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Classification of Dynamical Graphs with
Vertex Number < 10

Yukihiro KANIE*

Introduction

I proposed several materials for Clinical Mathematics Education in [1] such
as dynamical graphs (representing cause and effect), strategy games (equivalence rela-
tions generated by simple basic relations), and various inverse problems in arithmetics
(techniques, skills, arts and structures in the world of numbers). I also developped in
(2] the theory of dynamical graphs in the case of reduced divisor sums, and in [4] gave
a brief review of a theory of dynamical graphs, and a detailed account in the case of
Reversed Difference as an example.

In this note, I will give again a brief review of a theory of dynamical graphs (see
[7] for details) which contains a few notions different from ones in [4], and propose
the fundamental problems and give an answer for classification of dynamical graphs
with vertex number k£ < 10, in §8. This is equivalent with the classification problem
for mappings of [; to itself, where I; is a k-point set.

§1. Definition of dynamical graphs and fundamental problems

A dynamical graph G = (V,FE) is an at most countable oriented graph whose
every vertex v has only one outgoing arrow from wv.

Proposition 1. The set 2(V) of dynamical graphs on V is bijective to the set
Map(V, V') of the maps of V to itself. The correspondence is given as follows.

Given f € Map(V,V), take the set E = {(v, f(v))|ve V} of pairs as the graph
of f, then G(f)= (V,E(f)) is a dynamical graph.

Conversely, given a dynamical graph G = (V' E), for any ve V we have only one
vertex we V with (v,w)e E. So let f(v)=w. Denoting f by f(G), we get that

G=G(f(G)) and f = f(G(f)).

Hence a dynamical graph G(f) = (V,E(f)) is corresponding to a discrete
dynamical system f on the set V.

Two mappings f,g:V — V are called isomorphic, if there exists a bijection
¢p:V — V (called an isomorphism) satisfying the equality

pof=gope f=¢p'ogog.

Isomorphic mappings are denoted by f =~ g, and the dynamical graphs G(f) and
G(g) corresponding to isomorphic mappings f,g: V — V are called isomorphic and
denoted by G(f) =~ G(g).
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If 1 is bijective, the inverse mapping /' defines the dynagraph G(f~') called
the inverse graph of G = G(f), and G is called invertible.

Denote by 2(V) the set of all dynamical graphs on V', and by 2'(V) the set
of all invertible dynamical graphs on V. The cardinality of V is called of size of
G = (V,E), denoted by s = 5(G), wchi coincides with the number #E of edges of G.

Denote by D(V) and D'(V) the set of isomorphism classes of 2(V) and 2'(V)
respectively.

For explicit realization of graphs, fix the size k, and take the k-skelton of N:

;o [lieN[0Si<k}={0,1,2,....k—1} (k: finitc)
k—{N (k = )

as a set of verteces. Denote (1) and 2'(Ix) by 2, and 2, respectively. And Dy
and D, by D(I) and D’'(Iy) respectively. We know easily that #9; = kX, #2, = k!
and #D, = p(k), where p(k) is the number of partitions of k.

Fundamental problem

1. Isomorphism problem.
(a) Classify dynamical graphs of size k, that is, determine the set Dy.
(b) Determine at least the number &y = #Dy.
(c) Detemine invariants necessary for the classification.
2. Normal form problem.
(a) Determine a (canonical) system of representatives of isomorphism classes Dy
of dynamical graphs on 1.
(b) Establish the correspondence between the values of invariants and the system
of representatives.

§2. Basic notions of dynamical graphs

Here, we summarize basic notions of dynamical graphs. Let G = (V,E) = G(f)
be a dynamical graph.

1. Future of a vertex. For a vertex ve V, the set of all ‘descendants’ of v,
Vi) ={weV|w= f“0) for some a > 0},

is called the future of v. For a subset Uc V, VH(U)=1/, ., V() > U
is called the future of U.
2. Past of a vertex. For a vertex ve V, the set of all ‘ancesterts’ of v,

V=(v)={we V]v= f%w) for some a > 0},

is called the past of v. For a subset U = V, V= (U) =)
called the past of U.

3. Subgraph. let G = (V,E) and G’ = (V' E’) be dynamical graphs. G’ is
called a dynamical subgraph (or simply subgraph) of G, if V' < V, E' c E
and every edge in E’ has verteces in V.

V=(v) o U is

velU
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For a set U < V, the dynamical graph G’ = (V' E’) such that V' is the
future VT (U) of U, is called dynamical subgraph generated by U and is
denoted by (U). For U = {v}, (U) is sometimes denoted by <{v).
future graph, derived graph. For any n = 0, the set f"(V) is f-invariant,
the subgraph G(f|r+(,,) generated by f"(V') is called the n-th future graph,
and is denoted by G". And the first future graph G’ is also denoted by
G', and is called derived graph of G.
connectedness. If V()N V*(w) # & for any two vertices v,w e V, the
graph G is called connected. For example, the subgraph {v) generated by
a single vertex v is connected.
connected component. A maximal connected dynamical subgraph # of G
is called a connected component. The number ¢ = ¢(G) of connected com-
ponents in G is called connectivity of G. ¢ =1 means that G is connected.
For a vertex v or a connected subgraph G’, the connected component
F containing v or G’ is called the connected component of v or G’, denoted
by #(v) or #(G’) respectively.

cycle. If a subset Z = {vy,...,v,} of (mutually different) verteces satisfies
vier (1< p)
Ui) = .
=1 G,

then the subgraph (Z) is called a cycle. Sometimes the set Z itself is also
called cycle. The number p = p(C) is called the period of the cycle C. A
cycle with a period 1 consists of a single vertex, and is also called a fixed
point.

Regarding a cycle Z as a dynamical graph, V'~ (v) = V" (v) = Z for any
vertex v of Z. Denote by Z, the isomorphism class of a cycle of period p.
limit cycle and gate. A cycle Z of G is called a limit cycle of G, if
its connected component is actually larger than Z itself, that is
V=(Z) 2 Z. For any vertex v of a limit cycle Z, its past V'~ (v) coincides
with V7(Z) = # (v).

Let W ={we V\Z|w — v}, then its past V(W) is called the outer
past of v, and is denoted by O~ (v) o W. The vertex v is called the gate for
O~ (v), and the number w(v) = #W is called the width of the gate v. We

w(v)
write W = {wi,..., Wy}, then #0~(v) = 3 #V(w;) is called the weight
i=1

of the gate v, and is denoted by wt(v). For a vertex z e O (v) we say that
z belongs to the gate v.

Sometimes a vertex v of Z is called a gate of weight 0, if O~ (v) = .
A connected subgraph G’ of a dynamical graph G is called regular, if it
contains actually one cycle Z. G is called regular, if any connected com-
ponents are regular.

Then the set of connected components {Z,..., %.} corresponds to the
set of cycles {Z;,...,Z.} such that Z; corresponds to &% = %;(Z;) con-

taining Z;. For a cycle Z, we say that any subsets or verteces of #(Z)
belong to the cycle Z or the Z-family.
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11. A vertex sequence {vy, ..., v} is called a path from vy to vy, if v; = f(v;_)),
ie. vi—uvi_; for i=1,... k. 1If any verteces are differrent, then this se-
quence is called simple, and a simple path is determined by the end verteces
vo and vy, so is denoted by [vg,vx]. The simple path [vy,v;] are not a
dynamical sugraph, but an oriented graph with k& edges. We call k a length
of the simple path [vg, v] denoted by len([vg, vx]). If we V¥ (v), there exists
a unique simple path [v,w].

§2..1 Characteristic values for verteces

l.

life of a vertex. We say that the life /(v) of a vertex v e V is n, if there exists a
natural number » such that ve f“(V) (0 <a<n-—1) and v¢f"(V). If such
number n does not exist, then such vertex has an infinite life. Denote by ¥,(G)
the set of all veteces of life n, that is, %,(G) = {ve V|/(v) = n}, then

LG =T INSV) (nz ).

degree of a vertex. For a vertex v € V, the number of arrows whose target is v is
caleld the degree of v, and is denoted by deg(v). That is, deg(v) is the number of
the preimage of v by f = f(G):

deg(v) = #/'(v) = #{we V|w— v}.

Remark. In an ordinary graph theory, this notion of degree is called the in-
degree. The reason why we choose this definition, outdegree of every vertex is 1
(constant) in our theory.

height of a vertex. Denote by #(Z) = #(Z;G) the connected component of a
cycle Z of G. For a vertex ve #(Z), put

ht(v) = htz(v) = min{n =2 0| " (v) € Z},

and call it the height of v. Write the set of verteces of height k as % (Z) =
{ve V|htz(v) =k}, then

72) =) #(2), R2) -2
k20
Points and subsets of % (Z) are called of points and subsets of Z-family, and we
say that they belong to the cycle Z, and sometimes to the period p = p(Z).
distance between verteces. Let v and w be verteces. We define the d(v,w) as
follows. Put d(v,v) =0, and d(v,w)=o0 if v and w belong to different
components.

Assume that v and w(# v) belong to a same cycle.

If ve VH(w)UV~(w), then d(v,w) = min(len([v, w]), len([w, v]).

If ‘ve V- (w) and v¢ V*t(w) or ‘ve Vt(w) and v¢ V'~ (w)’, then d(v,w) =
len([v,w]) or =len([w,v]) respectively.

If v¢ VT(w)UV~(w) and v and w belong a same gate u, then there is a
branch point u’ such that [u’, 4] is the intersection of [v,u] and [w,u|, and then
d(v,w) = len([v,u']) + len([w, u’]).

If v¢ VT (w)UV~(w) and v belongs to a gate u, and w belongs to a gate
uy(# uy), then d(v,w) = len([v,u,]) + len([w, u,,]) + d(uy, u,,).

712 J—
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§2..2 Some properties
We get the following three propositions easily.

Proposition 2. (i) Any finite dynamical graphs are regular.
(i) For a finite dynamical graph G = (V,E), there exists a number N such that
the N-th future graph GWN) is of cycle class.

(111) S(G) = Zve V deg v.

Proposition 3. Assume that G = G(f) is a regular graph.

(i) Any vertex v of infite life belongs to some cycle, and the subgraph %.,,(G) is
of cycle class.

(i1) The followings are equivalent with each other.

1. f is bijective.

2. G is invertible.

3. degv =1 for every vertex v, that is, there are no branch points.

4. G is of cycle class.

5. The size characteristic of G coincides with the period characteristic of

G : P(G) = S(G) (the definitions will be given in §2..5).

(i) If G is connected, then G has only one cycle.

(iv) If the degree of every vertex is 1, then G itself is a union of cycles. Such
graph is called of cycle class.

Remark. An at most countable (unoriented) graph G = (V, E) is called dynami-
calizable, if there exists a suitable assignment of the directions of edges which makes
G dynamical. The resulting dynamical graph G = (V, E) is called a dynamicalization
of the graph G.

Proposition 4. Let G = (V, E) be a finite unoriented graph. Then G is dynami-
calizable, if and only if each connected component of G has only one cycle.

A dynamicalization of G is determined by the assignment of directions of cycles of
connected components, hence there are 2¢ non-isomorphic dynamicalization of G, where
c is the connectivity of G.

§2..3 Leaf, branch point and route

In the following, we assume that G is regular, otherwise stated.

We say that a vertex v is a branch point if deg(v) > 1, and v is a leaf if
deg(v) = 0, that is, /(v) = 1. Then we get easily the following, by computing the
both sides of s(G) = #E separately w.r.t. degrees of verteces.

Proposition 5. If G is finite, then the number of leaves equals with ) ,(deg b — 1),
where b runs over the set of branch points.

Gates are branch points on cycles. Let Z be a cycle of G, vy be a gate of C, wy
be a leaf belonging to this gate and be of height 4 = htz(wy).

Write the path [wg,vg] from the leaf wy to the gate vy as {wo, wi,...,wu(= v9)},
then it may have branch points {b,...,bx(= vo)} such that the path [b;, b;;] has no
branch points other than the two end points. The sequence {wq,by,...,bx(=vo)} is

called a route from the leaf wy to the gate v,.
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For example, in the graph

O ¢— O ¢« 0« O O~ O 0« 0<«<—0

l

@o—W8<—W7<—W6=b2<—W5HW4<—W3:b1<—W)_<—-W]HWO

O «— O
Z ={vy} is a gate, wy is a leaf of height 8, {wq,bi,by,v9} is a route.
§2..4 Pseudotree and pseduoforest

A connected dynamical graph T is called pseudotree, if its cycle is a fixed point.
A dynamical graph F is called pseudoforest, if any connected components are pseu-
dotrees.

In a pseudotree T, the cycle consists of a single vertex v, this unique gate v
is called a root of T. The weight wt(v) of this gate is called the weight of the
pseudotree T denoted by wt(G). Then note s(7) = wt(7T) + 1.

Write connected components of a pseudoforest F as Tj,...,T,, then define the
weight of the pseudoforest F as wt(F) = >, wt(7;), where ¢ = ¢(F). Then note
wt(F) = s(F) — c.

For an integer w = 0, denote by Z, and %, the set of all pseudotrees and
pseudoforests of weight w, and by T, and &, the sets of their isomorphism classes
respectively. For integers w,c = 0, denote by % ¢ the set of all pseudoforests of
weight w and connectivity ¢, and by & the set of its isomorphism classes.
Pseudoforests which contain no cycles of weight 0 are called regular pseudoforest or
bonsai. Denote by #, the set of all bonsai of weight w, and by &/ the set of its
isomorphism classes.

Put 7, = #3,, ¢, = #F, 4. = #F ‘, then #F = oo, and ¢ =0 if ¢ > w.

w w2 w

Remark. In a regular dynamical graph, the subgraph (v} generated by a vertex
v e V has no branch points outside its limit cycle. A pseudotree 7 is called linear, if
the fixed point is the only one branch point.

§2..5 Invariants of dynamical graphs

For a connected graph G, we already know some invariants as follows.
1. The size s(G) = #V(G) is the number of verteces.
2. The period p(G) = p(Z) is the period of the unique cycle Z in G.
3. Denote by D;=#%; the number of verteces of degree i, where 2, =
{ve V|deg(v) = i}.
The maximal degree d(G) is the maximum of degrees of verteces, that is,
d(G) = max{i| Dg(i) # 0}.
The Dy is the number of leaves and b(G) = > ,., D; is the number of branch
points. -
There holds the degree equation s(G) =) ,.,Di=> ;5,iD;, from which
Proposition 5 is easily obtained. - -
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And let Dg = (Dy, Dy, D2, Ds,...) = HizO D;. 1If d(G) is finite, let D¢y =
(DQ,D], e 7Dd(g))-

4. Denote by L/(G) =#%,(G) the number of verteces of life i, where ¥ =

{ve V|/(v) =i}. Note that ¥,(G) =Z and L, (G) = p(Z).

The finite maximal life /(G) is the maximum of finite lives of verteces,
that is, /(G) =max{ie N|L;(G) #0}. And let Lg=(Lo,Li,Ls,...;Ly)
or ”—G = (L(),L], ey L/(G); LOO) if /(G) is finite.

5. The gate number g = g(Z) = g(G) is the number of gates on the cycle.

Denote by 4(Z) = 9(G) the set of gates.

6. The weight wt(v) of a gate ve 4(Z) is #O (v), b(v) is the number of branch

points in O~ (v), and e(v) is the number of leaves in O~ (v).

7. Denote by H;(G) = ##;(G) the number of verteces of height i, where #; =

{ve V|ht(v) =i}. Note that #,(G) =Z and Hy(G) = p(Z).

The maximal height ht(G) is the maximum of heights of verteces, that is,
ht(G) = max{ie N|H;(G) #0}. And let Hg = (Ho, H), H>,...), or H¢ = (Ho,
H],. ‘. ?Hht(G)) if ht(G) is finite.

For a disconnected graph G, the connectivity ¢ = ¢(G) is essential. Assume that

c is finite, and write connected components of G as {G',... G¢). The corresponding
invariants are denoted as c-vectors. For example,
1. the size characteristicc S¢ = (s',...,s¢), where s =s(G*). There holds

that s(G) = s' +--- +s-.
2. period characteristic: Pg = (p',..., p¢), where p*k = p(G*).
G is a pseudotree, if and only if P =(1,1,...,1) denoted also by
149, G is of cycle class, if and only if Pg = Sg.

3. maximal degree characteristic. MDg = (d',...,d¢), where d* = d(G*).
4. maximal life characteristic. Mg = (¢',...,¢¢), where /% = /(G*).
5. maximal height characteristic. MHg = (ht',... ht¢), where ht* = ht(G¥).

§2..6 Operations and deformations in dynamical graphs
First we fix a vertex set V' and consider operations on Z(V).

1. Product.
The product of F = G(f) and G = G(g) e Z(V) is defined as

FG = G(f)G(9) = G(f9)-
Denote G(f) by E = E(V), where f is given as f(v) =v (ve V), then 2(V) is a
semigroup with the unit E, ie.

G(f) = EG(f) = G(f)E.
(Denote also Ey = E(Ix).)

2.  Pointwise Sum and Pointwise Product.
On V = I, we can define operations by using operations in Zj.
For F = G(f), G = G(g) € 9y, define the pointwise sum as

FOG=G(/+9), (f+9)@)=/()+g(i) (modk)
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and poinwise product as
FRG=G(fxg), (fxg)i)=/f()g(i) (modHk).
Next we define dynamical systems on different vertex sets.

cup product
Let V,V’ a set of verteces, where verteces in different sets are considered dif-
ferent. Define the cup product DUD' of De (V) and D' € Z(V’) as

U: 2(V)x 2(V') s (D(f),D(f")) — D(g) € (VU V'),

[ f) veV
g(v){f’(v) ve V',

If graphs are realized on I, then the cup product is given as
U: Dk x Dy 3 (D(f), D(f)) — D(g) € D

L[S0 (0=i<k
g(l)—{f’(i—k)+k (k<i<k+k').

The notion of cup product can be factored to isomorphism classes, and be
restricted to invertible graphs. Then we get easily

Proposition 6. The cup product implies the isomorphism of the set of partitions of
k to the isomorphism of invertible graphs of size k:

P(k)a(kl,...,kc)<—>Zk1U-~-UZk(_eDk,
where ki + -+ k. =k, (k1 £--- Z k).

Denote by mG the cup prduct of m copies of a graph G (or its isomorphism
class), then for example

E\UE, = E, =2F], E]UEk:Ek+1:EkUE1Z(k+l)E1.

attachment. Given a graph G = G(f) € 2(V), a vertex ve V, a pseudotree 7 =
G(t) = (U,F) e 7 with the root u e U, we define the dynamical graph G V, T =
H=G(h)e2(V') by

fw) (weV)
h(w) =14 t(w) (we U and ((w) # u)
v (we U and t(w) = u),

where V' is the disjoint sum of V' and U\{u}. We say that H is obtained from
G attached by T at v. Then

s(H) =s5(G)+s(T) -1 =s(G)+wt(T), ¢(H)=c(G), PH)=PG).

Any connected dynamical graphs can be expressed as a cycle Z with pseudotrees 7;
attached at gatesv; (i=1,...,9): G=ZV, T,---V,, T,. Then the size of G is
given as



Classification of Dynamical Graphs with vertex number < 10

where p is the period of the cycle.

Linear pseudotrees of weight w are isomorphic with each others, so denote
their isomorphism class by L.

Any pseudotree T can be expressed as a linear pseudotree L,, with linear
pseudotrees L,, attached at branch points v; (i=1,...,6(T)): T = Ly, Vi,
L, Vo, -+ Vo Ly,. Then s(T) =1+ 35w,

In particular, Ly = K = Z;, and attaching Ly does not change any graph:
GV,Ly=G for any ve V.

If v is a leaf of a linear pseudotree T, then L, V, L, = L.

§3. Examples

In this section, fix a size k (1 £k < ), and consider the set &, of all dy-
namical graphs on I;. Denote by %, the set of all connected dynamical graphs on
I, and by € the set of its isomorphism classes.

§3..1 Elementary dynamical graphs

Let P e Z[x] be a polynomial with integral coefficients, then define a mapping
P.: I, — I as

Pe(i) = P()  (mod k),

and the corresponding dynamical graph G(Pj) is also denoted by Gi(P). Such
dynamical graphs are called elementary. Denote by & the set of all elementary
dynamical graphs on Ij.

We use the convention P, = P. Note that P, = Q; may happen even if P #
Qe Z|[x].

Remark. ¢, plays an important role in the isomorphism problem. As for the
normal form problem, we seek a representative of an isomorphism class in the region
Ex.

Here we list elementary graphs. Let a be a natural number.

1. The Constant Graph K;' stands for Gi(P), where P(x) =a. K/ is a pseudo-

tree, a is the root of degree k, and the other kK — 1 points are leaves.

2. The Addition Graph A} stands for Gi(P), where P(x) = x +a. Obviously, if

k is finite, A7** = A{ and every A{ is of cycle class, hence A% € ;. Choose
A[i as the representative for the cycle Z, of period p.
Write 4% as A¢ then its connectivity ¢ is @, and

LAY ={il(n—Dasi<na), Lo(4)=F, Du=(a0)

and /(i) = [i/a] + 1 for a vertex i of the addition graph 4“. A4“ has no
branch points.

AU UA) (= mA)) =A™,
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3. The Multiplication Graph M} stands for Gy(P), where P(x)=ax. Ob-
viously, if k is finite, M ,g’*k = M. M} is of cycle class, if and only if a and
k are coprime, that is, (a,k) = 1.

4. The Power Graph P{ stands for Gi(P), where P(x) = x“.

5. The general Polynomial Graph P{(f) stands for G, (P), where P(x) = f(x) is
a polynomial in x of degree a.

General polynomial graphs can be represented as a finite products of addition

graphs and multiplication graphs.
A,? = M|/ (= E;) is the identity graph w.r.t. the pointwise product in Z.

Examples. A{A} = APAf = AL, MEMP = MPMZ = M, but in general,
M,fA,f #A,?M,f, and they are no more addition graphs nor multiplication graphs.
For example, both of

MZA? = Ps(2x + 1) # AIMZ = Ps(2x + 3)
is isomorphic to M2.
A,‘:G—)Ab:Pk(2x+a+b), M,f@M,f:Pk(abxz).
K{ @K =K K{QK! =K.
G) =K ®G(f), Gf)=K ®G(/).

Unfortunately, threre are not sufficiently many elementary dynamical graphs for
classification for large k. We can compute all dynamical graphs for small k. In
fact,

Proposition 7. As polynomial functions on I (k < 10),
x? =x (mod 2), x* = x? (mod 4), x" =x (mod 7), x> =x* (mod 8),
x* = x (mod 3, or 6), x° = x (mod 5, or 10), x® = x? (mod 9).

Hence for example, there are at most 4% elementary graphs on I, since any
polynomial functions on I; can be written as f(x) = agx® + a;x?> + asx + a4, (a; € I).

§3..2 Realization of pseudotrees and pseudoforests

For an integer a > 0, let f/ be a mapping of I; defined by f(x) = max{x —a,0}.
The corresponding graph G(f) is called a subtraction graph, denoted by Djf.
Then D} is a linear pseudotree Lj_; of weight k — 1.

For a > 1, D% is a pseudotree and is Ly with a linear pseudotrees L., attached
at the root 0, ie

D =LyvoaLl,, = Lo, Vo (a— 1)Ly,
where the weight of 0 is a. (Note that the left hand side D“ is a dynamical graph,
and the right hand side is its isomorphism class, but readers will not be confused.)

For finite k, D{ is a pseudotree and is Lo with i linear pseudotrees L, and
(a — )L, attached at the root 0, ie.



Classification of Dynamical Graphs with vertex number =< 10
D; =Ly Vo (iLpyy U (a—i)Ly) = Lpyy Vo ((i = 1)Ly U (a — i) L),

where b = [%J, i=k—1—ab, and the weight of 0 is a.

§3..3 p-ary pseudotree

Fix (p,/) (p > 1,/ > 0), we define p-ary pseudotrees B,f of length / inductively
on / as follows: At first let B) = Lo, then put

B! = Lo vo p(Li v1 B),

then

4 /+1 Z
P =1 pr—1 ,
s(By) =Y p'= PR wt(By) = p . Do(By)=p".
i=1

In fact,

, /H_l (+1__1
(B =pl1+2———1)=pL——.
wi(B,™") p<+p_1 A

BF is a linear pseudotree Ly of weight k, and Bj is called a binary pseudotree of
length k.

The multiplication graph M3, is expressed as L; v; B5~!, and in general the mul-
tiplication graph M[fk is expressed as Lo vo (p — 1)(L; vy BI’,“I). Its size can be com-
puted as

k
pt—1
s(M,fk)—lant(M[‘)”k):1+(p—1)(1+p 1 —1):pk.

§3..4 Deformation of future graphs and derived graphs

Let h,n > 0 be integers. Assume that the size of the n-th future graph G of
G = G(f) € @), is positive, namely k. Denote by J; the vertex set f"(I,) of G,
then J; is f-invariant. Consider a different dynamical graph G(g) € 2, then J; is
also f"g-invariant.

Even if G(g) is elementray, the dynamical graph on J; corresponding to fg is not
isomorphic to the original G(f) in general.

There is a graph H € 2 which is isomorphic to G, and an bijection ¢ : I, — Ji
such that H = G(¢p~'f"gp). So we can get many explicit examples in Zy.

In [6], we gave various examples on ten verteces, by using deformations of this
type. There, we considered the reversed difference graph R, = G(d) on 2 place
numbers whose derived graph (the first future graph) R} is of size 10. So taking as
above g additions and multiplications on Ij0p, we get various graphs G(dy| R’z) on
V(RS) =~ Ip. Even the connectivity of G(dg\R,z) is different from the one of R}
in general.

Example. Let k a positive integer. A number x in [ =I;> = {ie N|0 <i < k?}
is uniquely expressed as x = ak + b, (0 < a,b < k). Define a mapping f of I to itself
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by f(x) =|(ak + b) — (bk + a)| = (k — 1)|a — b|, then the subset J = (k — 1)I, = I is
f-invariant, and G(f/,) is the derived graph whose vertex set J is isomorphic with I;.
Hence, many examples in &, are given from G(f|,) by deformations of this type.
In this article, we use notations RY for G(f) on I, and Ri(g9) for G(fg|,) on
J(= Iy) =1 with g e Map(I,1).

§4. i and their representatives for £ <4

Since Zx =~ Map (I, I) and the invertible &, corresponds to the set of bijections
of I to itself, #%; = k* and #D; = k¥/k!. Hence d)9 = #Djp = 2756. It is too
large for listing all members of Dy.

However we will try it for small k£, namely k < 4.

It is obvious that D, = 2, ={Z; = Ly} and ¢, = 1.

For k=2, D, ={Z,,L;2Z,} and 0, = 3. We can give their representatives by
elementary graphs, such as

AyeZ,, My=K)el; A)=M)e2z,

where the semicolon seperates w.r.t. the connectivity.
For k=3, D3={Z3Ly,Z;VoL\,Li VoL =2ZyVo2L\;Z UZ,,ZULy;3Z,}
and d3 =7. We can give their representatives by elementary graphs, such as

Aé €Z3, P3(X2+ 1) €L2, P3(X2+2) €Z2 \/0 Ll, M_?EL] \/0 L|;
M}eZ\UZy, Py(x*)ez UL;  Ade3z,.

For k= 4, b4 = {Z4,Z3 V() Ll,Zz \/0 L2,Zz V() 2L|,Zz V() L1 \/1 Ll, L3,L2 \/() L],
LoyViLy, Z\No3Ly; Z3UZ,,22,, Z, U Ly, 2L, Z\U(Zy Vo Ly), Zo U Ly, Z, U Ly;2Z, U Ly,
Z>,U2Z,;4Z,} and 64 = 18. In this case, we cannot give all their representatives by
elementary graphs. In fact,

AJ € Zy, Ri(x-i— 4) e ZyVy Ly, P4(x3 + 1) €2y Vo Loy, Ré(xz + 4) € Zr Vo 2L,

P4(X2 + 1) eZy, Vo LI V1 Ly, Ri(x + 6) € L, P4(3X2 + 2) €L, Vy Ly,

M;eL,ViLy =L ViB), M} eZ Vy3L, = Bj};

Ri(x+10) e Z3UZ, A} €27y, Py(x* +2) e Z, ULy,

RL; € Zl U (Zz \/0 Ll), P4(X2) € 2L1, Ri(x—!" 1) € Z] ULz,

M3} e Z,U2Z;, Py(x’)e2Z ULy, A) = M| €4L,.

For calculations of R}(g), here we draw the graph R? in an abbreviated form:

5
«
010 125973628713
\15 1,4,11,14

We can show that other elementary graphs on Iy are isomorphic with some graph
drawn above as elementary graphs.

Thus explicit listing of isomorphism classes (®;) for higher k£ seems very
cumbersome and tedious, so in the following we will compute only the class number
o, for k < 10.
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§5. Plan for computation

Now we start the computation of J; (k < 10).
Here we summarize subfamilies of %, defined before:

9, ={D € 2| D : invertible} c
% = {D € 24| D : connected} c Iy

U

Ti-1 ={D e €| p(D) =1}.
They are compatible with the equivalence relation given by isomorphisms, so
Dk > Dy, D o G o Iy

In the preceding section, we already know the class numbers 7, = #3I,, (w < 3),
v = #C and O = #Dy (kK < 4) as

51:’))1:‘[0:17 52:3>y2:2>‘[1:1,
03=T>p3=4>1=2, 04 =18>y,=9>13=4.

In the following, we will determine 7, (w <9), in §6., 7, in §7. and 6, (k < 10)
in §8. inductively.

§5..1 Partitions

Here we give the class number 6, = #D, explicitly. By Proposition 8, J, =
#P(k), where P(k) is the set of all partitions of k. They are well-known as

Proposition 8.

p) |l 1235|711 |15]22]30]4

Since we use the facts on the partitions in the computations of class numbers, we
give its brief review. A partition of k is given as k= (k,...,k,), k1 =--- =k,
1 <r<k. Denote p(k,r) =#P(k,r), where P(k,r) is the set of partitions of k to
r numbers, then

plk) =Y "plk,r),  plk.k)=p(k,1)=1,
r=1
and the recursion formula

plk,r)=plk—r,r)+ plk—1,r—1)

holds under the convention p(k,r) =0 for r > k.
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Then we get the table of p(k,r):

Kefl1 2314567 ]8]9]T10
1 |ft]jojoflo|o|oflo]o|o]o
2 fl1|1]jojlojofololo|o] o
3 ltjtf1{ofolo]lofjojo] o
4 2yt l1|oflofololofo
s lvl2f2]t]1fofjoflo]|o] o
6 ||1]|3]3|2]1f1]o]olo] o
7 |13 43|21 ]t]o]o] o
8 ||t ]4afs|s|3|2]1][1]|0]o0
o l1|4]7|6|5(3|2]1]1]0
o fl1{s5{8]o|7|s5]|3]21]1

For example, p(10) =14+5+8+9+7+5+3+2+1+1=42.
In the computations, we alwalys consult this table and use the other expression
of a partition k as k= (1",22,... k%), 0 <i £k, Zleﬁj =k.

§ 6. Pseudotrees
In this section, we will show the following by induction on k.

Theorem 1.

Tk 1y 1 (24920 |48 | 115 286 | 719

Let vy be the unique gate of a pseudotree 7, w = w(vy) be the width of
vg (1 £w<k=wt(w)), and k be a partition of k to w numbers, that is,

k k
k= (17,22, ... k%), k:ijj,, w=> i, 0=k
Jj=1 J=1

Denote by 7(k) the class number of pseudotrees obtained from the fixed point
Z, = Ly attached at vy, by the cup product of w pseudotrees among which there are
i; pseudotrees of weight j. Then

k
Tp = Z T(lk) and T(k) - H f,,]H[ﬂ
ke P(k) 7=l

where (H, = ;,,_1C, is the number of ways of choosing r elements allowing repetition
from a set of s elements.
Note. H, =1, Hy=1, ,Hi =t 19=1 =1 is obvious.
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For k=2, we get

where ke P(2,w), and i, =14+ 1=2.
For k =3, we get

w l (k)

3| wHy =1

2 (1,2) ‘L'|_|‘L’;__|:1~1:1

1 3) T3] =17=2

where ke P(3,w), and 13 =1+1+2=4.

Remark. These results coincide with the ones in §5..
For k =4, we get

w k (k)

4 (1% wHs =1

31 (1%,2) WwHita =1-2=1

2 (1,3) ‘[]_1T3_1=1~2=—'2

2 (2%) aaHy=1H; =G =1

1 (4) T4—y = T3 = 4

where ke P(4,w), and iy =1+14+2+1+4=09.
For k=5, we get

W ke 7(k)

5 (1°) wHs =1

4 (13,2) T()Hj;‘[g,] = ] . l =1

30 (133) | o Hraoy =1-2=2

3 (1,22) T1_|T2_]H2:1~l:1

2 (1,4) 1741 =1-4=4

2 (2,3) Ta—1T3-1 = 1-2=

1 (5) T5-1 = T4 =9

where ke P(5,w), and ts =1+1+2+1+4+2+9=20.
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For k=6, we get

w k (k)

6 (1%) owHe =1

5 (14,2) oHsti=1-1=1
4 | (13,3) wHity=1-2=2

4 | (1223 | Hy o Hry=1-1=1

3| (1%,4) WwHtz3=1-4=4

30 (1,2,3) | wnn=1-1.2=2

3 (2%) oH; =1
2 (1,5) 9014 =1-9=9
21 (24 n=1-4=4

2 (3%) ol =2H, =3C, =3

1 (6) Tg—-1 = T5 = 20

where ke P(6,w), and 76 =1+14+2+1+4+2+1+9+4+3+20=48.
For k=7, we get

w k (k)

7 (17 WwHy =1

6 | (15,2 wHsty=1-1=1
51 (143) WwHity=1:2=2

5 (13,2?) wHy o Hy=1-1=1

41 (13,9 WwHitz =1-4=14

41 (1223) | oM tila=1-1.2=2

4 (1,23) ‘L'()T,Hj;: |

3 (17274) T{)‘L’]‘C;:]~l.4:4

3 (1,39 Too, Ho = Hy =3
3] (2%3) wHyty =2

31 (1%5) WwHita =9

2 (1,6) 1015 = 1 -20 = 20
2 (2,5) nr=1-9=9
2 (3,4) 513 =2-4=8
1 (7) 16 = 48
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where ke P(7,w), and -7 =1+14+2+14+44+2+14+44+3+2+9+20+9+8+
48 = 115.
For k=38, we get

w k (1)
8 (1%) WwHy =1

7 (1%,2) owHit =1

6 (1°,3) owHsty =2

6 | (1422 Hay H = 1

5 (14,4) wHaty =4
51(1°,2,3) owHytiT2 =2

51 (14,29 wHa Hy =1

41 (1°3) wHity =9

4] (1%,2,4) wHatity =13 =4

4 | (12,32 wHinHy =2H, =3

4 | (1,2%43) Tor HaTy = 2
4 (24 WHy=1

3| (1%,6) WHats = 20

3 (1,2,5) T0T1T4 = 9

3 (1,3,4) 00273 =2-4=28
3 (22,4 W Hoty =4

3 (2,3%) TinHy = Hy =3
2 (1,7 0T = 48
2| (2,6) 7175 = 20

2 (3,9) 1y =2-9=18

2 (4%) oHy=4H; =5C, =10

1 (8) =115

where ke P(8,w), and tg=5-1+3-2+2-34+3-44+8+2-94+10+184+2-20+
48 + 115 = 286.
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k (k)

(19> wHo =1
(17,2) WwHy =1
(16,3) wHet2 =2
(1%,2%) wHse Hy =1
(1°,4) wHsty = 4
(14;2,3) wHatitg =2
(1°,2%) wHo Hy = 1
(14,5) wHits =9
(1%,2,4) WwH3T T3 = 4
(1%,3%) wHyo Hy = 2Hy = 3

(12,2%,3) wHar Hyta =2
(1,24 toe, Hy = 1
(1°,6) wHs7s = 20

(127275) wHaT1T4 =9
(12,3,4) owHtr3=2-4=38

(1,22,4) o Hats =4

(1,2,3%) 0TI Hy =2Hy =3
(23>3) aHzt =2
(12,7) WwHats = 48
(1,2,6) 707175 = 20
(1,3,5) 707274 =2-9 =18
(1,4%) Ton, Hy = a4Hy = 5C, = 10
(2,3,4) G =2-4=8
(2%,5) o Hatg =9

(3%) oHy =2Hy =4C3 =4
(1,8) Tot7 = 115
(2,7) 7176 = 48
(3,6) 1275 = 2-20 =40
(4.5) s =4-9=136

©) 5 = 286
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where ke P(9,w), and 19=5-14+4-2+2-34+4-44+2-8+3-9+10+18+4+2-20
+364+40+2-48 + 1154286 = 719.

§6..1 Bonsai

From Theorem 3, we can compute ¢(s) = #&(s) and ¢, = #F,* similarly as
above, where F(s) is the set of isomorphism classes of pseudoforests of size s and &, °
is the set of bonsai of weight & and connectivity c.

Let ke P(k,c) and denote by ¢'(k) the class number of bonsai with weight
characteristic k, then

k
= Y #0  and P =]].H
j=1

ke P(k,c)

Then we get the following table of ¢, inductively on k.

Proposition 9.

k\c 1 2 3 4 5 6 | 7]181|9
1 1 0 0 0 0 0 j0fO0]oO
2 2 1 0 0 0 00|01} O0
3 4 2 1 0 0 0 [0f0(O
4 9 7 2 1 0 0 j0fO0}O
5 20 17 7 2 1 00O/} O
6 48 48 21 7 2 1 10(0]O0
7 115 | 124 | 60 21 7 2 |1 ]0f[O
8 286 | 336 | 181 65 | 21 7127110
9 719 | 892 [ 336 | 197 | 65 | 21 7|21

Before the proof of the proposition, we remark the following.
Divide the set §(s) by the number of trival cycles Zj, then

s k-1
&(s) = {sZo} U ( U U-k)zU 8;@55)

k=1 ¢=1

s—1 k-1 S—
= {sZo} U ( U Ulls—k)ZoU &i_c")) U ( Ul &'_f)

fin)

s—1
ps)=ds—D+> ¢ $(1)
c=1

Hence,

A

SO
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&(s) 1 | 2141920 |48 (115|286 | 719 [ 1842

These values are identical with 7. This fact has an intrinsic reasoning. Con-
sider the mapping

F(s) — T, F—Z \\L\F

given by attaching F at the fixed point of the cycle Z), then this gives a bijection.
Now we start to compute ¢, inductively.
Note. ¢, =0 for ¢ >k and ¢, = 1. ¢{l =1 is obvious.
For k=2, we get

where ke P(2,¢), and ¢,> =1, ¢}’ =2.
For k =3, we get

where k e P(3,¢), and ¢§3 =1, (;5;2 =2, ¢31 =4,
For k =4, we get

¢ I ¢’ (k)

4 (1% oHy =1

30022 | qHhn=1.2=2

2| (1,3) | an=1-4=4

where ke P(4,¢), and ¢)* =1, ¢,° =2, ¢)> =4+3=17, ¢, =0.
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For k=5, we get

c| K ¢ (k) c| & ¢ (1)

5| (19 W Hs =1 2| (1,4) | nra=1-9=9
41 (132 | Him=1-2=2 2| 23) | n=2-4=38
3| (12,3) | Hars=1-4=4 G 15 =20

30 (1,2Y) | tinHy=1-3=3

where ke P(5,¢), and ¢} =1, ' =2, 1> =4+3 =7, ¢,> =9+8 =17, ¢.' =20.
For k=6, we get

o K ¢ (k) ol K #'(k)

6 (1% aHe =1 3 (2%) oHy =2Hy =4C3=4
51 (1*2) qaHita=1-2=2 2 (1,5) 7175 =1-20 =20

4| (13,3) oHits=1-4=4 2 (2,4) 714 =2-9=18

4| (12,22 | Hy - ,Hy=1-3=3 2 (3?) owHy = 4Hy) = 5Cy =10
3| (1%2,4) oHatg=1-9=9 1 (6) 76 = 48

31 (1,2,3) nnn=1-2-4=8

where ke P(6,¢), and ¢, =1, ¢,° =2, ¢t =4+3=7, ¢,  =9+8+4=21, ¢,° =
20+ 18 4 10 = 48, 4;' = 48.
For k=17, we get

where k € P(7,¢), and ¢§7 =1, ¢§6 =2, ¢

1S
7

¢ b ¢'(k) ¢ ks ¢'(k)

7 (17 wHy =1 31 (1,2,4) Tt =1-2-9=18
6 | (1°,2) JHsty=1-2=2 31 (1,32 TiHy = 4Hy = 5Cy = 10
s (143) oHitz=1-4=4 (22,3) oHt3 =3-4=12

S| (13,2%) wHy  Hy=1-3=3 (1,6) 7176 = | - 48 = 48

4 (139 oHitg=1-9=9 (2,5) 7375 = 2-20 = 40

41 (12,2,3) | Hymry=1-2-4=8 (3,4) 314 =4-9=136

41 (1,23 | tiHy=1-2Hy; =4C3=4 (7) ;=115

3| (12,5) o Hats = 20

=4+3=7,¢"=9+8+4=21, 4 =

20+ 18+ 10+ 12 =60, ¢, =48+ 40+ 36 = 124, ¢/' = 115.
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¢ k ¢'(k)

8 | (1% W Hg = 1

71 (1%,2) WHety=1-2=2

6 | (1°,3) o Hsty =4

6 | (14,27 oW Ham Hy =3

510 (14,4 W Hitg =9

51 (1%,2,3) wHitty =2-4=8

51 (1%,2% wHy Hy = 2 Hy = 4Cy = 4
4| (13,5 o Hats =20

41 (12,2,4) W Hotats =29 =18

4| (1%2,3?) o Hyy Hy = 4Hy = 5C = 10
4 | (1,2%3) TipHat3=1-3-4=12
41 (@Y wHy=2Hy=5Cy=5

30 (14,6) o Hatg = 48

3 (1,2,9) 717275 = 2+ 20 = 40

30 (1,3,4) 1t =4-9 =36

3| (2%,4) oHytg =3-9=27

30 (2,3Y) | o =2 4Hy=2-5C;=2-10=20
2 (L7 377 = 115

2 (2,6) To7g = 2- 48 = 96

2| (3,5 1375 = 4 - 20 = 80

2 (4%) wHy = 9gHy = 10Cy = 45
1 (8) 75 = 286

where ke P(8,c), and ¢’ =1, ¢} =2, g0 =4+3=7 ¢ =9+8+4=21, 4" =

20+ 18+ 10+ 12+5=65, ¢, =48 +40+ 36+ 27 + 20 = 181,

80 + 45 = 336, 45 = 286.

12 =115+ 96+
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For k=9, we get

c k ¢'(k)

9 (1%) o Ho =1

8 (17,2) qHimy=1-2=2

7 (183) o Hety = 4

7 (13,22 oHs ,Hy =3

6 (15,4) o Hsta =9

6 | (14,2,3) oHityt3 =2-4=18

6 (13,23 aHioHy = 2Hy =4C3 =4
5 (14.5) o Hats = 20

5 (13,2,4) oHitatg =2-9=18

5 (13,3%) o HyeHy = 4Hy = 5C, = 10
51 (12,2%,3) o Hy, Hyty3 = 2Hy -4 =12
5 (1,24 TinHs =2Hy =5C4 =5
41 (1°6) o Htg = 48

4 | (1%2,2,5) o Hatats =220 =40
4 (12,3,4) o3ty =4-9=36

4 | (1,22,4) Ty Hyty = 2Hy -9 =27
4 | (1,2,3%) | s Hy=2-4Hy =2-5C; =2-10=20
4 (23,3) oHiyty =2H:-4=4C3-4=16
3 (12,7 o Hyty = 115

3 (1,2,6) T1T27¢ = 2 - 48 = 96

3 (1,3,5) 717375 =4 - 20 = 80

3 (1,4%) T, Hy = gHy = 19Cy =45
3 (2,3,4) 127374 =2-4-9=72

3 (22,5) o H2ts =320 =60

3 (3% nHy = 4Hy = ¢C3 =20
2 (1,8) 7178 = 286

2 2,7 7217 =2-115=230

2 (3,6) 1376 = 4- 48 = 196

2 4,5) 7475 = 9-20 = 180

I (9) 19 = 719
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where ke P(9,¢), and ¢} =1, 4)° =2, ¢}  =4+3=7, §°=9+8+4=21, 4,° =
20+ 18+ 10+12+5=65 ¢, =48 +40+36+27+20+16=197, 4,° =115+
96 + 80 + 45 + 72 + 60 + 20 = 336, ¢> = 286 + 230 + 196 + 180 = 892, ¢ = 719.

§7. Connected graphs

In this section, we will show the following by induction on k. This part is most
complicated and important in all computation.

Theorem 2.

yve | 121471920 |51 | 125 | 329 | 862 | 2251

Let G be a conneted graph of size k = s(G), p = p(G) (1 < p < k) be the period
of the unique cycle Z = Z(G), g = g(G) be the number of gates of Z, then 1 <
g <min{p, k — p} if k> p.

Then k — g is the sum of the weights of gates, so k — g is called the weight of Z,
denoted by wt(Z). The weights of gates vy,...,v, of Z give a partition k of wt(Z) =

¢ wt(v), i.e. ke P(wt,g). Denote by %x(p,g; k) the set of such connected graphs,
and put y(p,g; k) = #C,(p, g; k), where €4 (p, g; k) is the set of isomorphism classes of
graphs in €x(p,g;k).

If p =k, such graphs must be a cycle, so we use a convention € (k,0;0) = {Z;}
and y(k,0;0) =1, then

k—1 min{p,k—p}

Yo wpgik)

1 ke P(k—g,9)

Ve =1+

-]

(Note that it is necessary to take into account distributions of gates on the cycle.)
For k=2, we get

where ke P(wt,g), and y,=1+1=2.
For k =3, we get
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plwtlg| k | vpgk

3 0 0 1

2l n=1

12 l11@] =2

where ke P(wt,g), and y3=1+1+2=4.
For k =4, we get

plwt|g| k | vpgk

410 0 1

3@ ] a=1

2l 2 |20y | H=1

221 @ | n=2

L3 [1] @ | n=4

where ke P(wt,g), and y,=1+14+14+2+4=09.
For k=5, we get

plwtig k (P, g; k) plwtlg k Y(p,g; k)
51010 1 203 12102 un=2
a1 ] =1 203 1| 3 3 =4
302 2| 1y 1 14 1] @ 14=9
3201 @ =2

where ke P(wt,g), and y5=1+1+14+24+2+4+9=20.
For k=6, we get

plwt]yg ks ¥p.g: k) plwtilyg k (P, g; k)
610 {0 1 303 (1| (3 3=4
st 1] =1 204 |21 (1,3) | =4
412 2] ¥ 20°1) 21 4 {2 @) | oH =3
4 | 2 1 2) ;=2 2| 4 1 (4) 35 =9
33 |13 (¥ 1 1|5 {lt) (5 5 =20
303 121(1,2) | 2,=4

where ke P(wt,g), and yo=14+14+2+24+1+4+4+44+3+9+20=>51.
(*1) Two configurations of gates (their distances are 1 and 2).
For k=7, we get
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plwtig k y(p,g; k) plwt] g ks »(p g k)
71010 1 304 |[2] 1,3 213 = 8(*2)
6 1 |1 ]| =1 304 (2] @Y 2 = 4("3)
51221 ay 2(*1) 304 1 (4) 74 =9
st211] @ =2 205 |12} (1,9 1114 =9
413 |3 a¥y 1 205 (|2 23) | nr3=2-4=38
413 1|21 1,2 3, =6 215 |11 (5) 75 =20
413 |1 3) 3=4 1|6 || 1] (6 76 = 48
304 || 3] @022 2

where ke P(wt,g), and y; =14+ 1+2+2+14+6+4+2+8+44+9+9+8+20+
48 = 125.

(*1) Distances of gates are of 2 types (1 and 2).

(*2) Distances from the gate of weight 3 to the gate of weight 1 are of 2 types
(1 and 2).

(*3) The gate of weight 0 determines the order of the other two gates.

For k=8, we get

p|wt|yg k 7P, g3 k) plwtilyg k ¥(p,g; k)
81010 1 41 4 |1 (4) 5 =9
701 |1 (1) =1 305 |3 (123 T3 =4
6|2 |2 (a? 3(*1) 305 || 3] 1,29 2=4

6| 2 |1 ) =2 305 |2 (1,9 24 = 18(*7)
503 |13 (1% 2(*2) 305 (2] (2,3) 21,73 = 16(*8)
503 ]2 (1,2 47, = 8(*3) 305 |1 (5) 5 = 20
513 |1 3) 13 =4 216 |2 (1,5 175 = 20

4| 4 |4 a9 1 216 |2 2,9 Ty =2-9=18
4 1 4 | 3] (132 31, = 6(%4) 216 |2 (3Y) | uHr=sHy=5C,=10
4| 4 |2 (1,3 313 = 12(*5) 216 |1 (6) 76 =48
4142 @) | cHh+2=3+4=17("6) 117 {1 (7) 7 =115

where ke P(wt,g), and y3=1+14+3+24+24+8+4+14+6+124+7+94+4+4+
18+ 16+20+20+ 18 +10+48 + 115 = 329.

(*1) Distances between 2 gates are of 3 types (1,2,3).

(*2) Runs of gates are of 2 types (2,3).

(*3) Distances from the gate of weight 2 to the gate of weight 1 are of 4 types
(1,2,3,4).
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(*4) Fix a gate of weight 2, then the locations of the gate of weight 0 are of 3

types.
(*5) Fix a gate of weight 3, then the locations of the gate of weight 1 are of 3

types.
(*6) .,H, for neighbouring gates and 77 for gates in opposite veteces.
(*7) Distances from the gate of weight 4 to the gate of weight 1 are of 2 types

1,2).

" )(*8) Distances from the gate of weight 3 to the gate of weight 2 are of 2 types

(1,2).
For k=9, we get
p|wtilg k (P, g k) plwtlyg k ¥(p g k)
910 (o 1 41 5| 2] 1,9 3ty = 27(*9)
g | 11 (1 7 =1 415 |2] @3 31,13 = 24(79)
7122 (9 3(*1) 415 |1 (5) 75 =20
71211 @ =2 36 || 3] (14,9 =9
6 3|3 (1) | 14+42+1=4("2) 31 6 || 3 (1,2,3) | 2r112m = 16(710)
6 3 |2] (1,2 51, = 10(*3) 306 (3] 2% 4(°11)
6 3|1 3) =4 316 (2] (1,5 275 = 40(*12)
sallal a9 1 306 2] 24 | 200=3612)
514 13| (12,2 4Gty = 12(%4) 316 | 2 (3%) 2 =16("13)
514 2] 1,3 413 = 16(*5) 3161 (6) 16 = 48
5042 @ 273 =8(%6) 21 7 2] (1,6 1176 = 48
514 1 4) =9 20 7021 @5 | ns=22=40
41 5 | 4] (32 =2 21 7|2 3,49 1374 = 36
a5 i3] 23 3r5 = 12(°7) 271 O 77 =115
41 5| 3] (1,29 313 = 12(*8) 1l 8 i1 (8) 15 = 286

where ke P(wt,g), and po=1+1+34+24+4+104+4+14+12+16+8+9+2+
12+ 124+274+244+20+9+ 16 +4+ 40 + 36 + 16 + 48 + 48 + 40 + 36 + 115
+ 286 = 862.

(*1) Distances between gates are of 3 types (1,2,3).

(*2) 1 type for 3 neighbouring gates, 2 types for distances from 2 neighbouring
gates to the single gate, and 1 type for non-neibouring gates.

(*3) Distances from the gate of weight 2 to the gate of weight 1 are of 5 types
(1,2,3,4,5).

(*4) Fix a gate of weight 2, then the distributions of two gates of weight 1 are
of 4C, = 6 types.

(*5) Fix a gate of weight 3, then the locations of the gate of weight 1 are of 4
types.



Yukihiro Kanie

(*6) 13 for neighbouring gates and 3 for non-neighbouring gates.
(*7) Fix a gate of weight 3, then the distributions of two gates of weight 1 are

of 3Cy =3 types.

(*8) Fix a gate of weight 1, then the distributions of two gates of weight 2 are

of 3C; =3 types.

(*9) Distances from the gate of weight 4 (or 3) to the gate of weight 1 (or 2) are

of 3 types (1,2,3).
(10)
(*11)

circle is 4.
(*12)

("13)

For k =10, we get

Circular permutations of 3 elements are of 2 types.
The numbers of ways of choosing 3 elements from a 2 element set on a

Distances from the gate of weight 5 (or 4) to the gate of weight 1 (or 2)
are of 2 types (1,2).
The gate of weight 0 determines orders of 2 gates of weight 3.

Pl wtl g I (P, g3 k) p | wt k (P, g; k)

0] 0o 1 41 6 (1,2,3) 6-1a13 = 48(*13)
9 | 1 |1 (1) =1 4 | 6 (2%) 3 =8("14)
8 | 2|2 @y 4(*1) 41 6 (1,5) 3ts = 27("15)
8 | 2 |1 2) =2 4| 6 (2,4) 3514 = 54(*15)
71 31| 3 (1%) 14+3+1=5("2) 416 (3%) 3 + . Hy = 26("16)
71342 (1,2 61y = 12(*3) 41 6 (6) 6 = 48
713 |1 (3) 3=4 3|7 (1,2,4) 21,14 = 36

6| 44| a9 3(*4) 3007 (1,32) il =16

6 | 4 3| (132 sCaty = 20(75) 3|7 (22,3) =16

6 (4| 2] (1,3 573 = 20("6) 307 (12,5) 275 = 20
641 2| @ 348=11("7) 3|7 (1,6) 216 = 96

6 | 4 |1 (4) 74 =9 3| 7 (2,5) 21,75 = 80
515 | 5] (1% Hy =1 3|7 (3,4) 20314 = 72

50 5| 4| (3,2 41, = 4.2 =8("8) 3|7 (7) 1 =115
50543 (ay3) 613 = 24(*9) 2| 8 (1,7) Ty = 115
505 03] (1,29 612 = 24("10) 2 | 8 (2,6) T)76 = 2-48 = 96
5152 (1,9 44 = 36(711) 2 | 8 (3,5) 1375 = 420 = 80
s sl 2] @3 4oy = 32(711) 2| 8 4%) | nHy=oHy = 19Cy =45
s s |t] 75 = 20 2 | 8 (8) 5 =286
4|6 | 4] (133 =4 1] 9 (9) 19 =719

41 6 | 4| (122 4+3=17("12)
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where ke P(wt,g), and y,,=1+14+4+2+54+124+44+3+20+20+11+9+1+
8 +244+24+36+32+20+4+7+ 48 +8+ 27+ 54426+ 48+ 36 + 16 +
16 +204+96 + 80+ 72+ 115+ 115 + 96 + 80 445 + 286 + 719 = 2251.

(*1) Distances between 2 gates are of 4 types (1,2,3,4).

(*2) 1 type for 3 neighbouring gates, 3 types for distances from 2 neighbouring
gates to the single gate, and 1 type for non-neibouring gates.

(*3) Distances from the gate of weight 2 to the gate of weight 1 are of 6 types
(1~6).

(*4) 1 type for 4 neighbouring gates, 1 type for 3 neighbouring gates and a
single gate, 1 types for two 2 neighbouring gates.

(*5) Fix a gate of weight 2, then the distributions of two gates of weight 1 are
of sC; =10 types.

(*6) Fix a gate of weight 3, then the locations of the gate of weight 1 are of 5
types.

(*7) ., H, =3 for gates in opposite positions, and 2 - 73 = 8 for 2 non-symmetric
locations of gates.

(*8) Fix a gate of weight 2, then the locations of the gate of weight 0 are of 4
types.

(*9) Fix a gate of weight 3, then the distributions of two gates of weight 1 are
of 4C;, = 6 types.

(*10) Fix a gate of weight 1, then the distributions of two gates of weight 2 are
of 4C; = 6 types.

(*11) Distances from the gate of weight 4 (or 3) to the gate of weight 1 (or 2)
are of 4 types (1,2,3,4).

(*12) 3 = 4 types for the unique distribution where 2 gates of same weight are
neighbouring, and ., H, = 3 types for the unique distribution where 2 gates of same
weight are not neighbouring.

(*13) Fix a gate of weight 3, then the distributions of the gate of weight 1 and
the gate of weight 2 are of 3.2 =6 types.

(*14) The gate of weight 0 determines orders of 3 gates of weight 2.

(*15) Distances from the gate of weight 5 (or 4) to the gate of weight 1 (or 2)
are of 3 types (1,2,3).

(*16) [, H, =10 for gates in opposite positions, and t% = 16 for the non-
symmetric distribution of gates.

§8. Computation of J;
In this section, we will show the following by induction on k.

Theorem 3.

k 1123} 4 5 6 7 8 9 10

Ok 13 ] 7] 18|46 | 130 | 343 | 951 | 2615 | 7207

Let G be a dynamical graph of size k =s(G), c=¢(G) (1 £c=<k) be the
connectivity of G, and k be a partition of k£ to ¢ numbers, that is, ke P(k,c).
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Denote by (k) the class number of dynamical graphs G with size characteristic
S¢ = k. Then

k
o= Y, o) and ok =]],H
ke P(k,c) j=1
where y; is the class number of connected graphs of size ;.
For k=2, we get

¢ k d(k)

21 (1% | ,H=1

1| @ | n=2

where ke P(2,¢), and d, =1+2 = 3.
For k =3, we get

el k (k)

3 (13 o Hy =1

21 (L2) | yp=1-2=2

1 (3) vy =4

where ke P(3,¢), and &3 =1+2+4=17.
For k =4, we get

where ke P(4,c), and o4 =1+2+4+3+9=19.
For k=5, we get

c ke (k) ¢ ke J(lk)

51 (% W Hs =1 20 (1,4) | ppa=1-9=9
4| (132) | , Hypp=1-2=2 2| (2,3) | p3=2-4=8
3| (12,3) |  Hyy=1-4=4 I E) ys =20

3 (1,23 | yip,Ha=1-3=3

where ke P(5,¢c), and 6s =1+2+4+3+9+8+20=47.
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For k =6, we get

c ks 5(k)
6| (19 , He = 1

5| (1%2) wHay, =1-2=2
sl | L Hp=14=4

4 (12,20 | L Hy- Hy=1-3=3

3 (1%,4) nHayy=1-9=9

3 (1a273) ylyZY3:124:8

3 (2%) nHy =4C3 =4
2 (1,5) y1ys = 1-20=20
2| (24 P2 =2-9=18

2 (3%) pwHy = 4Hy = 5C, =10

where ke P(6,¢), and d6 =1+2+4+3+9+8+4+20+ 18+ 10+ 51 = 130.
For k=7, we get

¢ ke (k)

71 (17 W Hr =1

6| (15,2 o Hsyy=1-2=2
5 (14,3) nHay3=1-4=4

51 (13,29 wH - Hy=1-3=3

4 (13,4) wHipg=1-9=9

41 (%23 | yHyppn=1-24=8

4 (1,23) y1y2H3=2H3 :4C3 =4

31 (1,2,9) Nyara=1-2-9=18

3 (1,32) y1y3H2:4H2:5C2:10

3 (22,3) nHays =12

3 (12,5) wHaps =20

2 (1,6) "ye =1-51=151
2 (2,5) ya¥s =220 =40
2 (3,4) 7374 =4-9 =36
1 (7) y; =125
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where ke P(7,c), and 67 = 1 +2+4+3+9+8 + 4+ 18+ 10 + 12 + 20 + 51 + 40 +
36 + 125 = 326.
For k =8, we get

¢ k o(k)

8 (18) , Hg =1

7 (1%,2) nHepy =2

6 (1°,3) nHsys =4

6 | (14,22 o Hay, Hy =3

5 (14,4) nHayy =9

51 (1%,2,3) nH3pays =8

51 (12,2%) nHay, Hy = 4C3 =4
4 (13,5) 0, H3ys =20

4| (12,2,4) 274 = 18

4| (12,32) |, Hy Hy = 4Hy = 5Cy = 10

41 (1,2%,3) Vit =3-4=12
41 @Y wHy=2Hy=5sCy =5
3| (1%,6) , Hayg = 51

31 (1,2,5) Y1725 = 2-20 =40
3 (1L,3,4) 717378 =49 =36
3| (209 nwHays =3-9=27
3 (2,3%) Yoy, Ha = 24Hy = 20
2 (1,7) Ny =125

21 (2,6) ya¥e =251 =102
21 (3,9 73¥s = 4 - 20 = 80

2 (4%) w2 =oHy = 10Cy = 45
1 (8) ys = 329

where ke P(8,¢), and ds =1+2+4+3+9+8+44+20+ 18+ 10+ 12+ 5451+
40 + 36 + 27 4+ 20 + 125 4 102 + 80 + 45 4 329 = 951.
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For k=9, we get

k 5(k)

(1%) W Hy =1

(17,2) nHiy, =2

(16,3) s Heyy = 4
(1%,2%) yHsyHy = Hy =3
(1°,4) wHsys =9
(14,2,3) WHipyy=2-4=38
(13,2%) o Hay Hy = 2 Hy = 4C3 = 4
(14,5) nHays =20
(13,2,4) ZHypy, =2-9=18
(13,32 wHyy Hy = 4Hy = 5Cy = 10
(12,223) o Hay Hoyypy = 2Hod = 12
(1,24 YipHi = 2Hy = sCy =5
(1%,6) nH3pg = 51
(12,2,5) pHayyys =220 =40
(17,3,4) nHaysyy =4-9 =36
(1,2%,4) VipHayy =3-9=27
(1,2,3%) | y1y25. Ha = 24Hy = 25C, = 20
(23,3) | H3pyy =2Hy-4=4C-4=16
(1%,7) o Hapy = 125
(1,2,6) Y2y =251 = 102
(1,3,5) 717375 =420 =80
(1,4%) VinHa = 9Hy = 19Cy = 45
(2,3,4) Vo =2-4-9=712
(22,5) nHays =3-20 =60

(3% wHs =4Hy = 6C3 =20

(1,8) 7ivg = 329

(2,7) yay7 =2 125 =250

(3,6) P3ye = 4- 51 = 204

(4,5) Yays = 9-20 = 180

(9) 7o = 862
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where ke P(9,¢), and do=1+2+4+3+9+84+44+20+18+ 10+ 1245+ 51 +
40 + 36 + 27 + 20 + 16 + 125 + 102 + 80 + 45 + 72 + 60 + 20 + 329 + 250 +
204 + 180 + 862 = 2615.

For k =10, we get

k (k) I 5(k)

10 (1'% WHio =1 (12,3,5) o Haysys =420 = 80

9 (18,2) y Hypy =2 (12,4%) g Hoy Hy = oHy = 19Cy = 45

8 (17,3) o Hiys =4 (1,2,3,4) V1V2V3ys =2-4-9=72

8 (16,22) o Hey Hy = Hy, =3 (1,22)5) V17, Hays = 3-20 = 60

7 (16,4) o Heys =9 (1,3%) Y1y Hs = 4H3y = 6C3 = 20

7 | (1%,2,3) wHsyyys =2-4=28 (22,3%) | ,HayHy =3 4Hy=3-5C; =30

7 (14,2%) wHap, Hy =2H3 = 4Cy =4 (23,4) wH3ps =2H3 -9 =4C3-9=36

6 (1,5) , Hsys =20 (12,8) o Hayg = 329

6 | (1,2,4) yHipyra =2-9=18 (1,2,7) Y172y = 2125 =250

6 (14,3%) ywHay Hy = 4Hy = sC, = 10 (1,3,6) NYsve =451 =204

6 | (13,22,3) o Hay, Hayy = 2Hod = 12 (1,4,5) Y174ys =9 - 20 = 180
(12,24 wHay Hy = Hy = sCy =5 (22,6) nHyye =351 =153
(14.6) o Hape = 51 (2,3,5) payays = 2420 = 160
(13,2,5) o H3pyys =220 = 40 (2,4%) Yoy Hr = 20Hr = 210C; = 90
(13,3,4) o Hyysps =49 =36 (32,4) Hapy = 4Hy -9 =5C; -9 =90
(12,22,4) wHhy Hayy =3-9=27 (1,9) 7179 = 862
(12,2,3%) | ), Hapay Ha = 24H, = 25C, = 20 (2,8) y275 = 2+ 329 = 658
(1,2%,3) | p1,Hsps =2H3-4=4C3-4=16 (3,7) Y3y = 4 - 125 = 500

(2%) »Hs = 6Cs = 6 (4,6) Yave = 8- 51 = 408

(13,7) s Hypy =125 (5?) wHy = 20Hy = 2C, =210
(12,2,6) wHayye =2-51=102 (10) V1o = 2251

where ke P(10,¢), and djo =1 + 2 +4 + 3+ 9 + 8 + 4 +20 + 18 + 10 + 12 +
5+ 51 +40 4+ 36 + 27 + 20 + 16 + 6 + 125 + 102 + 80 + 45 + 72 + 60 + 20
430 + 36 4 329 + 250 + 204 + 180 + 153 + 160 + 90 + 90 + 862 + 658 + 500 +
408 + 210 + 2251 = 7207.
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