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Abstract: A direct sum decomposition of the Galois module F*/F*" is given for an
arbitrary finite Galois extension F/F;, [Fy: Q] < co, where each summand is indecom-
posable and of finite length. In the case where F/Fy is a cyclic p-extension the sum-
mands of F*/F*P are determined explcitly.

1. Preliminaries on FL-decompositions

In this paper we call a decomposition M = @ie ; M; of a left module M over
a ring R as an FL-decomposition, if each summand M, is indecomposable and
of finite length. Here indecomposable module means a nonzero module which
has no nontrivial direct summand. Any nonzero module of finite length has an
FL-decomposition with finitely many summands. If a module M with an FL-
decomposition M = (P),_, 4; has another decomposition M =(P,_, B; into inde-
composables, Krull-Remak-Schmidt Theorem assures that there exists a bijection
@:1—J such that 4; ~ B, for all iel, ¢f [4, Ch. 7].

For modules with FL-decompositions M = (—Bl.e [ Mi, N = (—Bj < Nj, we say that
M and N are almost same if there exists a bijection ¢ : I — Iy — J — Jy outside some
finite sets Iy = I and Jo = J such that M; ~ N, for all ie I — I,. We compare the
FL-decomposability of modules M and N and discuss their almost sameness in the
following cases:

Case A: M is a submodule of N where Q:= N/M is of finite length,

Case B2 N = M/L where L is a submodule of M of finite length.

Proposition 1.1. In Case A, suppose that R is left Noetherian and M is FL-
decomposable. Then N is FL-decomposable, and M and N are almost same.

Proof. We may write N = K + M with K a finitely generated submodule of N.
Let M = (), , M; be an FL-decomposition of M. Since R is left Noeterian K N M
is finitely generated, hence included in ), 1, M for a finite [y = I. Both KN M and
K/KN M, included in modules of finite length, are of finite length. Hence K is of
finite length. Now we have

N = <K+.(—BM,~>+(G—) M;) = <K+@Mf)®<i@ Mi)

where K +@[_e 1, Mi is of finite length, hence a finite direct sum of indecomposable
modules of finite length. [



Naoya Sakacuchi and Harutaka Koseki

Proposition 1.2. In Case B, suppose that M is FL-decomposable. Then N is FL-
decomposable, and M and N are almost same.

Proof. Let M :(—Bie ;M; be an FL-decomposition of M. We have L c
(—Bi e, Mi with a finite Jy =/, which implies

N=M/L= ((@ M;)/L>®<Q—) Mi>

where (P, Mi)/L is of finite length. [

One can cinsider the reversed versions of the above propositions, in which one
assumes the FL-decomposability of N instead of M. However Brune [2] shows that
if R is an Artin algebra of infinite representation type, there exist an R-module N
and its maximal submodule M such that N is FL-decomposable but M is not. An
example of such R is the group algebra R =F,[G] of a finite group G with non-
cyclic Sylow p-subgroups, cf. [3, Sect. 64]. Hence the reversed version of Proposition
1.1 does not hold, and one can easily see from this that the reversed version of
Proposition 1.2 also fails. But for our later purpose we discuss the reversed versions
under some finiteness conditions on the FL-decomposition of N.

Let N = (—BjeJNj be an FL-decomposition of N. In Case A, let n: N — Q
be the projection and let 7; : N; — Q be the restriction of n to N;. We say that
the family of morphisms 7;, je€ J, is reducible to a subfamily nx, k€ Jy < J, if for
each jeJ there exist k € Jo and h € Homg(N;, Ni) with n; = mh. In Case B, let
n:M — N be the projection and let X;:=="!(N;). It is an extension of N; by
L. We say that the family of extensions X;, jeJ, is reducible to a subfamily Xj,
ke Jy < J, if for each jeJ there exsist kK € Jy and he Hompg(X;, Xi) such that the
restriction of 4 to L is the identity. We consider the following conditions on the FL-
decomposition of N:

Cy: The family n;, jeJ, i1s reducible to a finite subfamily,

C>: The family X;, jeJ, is reducible to a finite subfamily.

Proposition 1.3. In Case A, suppose that R is left Noetherian and N has an FL-
decomposition N = @je ; Nj satisfying Cy.  Then M is FL-decomposable, and M and
N are almost same.

Proof. By C; the family n;, j e J, is reducible to a finite subfamily ny, k € Jp.
For each jeJ we choose k(j) e Jy and h; € Homg(N;, Ny(;)) satisfying m; = 7y h;.
For jeJy we put k(j)=j and take the identity of N; as A;. Define an endo-
morphism e of N by

e(Zjesny) = Zjeshi(nj)  (nj € Nj).

This is an idempotent of Endg(N), hence N = im(e) @ ker(e). Hence ker(e), being
isomorphic to E{—)je 7 Np> is FL-decomposable, and N and ker(e) are almost same.
On the other hand we have 7 = me, hence ker(e) < ker(n) = M, and M /ker(e) c
N /ker(e) is of finite length. Hence by Proposition 1.1 M is FL-decomposable, and

ker(e) and M are almost same. []



Decomposition of F*/F*" as a Galois Module

Proposition 1.4. In Case B, suppose that N has an FL-decomposition N =
@je ;N satisfying Cy.  Then M is FL-decomposable, and M and N are almost same.

Proof. By C; the family Xj, jeJ, is reducible to a finite subfamily Xy, k € Jo.
For each j e J we choose k(j) € Jo and ﬁj € Homg(Xj, Xi(;)) such that the restriction
of fzj to L is the identity. For je Jy we put k(j) = j and take the identity of X; as
fzj. We then put

é(Zjem;) = ZjeJ/:’j(mj) (m; € Xj).

The well-definedness of ¢ is deduced from fzj|L=idL. It is an idempotent of
Endg(M), hence M = im(é) @ ker(¢é) where im(é) is of finite length. Let 4, e
Homg(N;, Ni(;,) be the morphism induced from h; and define e € Endg(N) in the
same way as in the proof of Proposition 1.3. We then have N = im(e) @ ker(e)
where im(e) is of finite length. Now 7 induces an isomorphism from ker(e) to
ker(e). In fact, using ne = er and fzj|L: id; one verifies that 7 induces an epi-
morphism from ker(é) to ker(e). On the other hand L < im(¢é) implies LN ker(e)
=0, hence it is a monomorphism. The assertion follows. []

2. Decomposition of F*/F*"

Throughout the following we denote by F; an algebraic number field,
[Fo:Q] < oo, by F a finite Galois extension of Fy, and by G the Galois group:
G = Gal(F/Fy). Let n>1 be an integer and let Z/(n)[G] be the group algebra of
G over the finite ring Z/(n). In this section we discuss the Z/(n)[G]-module struc-
ture of F*/F*".

Let Ir, Jrp, Up, and Cr be, respectively, the ideal group of F, the group of
principal ideals of F, the unit group of F, and the ideal class group of F. We have
the following exact sequences of left Z/(n)[G]-modules:

0— Ur/Up = F*/F*" — Jp/Jp — 0, (1)
0— Jp/JpNIfE — Ip/If — Cr/Cp — 0, (2)
0= JeNIZ/JE — Jp/Jp — Jp/JrN I — 0. (3)

Note that Ur/Uf, Cp/C} and JpN1}}/J} are finite modules.

Among the Z/(n)[G]-modules in the above exact sequences, the structure of
Ir/1} is well-known. Let P(F) be the set of all prime ideals of F, and let P(F)/G
be a set of representatives for all G-orbits in P(F). For L e P(F)/G, let G be its
decomposition group. The uniqueness of the prime factorization in Iz implies

Ie/ly ~ @  Z/(n)[G/Gy].

LeP(F)/G

Here, for a subgroup H of G, Z/(n)[G/H] denotes the induced module Ind 1.
Namely it is the Abelian group defined by

Z/(n)G/H)={AeZ/(n)[G]: At =4 for all 1€ H}

with the Z/(n)[G]-module structure induced by the left translation by G. Let
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C(G)/G be a set of representatives for all conjugacy classes of the cyclic subgroups
(including the trivial group) of G, and let P,(F)/G denote a finite set of repre-
sentatives for all L e P(F) ramified in F/Fy,. By Hilbert’s ramification theory and
Chebotarev density theorem, we may rewrite the above expression for Ir/I} as
/i~ @ Z/WG/HP® @ Z/(n)[G/G,
HeC(G)/G LeP(F)/G

where “49%” denotes the direct sum of countably infinite copies of 4. Since each
summand in the right-hand-side is of finite length, /r/Ir is FL-decomposable. It is
clear that the FL-decomposition has only a finite number of isomorphism classes of
summands.

We now apply the results of Sect. 1. Since Z/(n)[G] is a finite ring we see that
an FL-decomposition N = (—Bje ;N; of a left Z/(n)[G]-module N satisfies the con-
ditions C; and C, if there are only finitely many isomorphism classes among the
summands. Thus we may apply Proposition 1.3 to the exact sequence (2), then
Proposition 1.4 to (3) and (1). Hence Z/(n)[G]-modules

I /17, Jr/JrNIE, Je]JE, F*/F*"

are FL-decomposable, and they are almost same. Let L,(G) be a set of repre-
sentatives for all isomorphism classes of indecomposable summands of Z/(n)[G/H],
H running through cyclic subgroups of G. We have

Theorem 2.1. The Z/(n)[G]|-module F*/F*" is decomposed as
FX/FX}'I ~ @ p ®w P @ W,

VeL,(G) WeS(F/F)
where S,(F/Fy) is a finite set of indecomposable Z./(n)[G]-modules with multiplicity,
possibly empty, whose members are of finite length and isomorphic to no member of
L,(G).

Remark. Suppose that n =p is a prime and does not divide the order of G.
Then every F,[G]|-module is completely reducible by Maschke’s theorem, and any
irreducible F,[G]-module is a summand of F,[G]. Thus in this case S,(F/Fp) is
empty and L,(G) is a set of representatives for all isomorphism classes of irreducible
F,[G]-modules.

Let F% be the maximal abelian extension of F and put
Gal(F® /F)/Gal(F® /F)" = Gal(F® /F™).

Then F"/F, is Galois, hence G acts on Gal(F"/F) by y§ =707, yeG, O¢
Gal(F" /F), where 7 is a lift of y to Gal(F"/F,). We regard Gal(F\")/F) as a left
Z./(n)[G]-module in this way. Now let {, be a fixed primitive n-th root of unity and
suppose {, € F. We then have the Kummer pairing

Gal(F™/F) x F*JF*" — p, =<0, (0,0) = (0,a) = (6 — 1)(«"/").

Let y, : G — Z/(n)™ be the cyclotomic character (y(, = Cff("’) for y € G). The action
of G on Gal(F"/F) is related to that on F*/F*" by
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GO,ay = 30,77 0> = 0,2,y '), yeG,
cf. [5, Chap. 6]. For a Z/(n)[G]-module 4 we denote by 4* its contragredient:
A* = Homy (4, Z/m), (@) =/("'a) (aed fed" yeq).

Theorem 2.1, together with the above formula, implies
Gal(F" /F) = z, ® (F*/F*")"

~ ] wevyx [ wew

VelL,(G) WeS,(F/Fo)

where “A*” denotes the direct product of countably infinite copies of 4. Since
Z/(n)(G/H]" is isomorphic to Z/(n)[{G/H] for any subgroup H of G we get the
following

Theorem 2.2. If {, € F, the Z/(n)[G]-module Gal(F" /F) is decomposed as

GalF"/F)y~ [ wevyx [ wew:,

VeL,(G) WeS,(F/F)

where S, (F/Fy) is same as that in Theorem 2.1.

3. Cyclic p-extensions

In the following p denotes a prime, Fy/Q a finite extension and F/F;, a cyclic
extension of degree p¢, ¢ > 1. We determine explicitly the decomposition of F* /F*?
under the action of the Galois group G = Gal(F/F).

In this section we fix notation and summarize necessary facts about the extension
F/F,. We use the following notation:

o: a fixed generator of the Galois group G,
F;: the fixed field of the subgroup (¢’ i), 0 <i <e, in particular F = F,,
p=ltat +o® 4ol e Z[Gl0< i< j<e

As for the last one, we regard N }/ /F, As an operator acting on F*. Its restriction to
F;* coincides with the usual norm Ng,r. The operator acting on F* /F*? induced
by N ;J JF, will be denoted by the same symbol.

Since F/F, is a p-extension the primitive p-th root of unity belongs to F if and

only if it belongs to Fy. In the case {, € Fy the following propositions are known,
of [1, Ch. 10]:

Proposition 3.1. Suppose that {, € Fy and that there exists a cyclic extension

E/Fy of degree p**' with F < E. Then {, € Npjp,(F*), and one may write
E = F(s'?) with s e F* satisfying
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(0 —1)se F,
Nr/ry(t) = {, for any solution t € F* of (6 —1)s =1".

Proposition 3.2. Suppose that {, € Np/r,(F*). Then there exists a unique class
in F*/F{F*? whose representative s € F* satisfies the two conditions in Proposition
3.1. For such s, E = F(s'?) is a cyclic extension of Fy of degree p*t!.

For s e F* satisfying the above conditions we define the element S of the F,[G]-
module F*/F*? by S:=sF*?. Then S satisfies

Seker(og—1: FX/F*? — FXJF*")  S¢F~ F7/F

That S is contained in the kernel is clear. If Se F) F*’/F*? we may choose s in
FX |, hence F(s'/?)/F,.; contains independent intermediate fields F and F,_;(s'/7),
both have degree p over F, ;. Hence a contradiction.

For k=0,...,e— 1 we may consider the condition {, € Np/p (F*). If k < j we
have Ng/p, :NF/F;'N;]-/F,(’ hence {, € Np/p (F*) implies {, € Np/p (F*). If Fy con-
tains (pes1, a primitive p¢~**!-th root of unity, the condition ¢, € Npr, (F*) is
always satisfied. In the case where (,c« ¢ Fy and (. € Fp, there exists a cyclic
extension F/F, of degree p¢ such that

Cp ¢NF/Fk(FX), Cp ENF/FH,(FX)-

In fact, we may choose a prime / of Fy which is not a divisor of 2 and does not
split completely in Fo({,e-«+1). Then the local field Fy; does not contain .-+, hence
Ky, 1s decomposed as <{{,-«» x N with an open subgroup N. Let E be the cyclic
extension of Fp ; of degree p*~* with Ng /R, (E*) = N. By Grunwald-Wang theorem
we can find a cyclic extension F/Fy of degree p¢ such that F; = F for a prime L
of F lying above /, ¢/ [1, Ch. 10]. If ¥ is a prime of Fj lying above / we have
Fy,¢ = Fo,, hence (, ¢ Np/p (F*). On the other hand we have {, € Np/p, (F*)
automatically.

4 Decomposition of F*/F*? for cyclic p-extensions

We maintain the assumptions and notation of Sect. 3. The structure of the

group algebra F,[G], G = (o) ~Z/(p¢), is described as
F,[G] ~ Fp{x}/(xpe - 1)~ Fp[t]/([py)a o—1et
Then it is easy to see that there are exactly p¢ isomorphism classes of indecomposable
F,[G]-modules represented by
V(d) :=F[Gl/(c - 1)), d=12..p"
cf- [3, Sect. 64]. The set L,(G), which we defined in Sect. 2, is given by
L,(G) = {V(p'):i=0,....¢)

because F,[G/ {o?')] is isomorphic to ¥ (p’). Hence by Theorem 2.1 we may write

e

F*[F? =@ V(ph®** & @ V(@)®"
d

i=0
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where each d is not a power of p and 1 <d < p®. The Galois module structure
of F*/F*P is determined by the multiplicities m(d). In the following ker(c — 1),
im(a — 1) etc. denote ker(g—1:F*/F*? — F*/F*?), im((c —1)*: F*/F*? —
F*/F*P) etc. Then one can easily verify the following multiplicity formula:

m(d) = dimg, [ker(s — 1) Nim(s — 1)*~" /ker(s — 1) Nim(o — 1)“].

We simplify the right-hand-side of the above formula. Note that for d = p' — 1,
(6 — 1) coincides with N F/F, @ an operator on F*/F*P.

Lemma 4.1. (i) If {, ¢ Np/p,(F*) one has ker(c — 1) = Fy'F*P [F>P.
(i) If {, € Np/g,(F*) one has ker(a — 1) = (S) x (Fg'F*? [F*?) where S = sF*F
is the nonzero element of F*/F*P defined in Sect. 3.

Proof. Let a =aF*P, ae F*, be an arbitrary element of F*/F*. Then
aeker(c— 1)< (o—1)(a) = b7 (Ibe F*)

and the element b must satisfy Np/g (b)” =1. If {, ¢ Np/p, (F*) we have Np /g, (b) =
1, namely b € (6 — 1)(F*). Thus ker(c — 1) c FfF*?/F* and the converse inclusion
is obvious. Hence we get (1). Next, suppose {, € Ng/p(F*). Then S is an ele-
ment of ker(c —1) and any te F* with ¢’ = (o — 1)(s) satisfies Ng g, (1) = (,, cf.
Sect. 3. If the above element b satisfies Ng/r,(b) = (, then bet'(o — 1)(F*) and
(6 —1)(a) € (6 — 1)(s"F*?). Hence ker(c — 1) c {(S)(F;F*/F*F) and the converse
inclusion is obvious. By definition of S the product of {S) and F;F*’/F*’ is
direct. Thus we get (2). [

Lemma 4.2. One has ker(c — 1)Nim(g — 1) < FJF*P/F*P.

Proof. By Lemma 4.1 we may assume {, € Np/p, (F*) and our task is to show
that S ¢ im(o — 1). Suppose S eim(o — 1) and write S = (6 —1)(R), Re F*/F*P.
First we treat the case e=1. If p=2, 6 —1 coincides with Ng/r on F*/F*?
and we get Se FJF*’/F*P, a contradiction. So assume p # 2. We then have
Reker(o — 1)? < ker(o — 1)”"!. Writing R = aF*?, ae F*, we get Nr/p,(a) € FyN
F>*?. Kummer theory then implies a € {g)(g — 1)(F*)Fy, with g€ F* such that
(0~ 1)(q) = (. Hence we may write (c—1)(a)={)(c—1)*(b), beF*. This
argument for a applies to b and we get (o — 1)(a) ={; (0 — 1)3((:), ce F*. Pro-
ceeding this way we get (o — 1)(a) € <{,>(0 — 1?7 '(F*). Since {p € Np/p, (F*) we
get S eim(o — 1)"’_l =1im Ng/g,, hence S € F F*P /F*P, a contradiction. In the case
e>1 we use ker(o—1)> < ker(o—1)” =ker(c”? —1). Replacing F, by F; in
Lemma 4.1 we see that ker(o” — 1) =<(S) x (F{F*’/F*?), so we may write
R=S"Q, Qe F{F*?/F*r. We then have, modulo FF*P/F*P,

S=(o-1)(S"0Q) = r(c — 1)(S) = r*(c — 1)*(S)
== No—1)"7(S) = P N (S).

Hence S e F*F*?/F*P, a contradiction, because S ¢ F |\F*?/F*? and e > 1. [
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By Lemma 4.2 our multiplicity formula is simplified to

m(d) = dimg, [(Fy F*? /F*P) Nim(a — 1) J(FSF*? JF*P) Nim(a — 1)), (4)
Lemma 43. (i) F NNy . (F¥) = N (FF? for 0<i<j<e.
(i) (Fo NN (F)F? = Ny, (FF)F*? for 0<i< j<e.

Proof. Let a= N}

Fj/F,_(b), be F*, be an element of Fy ﬂN;j/Fi(FX). We have

(0 —1)a=1= Npp((6—1)(b)) = Npp((0 - 1)(a)) = 1
= (o= 1)) e (o = 1)(F*) = (6 = )N} 5, (F*)
=be N,iii/FO(FX)FOX
= ae N} (OF""  (3ceF").

Here we have (o7 — 1)c = (0 — l)NIfii/FO(c) =1, hence ce F*. Thus the left-hand-

side of (i) is included in the right-hand-side, and the converse inclusion is obvious.
Statement (ii) is clear from (i). []J

Now we can describe the explicit decomposition of F*/F*7. If p=2 we
assume e > 2, because the set S,(F/Fp) in Theorem 2.1 is clearly empty in the case
p=2,e=1.

Theorem 4.4. When G ~Z/(p¢) the F,|G|-module F*/F*? is decomposed as
follows:
(i) Suppose (, ¢ Fy or {, € Np/p,(F*) or p=2 and —1 € Npjp,(F*). Then
FX/F* ~ (P V(p")®”.
i=0

(i) Suppose (, € Fy and {, ¢ Np/p,(F*) and, if p =2, suppose —1 ¢ Np/p (F).
Let k, 0 < k < e, be the integer such that {, ¢ N/ (F*) and {, € Np/g,, (F*). Then

F*JF? = @ V(p)®" @ V(p* + 1).
i=0

Proof. We determine the multiplicities m(p’ + 1),... ,m(p™' —1),0<i < e, by
using the multiplicity formula (4). Here we assume i>0 if p=2. We hence
investigate the descending chain

(FSF [F*)Nim(o — 1)” > -+ o (FF*2/F*) Nim(o — 1)"" . (5)
Let o = aF*P, ae Fy, be an arbitrary element of FyF>?/F*?. Then
o € im(o — l)”i =im(e? — 1) & ae(a? — 1)(FX)F*P

& N (a) = a” € Npjp (F*)”

& Npjpo, (@) =a”™" e ONpg(F*)  (3r).
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Note that in the case {, ¢ F; we have r = 0, because {, ¢ F;*. Hence in all cases the
last condition is equivalent to

{p"NrjF(a) € FS O Ngyp (F7) - (3r),
but Lemma 4.3(i) implies Fy' N\ Ng/p(F*) = Npjg, (FX)FOX”H. Hence o = aF™*? be-
longs to im(o — 1)”" if and only if a € Fy satisfies
{ ' Nryra(a) € Nejro, (NEr (F)FGT) - (3n), (6)
We now pass to case-by-case arguments.

Case A: (, ¢ Npjp,, (F*) (including the case {, ¢ Fy). In this case we have r =0
hence the condition (6) is rewritten as

i+l * X * x
ae(a? — 1)(FX)NFM/FO(F )FOXP = E+1/F0(F )FOXP

i+l—l

which implies o € Im(o — 1)” Thus all modules in the chain (5) are equal in this

case.

Case B: (, € Npjp, (F*). In this case (, belongs to Fy* and Lemma 4.3(i)

: : e—i—1 N
implies Fy N Ngyr,, (F*) = Neyr(F*)Fy” = Npyg, (Ng p (FX)F). We  may,
therefore, take ¢, € N;:_H/FO(FX)FOX with Ng/g, (tiz1) = . Then (6) is rewritten as

aet Ni n(FOF ().
Choosing an element u;; of Fy ﬂti+1NP’ii+l/F0(Fx) we have
(FEF? JFP)Nim(o — 1P = Qi FPY((FEF? /F*P) Nim(e — 1)”" 7).

Case B.1: {, € Np/r,(F*). In this case there exists an element #; of Nj . (F*)Fy

with Ng/p () ={,, and we may put #;y; = N;iM/F’_(t,-). Then ni
uin F*P e (Fg ONg p (F*)Ng g (F*)F*7[F™*
= (Fg NN (F)F™? [F*P
= Ng,,/r(F/L)F*?/F*?  (by Lemma 4.3(ii)).
Thus all modules in the chain (5) are equal in this case.

Case B.2: (, e Npjr, (F*), (, ¢ Npp(F*). We may put f = (a”" —1)(h),
he F*, because Np/r(tiv1) = Ng,,/r () =1, Set

C = NF/FHI (h), Si = Cp, S,' = SiFiXp.
Then s; and S; are exactly “s” and “S” if we replace the extension F/Fy by
F;/Fy. In fact we have (67" — 1)(c) = {, by definition, which implies (¢ — 1)(c) € F;,
Ngr((0—1)(c)) =, sie F;. We now prove u; F*? ¢im(c — 1)?"*'. Suppose

ui F*? eim(o — 1) ™. Then we have t,,1F*? € im(c — 1)”'.+1 by definition. Since

im(a — 1)”! = im(¢?' — 1)(o — 1) we may write

tis1 = (0” — 1)(h) = (¢ = (o — )(g)v”,  g,veF*.

We then have Ng/p(v)” =1 and the assumption {, ¢ Np/p(F*) implies Np/f,(v) = 1.
Hence we may write & = (o — 1)(g)w?f with g, we F*, feF*. If p#2 we have



Naoya Sakacucur and Harutaka Kosek

si = Npyg(h) € (0 — V)(F))F”. 1f p=2 we have s; = —Ng/,(h) but —le (o —1)-
(F) (we have assumed i >0 if p=2). Hence in all cases we have s; e (o —1)-
(F)F", namely

Sieker(c—1: F/F" - F*/F")Nim(c — 1 : F//F,? — F*JF7).

This is clearly a contradiction if i = 0. Replacing F by F; in Lemma 4.2 we see that
this 1s a contradiction also in the case i > 0. Hence we have

1+1A1

(FSF*?/F*P)Nim(o — )P = Cup FPy x (FEFXP/F*P) Nim(o — 1)77 1),

ui F7 ¢ (Fy F*? JF*P) Nim(o — 1)7+",
(FOXFXP/FXP) ﬂim(o _ l)p ! _ (FOXFxp/FXp) N im(o' _ 1)pi+l_1.
Theorem is now clear from the above results. []

In Sect. 2 we have dicussed the Z/(n)[G]-module Gal(F™/F). The above
theorem implies

Theorem 4.5. When G ~ Z/(p¢) and {, € Fy, the F,[G]|-module Gal(F'?)/F) is
decomposed as follows:
() Suppose (, € Np/p,(F*) or p=2 and —1 € Ng;p, (F*). Then

Gal(F?) /F) ~ H Vip

(i) Suppose {, ¢ Ng/p,(F*) and, if p =2, suppose —1 ¢ Ng/p, (F*). Let k be as
in Theorem 4.4(ii). Then

Gal(F\? /F) ~ H V(pHh* x V(pk +1).
i=0

References

[1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1967.

[2] H. Brune, On finite representation type and a theorem of Kulikov, in Representation Theory II,
pp. 170-176, Lecture Notes in Mathematics, Vol. 832, Springer Verlag, Berlin/Heidelberg/New York,
1980.

[3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras,
Interscience, New York, 1962.

[4] F. Kasch, Modules and Rings, Academic Press, London, 1982.

[5] S. Lang, Cyclotomic Fields I and II, Springer Verlag, Berlin/Heidelberg/New York, 1990.



