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Conformal Field Theory and the Braid Group

by
Yukihiro KANIE

Department of Mathematics, Faculty of Education, Mie University

Introduction

We discuss here conformal field theories (WZW-theory) on P! associated with
symmetry of affine Lie algebra of type XV and related monodromy representations of
the braid group. Principally we describe on the same line as the one for A{V-
symmetry in our previous work [TK] and give explicit formulae for monodromy
representations in the case of A{"-symmetry. These representations factor through
Iwahori’s Hecke algebra Hy(q) are thus obtained.

This expository work has an intermediate form between [TK] and [TK2], in the
latter the notion of holonomic systems for N-point functions plays a main role rather
than vertex operators (operator formalism), and some monodromy representations for
the case of BY, C{, D{"-symmetry are determined. These representations factor
through Birman-Wenzl-Murakami algebra, a g-analogue of Brauer’s algebra.
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Notations

g: simple Lie algebra of type X,=n_@®hdn, =hd® zlga
ae

A, T1={a;, -+, a,}: system of roots or simple roots of (g, h)

f: maximum root

(, ): nondegenerate symmetric invariant bilinear form on g normalized as (6, 6)=2.
I=CX_o+C0" + CXy(=sl(2; C)); X:o€gsg (Xp X-g)=1, 6" =[X, X_].

Pziz:lZKi: weight lattice of (g, b); <A, af > =4,

P,.=Y Z,,A;: the set of dominant integral weights of (g, b)
i=1

§=g®C[t, t~1]@Cc: the affine Lie algebra of type X' >g=g®1

Xn)=X®t" for Xeqg and neZ

[X(m), Y(n)]=[X, Y] (m+n)+m(X, Y)dpnoc
h=h@®C,: the Cartan subalgebra of §
m:=g@®IC[*], iy =m,@n,, i_=m_@n_, p:=m:@DgdDCc: subalgebras of §
g: dual Coxeter number=n+1, 2n—1, n+1, 2n—2, 12, 18, 30, 9, 4 of §, if it is of type
AL, B, e ED ED, D, FY, GO
£ =Y Ce,+ Cey: the Virasoro algebra

neZ
3 —

m
[ems en] = (m_n)em+n+#_

S Omeno€ss Lem €61=0

Q=Y X'X,eU(g): the Casimir element of g ({X%}, {X;} are dual bases of g)
sX(m)Y(n): the normal ordered product for Xi (m), Y(n)eg®CI1t, 1]
=X(m)Y(n) (m<n); %(X(m)Y(n)+ Y (n)X(m)) (m=n); Y (@)X(m) (m>n)

X(@z)= Y X(n)z7""! (zeC*, Xeg): a current
1 .
T(Z)—_—z—(g—-l_‘a; OXl(Z)Xi(Z)o (ZEC*)

=Y, L(m)z~™"%; the energy momentum tensor
neZ

1 ;
= s X{(—k)X,(m+k): : the Sugawara form
g+0 & F

I: the central charge (level of integrable representation) (we fix leCsy)

L(m)

k=Il+g
P,={leP.; (4, 0)<[}

. 1
W;: the irreducible left f-module of spin j for ]e—z—ZZO
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V. the irreducible left g-module of highest weight 1€ P,, decomposed as a f-module:

Vi= X mW;

2j<(6,4)

W =Hom(W, O), ¥V} =Hom(V,, C): the dual (right) g(f)-module of W, Vv,

1
Wf: the irreducible right f-module of spin j for jeEZ20

Vi : the irreducible right g-module of highest weight AEP,

M= U(§)®U(p+)|,1>: the Verma module as a left §g-module of highest weight IANg+ A
(AePy) (m,|A)=n,[2>=0,cldy=11), hA)=<4, hDIL)).

M3 =</1|®U[v_)U(§): the Verma module as a right §-module of highest weight Ag+ 4
(CAm_=<Aln_=0, (Ae=KAl, {Ah={4, k) <Al).

J2=U(p-)|J;>: the proper maximal g-submodule of .#,

F3 ={J3lU(p.): the proper maximal §-submodule of MY
Wa>=Xo(—= 1) 49715, (= AX (1) R0+

T My—>H 4wy MY —MF e the canonical projection

H =M, 7, the integrable highest weight left §-module

H; =I,\M}: the integrable highest weight right §-module

I>: Vi xV,;»C, #} x#,;-C: the vacuum expectation values

AMA>=1, <ualvy=<{ulav) for any aeg or §
H1q and H#'],: the eigenspaces of #, and #} for the operator L (0) belonging to the

eigenvalue A,;+d respectively

H,= [] #,4 and # = [] #},: completions of #, and #} respectively

d>0 a0

AeP) AeP) AePy

H= Y HcH=Y K, #* = Y #}cH= Y #.
iePy
I: H—>Hy, >Hy, A >H;, #LHH]: the projections to the A-component
\/:{\/:(i /1/1 ); A, Ay, A,€P.}: the set of vertices
2 1

V,={veV; i, 1,eP}
“//Tz(v)=the set of all vertex operators of type v
i
V(w):{q)eHomg(Vl@ Vh; V12)§ pTOjo @ (W,®@W,;;)=0 for any f-simple submodules

W, W;, W;, of V,, Vip Va, resp. with j+j, +j,> 1}



Yukihiro KANIE

(ICG)={veV,; ¥ (v)#0}: the set of all ICG-vertices

A+2 1
Al=(_l’—2%—p—)=ﬂ§2|y .- the conformal dimension of vertex operators of weight 4

A(v)=A,: the conformal dimension of a vertex v

[&(v)=AA+All—A12 for a vertex v

O, z2)=0(z) )= Y, (I>,,(n)z""3“”: the homogeneous decomposition of a vertex
operator ®(z) of t;;Ze \Y

®,(z): the vertex operator of type v whose initial term ®@. (0) is pe? (v) for each
ve(ICG) (considered as V,1®9£”11—>.9?12)

i*: the anti-weight of A, defined as —A* is the lowest weight of ¥, i.e. A* = —wy(4),
where w, is the longest element of the Weyl group of (g, b)

v: V,+ »>Vi: the isomorphism defined by v(|2* Y)=<(A*| and v(X|v))=—v(vD)X
(lv>eV;+, Xeg).

v: #,+ —»H T the isomorphism extended by the above v and v(X(m)|v))=
—v(|v)) X(m) (vd>eH+, Xeg, meZ)

Let M=M,®---®M, the tensor product of g-modules M, then
p;: the g-action on the j-th component of M

Ay =p;+p;: the diagonal action on the j-th and k-th components of M

1
ij'_-z Pj(Xi)Pk(Xi) =5(Ajk(Q)—'ij_Qkk)

A= (Ay,-++, 41): an N-ple of weights A,eP,
Va =V @ @Vs, Vi=Vi® ¥y,

VY(N)=Homy(V, ; C) the space of all g-invariant forms of Vi

U .
V(N =YV (A); p=(y-1 1) eP)' 3
V(A),=7 (V)R- @Y (Vi) ® - @V (v (1))

A [
VN(W)'—-(OAZN—l)"“’ \/Jﬂl):(“l #i—1>,...\/1W)=(u110>

(Px®--- @) (U@ ®uy ) =<0l (uy)e-°01 1) (10>) (9ie¥ (viw), ueV;)
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¥ es(N): the space of N-point functions of weight N\;
Dy (2)=LD,, (25) Dy (z:)D €V UN) (9=0y® - @@1€¥(N))

A3(M)= - 3 Bw(n)

N=(Ay, A3, 45, A;): a quadruple of AeP,
V;/(/\);2=H0mg(yﬂ® V‘_3, VAI)®H0mg(V;'2®V;_1, VI‘) (ﬂEP+)

‘ 7 %
7 /\>i2="”(/123u)®"’/<u i > (ueP)
1

Ciz T VARV (A

ueP+
Ci(02091) U3®@u,Qu;)=0,(U3Q0, (u,®u,)) (¢2®¢1EV:(/\);2, wev,)
I(N)={neP; V(N2 #{0}} = L(A)={uePsy (N),* #{0}}
AN =Awy)+A(vy)=A, +48, +A, = A,

For each 1eP,

V' (N; T)=;V(N§ T),n p=Uy-1""" #1)€(P1)N_1

o t)ﬂ=~r((f' NN_1))@...®«/f<(ﬂ?m_1)>®...®V((,f 0))

Xy={(x,", 2,)eCY; z;#2, (i=k)}
My={(zy,++, 2,)E(C*)"; z;#2, (i#k)}
R.={2=(2y,"+, 2,)ECY; |2p)-dlzs |} = Xy
Rz0={(zn,» 2,)ECY; |zy]>+->lz, )0}

N={(n>+, 2,)ERN; zy>--->2, 0}
R, ={weCV;1>|w;| (1<i<N-1)}

wo={W=(Wy, -, w)ECY; wy#0, DIw>0 Q<i<N—1), 1)|w,|}
(Xw, 7y, Xy): the universal covering space of Xy
Sy: the N-th symmetric group
{64,---, o5_1}: the canonical generators (5;=(, i+1)) of Sy
Py Xy—Xy=Xy/Sy: the canonical projection
By: the braid group with N-strings of C (Z=r; (Xy,*))

By is generated by {b,,---, by_,} and fundamental relations:

bibiy1b;=b;y1bbiy (1<ISN=2); bbj=bb; (li—j1=2)
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ny: By—Sy: the homomorphism defined by ny(b;)=0;
Py=kerny: the pure braid group with N-strings of C (==, (Xy, *))
Hy(g): the Hecke algebra of type 4y_,
{T,,---, Ty—,}: the canonical generators of Hy(q)
T.Ti  T;=T;\T;)T;+, (I<i<SN-=-2); T.T;=T,T; (li—jl =2);
(T;—q) (T;+1)=0
{e1,"--, ey—1}: the system of idempotent generators of Hy(q); e;=(¢—T;)/[2],

%: the set of all Young diagrams on N-nodes

Y=[f,, -, fi]: the Young diagram such that the number of nodes of the i-th row is f;

(fiz-2h)
#4: the set of all Young diagrams on N-nodes with depth<g
YGO={Y=[f, fo> [,1€%%; fr—f,<x—g=I} for type AV
I'(z): the gamma function

F(a, B, v,; z): the Gauss’ hypergeometric function

i1
[i]q=(2_1 (g#1), i (g=1): a g-integer (icZ)

L . .
L =—— _: the multinomial coefficent for m= (my,---, m;) with L=%m,
m mN!"'m1!

§1. Preliminaries

In this section, we summarize the facts about affine Lie algebras of type X, their
representations and relations with the Virasoro algebra mainly after V. G. Kac

[Ka]. Conformal field theory concerns with Virasoro algebra symmetries, and we

treat here its Wess-Zumino theory, ie. also with affine Lie algebra symmetries.

1.1) Simple Lie Algebras of type X,

Let g be a simple finite-dimensional Lie algebra over C of type X,, and fix a
Cartan subalgebra b of g. Denote by A the root system of (g, h). Then the Lie

algebra g has the root space decomposition
3=bh® } g,
YeA
where

9,={Xeg; [H, X]={y, H)X for any Heb}.

Choose a fundamental system IT={x,,---, a,} of roots of (g, h) and denote by A,
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the set of the corresponding positive roots. Let {Eiega',, Feg_,, (1<i<n)} be the
Chevalley generators and {H;eh (1<i<n)} be the coroot basis, that is,

[Eu F] 5!_]H_]’ [H E] <d i>Ej9 [Hi’ F'j]= _<aj9 HI>E]

(1<i<n), and the matrix [{a;, H;>];; <, is the Cartan matrix of type X,.

Let ( , ) be the non-degenerate, symmetric and invariant bilinear form on g with
the normalized condition (0, 68)=2, where € is the maximum root.

Let {X,,---, X,} and {X*,---, X"} be dual bases of h w.r.t. the form ( , ). For any
yeA, choose elements X,eg, such that (X,, X_,)=1 and put X*=X_,. The Casimir
operator of g is defined by

Q= ZX’X+ Y. XX, eU(g).

Jj= yeA
Then Q is a central element in U(g) and is independent of the choice of dual bases.
Denote by f the subalgebra of g generated by X, X_, and 0" =[X,, X_,], then
is isomorphic to sl(2, O).
Introduce the fundamental weights A;eb* (1<i<n) of (g, ) defined by

<Ai3 Hj>=5ij (1<i, j<n),

and the weight lattice P and the set P, of dominant integral weights of (g, h):
P={leb*; A, H)yeZ (1<i<n)}=Y ZA>P,=Y Z,,A,.
i=1 i=1

Now we summarize the facts on finite dimensional sl(2; C)- and g-modules:

Proposition 1.1. Fix any nonnegative half integer j. Then there exists a unique
irreducible left and right T-module W; and W} of dimension 2j+1 respectively. The

modules W; and W} are generated by highest weight vectors |jy and {j| with the

J
Sfundamental relations:

Xoli> =0, 6Y1D=2j>, X% 'j>=0;
GlX-e=0, j16Y =2j¢l, <lXg"1=0.
The spaces W; and W} have the weight space decompositions
j
W_]= Z j,k and W;‘ =

k=~ k
—1(2) k=

where W;,={lv)eW; 0V|v)=2k|v} and W], ={CuleW}; <u|0¥ =2k{u|} are I-
dimensional.

+
Wj,ln

([N}
§|M“"

.

Proposition 1.2. Fix a dominant integral weight AcP..

I) There exists a unique irreducible (finite-dimensional) left g-module V, with
highest weight A. The module V, is generated by a htghest weight vector |A)y with the
Sfundamental relations:

E|2>=0, Hi|\y=<4, Hp|1, FHFH2*115=0 (1<i<n).
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The space V, has the weight space decomposition

V)_ = Z V).,[U

ueP(2)
where P(A) is the set of weights in V; and V, ,={|v)eV,; H|v)={u, H)|v) (Hebh)}.
II) There exists a unique irreducible (finite-dimensional) right g-module V{ with
highest weight . The module V} is generated by a highest weight vector {A| with the
fundamental relations:.

CAlFi=0, <AlH;= (A, Hp Al CAESHH>*1=0 (1<i<n).
The space Vi has the weight space decomposition
Vi= Y Viw
neP(3)
where V},={<uleV,; <ulH={u, H) <u| (Heb)}.
III (i) The Casimir operator Q acts on Vi and V, as Q= (A, A+2p)id, where 2p
yeA 4
(ii) There exists a unique nondegenerate bilinear form
{>: Vi xV,»C

such that 1) (va|v) = {u|av) forany acg,{uleV; and |v)eV,, 2) (A|A)=1. Therestriction
{|Y: Vi, x V€ vanishes unless p=y', and {|»: V3, xV, ,—C is nondegenerate for
any peP(4).
IV) As Y-modules, V, and Vi are decomposed as follows:
V1=Zml'jo and VI =Zm1’jW;‘,
i j

1
where j runs through the set {jezlzo; 2j< (0, /1)} and m, ;€ Z,, are multiplicities.

1.2 Affine Lie Algebrasof type X\.
The affine Lie algebra § of type XV is defined by
§=9®C[t, 171 ]@Cc,
with the relations
[X(m), Y()]=[X, Y] (m+k)+mdp.so(X, Y)e
cethe center of §, (X, Yeg, m, keZ)
where
X(m)=X®1"e§ (Xeg, meZ).

The Lie algebra g is included in § by identifying X with X(0). Introduce the
subspace g(m)=g®™ of § for each meZ, and the subalgebras m: and p: defined by

p:=m:@g®Ccom:= ¥ g(xm)=g®¢* C[t*].
m>1

Then § is decomposed into
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§=m,@@@®Cc)dm_=p,®m_=m,.Dp_.

The Cartan subalgebra hof §is h=bh@Cc, where we identify h=h®1 and g
=h®1. The dual h* of b is considered as the subspace of h* by setting a|,=a and <o,

¢>=0 for aeh*
The Lie algebra § has the root space decomposition

§=b® P ber® 3. ¥ 6,@¢=f_@hdf,,

keZ yeA

where fi:=m:@®n: and n:= Y g, are subalgebras of § and g respectively.
YeA 4

Put of =c—6"(0), eg=X_o(1), fo=Xo(—1), af =H;(0), &;=E;(0) and f;=F,(0)
(1<i<n). Then {&y (0<i<n)} forms a basis of  and

[eb .f:f:l:éijaivs [d 4 ] au 7 [aiv’ f;]_ a}f; (0<l<n

where a;;=<a;, oy > and the matrix 4= (a;;)oxi j<n is the generalized Cartan matrix of
type X.\.
Moreover c=ay +6" = Z alay, where ay, af,--, a are mutually prime

positive integers whose sum g= Za —%{(0, 0)+2(6, p)} is called dual Coxeter
number. It is known by the cla551ﬁcat10n of the affine Lie algebras as
g=n+1, 2n—1, 2n—-2, 12, 18, 30, 9, 4,
if § is of type A%, BY, CV, DY, EL, EP, B, FP, G respectively.
Introduce the fundamental weights A,EB* 0<i<n) of (§, f)) defined by
Ay @) >=0;; (0<i, j<n),

and the weight lattice P of (§, b) by
P={Aeb*; (A, af YeZ (0<i<n)}=Y ZAS P, =Y Z, A,
i=o i<o

Note
Aiza,:\/A()'*'Ai (ISiSH).

The number <A, c) is called of the level of AcP. For a fixed integer /> 1, the set
P,={AeP, (A, c)=I} is bijective with the set P,={leP_; (4, 0)<I} by assigning A,
=IA0+AEFI tO AEPI.

Proposition 1.3. Irreducible integrable highest weight §-modules are parametrized
by the set {(I, 1); IeZ.,, AeP}. Fix such (I, A).

1. There exists a unique irreducible (integrable and highest weight) left §-module
H, with a nonzero vector |1y (called vacuum) such that

A, 1A>=0 and h|i>= (A, h>|A>  (heb).

The §-module # ; is obtained from the g-module V,. Consider V, as a p ,-module by
m,V;=0 and c|y,, =lidy , then the induced §-module M;=U§)®s V, (Verma
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module) has the unique maximal proper §-submodule #, which is generated by a single
vector |J,y=fo PPN Thus #,=M,/5,.

The vacuum of #, and the g-module {|vye ;; m, |v) =0} are identified with the
class of 1®|1) and V,=1®V, respectively.

Moreover i, |J;>=0 and ag |J,>=—(I— (1, 0)+2)|J).

II.  There exists a unique irreducible (integrable and highest weight) right §-module
H; with a nonzero vacuum vector (| such that

Al =0 and {Alh=<{A,, b)Y (4| (heb).

H} is obtained as H}=I\ M}, where M} is the right §-module M} =V ®, U(8)
(the right g-module V7 is considered as a p_-module, by setting Vm_=0 and clv
=lid,,; ). The g-module {{ule#}; {ulm_=0} is identified with the class of V]
=Vi®l.

The unique maximal proper §-submodule #; of M7 is generated by a single vector
(Jil =< Aleg @O+ Moreover {J,|ft_=0 and {J,|ay = —(I— (4, 0)+2)J,|.

1.3. Segal-Sugawara Form.

In this paragraph, we give the actions on 5, and #} of the Virasoro Algebra &,
where L= ) Ce,+Ce, is the Lie algebra defined by the relations:

neZ

m?—m
[ems en]z(m-n)em+n+_12—6m+n,0e;) (m’ nEZ);

Leos €.]=0.
Definition 1.4.
i) (current) For each Xeg, we define the formal Laurent series
X(@z)= Y X(n)z™""? (zeC*).
ii) (Energy Momentum Tenso”ll's;z Segal-Sugawara Form ([Se] and [Su]) For ze C*,
define

TO=35 10 2";1 s XX+ T XX,
=Y Lim)z™"?,
meZ
that is,
L(m) Y (Y s X(—k)Xmtkp+ ¥ ¢ X(—k)X,m+k),

T2(g+0) & &

where {X’, X'} and {X;, X,} are dual bases of g taken as in §1.1 and the normal ordered
products of elements of g®C[t, t™'] are defined by

lX(m)Y(n) (m<n)
tX(m)Y (n):= E[X(m)Y(n)+ Y(n)X(m)] (m=n)
Y (n)X(m) (m>on).
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Then we get

Proposition 1.6.

dim

i) For any leZ., and AeP,, the operators L(m) (meZ) and L'(0)= g1+

?lid act

on #, and K} .
iiy For any m, meZ,
7 ! ! ms_m ’
[L(m), L(n)]=0n—m)Lm+m)+ =" 8p o oL (0).

iiiy For each meZ and Xeg,

[L(m), X(z)]=z"'<zd%+m+ I)X(z);

[L(m), X(n)]=—nX(m+n) (m, neZ).
Proposition 1.7.

i) There exists a uniquue bilinear form (called vacuum expectation values)
D: #F xH,»C

such that 1) {(A|>=1 and 2) {ua|v) =u|av) for any aef, <ule ¥} and |vyest’ ;. This
bilinear form {|» is nondegenerate and its restriction on V x V; coincides with the form
given in Proposition 1.2.

iiy A, and H% have the eigenspace decompositions w.r.t. the operator L(0):

%l= Z”Ld and e#;:= Z%}‘;d,
d=0 d=0

where #,, and K}, are the eigenspaces in #, and # of the eigenvalue A;+d
(4,44+2p)
2(9+1)
Moreover {H ;4153 4> =0 unless d=d’, and the bilinear form {|) is nondegenerate
on KL xH,4
iii) For any Xeg, meZ and d=0,

respectively, A,= , dim#, ;=dimH#'} Koo and H, o=V, Hi,=V}.

X(m)H 4 LA ;0= H 5 4-m and Jf,th(m), ”I,dL(m)CfI,HW

§2. Vertex Operators.

Throughout this paper we fix the value / (a positive integer) of the central element
c on the spaces # and #*, and use the value x =/+4g for convenience. We refer to
our previous paper [TK] for details of notions and propositions in this section.

2.1) Field Operators.

For each ieP,introduce the completions #, = [] # sand #’} = [] #7740l H; and
dz0

az0
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'} respectively. Extend the -action on 3, and #} to their completions and the

vacuum expectation {|>: #; x #;—C to continuous bilinear pairings {|>: #} x #,

—C and #} x#,-C. Note #] is naturally isomorphic to Homc(#,; C).
Consider the direct sums of these modules:

H= Y H,cH= Y #,;, H'= YHick*= Y #},
iep, ieP) AeP, ieP,
where P;={AeP,; (4, 0)<I}. The projection =, to the A-th component: #—#,, #*
—#} commutes with the action of §.
An operator A on # means a linear mapping 4: # —, which is equivalent to
give a bilinear map 4: #* x # —C, and also to give a linear mapping A*: #t >#"
by the condition that for any (v|e#* and |wdes#,

<v|Aw> = <v|d|w> = <vd" |w>.

The notions of the composability and the holomorphy of operators and operator
valued functions are weakly defined (see [TK] for exact definitions).

Operator valued functions X(z) (Xeg) and T(z): # —# are single-valued and
holomorphic on C*=P'\{0, co}. By the same arguments of the proof of Proposition
2.6 of [TK], we get

Proposition 2.1.

i) Ordered pairs {X({), Y(z)}, {X({), T(2)}, {T(), X()} and {T(C), T(z)} of
operators are composable for |(|>|zI>0 (X, Yegq), and their composition X({)Y(z),
X()T(z), T({)X(z) and T({)T(z) are analytically continued to single-valued, operator-

valued holomorphic functions on M,={((, z)e(C*)*; {#z}. As operators on H#, the
following identities hold:

0 xOre="Ciai ! v vig+r, K, veo).
- 4=

11 TOX(z)= ! X 1 aX R X

) TOXE) ==X+ 5 XE+ Ry (Xeg),
! dimg 2T(z) 1 0

@ TET@)=

2K(C—z)4l +(C—Z)2 +C—Z 6—ZT(Z)+R,,,.

Here R;, Ry, and Ry are regular at {=zeC*. Moreover
TOTE)=TE)TQ), TOX(2)=X@)T () and X()Y (2)= Y (2)X ().
i) The normal product :X(£)Y({)¢ is also regular at {={ and

IX, Y) .
HOYCR=XQY )~ ) @
E+¢ 1

As a corollary,
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KOV Q= \/_ f ﬁéc
C{O

where Cy, is a contour around { such that 0 is outside Ci,.

XY (),

2.2 Vertex operators.

Vertex operators (or primary fields) are introduced by V. G. Knizhnik and A. B.
Zamolodchikov [KZ].

A multi-valued, holomorphic, operator-valued function ®(u;z) on M,=C*
parametrized by ueV, is called a vertex operator of weight AeP,, if for any ueV,, an
operator

O(w;z): H# — H
satisfies the conditions:
(V1) ®(u;z) is linear in ueV;;
(V2) [X(m), ©(4;2)]=z"®(Xu;2) (Xeg, meZ);

(V3) [L(m), (I)(u;z)]=z’"<z%+(m+l)Al)(D(u;z) (meZ),

(4, A+2p) .
2

where the number A;= is called the conformal dimension of the vertex

operator ®(x;z). Denote by ¥%:(4) the space of all vertex operators of weight A.
Remark 2.2. i) Vertex operators are sometimes considered as
O(2): V,Q# >H by ®z) (u, v)=0(u; z) (v).

The conditions (V2) and (V3) are the gauge condition and the equations of motion for
the field ®(z) respectively.

ii) The principal branch of ®(z) is taken such as the value of z"“” is positive
for zeR, ={zeR; z)0} and uniquely continued to the region C. {zeC Rez)»0}, and
we refer this for the value of ®(z) on C..

Introduce the sets V and V, defined by

\/={"=<uzlm); A Hy, #26P+}D\/z={v=<ﬂ2’lﬂl>e\/; My, H2EPY.

A
H2 My

an incoming weight, u, is an outgoing weight and 1 is an outer weight, and denote A(v)
=A;_ and A(V)=A1+A”1—A#2

V

An element v of V is called a vertex. For a vertex v=( )e\/, we call that yu, is
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For a vertex w=< uzl M)e Vi, a vertex opertor ®(z) of weight 4 is called of 1ype v,

if ®(u; z)=l'[u2(1>(u; z)I'IM1 for any ueV,. Denote by ¥%:(v) the space of all vertex
operators of type v, then

A
raw= 3 va(())

Similarly as Proposition 2.1 in [TK], we get

Proposition 2.3.

Proposition 2.4,
i) Any vertex operator ® of type v(€V,) has a Laurent series expansion
O(;2)= ¥ @,(m)z""" 8V (4ep,)
and ®,(m) satisfies ™
[LO), ®,(m)]=(8,,~A, —m)D,(m) (meZ),
that is,
Ou(m): Ky am>H pya-m Hhya=>H s asm  (MEZ).
ii) For each ueV,,
[X(m), ®,(m')]=[X(0), ®,(m+m')]=Dy,(m+m) (Xeg, m, m'eZ)

and

[L(m), ®,(m)]={(m+1)A,—m—m'—AWV)}®,(m+m') (m, m'eZ).

Proposition 2.5.
i) Introduce a trilinear form ¢: V,fz@ V,® Vu1—+C defined by
(v, u, w)= (oD, 0)w > AV, _g
for ueV,, ve ij and weV, , then ¢ is g-invariant:
(P(UX, u, W)=(p(1), Xu, W)+(p(l), u, XW) (XEQ)

ii) A vertex operator ® of type v is uniquely determined by the form
(peHomg(V,{‘2®V1®Vil, C)gHomg(V,1®V,11, V,,) defined in i). We call ¢ is the
initial term of the vertex operator ® and denote =9,

2.3) Existence of Vertex Operators.

A
Let w=<#2 #1) be a vertex. The dimension m(v) of the space

Homg(V:2® V,.® Vi Q) is equal to the multiplicity of V., in the tensor product
Vi®V, . Itis known as the Steinberg’s formula, which is explicit but is not so easy
to apply when the Weyl group is large.

Definition 2.6. Introduce the space ¥°(v) consisting all forms peHom,(V,® V,,l,
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V) satisfying the condition:

projwj2 o (W;® Wj1)=0,

for any simple t-submodules W;, W;, and Wj, of Vs V, and Vi, with j+j, +j)l, where
projsz is the projection of V., onto the t-simple summand W,

For any vertex operator ®e¥(v), its initial term ¢ is in Hom,(V,;® Vul, Vuz)
and ¢ =0(0)|y 28, OF projyhozA“”(I)(z)lVA® Vul. Under this correspondence,

Theorem 2.7. The space ¥er(v) of N-point functions of type v is isomorphic with
the space ¥ (v) of initial terms of type V.
Proof. The initial term ¢ of ®(z)e ¥%2(v) must satisfy

@@, Xy @10+l | 5)=0 for any veVj , ueV,
and

o({uyl, X'og#29* 1y, w)=0 for any ueV,, weV, .

Decompose V, ¥, and V,, as f-modules, and apply Lemma 2.2 in [TK]. Then
pe¥(v). The surjectivity is also due to the same lemma, and Proposition 2.5 implies

the injectivity. g.ed.
Remark 2.8. i) A vertex v with 7' (v)#0 is said to satisfy the [-constrained

generalized Clebsh-Gordan condition and write ve (ICG).
ii) Let ®(u; z) be a vertex operator of weight A(ueV;), then as a formal Laurent

series,

O(u;2) =240~ 250 (1 1)z~ 1O (ueV,).

Proposition 2.9.

There exist no nonzero vertex operators of weight A, unless A€P,.

Proof. For a weight AeP, with (0, 1))/, take (pe“//((u lll >) and let @(z)
2 1

=®,(z). We must show that ®=0. By Proposition 2.5 ii), it is sufficient to prove
that ¢(v, |A)w)==0 for any vEV;,‘2 and we Vg

The subalgebra f=f® C[¢, 1~ ']+ Cc of § is isomorphic to the affine Lie algebra of
type A, h=f\h=C0" and b=iNh=Coy ®CO"(0) are Cartan subalgebras of f and
- . 0 0N ., -
f respectively. The sets {2}CI)E*CI)* and {Ao, Ao +§}Cl)[*Cb* give fundamental
weights of (f, by aad @, f)f) respectively. Let W, be the irreducible left f-module with

. a1

highest weight 19(165220> and denote by W] the corresponding right f-module.

Decompose ¥, and V! as f-modules:

Vl‘1_i@1 W and Vﬂ‘2=.®1 Wi
= =
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then j, kisi, since (p, 0)< (4, 0) for any ueP(A). By restricting initial terms of the

vertex operator ®(z) for § to V} ,OUMIA>®V, , we get a sum of forms in
Homf(W,j'i ®W(;.02® Wii) satisfying 31m11ar condltlons of Definition 2.6. However
such forms must vanish by Lemma 2.2 and Remark 2.2’ of [TK]. g.e.d.

Proposition 2.10. Let § be an affine Lie algebra of type AL, BV, CV or DV, If

a vertex V has a form vy = At , then
#2 Hl

"V(v)=Homg(V,;1®Vul, Vi, )-

Proof. Consider the weight structure of the vector representation Vi, of g
g.e.d.

2.4) Operator Product Expansions and Actions of § and % on Vertex Operators.

Operator product expansions are obtained similarly as Propositions 2.6 and 2.7 of
[TK]:

Proposition 2.11.

i) Let ®(u;z) be a vertex operator of weight A(ucV,). Ordered pairs {X({),
O(u;2)}, {@w;0), X(2)}, {T (), ®(u;z)} and{®(u;{), T(z)} of operators are composable
Jor [{DIZ1>0 (Xeg), and their compositions X({)®(u;z), Ow; )X(z), TC)®(u;z) and
Q(u;{)T(z) are analytically continued to multi-valued, operator-valued holomorphic
Junctions on M,. As operators on #, the following identities hold:

V) XQOW)= 00w 2)+ Ry (Keg).

\% TP u;z2)=——5D(u; z)+ 1 9 Q(u z)+Ry.

A,
(¢~z2)?
Here R;, and R, are regular at {=zeC*.

Moreover X({)®(u;z) and T(()®(u;z) (Xeg) are single-valued and holomorphic
Sunction on {eP'\{0, z, oo} for any fixed zeC*, and

X(O)0(u; 2)=D(w; 2)X() and T()@(w; 2)=D(w; 2)T ().

ii) Let ueV,; and ®(z) be a vertex operator of type w=<i ’li )E(ICG), Let
2 1

An(zy),-++, A1(21) be operators of the form T(z), X(z) (Xeg) or ®(u; z), and assume that
there is at most one number i, such that A; o (2:) =D (u; z;,) and Ay(z;) is not a vertex
operator for i#i,. _

Then {Ay(zy),---, Ay(z1)} is composable in the range |zy|>--->|z,|, and the
composed operator Ay(zy)---Ay(z,) is analytically continued to a multivalued and
holomorphic function on My={(zy,"-+, z,;)e(C*); z; #2; (1#))}.  If we fix (zy,--, 2j---,
zy) (j#iy), then this function is single-valued in zieP'\{oo, zy,-+, £,-+, zy, O}.
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Notation. For any points {,---, {, and &,---, &,eC, denote by C=Cy__r:¢. ¢,
a positively oriented contour such that {y,---, {, are inside C and &,,---, &, are outside
C.

For each @e¥ (v), introduce the g-module 2(¢) defined by

P(¢)={®u;2); ueVy}; XO(u;2) =®(Xu;z) (Xeg).
Now introduce the space ((p) of operators on # as the C-vector space spanned

by the set

1
_— dt---d __L\mN... - m D (u: 2):
{(zw—mLN f Gy Gy =2 (G =2 X)X (G) (4 2)

NeZ,,, Xeg, meZ (1<i<N), ue Vl},

where the contours C; (1<i<N) are taken as C;=C,; , r._.:0
Let A(z)eO(p), Xeg and meZ, then define

Lma ()= j__l LdC(C—Z)'"X(C)A(Z)e@(tp)
and
LmA@)=— j__lLdC(ﬁ—z)'”*T(C)A(z)ew(qo)

for some contour C=C,, Then by Proposition 2.11,
Proposition 2.12.

i) The assignation X(m)— X(m) and c—lid defines the §-module structure on O(p).
ii) Let ueV,, then

Lm)®w;z)=0, Lim)®(u;z)=0 (m=1, Xeg),
X(0)0(u;2)=[X(0), ®(u;2)]=0(Xu; z) (Xeg),

L(0)®(u;z)=A,®(u;z) and Iz(—l)d)(u;z)=-§;(l>(u;z).

iiiy The %-action on O(p) defined by assigning L(m)—~L(m) and L (0)
Hdimg

lid is compatible with the §-action.
By Theorem 2.7 and Proposition 2.12,
Proposition 2.13.

For each ge¥ (Vv), the assignation V,eu—®(u;z) defines the g-isomorphism of V,
onto the space P(V), and it is extended to a surjective §-module mapping ®: M ;-0 ().

Theorem 2.14 (Nuclear Democracy).

For any pe¥” (v) with ve(ICG) the §-mapping ® factors to #; and gives the §-



Yukihiro KaNie

isomorphism of #, onto O(p).

Proof. First note that the following fact is important: The only one additonal
relation of 3, to the Verma module .#; is the equality f3|1)=0, where L=I[—(6, 1)
+1=1.

Let e (v) with ve (ICG). Since the kernel of the projection of .#; onto 5, is
generated by a vector |J,>e.#, over U(g), it is sufficient to show that ®(|J,); z)=0.

First note that |J,>=f5| A>e.#, is a weight vector of weight [4,+A— Loo¢P,
and £, =4, 1,

Any ¥(z)eU(g)®(|J,);z) satisfies

X(m)¥(z)=0 for any m>0, Xeg,
since m,U(g)|J;>=0. By Proposition 2.11, we get

1
2n,/ —1

[X(m), ¥(z)]= J ag "X()¥(2),
Cz0

SO
[X(0), ¥(z)]=X(0)¥(z) and [X(m), ¥(2)]=2"[X(0), ¥(2)] (me2).

Hence by Proposition 2.9, we get ®(|J,>; z)=0 since (A+L0, O)=L+I+1>1.
g.ed.

Here we summarize the relations satisfied by vertex opertors:

Fundamental Relations for Vertex Operators.

Let ®(z) be a vertex operator of weight A. Then

X(m)®u;z) =0 (m=1, Xeg, ueV,);
XO0)® (u;z) =[X(0), ®u;z)]=®(Xu;z) (Xeg, ueV,);
Lm®wz) =0 (m=1, ueV,),
LOY® (;2) =4,0(2) weVs);
L(-1)® (4;2) =a%<1>(u;2) (ueV,);

and

Ry (—=1)~0+10 (| 21);2)=0.

§3. Differential Equations of N-point Functions and Composabilty of Vertex
Operators.

In this section, we will give the system of differential equations of N-point
functions and show the composability of vertex operators.

3.1. N-point Functions and their Differential Equations.

The vacuums |[0> and <0| of #, and #§ are of special importance (and are
called Virasoro vacuums).
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p+|0>=0 and L(m)|0>=0 (m=—1);
{O|p_=0 and <O|L(m)=0 (m<1).
For an operator 4 on J#, define its vacuum expectation value as {A4>=1{0]A4]|0}.
Denote by p; the g-action on the i-th component of the tensor product M
=My®---®@M; of g-modules M, Denote by A, (1<, k< N) the g-diagonal action
on the i-th and k-th component of M, that is, Ay, =p;+ p,, and introduce the operator
Q. on M defined by

Qu= T P+ TpX X,

where {X7 (1<j<n), X"(yeA)} and {X; (1<j<n), X, (yeA)} are dual bases of g taken
in §1.1. Denote Q;=Q;=m(Q), then

1
Qik = E{Aik(Q) - Qi - Qk} s

and
[Qu AuX)]=[Q pX)1=0 (i#k, Xeg, j#i, k).
For each A=(Ay, -, 4;)e(P,)", denote
Va =V ®®V;, Vi=Vi @@V, V) (A)= (V1) ~Hom(Va, C)

Then the operators Q; act on Va, Vi, VY (A) and 2oV where 2=5% Y 2(o).

v @e¥Y (v)
Let ®i(z;) be a vertex operator of weight A, (I<i<N), then the vacuum

expectation valuue of the composed operator
<‘DN(ZN)“‘(D1(Z1)>

is considered as a VY -valued, formal Laurent series on (zy,--, z;) and is called an N-
point function of weight A. Denote by ¥ez(A) the space of all N-point functions of
weight A .

If ®¥(z;) is of type v; (1<i<N),

N A
<(I)N(ZN)"'(I>1(ZI)>=_Illzi—A(vi) Z>0 e ZZ ven ZOC’mN...mlzlvml\l...z1 "‘1’
i= my = mge. m<

where

C = <O|<va(mN)(I)fv_1(mN_1)---(D?(m2)d)}(m1)|0>e VX.

mpy...my

It is shown (Theorem 3.3) that N-point functions define multivalued holomorphic
functions on My,

First we get a system of differential equations of N-point functions ((i)~(iii) are
due to V. G. Knizhnik and A. B. Zamolodchikov [KZ]).

Theorem 3.1.

Let ®'(z;) be a vertex operator of weight i; (1<i<N), then the N-point function
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(DY(zy)---®(z,)) satisfies the following equations:
(/) (gauge invariance) For any Xeg,
N
.=lei(X)<(DN(Z~)---¢’1(21)>=0,

(II) For each i=1,---, N,

0 NoQ
<’€b?— )<<I>"(ZN) @ (2,))=0,

k= 1 Z;—Z
k#
where k=I+g.

(IIT) For each i (1<i<N) and any wev,, (k#1), put L;=1—(4, 0)+1.

( )H (2= 2:) "™ KOV (XgNuy; zy)--@(14: ) 5 7))@ (Xytug; z,) ) =0,

Im; =L; i

L.
where my;= (my,---, Wy, -, my)e(Z, )" 7L Imyl= Y m, and( ') is the multinomial
k=i i
coefficient.

Proof. (I)

N
;IPI'(X) < ®N(ZN)"'(D1(Z1) )
N

1
- 2n\/——1i;1 c

d¢ L X(E) Dy (uys; zy) @y (uy32,) >

-1
= — dé CX(E)Dy(uy; zy) @y (uy21) ) =0,
2n,/—
where Ci=Czi;zl. e zA, zNO (1 <]<N) and CO_CO $Z85e0es
(II) By Proposition 2.1 (ii), for any X, Yeg, ue V,1 and ®e ¥z (4),

J dcs X(O)Y (0)z D(u;z)= f —{X(f)‘D(Yu 2)+ Y ()P (Xu; 2)},
Cz;O
SO

2L (—1)®(u;z)=

1 dims
o f 5 5, et o)

where {X*} and {X,} are dual bases of g, Hence

K%<(DN(“N; zy)---®@4(uy; Z1)>=Kﬂi(i(_1)) Dy (uy; zy) @y (u1521))

! di"“<X’°(é)<D~(u~,zN) B, (Xt 21)- B (152, )
27:\/ 1
__1 dlmB N dé
f 1K) (€Nt 23Oy (1521
2n\/—1k 1z 1 f
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(Xk)pJ(Xk)<<I)N(uN’ZN) @y (uy52,)

<‘DN(“N§ zy) @y (ug520)).

The equations (III) are nothing but the following:
pi (Xo(—1))Hid Dy (un; zy)--®; (415 2,)) =0. g.e.d.

Remark 3.2.
i) The equations (I) mean that {(®"(zy)---®'(z,)) eV (A).
ii) The equations (II) and (III) imply the projective invariance: For m= —1, 0 and

z ( ‘7+(m+1)AA)<<D"(zu)---d>‘(z1)>=o.

iii) As a corollary of the above remark ii), N-point functions are translation
invariant:
(@nzy+2) - P1(zy +2)) = Dp(zy) - P4(2,)).
3.2) Solutions of Fundamental Equation.

Consider the systems KZ(A) of differential equations and /C(A\) of algebraic
equations for VY (A)-valued functions ®(zy,---,z,) on the manifold Xy={(zy, -
2,)eC"; z;#2; (i#k)}>My;

KZ(N) (;«%-i 2 )d)(z,v,---,zl)=0 (1<i<N)

k= 1Z;— 2
+#1
and for each i (1<i<N) and any ueV,;, (k+#i),
Li -m
lC(/\) Z=L (m) I!_I (Zk—zi) k(D(ZNa'“’ Zl) (XZINuNs"" I’li>s"'a X:)nlul)=03
where m;= (my,--,m, -, my)e(Z,o)" ", |my|= Y m, and L,=I— (4, 0)+1.
k#i

Remark 3.3. The system KZ(A) of differential equations is completely
integrable. The integrability condition of KZ( A) is nothing but the infinitesimal pure
braid relations of Q:

[Qu, Qn]1=0 (f i, k, m, n are mutually disjoint);
and
[ Qi+ ]=0 (if i, k, m are mutually disjoint).

These relations were originally noted by K. Aomoto (see [A1] and [A2]). Moreover
these pure braid relations are equivalent to the classical Yang-Baxter equations for sl,
obtained by C. N. Yang [Y] and A. A. Belavin-V. G. Drinfel’'d [BD].

The space VgV (M) is decomposed as
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V;/ nN=Y ng (N)u; B=y_1, -, py)e(PLN,

where

Ca
vy (/\),r%fHomg(V,lN@ v, V)® - ®

N-1
Homy(V, ®V,_ ., ¥,)®®Homs(V;, @V, ¥,.).

The identification C, is given by
Cr(ox®--®0,) (“N@"'®u1)=<0|(PN(“N®<PN—1("'®(P2(141® 103)---)>

=<0lon(uy)---@1(uy) (105),

for (pieHomQ(Vli® Vig_ > V;i)zHomg(Vll_, Hom(Vui_l, V“i)) (1<i<N; uy=py=0), and
UN® - @u, VA .
Introduce the subspace ¥ (A) of V) (N) defined through C, by

“V(/\)=;‘V(/\),‘; B=(y 15 py)E (P)VFY,
where

YV (N)p=7 (Vy()® - QY (Vi()®-- @7 (vi () =V (N

A 4 4
\IN(W)=(O 'u:_l)’..., ‘V;(W’)=<'u ul._l)a'“: Wl(w)=(#110>.

Then the space ¥ (A) is isomorphic to #%:(A) of N-point functions of weight A as
follows: to each p=¢y® --®¢@,€? (A\),, assign the N-point function

®,(z)= <(I>,1L,N(z,\,)---<I>¢1 (z )Ye Ver(N).

NS DU S

Hn=0 Byoq e oo M TP IR 0=y,

and

Introduce the operators Q, = Y  Q;on VY for m 2<m<N), then

where Q,, is the diagonal action of Q on VXM®---V,{’1. By the pure braid relations
(Remark 3.3), we get that [Qy, Qv ]=0.
These operators are scalar on each V;(/\)”:

Oy =2A4@id  on VY (A), (/u=(uN_1,---, ul);vi=(ﬂ " ))
i Ti—1

where



Conformal Field Theory and the Braid Group

AL@=A, — ¥ A =—Y Av) @<m<N).
i=1 i=1

In fact, for each i=2,---, N,
Q,:zm,‘i id and Q;=2KA, id on V¥ (A),.

For each pe(P,)" "' and @e¥ (M), the N-point function ®,(z) is a formal Laurent
series solution of the joint system KZ(A) and I/C(A) by Theorem 3.1, where its
Laurent series expansion is given as

N A
(I)‘P(Z)= H Zi—A(V,-) Z Z Z Coooom Zy Nz ™
i=1 my20 mez my<0 N 1
T a4/ LO@N (1 V-1 L 1 z MO -L0) )
= [z %" (1) ) @ (1){=] @' (1)
i=1 N Z2

where ®'=®, and
Cy+--m, =<0 @ (my)OV ™! (my _ )@ (m,)®? (m,)]|0).
Moreover

Theorem 3.4.

i) Forany @€¥ (N\),,the Laurent series ®,(z) is absolutely convergent in the region
R, and is analytically continued to a multivalued holomorphic function on Xy, where R,
is defined by

'%z={z=(ZN""a Z1)€CN§ |ZN|>"‘>|Z1|}CXN-

ii) The solution space of the joint system KZ(N) and IC(A) is isomorphic with
Ver (N), hence with ¥ (A).

Proof. The statement i) is similarly proved as Theorem 3.3 i) of [TK]: Change
coordinates z to w by wy=zy and w;=z;/z;,; (1<i<N—1), and apply the theory of
partial differential equations with regular singular points.

i) The equations IC(A) are related only with the f-module structures of V,’s,
where f=CX,+C8" + CX_,. So similarly as Proposition 2.9, decompose ¥, into a
sum of irreducible f-modules and apply the arguments of the proof Theorem 3.3 ii) of
[TK]. q.e.d.

3.3) Composability of vertex operators.

The right g-module V] can be identified with the dual (right) g-module V)
=Hom (¥V,, C) through the vacuum expectation values:

v()=<vlu) for veV] and ueV,.

Let w, be the longest element of the Weyl group W for (g, h). It is well known
that the group W acts on bh*, the weight lattice P, the set P(1) of weights in ¥, and the
module V; for any dominant integral weight AeP,. For each AP, wy/ is the lowest
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weight of the g-module ¥, and ¥ = —w, is also dominant integral and is called anti-
weight of A. The invariance of ( , ) under the group W implies A+ =A, and (17, 6)
=(4, 0). There exists a g-isomorphism v: ¥;+ -V} over the anti-automorhism v, of
g defined by w(]|—A))={l|, that is,

v(X|u>)=v(|u>)vg(X) for any Xeg and |udeVy ,

where v,(X)= — X (Xeg) and |—1> =w,y|A") is a lowest vector in ¥;+. Note that v
is a generator of Homg(V,ﬁ ®V,;; C)~Home(Vy, V). By the classification, A* is
known as follows:

If g is of type B,, C,, E,, Eg, F, or G, A* = for any leP,.
If g is of type 4,, (Y aA)* =Y ays1- A
i=1 i=1

If g is of type D, with even n, A* =1 for any AeP,.
If g is of type D, with odd n,

n—2

(.Zn:laiﬂi)-‘- =Y aAi+aA,_+a, A,

i=

If g is of type Eg,
6 5
(Y @) =Y ag_iAi+ashs.
i=1 i=1
Proposition 3.5.

i) Let v=(i’10>e\/,. Then A(v)=0 and ¥ (v)=Homg(V,, Vi)=Cidy,, hence

vertex operators of type v exist uniquely up to a constant multiple. Let ®(z) be the
vertex operator with the initial term (p=id,,l. Then

lzigl D(w; 2)|0>=|w) (weV,).

+

ii) Let \/=(61 l)e\/,. Then A(v)=2A, and ¥ (v)=Homg(V,+, V] )=Cv, hence

vertex operators of type v exist uniquely up to a constant multiple. Let ®(z) be the
vertex operator with the initial term @=v. Then

lim 22440|@(w; 2)=Cv(w)|  (weVjs ).

By Theorem 3.4 and Proposition 3.5, we get the following similarly as Theorem
3.4 of [TK]:
Theorem 3.6.

Let ®,(z;) be a vertex operator of weight A; and u;e Vi, A<i<N). Then the
sequence {@y(uy; zy),+-, ©y(uy; z,)} is composable in the region R, o={(zy,"*, z;)eCY;
|zy|>+-->|z,|>0} and the composed operator ®y(uy;zy)---®,(u;z,) is analytically
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continued to a multivalued holomorphic function on My.

Remark 3.7. If we take the value / of the central element ¢ of § as /¢Q, then we
can construct an analogous theory without the /-constraint condition. In this case,
the Verma module .#, is irreducible for any dominant integral form AeP.,, and the
space # is taken as J# =Y ., where A runs over P,. Then the space ¥%:(v) of

y) . . .
vertex operators on J of type v=(u u )e\/ is isomorphic with ¥ (A)
2 1

=Homgy(V,® Vul, Vuz). In this case, O(p)=., for any @e¥ (v), so the last equation
X, (— 1)~ @O*+1@(|1%; z)=0 is eliminated among the fundamental equations for vertex
operators.

§4. Commutation Relations and Fusions of Vertex Operators.

4.1) Commutation Relations.

Fix a quadruple A=(44 43, 4,, 4,)e(P)*. For each ueP, denote

A A
N=(AI’ H, /11), \/2(/1)=</1:3“) \/1(#)=<” j"l)

and introduce the number A, (A)=A(v,)+A(v;)=A; +A; +A;,—A,, (independent
of p).

14 '13 ).2 j-1

0 i H A 0

The space VBV(/\) is identified with Homg(V,13®Vlz®V,11, V‘Z) and is
decomposed as

v 12
v mE Y vy (a)

ueP
where
Vg"(/\)}‘z=Homg(Vu® Vip Vit )®Homy(V,,®V; v,
and
C}\z((p2®(p1) (u3®u2®u1)=¢2(u3®(p1(u2®u1)) (uiEVli)'
Thus the subspace #'(A) is also identified, by this Ci2, with

12 A
vt s s (i Jor( i)

uePy
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By Theorem 3.6, for each ¢,e¥ (v,(r)), the vertex operators ®,,(w) and (I)(,,l(z)
are composable in the region #,={(w, z)e C* |w|>|z/>0}, and the composed
operator (I)¢2(W)(I)¢1(Z) is analytically continued to a multi-valued holomorphic and
Hom, (#, , e}%;r )-valued function on M, ={(w, z)e(C*)?; w#z}. The VY (A)-valued
holomorphic function

lI‘Wz@(pl(w’ Z) (M)= <v(u4)|q)¢2(u3;w)q)¢1 (u2;z)|u1> (MEV/\)

= lim lim CZA4<<I)V(u4;C)l(I)¢2(u3;w)(I)q,I(uz;z)CI)(ul;f))

(P €\O

on M, has a convergent Laurent series expansion in the region %,:
7\ +Avy)
—A4(A) - —
z n§0 (W) <v(u4)|q)(p2,u3(n)¢(p1,u2( n)lul > .

Its initial term is Ci%(p,®¢,).

For VY (A)-valued functions ¥(w, z) on M,, introduce the systems KZ,(A) and
IC,(A) of equations:

KZ,(A) <xi _s ﬁ)w»m: (:ﬁ _n Dy )‘I’(w, z)=0.
ow z —w

w W-—z

L, L
IC,(N) Z( 1>W""Z"'_L1‘I’(W, z) (ugy Xgus, Xg1™"uy, |41))=0,
0

e m

L L2 -m m—L Ly—m

ZO m (W_Z) (_Z) Z\P(W> Z) (U4, X("}nu:ia I)“Z>a X92 u1)=0’
L,

<IT;13>(W_Z)—M(_W)M—L3T(W’ Z) (u4: |i3>5 X‘:JnuZ’ Xéﬂ_mul)-—_-(),

L
Z (w‘“‘)‘ll(w, Z) (|'14>’ X;”3u3, X;"‘Zuz’ X;)nlul)zos

tm) =Lg
where Li=1—(4;, 0)+1 (1<i<4) and m=(my, m,, m,)e(Z,,)>.
By Proposition 2.5 and Theorems 2.7, 3.4, we get

Proposition 4.1.

i) The space { z}; Y (I>,p2(w)(l)¢1(z)} of Hom(# ap # a3 )-valued func-
PPy ey (vik)

tions on M, is isomorphic with ¥er(N)~ ¥ (N).
ii) The solution space” %,(N\) of the joint systems KZ,(N\) and IC,(A) is

{qu)z@q)l(wa Z); ¢iEV(Vi(M))’ ”EPl}'
Now introduce the g-isomorphism 7: V- VY, defined by

(To) (us@u,QusQu; )= (U, @u3;Qu, @u,y)
for eV}, u,Q@u,Q@u;Qu,eVy, and TA =(44, 4,, 45, 4;). Then
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TV (A)=VY(TA), T (A)=7(TA) and AyA)=A(TA).

For each pueP, let \72(/1):(1:'12#) and V,(u)= (’13 ) V;’(T/\)-valued

holomorphic functions ¥, g, (W, ) on M, with @;€7” (V;) form the solution space of
the joint system KZ,(TA) and [/C,(T A), which is also isomorphic with ¥ (T'A). In

the region £,, this function ¥, ¢, (W, z) also has a convergent Laurent series
expansion:

IP(P2®(P1 (W, Z) (u4®u2®u3®u1 )
V4

n+A(Yy)
=784 zo <;> V(Ug) 1@y, (M) Py (—1) 11D
nz

with the initial term C}2 (p,®¢,)ey (TN).

As Aq A3 A4

0 ¥ u Ay

Now introduce the subsets I, ={(w, z)eR% w>z>0} and I,={(z, w)eR?, w>z
>0} of the manifold M, and the functions

w—2z
) )

w—2Zz

10="1 2 g en T =" e T S (0, 1)

for (w, z)el,. Then y(t)= (), {()) is a path from a point (w, z) in the set [, to the
point (z, w) in the set I, on M,.

—t 0
0 z\)/w

U]

Recall that W«,z@wl(w, z) is a convergent Laurent series in the region %,
»1,. Denote by ‘I-‘,,,zwl(z, w) its analytic continuation along the path y(t) and
consider ¥, o, (z, w) near I,, then the VY (TA)-valued function T\szwl(z’ w)
satisfies the equations KZ,(TA) and ICZ(T/\), so we get a linear mapping

C(N)=C,(A): ¥ (A)— ¥ (TA)

by Theorem 3.4 Sometimes we denote by C(z, w) the endomorphism of Y 7 (A)
defined by C,(N).
Hence by Proposition 4.1,
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Proposition 4.2. ) The mapping C(N\) gives an isomorphism.
ii) Let N= (44 A3, A3 Ay, Ao), then the braid relation holds:
C12C3Cpy= C23Cy2 Cas,

where C;;=C(z;, z;) (1<i<j<3).

0 1 2 3 4 0 1 2 3 4
Ty, ‘:'.:‘J T2 r‘?L:'I-
|-
T,s .L—_: Ty, — —J
L

=
e 5

(s) (® () )

Now our fundamental problem is:

Fundamental Problem.

Determine the isomorphism C(N\) for any quadruple N.
4.2) Reduced Equation.

Introduce a variable { =z/w, then the V¥ (A)-valued function zA4‘“"I’q,2wl(w, {w)
is independent of w, since by Remark 3.2, ii)

0 0
(w%+zE—A4(/\)>‘P¢2w1(w, z)=0.
So we abbreviate zA4(")‘P¢2®¢1(w, {w) to ¥, g, (), then the ¥y (A)-valued
function ¥, e, ({) (called reduced 4-point function) satisfies the joint system KZ,(A)
and IC,(A) for ¥ (A)-valued functions ¥({) on C:
d  Q;+xkAN)  Qy

KZ,(R) (-2 - 25 v oo

and

L,
IC{(A) Z (%)CM\P(C)(W, Xous, Xé‘f"‘uz, |41>)=0,

m=0

L, m
=0 <II;)<CE-I> W () (ugy Xgus, |42, ng_mu1)=0’

Ly (L, L)m\}!(C)(u A3, Xgu Xi3a~my )=0,
o m I_C 4> 3/ 642 (‘] 1 H

™

) (ﬁ:)‘P(C)(MO, Xg3us, Xg2uy, Xgiu;)=0,

Imi =Ly

where Ly=1— (A, 0)+1 (1<i<4) and m=(ms, my, m;)e(Z,o)".
By Proposition 4.1,
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Proposition 4.3.

The solution space & (M) of the joint system KZ,(N\) and IC (N) is {‘Pq,zwl(C);
@€V (Vi(1)), pePy}.

Note. i) The system KZ,(A) of equations turn to a single differential equation
KZ,(N), since Q,,+Q,3+Q,3=—kA,(N).

ii) The function ¥ (¢) has a convergent Laurent series expansion

P80,
Voo €)@= T )0y (110 0y (~ )l

in the region {|{{|<1} and its initial term is Ci*(¢,@9,).
iii) The solution spaces &;(A) of the joint systems KZ;( A) and IC;(N) (i=1, 2)

are isomorphic with each other, and parametrized by the space Y 7°(A),%
uEP,

For each ¢,®¢,€¥"(A),? the associated solutions ¥, o, ({)€#1(A) and
¥o,00, (W, 2)€F5(N) are related as

z
— »—A4(n) -
‘P(pzwl(w, z)=z"% ‘~I-’¢2®q,1<w>.

‘I’¢2®¢1(C) is a solution of the system KZ,(A) of differential equation with regular
singularites only at {=0, 1 and oo which is regularized as

¥, a0, () =229 (CL2(0,®0,) +O()},

where O({) is a VgV (A )-valued holomorphic function near {=0 and vanishes at {=0.
For each ueP,, introduce the spaces

VY(A ) =Homg(V,®V,,, Vi3 )®Homy(V, ,®V;,, V,),
and
V;(/\),‘f3=Homg(Vu®V,11, V. )®Homy(V, @V, V),

and the isomorphisms

Ci: Y VI(AP—VY(A); CB: ¥ VHAR—VY(A)

ueP 4 peP o

defined by

CR(0,®0;) (U;Qu;Qu;) =0, U, @0, (3Qu,)), 9@,V (N),5,
and

C(@2001) (U3 @u,®u1)=01(01 Uz @U)®u1), @01V (NP,

for ueV, (i=1, 2, 3). Note that VY(A),’=V)(N),> and TCr, on the space
VY (L, |
For convenience, we use the notations

vy (AND=VY (A, VY (A=Y (A and 1Y (A= (A
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u o

they form bases of VQV(/\) diagonalizing the operators Q,,, Q,; and Q,;:
QU =5 —Au(ADUDL, Qa3Ulh=xy U, Q3 USR) =ry(PUR)

Choose bases {UR(A)} of VY (A)Y, i=0, 1, oo, such that U (A)=TUQ(A). Then

for any peP,, where y{, i=0, 1, oo are constants given by

1 1 ' "
VLO)='K’{A,¢—A11 _A}.Z} A4 /\)=;{Au+AA3 _Al4} =A(v; (1)),

! 1
M= A=A, =AY = (A A — A Je0

The system KZ,(A) is converted to KZ,(A), and KZ,(A), at 1 and oo as:

Q) Qpu+KAL(N
KZ,(A) (%—%——%—))\P(l—ého (E=1-0),
and
i () &

for V¥ (A)-valued functions ¥({) on {eC*.
Hence there are three bases {‘P(Ui."(pk (@)} of #,(A) which are regularlized at {=i

(C(0)=C’ (M=¢f=1-¢, C(°°)=r,=2> such that

P €)= Fuinn () =CR(CIULAN + 00},
[$Y]

W, ()= (1 =P (CR U ) +0(1-0)},

and

w2 e =clepugimo( )]

ulPmw ¢
Then

Proposition 44. For any quadruple A e(P,)*, the isomorphism C(A) is given by
the connection isomorphism of the solutions regularized at {=0 of the joint system
KZ,(A) and IC,(A) to the solutions regularized at {=co.

Proof. Recall the mapping C(A) of ¥ (A) to itself. For each Ue¥ (A),? the
solution W, (w, z)e&,(A) is absolutely convergent in #,. Denote by ¥(z, w) its
analytic continuation along the path y(z). Then TWy(z, w) is in &,(TN), so it is

expressed as TWy(z, w)=¥gw, z) for U=C(A)(U)e Y ¥ (TA),>. Hence we get

uePy
1
Y u<z> = {4V,

1 —
where ‘PU(Z) is the analytic continuation of W({) along the path y(¢) from 0 to the
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infinity figured below. In fact, the path y(¢) from a point (w, z)el, to (z, w)el, on M,
corresponds a path from the point {=z/w in the set J, ={{eR; 1>{>0} to the point
1/ in the set J,={({eR; {>1} on the manifold C*. If z tends to zero, then the
corresponding path tends to the path 7(z).

0 1

t ' o

It is sufficient to note the equality

WOAN)+AL(A)=yO(TN)

among the exponents and the fact that the connection isomorphism of the equation
KZ,(A) preserves the subspace ¥"(A) in Vg"(/\) because of the compatibility of the
equations KZ,(A) and IC,(N). g.ed.

4.3) Fusion Rule.
For each ¢,®¢,€¥ (A)L2, the composition @, (uy; W)@, (u;; z) of the vertex
operators is singular at w=z and its behaviour near w=z is described as below.

v A3
For each veP, introduce the space 7/(/\)§3="//(A: 2 )@“V(v i) and for
1 2

?2@¢1€7"(A);?, define a “vertex operator” @} o, (z) of #, to #,+ parametrized
by V;,®V,, defined by

¢£2®¢1("3®u2; Z)=(D¢2(‘P1(u3®uz); z) (u;e Vai),

that is, the operator (I)gzw , (v;2) satisfies the conditions (V2) and (V3) of vertex

operators of weight v with the exception that it is linear in ve V,,®V,, in the condition
(V1) (see §2.2).

Denote w, (v)= 23 , then 9V = —A(w, (v)). Then
v /12

Theorem 4.5. (Short range expansion or Fusion rule)

i) Near w=z ((w, z)e®,),

®, (g WD, (U 2)= T (w—2)"401 (@ (us@uy; 2)+O(w—2))

veP;

~(W__Z)—(AAZ+A),3) Z (W—Z)A"q)iv(%@uz; Z),
veP;

where Y,€¥" (N)?3, and O(w—2z) is holomorphic near w=z and vanishes at w=z,

Ay

A
Ay >

i 1
i * N Z (w_z)—A(Vyl(V))
At ' "p Ay veP; -;:_ «— 7,

L —
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In other words,
1
2n/—1
n\/ CZ;o

The value of (w—z)™*"V s chosen as it is positive for (w, z)eR,NR>.

dw(w—2) 20 1®, (13 W), (4 2)=0) (u;@uy; 2),

if) The fusion gives an isomorphism

F(A): V' (N) Y(A)

u c/l\z " C,2\3
Y V(A2 > V(AR
ueP; veP)

defined by

FINCR(0,®00,)= T C3(,) (9,007 (N)L2),

veP)

where , are the ones obtained in i).
iii) The isomorphism F(N) is given by the connection of the solutions regularized
at {=0 of the joint system KZ (N\) and IC,(N) to the solutions regularized at {=1.

Proof. The operator @, (us; w)®@,, (uy; z) is determined by the 4-point function
Yo,00,W, 2T J(N)or¥, o, (€7 (A). Theinitial term of the analytic continuation
of ‘I’(pzwl(é') along the standard path form O to 1 (the segment [0, 1]) is written as
Y 1=0"(CRW,)+0(1-0)}, Y.eV/ (N2

veP;

Now introduce the operator E,(z): V,,®V; ®# 11—»9? 2} defined by

1 .
@ == J (w=2) A1, (uz; WDy, (433 2)dw
= Cz;O

where C.., must be considered as a cyclce similarly as in §3.4. of [TK3].
Then
[X(m), E,(u3®uy; 2)]=2"{E,(Xu;@uy; 2)+E,(us®Xuy; 2)},

and

d
[L(m), E,(u;®u;; Z)]=Z"’<ZE+(m+I)Av)Ev(u3®uz; z).
g.e.d.

4.4) AD-case.

In the following, we restricted ourselves to the case where g is of type 4,. Denote
by #* the set of all Young diagrams Y=[f}, f5,-, fi] with depth(Y)<k, where f;
means the number of nodes the j-th row of Y. To any Young diagram Y=[f;, -,
fir1]e®™* 1, define the dominant integral weight A(Y)ePyy), I(Y)=f1—f,+1€Z, and
m=m(Y)eQ by
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n

W)= $ bR, by=fi~fi a<j<n),
j=

(¥)=fi~frs= 3, by=0AY), ),

n+1 IYI 1 n

ka ] =for1+—— Y kb,.

m(Y)=
n+1,<

n+1

For each weight AeP, there is a Young diagram Ye®"*! with /=[(Y) and 2
=A(Y). Sometimes we use the notations Vy instead of V,y, for #"**.
Note that for each i, f;—m is independent of the choice of Young diagram

1 n n 1 n
expressions Y of 4. In fact, f,-—m=fi——f,,+1——~ Z kb, = Z bk—— Z kb,
Introduce &;eh* defined by A(Y)+&;=4(Y +¢)), where the Young diagram Y +¢;
is
Y+&=[f i fi-1 it L fivnos farrl

Now we want to solve the fundamental problem for the case where 1,=4;=A;
=1(0) in A. Note that A=TA in this case. First we investigate the reduced
equation KZ,(A) in detail for such quadruple A with V5 (/A)#0 and thereafter take
the equation IC,;(A) into account. Fix a quadruple N\ = (4,4, A(0), A(0), 4,) with
Vo' (A)#0 and introduce the sets I(A) and IL(A)

I(N)={peP,; V&' (N2 #{0}} o L(A)={ueP; ¥ (N),>#{0}}.
Note that L(A)=I(A)NP, since V¢ (A)i2=7"(A),? for ueP, by Proposition 2.10.
Write 4, as 4,= ¥, bA;=A(¥) with ¥=[f;,-, fyss]. First note that $1(A)
=dim V) (A)<2. Anjd_ldingV(/\)=2 if and only if
(D2) M =AtE+E, by b =1 ().

In this case, I(A)={u, =A;+&, u_=A, +§;€eP,}. Introduce the number d(N\)=j—1i

+fi—f;
The case (D2) is divided into two cases (D2); such that #[;(A)=i (i=1, 2):

(D2), go<l: j—i<n, or “j—i=n & (0, 1,) </, then L(N)=I(N),
(D2), go=1; j—i=n & (0, A;)=1 then L(A)={A_=A;+&.+1=41—A,},
where eo=ao(/\)=%.
(m)) i{m)
by ;11 Ay
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Moreover dim Vg"(/\)=1, if and only if either of the following conditions (D1)
holds:

(D1), Ab =4, +28; by, =2

(D1), F=A+§+8. bi- 21, b;=0

And I(A)={A;+&}. Note that one of the conditons (D1); implies #I,(A)=1.
Denote by (D0) the case where V§'(N)=0, ie. I(A)=¢.
Case (D2)

First we get three bases {UQ}, {U}} and {U{} of Va'(A) such that they
diagonalize the operator Q,,, Q,; and Q3 respectively:

Q12U(f)=K(?f)—A4(/\))U(io)s stv(il)=K)’(il)U(i1)= Q13U:)=’CY(;)U(;°)’

and
JO=20j n a__ " ST
{ fJ +1}’ V+ K(n+1)’ V+ K{f; l m+1}’
yO="Ji __ " oo _(”"'_2) (oo)__ 1
{ Jitm n+1} T = A1)’ g imimm 1}

The differences Y@=y —y® (i=0, 1, o) are not integers: in fact,
© _ o) 9 ()
PU=YTEC (d=d(N)), v¥'=— (K=l+g)-

The transformation matrices S between the bases {U®} and {UP} are explicitly
given as

(Y, U9)= (U, U)S,

where
SO = g, 0)_(1134 li) S(O,co)zs(ao,O)_< B;4~ f,,) OENSOQ)
St D =150 w)—(fz, f) S0Q),

and the constants 4~ B" are given as

d—1\"? 1 d+1)”2 Jd+1) (d-1)
—4={Z" n_- B=p= I~ nd B =N
A < Zd) , A'=p B=B ( 2d

For this computation, we take the orthonormal basis u? of the space of highest
weight vectors of Vo®V_ ®V, of weight if dlagonahzmg Q,,, Qi, and Q;; as
follows.

1 izt 1
u(g)=z{uj®ui®|/1>+k=zi:+1uk®uk,l d(/\)u Ru;Q 4>
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j-1 i—1
+u® Y u@w i+ Y uu ),
k=1 k=1
1 N
4 =c_°{ui®uj® |A>+ kzl W@y 1}

1
u‘i’zc—l{(u,-®u,-+ui®uj)®M>+ Y U.@w,},

>E+ s

1
u =Z{ (u;@u—u@u)®|Ay+ ¥ v,@w.},

B>E+E;
U@ =Tyu and v =T3,u?,

where ¢ and cfr are positive constants and v, v ,155(VU®V,1),14rE PR

wk,AeVM,,;j_;k, U, U, €(Va®Vgo), Wi, W, EVa,A+e,+e,—u and T,, is the hnear
isomorphism  T5,: Vo®Vo®V,»V @V, ®V, defined by T;,(u;Qu,®u;)
= (U, Q@u; ®u, ).

Similarly as Proposition 4.3 in [TK], we get the fundamental solutions of the
linear differential equation KZ,(A) with regular singular points at {=0, 1 and o by
means of the Gauss’ hypergeometric function F(a, f, y; {):

Proposition 4.6.

Let ‘P‘f (8) be the fundamental solutions of the equation KZ,(N ) regularized at { =i
(i=0, 1, oo):
(i) (i)
o), won=(ot. o) (576 90 0).
Then
)
e ()= PU=0"F(a, B, ¥ 0);
PO_ ()= XA YF+1, B+1, 2495 O);
P, (O)=cO0 1=y UF(—a+1, —B+1, 2—9; 0);
PO ()= - {VF(—a, =B, —¥; 0.
(i)
PP ()= VL@ B, Y5 1-0);
PP () =cPEVU = VF@+1, 41, 24+yD; 1-0);
oD, (=D =) F(—a+ 1, —f+1, 22—y 1=0);
pD_ ()= OA—0)F(—a, —B —yD; 1=0).
(iii)

o) e 1YY (). 1).
"O= ¢ (1 c) F(a,ﬁ,v 1)
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of 1V |
w‘fl(C)=ca“°’C“‘7‘+’(1—Z> Fla+1, 148, 24y Z);

e 1
(p‘_°°3,(C)=c(_°°)C_1"(—°°)'<1—Z> F(l—a, 1—B, 2=y Z>;

1y? 1
(®) (Fy= v 1 __ —g —B —ny@. =
o2 (0) ¢ (1 C) F( a0 —B, —vy ’C)’

! B=~1~ c<°>=c(°°>=—‘/d+1‘/d—1 and C(l)=_\/d+1\/d—1'
U A d(x+d) t 2(k+2)

Case (D1).

Since dim Vy(A)=1, the choice of basis vectors of Vg"(/\) is not of
importance. But by the compatibility with the case (D2), we choose basis vectors
{U®; i=0, 1, oo} of VY(A) such that

UO=UD=U for (D1);; UO=UV=—U for (D1),.

where

The exponents y@, y» and y* of the equation KZ,(A) at {=0, 1, co are given as

1), n+2 n 1 )
(D1), Y(0)=;{l—fi+m‘n—_ﬁ}, ym=x(n+1)’ }’(w)=;{fi—l~m+l},
1y 1 —(n+2) 1 i
1 O ="di_f, - (1) — ) f i ma1
D1, vy K{z f‘+m+n+l}’ Y e )’ Y K{ﬁ i—m+1},

Then we get
Proposition 4.6’

The fundamental solution WO ({)=UP@®({) of the equation KZ,(N\) normalized at
{=i (i=0, 1, o) is given as

DY), OO =eMO=0" (1LY N()=gIrIeO (),

and

n+2
D),  PO)=MO=0"(1—1p ™, 9= —g 27290 ().
where the exponents y¥ are correspponding ones and q=exp (27r\/—_1/1c).

4.5) Connection Matrices for A=(4,, A(0), A(0), 4,).

Now take an intermediate edge p for a quadruple A= (4, A(D), A(Q), 4,) with
I(V)#¢. We want to know the analytic continuation of the reduced 4-point function
¥ ,({) along the path 7(z).

For the case (D1), we get easily the connection (scalar) matrix K(A) of the
fundamental solution ¥O(() at {=0 to ¥*)(¢) at {=oo of the equation KZ,(A):
SO0 =p*))K(A) as follows:
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_n_ ~(n+2)
(D1), K(A)=q2+1) =g-g20m+1)
—(n+2) 2 j
(Dl)z K(/\): —q 2(n+1) <q=exp< 71\{6 ))
Now we deal with the case (D2). By the same arguments in the Appendix II in

+

our paper [TK], we get the connection matrix K(/\)=( Kf K:> of the fundamental
T KC
solutions (P9, ¥©) at (=0 to (¥, ) at {=o0 of the equation KZ,(A):
Kt K
(0) (0)) — (Y(®) () -
(‘P+’ lp_ )—(lP+ ’ lP— ) <K:. K:)

Proposition 4.7.
Tl P TONED ey (vj)”z T(=)T(—7)
B T(AT(-B)’ ) ag) T(-a)[(—¢)’

K= g B I (ﬁ)m L)) _=q%(d—ﬁ) y TOI(=y)
xe) T@TI() - B T(BT(—B)’

Ki=—¢q

where d=d(N), oc=d—+1, ﬂ=l, },=i .s=d_1
K K K K

and g=exp (Zn\/:—l/x).
Hence by Propositions 4.1 and 4.7, we get
Proposition 4.8. Let N\ =(1,, A(0), M), 4,) with I(N)#¢$. Then

(D1) C(AN)=CE(N)=K(A), where pel(N\) and pel(N).
(D2), C(A)=CE-(N)=KZ(N), where p_=pu_=},—A,.
(D2), C(N)=(Ch(A))zperny=K(A) as 2 x2-matrices.

Remark. In the case (D2),, all entries of the matrix C(A)=K(A) do not
vanish. In the case (D2),, ¢o=1 implies K* ( A)=0, hence the matrix K(A) is of the

form <* 0).
* ¥
Now recall the notion of g-integers for ge C*: for each integer ie Z, introduce the
g-integer [i]=[i], defined by

q—1

-1
(=1
i (g=1).

(g#1)

Then
Lemma 4.9.
i) [0],=0, [1],=1 and [2],=1+4.
i) [—il,=—q7'[i], and [i1,,=¢""'[i], (i€Z).

iii) [i1,=0, if and only ifqi=1'<['<]4=0 ifq:CXp<27Z\r/c_1>')
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iv) lin} Lil,=i for any ieZ.
q-—b
Then in the case (D2),, the matrix K(A) can be symmetrized by means of ¢-
integers:

Proposition 4.10. For each quadruple N\ =(4,, A(D), A(O), A,) satisfying the
condition (D2),,

) ~1 Jald—11[d+1]
KW#%(‘H v_l) e < (“v )
| Jeld—11[d+1] ra -
where [d] [d]
(v _(my-1 -
o= g 4o ) =00

We can get the connection matrix (=scalar) K(A) in the cases (D2), and (D1):

21:\/—1).

Proposition 4.10. Let q=exp(

K
_ —(n+2)+n_1 —(n+2)
i) (D2), K(N)=KZ(A)=q2e+D ™" [[k—1]=—q2e+D)
—(n+2)
i) (D), K(N)=q-qZo+D

—(n+2)

i) (D1), K(AN)=—g20+D

Remark. The values in ii) are also obtained from the ones in the case (D2),. Let
A= ((A;+&+e41)*, @), A(@), 4,), then d=1, s0 K7 (A)=KZ(A)=0and KI(A)=

—(n+2)
—42m+1)
§5. Monodromy Representations of Braid Groups.

In this section, we construct representations of braid groups on the spaces of
multi-correlation functions, and show that they give the same representations of Hecke
algebras constructed by H. Wenzl. Fix an integer N>2 throughout this section.

5.1) Braid Groups and Mondromy Representations.

Denote by X the quotient manifold Xy by the N-th symmetric group ©y. The
fundamental group of Xy is the braid group with N strings of the manifold C, that is,
the classical braid groupp of Artin, and is denoted by By. It is well-known that the
group By has a system {b;; 1 <i<N—1} of generators with the fundamental relations

(BR) bibj=b;b; (i—j22) and  bb;y bi=b;y by (1<ISN-2).

These generators b; are represented by the curves on C defined by

1 _ _
bi(t)=<N, N1, i(l4+e), i+%(1—e"¢-"),---, 2, 1),

te[0, 1]. Here we take (N,:--, 2, 1) as a base point of Xy.
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See our previous paper [TK] for monodromy representations of By on the space
of multivalued holomorphic functions on Xj.
For each t and AeP, introduce the space

V(4 N, 1)=Y V(4 N; 1), B=(uy-1,- pr)e@)7?
M

v a,=r((of Ve-er((, i ))e-er((uto))

and the weight teP, is called a target edge. Then ¥°(A, N; 1) is isomorphic with the
space ¥ez(N\,) of (N+1)-point functions, ie. with the space

where

VY(h)= ¥ vf((&ﬁ))wa, N; 1),

pePf'l

where A=A\, (A)=(1*, 4, )e(P)V*L

2n—1
Now recall k=I/+¢g and q=exp< n\’/c ) Consider the systems KZ(N, 4; 1)

and IC(N, 4; t) of equations for V;’(/\,(A))-valued functions on the manifold X:

0 §NooQ, .
KZ(N, 4; 7) (Kéz_i_ kk;; Zi—_’;—)()‘{’(zm..., z,)=0 (1<i<N)
*1

and for any ukeVlk(ANH:'r*, A=A (1<i<N)),

N\ N
ICOV, % 1) ¥ (ﬁ) T =2) ™) (g Xy, 125,00, Xt) =0

' k=i

for 1<i<N, and
L
) (m"“)‘P(Z) (1 Aws 1> XNy, -, Xgiuy)=0
MN+1 N+1

where m;=(my,---, Ay, m1)€(Zyo)" ™' (1<ISN) and my, ;= (my, -, m)e(Z,0)"
with |m|=L,=1— (4, 0)+1 (1<i<N+1).

Introduce the transposition operators T;; of Vg"(/\,(/l)) (1<i, j<N) defined by

(T‘J(p) (U®uN®...®uj®...®ui®...®u1)=(p(v®vN®...®ui®...®uj®...®u1)
for veV*, u;eV, (1<j<N). Then T;(1<i, j<N) preserves the subspace ¥ (A (1))
=7 (A, N; 1).

By Proposition 4.2, we can define a monodromy representation of By on the space
¥ (A, N; ) as follows: for each i and ¢y® ---®@,€¥ (4, N; 1)

bi(on®®p1)= )Y CYy®@ @Yy, Yy®---®Y,€¥ (4, N; 1),
pep V-1

if the analytic continuation of 'the (N+1)-point function <I>v®,,,N@...®¢1(z), Z=(Zy4+1,

Zyy, 21)€RN+1, along the path yp; is written as

Z CpTi,i+1(I)wN®"'®lll1(Z)a Yn®---®Y,€¥ (4, N, T),g

pePf"“
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where

Zis1 2z +e,,¢__uzi+ 1= %

2 2 7

Vi(t)=<21v+ 1 ZNs ZN-1"""s

Ziv1tZ Lmw Zivr—Z
— " —,, zq ), te[0, 1].

5.2) Iwahori Hecke Algebras and Monodromy Representations.

For qeC*, the Iwahori Hecke algebra Hy(g) of type Ay_, is defined as a C-
algebra with a system {7,---, Ty_,} of generators and the fundamental relations as

il 1 Ti=Tis: TiTiyy (ISISN=2); T.T;=T,T,; (i—j|>2);, (T;—q)(T;+1)=0.

In the following, we restrict ourselves to the case 4=A(g) and omit A= A(0) in the
notations of §5.1.

Let W(N;t) be the solution space of the joint system KZ(N;t) and IC(N;7).
Then by Theorem 3.4, the space W(N; 7) has a basis {Ws(zy, ", z,); pe?(N; 1)}
defined as follows: Let

PiN; )={p=An," s A1, 40); Ay=T, 4o=0, L,eP, (1<i<N)
Ai=2;_; +&; for some j}.

For each pe#,(N; 1), define the Vg"(/\,)-valued, multi-valued holomorphic function
lI"‘(ZN’"'s Zl) on XN by

Wolznss21) (0 up,---,uy )=<v(v)| Dy, (uy; ZN)"‘(I)VI(“ﬁ zy)lvac)

for veV,+ and ;e Vo (1 <i<N), where the vertex v,=v;(p)is defined as v,-:(/'(f) )

i i-1
(1<i<N). Note that dim¥ (v;)=1 and the initial term O EV (v;) of o, . is taken as
the fixed basis vector of ¥ (v;).

The braid group By acts on this space W(N;t) as monodromies. The
commutation relations of vertex operators gives a factorization of this monodromy
representation (ny,, W(N;1)). The Sy-module structure of the space Vg"(/\) is
defined by

(09)(uy,---, U)= 0 Uy s Uitye) (‘Peng(/\), ceCy),

and the By-module structure on the space of vy (A)-valued functions on Xy is defined
in §5.1. By Propositions 4.10, 4.10' and 5.1, we will give this representation z=my
explicitly.

For each i (1<i<N—1), the action n(b;) of the generator b; of the group By on
the space W(N; 1) is given as follows.

At first, divide the set 2,(N; t) into the six parts: Let p=(Ay, Ay-1,-» 455 41,
A0)EP(N; 1), Ay=1, Ao=0:

pe@f(N; T)‘—_’}‘i+1=li—1+2éj for some j
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PEPY(N; T)e— Ay =A_1+8+&;,; and {J;_;, H;>=0 for some j
PEFN; 1)e—dip1=A_1+& +&, and (4;_y, 0)=I

PEPLN; T)e—>Aiy 1 =4, +&;+§ for some j>k with 1<j—k<n

PEPI(N; 1) diy1=Ai—1+&+E4+, and {4;_,, H;>)0 for some j
PEPL(N; 1)e—Aip1=A—y+& +&4, and (4;_y, O)/

Then the operation n(b;) is given on the basis vectors {¥s; peZ(N; 1)} as:
—(n+2)

a) If peZ{(N; 1), n(b,)¥r=¢q qZn+1) Po.
—(n+2)
b,c) If peZ}(H; DUZi(N; 1),  n(b)¥r=—gq20 0¥,

d) If pe#?(N; 1), there is only one p’'s #¢(N; 1) such that A,=4; for any h#i
and A,—Ai==+(¢;—¢). We define the action n(b;) for which C¥s+C¥y is
invariant. We modify the notations as p+=(t, Ay_1,-**» Ais1» Afs Ai—1,-7+» 41 ), Where
Af=A_,+& and A7 =4, +&;(k<j). Then the action n(b;) on C¥e,+ C¥p_is given
as n(b;)=K(4+y, A@), A(@@), 4i-y):

) —1 Jald+11[d—1]
—(n+2 - _—
n(bi)lcw.,*m,,‘=qz&—+n’(v+y:1> [d] (] (“y_)
Jald+1]1[d-1] q
[d] [4]

where d=k—j+f;—fo Aic1=A(f1>> fus1]) and
F(i i)
K
Yi= 1 .
+x +x

e) Let k=j+1, then n(b,) is the same as in case c).

f) Let j=1 and k=n+1, then n(b;) is the same as in case d).

In each case, {g,—1} are only possible eigenvalues of the operators
n+2 n+2
q*®*Vg(h,). Thus the actions g2+ () on the space W (N; 1) satisfy the relations
of the Hecke algebra Hy(q).

Theorem 5.1.

n+2
The monodromy representation q2n+Ony . of the braid group By on the space

/-1
W(N; ) gives a representation of the Hecke algebra Hy(q), where q=exp< n\{c )

5.3) Wenzl’s Representations of Hecke Algebra.

H. WenzI[W] constructed irreducible representations (ny, Vy) of Hecke algebras
Hy(q) for any g not being roots of unity, parametrized by the set %, of all Young

__41‘_
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. 2n/—1\ | . .
diagrams on N nodes. If q=exp( / ) with x >4, he also constructed irreducible
K

representations (n{"™), V§®) of Hy(g) parametrized by the set #@h of all (g, k)-
diagrams on N nodes. Note that the representations n{™ are unitarizable as
representations of the group By.

In this paragraph, we show that our representation (my., W(N; 1)) of the Hecke

2/ —1
algebra Hy(q) (q:exp( n\,/c )) is equivalent to the representation (nf™, V™)

and all Wenzl’s unitarizable ones are thus obtained. (Recall that x=/+g and g=n+1
in our case.)

Let #% be the set of all Young diagrmas Y on N nodes with depth(Y)<g. For
each Y=[f, -, f,1e%%, put I(Y)=f,—f, Introduce the set #¢* of all (g, x)-
diagrams on N nodes, defined by ¢ ={Ye®4; (Y)<k—g(=1)).

We shall write Y'<, if the Young diagram Y’ can be obtained by taking away
appropriate nodes of Y. For each Ye#{", let

PY)={f=p-> Yi)); Yoe@P", Yy <Yis1y Y=Y}

H. Wenzl defines an irreducible representation (n{™, V) of the algebra Hy(g)

for each Ye#¥™, where V¢ has the form @ Cvs. This gives a unitary
. #EPYY)
representation of the group Bjy.

Note that for each N, the weight A(Y) determines the Young diagram Ye®{
uniquely. For each f=(Yy), Y )e?(Y) with Ye#¢, let K(4)=(s,
AYn-1))s MYy)), 0)€?(N; ) with t1=1(Y). Then the mapping K gives a
bijection of #,(Y) with Z(N; A(Y)).

Define the mapping K:V{* — W(N; A(Y)) by
K(ff/,):'y(ﬁ)\{’x(/,) for 7=Yny s Y(1))e<@l(Y)’

where y(£)eC is determined by the following condition up to a constant multiple: Let
# and £’ be different at only one position, i.e. f=(Yy, -, Yy and 4 =( Yjy),---, Yiy))
with ¥j, =Y, and Y=Y}, for all h#i. Assume that Y,=Y,_,,+ g;and Y, =Y, 4
+ & with j<k. Put d=f,—f;+k—j, then

@ ) () () ()

Here we fix y, at some path 4o, say at the maximal s, then y ﬁ’s are uniquely
determined for all £e2(Y).

Then the mapping K intertwines Wenzl's representations (™, V¢*) and our (m,
W (N; 1))

Proposition 5.2. For each YeW ¢, set t=A(Y). Then
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n+2
K ny=q2+Hmy K

Note. If we construct the theory for /£Q as in Remark 3.7, we get the

monodromy representations of the Hecke algebra Hy(g), q=exp<2%/+;l>, which are
g

isomorphic to the representations (my, Vy) parametrized by Ye# Q.

The result in this section is announced in [K], but the existence condition of
vertex operators are falsely presented there. Therem 2.7 in this paper is the correct
version.
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