2001)

- [10]金森 啓祐、陳山 鵬、里永 憲昭、三苫 哲郎:回転機械 設備の状態予測法について(1)、第6 回評価診断に関す るシンポジウム予稿集、No. 210 (2007)
- [11]陳 鵬、豊田 利夫:特徴周波数帯域の抽出及び可能性理 論による設備異常の逐次診断法、日本信頼性学会誌 Vol.
 2、No. 4. pp. 31-34 (1998)
- [12]H.Q Wang and P. Chen: Fuzzy Diagnosis Method for Rotating Machinery in Variable Rotating Speed, IEEE Sensors Journal, Vol. 11, No. 1, pp. 23-34 (2011)
- [13]Akito Tomita, PengChen and Toshio Toyota: Dynamic Analysis Method and Diagnosis Method for Misalignment State of Rotating Shaft, Proc. International Symposium on Machine Condition Monitoring and Diagnosis, pp. 151-155 (2002)
- [14]村瀬一哉、陳山鵬:回転軸ミスアライメント状態の動特 性解明、日本機械学会第4回評会診断シンポジウム論文 集(2006)
- [15]王 暁東、坂 倫嘉、陳山 鵬:回転軸のミスアライメント 状態の動特性と診断法(1) - 継手の種類による異常振動 特徴の解明-、平成20 年度日本設備管理学会創立20 周 年記念大会論文集、pp. 240-244 (2008)
- [16]坂 倫嘉、王 暁東、陳山 鵬:回転軸のミスアライメント 状態の動特性と診断法(2) - アングル・オフセット及び 複合ミスアライメント状態の特徴解明-、平成20 年度日 本設備管理学会創立20 周年記念大会論文集、pp. 240-244 (2008)

[17]本庄 昇一、丸山 修、中野 哲太郎、増田 孝人、渡部 充
 彦、大屋 正義、町田 明登、矢口 広晴、仲村 直子:NEDO
 「高温超電導ケーブル実証プロジェクト」、低温工学、
 Vol. 48、No. 11、pp. 553-561 (2013)

[18]「超電導き電ケーブル」、鉄道総研技術フォーラム2018

- [19]Masaru Tomita, Kenji Suzuki, Yusuke Fukumoto, Atsushi Ishihara, Tomoyuki Akasaka and Yusuke Kobayashi: Energy-Saving railway systems based on superconducting power transmission, *Energy*, Vol. 122, pp. 579-587(2017)
- [20]富田 優、鈴木 賢次、福本 祐介、石原 篤、赤坂 友幸、小林 祐介:鉄道用超電導ケーブルの要素技術の構築、鉄道総研報告、Vol. 26、No. 12、pp. 45-50(2012) [21]公益財団法人鉄道総合技術研究所ホームページ、 https://www.rtri.or.jp/rd/division/rd49/rd4940/rd49400109.html、 閲覧日2019年8月2日
- [22] 柁川 一弘、只熊 健太、上岡 泰晴、石山 敦士、今川 信 作、中村 武恒、平井 寛一、尾崎 信介:高温超電導電力 ケーブル冷却用液体窒素循環ポンプの研究開発、金属・ セラミックス/超電導機器合同研究会資料、電気学会、 2018年7月、pp.11-16
- [23]「高温超電導実用化促進技術開発」事業原簿【公開版】、 NEDO(2018)
- [24]李 瑞:ギフォード・マクマホン型小型冷凍機、応用物理、
 Vol. 67、No. 4、pp. 449-450 (1998)
- [25]小林 祐介、富田 優、宋 瀏陽、陳山 鵬:異常軸受から離れた場所での自動診断法、日本設備管理学会誌、Vol. 31, No. 1, pp. 14-22 (2019)
- [26] 陳山 鵬:軸受の損傷による回転機械の振動事例と診断方

法、トライボロジスト(日本トライボロジー学会誌)、 Vol. 61、No. 7、pp. 431-436(2016)

- [27]安居院 猛、長尾 智晴:遺伝的アルゴリズムの基礎、「ジ ェネティックアルゴリズム」、昭晃堂、東京、pp. 1-16(1993)
- [28]宋 瀏陽、陳山 鵬、王 華慶、浦中 健:GA 統計フィルタ とクラスタ分析による知的設備診断法:軸受診断への適用、 日本機械学会シンポジウム講演論文集、No.14-43、pp. 7-10 (2014)
- [29]Liuyang Song, Huaqing Wang, Jinji Gao, Jianfeng Yang, Wenbin Liu and Peng Chen: Application of statistics filter method and clustering analysis in fault diagnosis of roller bearings, Journal of Physics: Conference Series, Vol. 364, No. 1 (2012)
- [30]橋本 英樹、野々部 宏司:入門タブー探索法、オペレー ティングリサーチ、Vol. 58、No. 12、pp. 703-707 (2013)
- [31]三谷 政昭:フーリエ変換を四則演算で計算してみよう、 「今日から使えるフーリエ変換」、講談社、東京、pp. 120-125 (2005)
- [32]村田 茂昭: FFT によるディジタルフィルタのシミュレー ション、NII-Electronic Library Service、Sapporo University、 pp.45-66 (2002)
- [33]Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone: SPLITTING RULES, Classification and Regression Trees, Chapman & Hall, Boca Raton, pp. 93-129 (1993)
- [34]金田 重郎:決定木学習:実用機を迎えたノンパラメトリック統計手法、CICSJ Bulletin、Vol. 117、No. 4、pp. 9-14 (2014)
- [35]J. R. Quinlan: C4. 5: Constructing decision trees, Programs

for Machine Learning, *Morgan Kaufmann*, *San Francisco*, pp. 21-23 (1993)

- [36]A. Nourmohammadzadeh, and S. Hartmann: Fault Classification of a Centrifugal Pump in Normal and Noisy Environment with Artificial Neural Network and Support Vector Machine Enhanced by a Genetic Algorithm, International Conference on Theory and Practice of Natural Computing, pp. 58-70 (2015)
- [37]R. Gopinath, C. S. Kumar, V. Vaijeyanthi and K. I. Ramachandran: Fine Tuning Machine Fault Diagnosis System Towards Mission Critical Applications, Intell. Syst. Technolo. Appl., pp. 217-226 (2016)
- [38]Y. Kobayashi, L. Song, M. Tomita and P. Chen: Automatic Fault Detection and Isolation Method for Roller Bearing Using Hybrid-GA and Sequential Fuzzy Inference, sensors, Vol. 19, No. 16, 3553 (2019)
- [39]D. Cayrac, D. Dubois and H. Prade: Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application, *IEEE Trans. Fuzzy Syst.*, Vol. 4, No. 3, pp. 251-269 (1996)
- [40]L. Song, H. Wang and P. Chen: Step-by-Step Fuzzy
 Diagnosis Method for Equipment Based on Symptom
 Extraction and Trivalent Logic Fuzzy Diagnosis Theory, *IEEE Trans. Fuzzy Syst.*, Vol. 26, No. 6, pp. 3467-3478
 (2018)
- [41]R. S. Gunerkar, A. K. Jalan and S. U. Belgamwar: Fault diagnosis of rolling element bearing based on artificial neural network, J. Mech. Sci. Technol., Vol. 33, No. 2, pp.

505-511 (2019)

- [42]W. Deng, R. Yao, H. Zhao, X. Yang and G. Li: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm, Soft Comput., Vol. 23, No.7, pp. 2445-2462 (2019)
- [43]S. W. Fei: The Hybrid Method of VMD-PSR-SVD and Improved Binary PSO-KNN for Fault Diagnosis of Bearing, Shock. Vib. Vol. 2019, 4954920 (2019)
- [44]L. Wen, X. Li, L. Gao, Y. Zhang: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method, *IEEE Trans. Ind. Electron.*, Vol. 65, No. 7, pp. 5990-5998 (2018)
- [45]河田健一、池本貴正、金星、斉藤豊:回転数制御方式の油圧ポンプが持つ圧力・流量情報を活用した油圧システムの予兆監視、平成29年度日本設備管理学会秋季研究発表大会論文集、大阪、2017年11月21日、pp.13-16 (2017)
- [46] 富田 優、鈴木 賢次、福本 祐介、石原 篤、赤坂 友幸、 小林 祐介:ターボブレイトン冷凍機による鉄道用超電導 ケーブルの冷却システム、低温工学・超電導学会講演概 要集、Vol. 89、pp. 117 (2014)
- [47] 宋 瀏陽、富田 優、小林 祐介、陳山 鵬:周波数領域の ヒストグラムの特徴解析による設備状態識別法、平成 29 年度日本設備管理学会秋季研究発表大会論文集、大阪、 2017年11月21日、pp.25-30 (2017)
- [48]M. S. Hoseinzadeh, S. E. Khadem and M. S. Sadooghi: Modifying the Hilbert-Huang transform using the nonlinear entropy-based features for early fault detection of ball

bearings, Applied Acoustics, Vol. 150, pp. 313-324 (2019)

- [49]M. Sadoughi and C. Hu: Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings, *IEEE Sensors Journal*, Vol. 19, No. 11, pp. 4181-4192 (2019)
- [50]上坂 吉則、尾関 和彦:DPマッチング、「パターン認識と 学習のアルゴリズム」、文一総合出版、東京、pp. 140-152 (1990)
- [51]L. Song, H. Wang and P. Chen: Vibration-Based Intelligent Fault Diagnosis for Roller Bearings in Low-Speed Rotating Machinery, IEEE Transactions on Instrumentation and measurement, Vol. 67, No. 8, pp. 1887-1899 (2018)
- [52]Z. Guan, L. Song, H. Wang, K. Li and P. Chen: A New Automatic Diagnosis Method Based on the Multivariable Analysis for Structural Faults of Rotary Machinery, *International journal of COMADEM*, Vol. 21, No. 1, pp. 9-18 (2018)
- [53]L. Song, P. Chen, H. Wang and M. Kato: Intelligent Condition Diagnosis Method for Rotating Machinery Based on Probability Density and Discriminant Analyses, *IEEE* Signal Processing Letters, Vol. 23, No. 8, pp. 1111-1115 (2016)
- [54]Y. Kobayashi, L. Song, M. Tomita, Y. Mizushima, H. Wang and P. Chen: Intelligent diagnosis method for multi-flaws of roller bearing by time-frequency waveform distribution and extreme learning machine, *International journal of COMADEM*, Vol. 21, No. 4, pp. 1-5 (2018)
- [55]P. Shakya, M. S. Kulkarni and A. K. Darpe: Bearing diagnosis based on Mahalanobis-Taguchi-Gram-Schmidt

method, J. Sound Vibration, Vol. 337, pp. 342-362 (2015)

- [56]R. Jegadeeshwaran and V. Sugumaran: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines, *Mech. Syst. Signal Pr.*, Vol. 52-53, pp. 436-446 (2015)
- [57]H. Liu and J. S. Dhupia: A time-domain fault detection method based on an electrical machine stator current measurement for planetary gear-sets, in AIM 2013, pp. 1631-1636
- [58]U. Muhammet, D. Mustafa, O. Mustafa and K. Haluk: Fault Diagnosis Of Rolling Bearing Based On Feature Extraction And Neural Network Algorithm, Recent Advances In Telecommunications, Signals And Systems
- [59]I. Howard: A Review of Rolling Element Bearing Vibration Detection, Diagnosis and Prognosis, Defense Science And Technology Organization, October 1994
- [60]G. Shahab: A Fault Diagnosis System For Rotary Machinery Supported By Rolling Element Bearings (2007)
- [61]D. G. Pascual: Artificial Intelligence Tools: Condition Monitoring: Available Techniques, Decision Support Systems Decision Support Systems in Condition Monitoring and Diagnosis, CRC Press, Boca Raton, pp. 76 (2015)
- [62]A. Jakub and R. Zimroz: Stochastic modeling of time series with application to local damage detection in rotating machinery, Key Eng. Mater., Vol. 569, pp. 441-448 (2013)