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Decomposition of Fx / pxn as a Galois Module 

Naoya SAKAGUCHI and Harutaka KosEKI 

Department of Mathematics, Mie University, Tsu 514-8507, Japan 

Abstract: A direct sum decomposition of the Galois module Fx / Fxn is given for an 
arbitrary finite Galois extension F / F;。,[Fi。:Q] < oo, where each summand is indecom-
posable and of finite length. In the case where F / F;。isa cyclic p-extension the sum-
mands of Fx / Fxp are determined explcitly. 

1. Preliminaries on FL-decompositions 

In this paper we call a decomposition M =④ i EI Mi of a left module M over 
a ring R as an FL-decomposition, if each summand Mi is indecomposable and 

of finite length. Here indecomposable module means a nonzero module which 

has no nontrivial direct summand. Any nonzero module of finite length has an 

FL-decomposition with finitely many summands. If a module M with an FL-

decomposition M =喜乃 hasanother decomposition M =④炸J凡 intoinde-
composables, Krull-Remak-Schmidt Theorem assures that there exists a bijection 

(fJ : J→ J such that Ai'.:::::'. B例i)for all i EI, cf [4, Ch. 7]. 

For modules with FL-decompositions M =④ iEIMi, N=④ JEJ Ni, we say that 
M and N are almost same if there exists a bijection (f) : J -Ii。→J-li。outsidesome 
finite sets Ii。こJand .Ii。こJsuch that Mi'.:::::'. N的） for all i E I -Ii。.We compare the 
FL-decomposability of modules M and N and discuss their almost sameness in the 

following cases: 

Case A: M is a submodule of N where Q := N / M is of finite length, 

Case B: N = M / L where L is a submodule of M of finite length. 

p ropos1tion 1.1. In Case A, suppose that R is left Noetherian and M is FL-

decomposable. Then N is FL-decomposable, and M and N are almost same. 

Proof We may write N = K + M with K a finitely generated submodule of N. 

Let M=④ iEI Mi be an FL-decomposition of M. Since R is left Noeterian Kn M 
is finitely generated, hence included in④ Mi for a finite Ii。こ I. BothKnMand 

i E /i。
K/ Kn M, included in modules of finite length, are of finite length. Hence K is of 

finite length. Now we have 

N~(K+: り;M)  + c~,。 M) = (K+: 會:M,)① （豆。M,)
where K +④ iEio Mi is of finite length, hence a finite direct sum of indecomposable 
modules of finite length. ロ
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Proposition 1.2. In Case B, suppose that M is FL-decomposable. Then N is FL-

decomposable, and M and N are almost same. 

Proof Let M =〶..
iEI M; be an FL-decompos1tlon of M. We have Lこ

④匡10M; with a finite Ii。こ/,which implies 

N=M/L= ((會;Mい）④（皇。M;)
where (④註10Mi)/ L is of finite length. ロ

One can cinsider the reversed versions of the above propositions, in which one 

assumes the FL-decomposability of N instead of M. However Brune [2) shows that 

if R is an Artin algebra of infinite representation type, there exist an R-module N 

and its maximal submodule M such that N is FL-decomposable but M is not. An 

example of such R is the group algebra R = Fp [ G) of a finite group G with non-

cyclic Sylow p-subgroups, cf. [3, Sect. 64). Hence the reversed version of Proposition 

1.1 does not hold, and one can easily see from this that the reversed version of 

Proposition 1.2 also fails. But for our later purpose we discuss the reversed versions 

under some finiteness conditions on the FL-decomposition of N. 

Let N=④ ~El "Nj be an FL-decomposition of N. In Case A, let冗： N→ Q 

be the projection and let冗j: "MJ→ Q be the restriction of冗 toN1. We say that 
the family of morphisms冗i,j E J, is reducible to a subfamily冗k,k E .Ii。（二 J,if for 

each j E J there exist k E .li。andh E Hom瓜N1,ATりwith冗］＝疇. In Case B, let 
冗： M →N be the projection and letふ：＝戸(NJ). It is an extension of N1 by 

L. We say that the family of extensions~'j E J, Is reducible to a subfamily Xk, 
k E J,。こ J,if for each j E J there exsist k E .li。andh E HomR(~, Xk) such that the 
restriction of h to L is the identity. We consider the following conditions on the FL-
decomposition of N: 

C1: The family冗i,j E J, is reducible to a finite subfamily, 

C2: The family Xj, j E J, is reducible to a finite subfamily. 

Proposition 1.3. In Case A) suppose that R is left Noetherian and N has an FL-

decomposition N =④炸1N1 satisfying C1. Then M is FL-decomposable) and M and 
N are almost same. 

Proof By C1 the family冗j,j E J, is reducible to a finite subfamily冗k,k E J,。•

For each j E J we choose k(j) E J,。andhi E Hom凩N1,Nk(.i)) satisfying n1 =冗k(j)ん・
For j E .Ii。weput k(j) = j and take the identity of N1 as h1. Define an endo-
morphism e of N by 

e(IJEJ叫＝ふ€九(nJ) (nj E~ 几

This is an idempotent of EndR(N), hence N = im(e) 〶 ker(e). Hence ker(e), being 

isomorphic to④炸J-J。N1,is FL-decomposable, and N and ker(e) are almost same. 
On the other hand we have冗＝冗e,hence ker(e)こ ker(冗） = M, and M /ker(e)こ

N /ker(e) is of finite length. Hence by Proposition 1.1 M is FL-decomposable, and 

ker(e) and M are almost same. ロ
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．． 
Propos1tion 1.4. In Case B, suppose that N has an FL-decomposition N = 

①戸1N1 satisfying C2. Then M is FL-decomposable, and M and N are almost same. 

Proof By C2 the family "Xj, j E J, is reducible to a finite subfamily Xk, k E Ii。•

For each j E J we choose k(j) E Ii。andh1 E Hom瓜Xj,Xk(J)) such that the restriction 
,fんtoL is the identity. For j E .Ii。weput k(j) = j and take the identity of Xj as 
hi. We then put 

e(IjEJmJ) = LjEJん(mi) (mj E~ 几

The well-definedness of e is deduced from h11L = id£. It is an idempotent of 

EndR(M), hence M = im(e)④ ker(e) where im(e) is of finite length. Let h1 E 

Hom凩N1,Nk(J)) be the morphism induced fromんanddefine e E EndR(N) in the 
same way as in the proof of Proposition 1.3. We then have N = im(e)④ ker(e) 

where im(e) is of finite length. No~ 冗 inducesan isomorphism from ker(e) to 
ker(e). In fact, using冗e=e冗 andh11L = idL one verifies that冗 inducesan epi-

morphism from ker(e) to ker(e). On the other hand Lこ im(e)implies L n ker(e) 

= 0, hence it is a monomorphism. The assertion follows. ロ

2. Decomposition of px / pxn 

Throughout the following we denote by Fi。an algebraic number field, 
[Fi。:Q] < oo, by F a finite Galois extension of Fi。,and by G the Galois group: 
G = Gal(F/F;。). Let n > 1 be an integer and let Z/(n)[G] be the group algebra of 
G over the finite ring Z/(n). In this section we discuss the Z/(n)[G]-module struc-
ture of px / pxn. 

Let IF, JF, UF, and CF be, respectively, the ideal group of F, the group of 

principal ideals of F, the unit group of F, and the ideal class group of F. We have 

the following exact sequences of left Z/(n)[G]-modules: 

0→ UF/UF→ Fx / Fxn→ Jり1;→ 0, 

0→ JF/JFnJ; → IF/I農→ CF/Cl→ 0, 

0→ 1FnI閃;1;→ Jり1;----+JF/JF n IF→ 0. 

Note that UF/u;, CF/c; and JFnI訂1nF are fimte modules. 

(1) 

(2) 

(3) 

Among the Z/(n)[G]-modules in the above exact sequences, the structure of 

h/I尻iswell-known. Let P(F) be the set of all prime ideals of F, and let P(F)/G 
be a set of representatives for all G-orbits in P(F). For LE P(F) / G, let GL be its 

decomposition group. The uniqueness of the prime factorization in h implies 

IF/I農=④ Z/(n)[G/Gバ．
LEP(F)/G 

Here, for a subgroup H of G, Z/(n)[G/ H] denotes the induced module Indり1.
Namely it is the Abelian group defined by 

Z/(n)[G/ H] = {A E Z/(n)[G] : Aて=A for all r E H} 

with the Z/ (n) [ G]-module structure induced by the left translation by G. Let 
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C(G) / G be a set of representatives for all conjugacy classes of the cyclic subgroups 

(including the trivial group) of G, and let Pr(F)/G denote a finite set of repre-

sentatives for all L E P(F) ramified in F / Fi。. By Hilbert's ramification theory and 
Chebotarev density theorem, we may rewrite the above expression for IF/ 1; as 

IF/I農=① Z/(n)[G/ H]④°°④④ Z/(n)[G/G月，
HE C(G)/G LEP,(F)/G 

where "AEB00" denotes the direct sum of countably infinite copies of A. Since each 

summand in the right-hand-side is of finite length, IF/ IF is FL-decomposable. It is 

clear that the FL-decomposition has only a finite number of isomorphism classes of 

summands. 

We now apply the results of Sect. 1. Since Z/ (n) [ G] is a finite ring we see that 

an FL-decomposition N =④炸1N; of a left Z/(n)[G]-module N satisfies the con-
ditions C1 and C2 if there are only finitely many isomorphism classes among the 

summands. Thus we may apply Proposition 1.3 to the exact sequence (2), then 

Proposition 1.4 to (3) and (1). Hence Z/(n)[G]-modules 

IF/I;, JりJFn /;, JF/Jl, px /Fxn 

are FL-decomposable, and they are almost same. Let Ln (G) be a set of repre-

sentatives for all isomorphism classes of indecomposable summands of Z/(n)[G/ H], 
H running through cyclic subgroups of G. We have 

Theorem 2.1. The Z/(n)[G]-module px / pxn is decomposed as 

px /Fxn~ ④ V④OO④④  w, 
VELn(G) WESn(F/Fo) 

where Sn(F/Fo) is a finite set of indecomposable Z/(n)[G]-modules with multiplicity, 

possibly empty, whose members are of finite length and isomorphic to no member of 

Ln(G). 

Remark. Suppose that n = p is a prime and does not divide the order of G. 

Then every Fp[G]-module is completely reducible by Maschke's theorem, and any 

irreducible Fp[G]-module is a summand of Fp[G]. Thus in this case Sp(F/Fo) is 

empty and Lp(G) is a set of representatives for all isomorphism classes of irreducible 

Fp[G]-modules. 

Let pab be the maximal abelian extens10n of F and put 

Gal(Fab / F)/Gal(Fab /Ft= Gal(Fab / p(n)). 

Then p(n) / Fi。isGalois, hence G acts on Gal(F(n) / F) by y0 = y0戸， yE G, 0 E 
Gal(F(n) / F), where y is a lift of y to Gal(F(n) / Fi。). We regard Gal(F(n) / F) as a left 
Z/(n)[G]-module in this way. Now let (n be a fixed primitive n-th root of unity and 

suppose品EF. We then have the Kummer pairing 

Gal(F(n) / F) X px / pxn→ μn =〈い， (0,a) f---+〈0,a〉=(0 -l)(a11n). 

Let Xn: G 
X 

→ Z/ (n) be the cyclotomic character (y島＝びり）n for y E G) . The action 

of G on Gal(F(n) / F) is related to that on px / pxn by 
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〈y0,r:x〉=y〈0,y―I r:x〉=〈0,Xn(Y)Y―Ir:x〉, y E G, 

cf [5, Chap. 6]. For a Z/(n)[G]-module A we denote by A* its contragredient: 

A*= Homz/(n)(A,Z/(n)), (yf)(a) = f(y―1 a) (a E A, f E A*, y E G). 

Theorem 2.1, together with the above formula, implies 

Gal(F(n) / F) = XnR(Fx / F心

~IT (x層 V*)② X IT XnRW* 
VELn(G) WES11(F/Fo) 

where "A00" denotes the direct product of countably infinite copies of A. Since 

Z / (n) [ G / H]* is isomorphic to Z / (n) [ G / H] for any subgroup H of G we get the 

following 

Theorem 2.2. If (n E F, the Z/(n)[G]-module Gal(F(n) / F) is decomposed as 

Gal(F(n) IF)~IT (x虞 V)00X IT XnRW*, 
V ELn(G) W繹，,(F/ Fo) 

where Sn(F / Fi。)is same as that in Theorem 2.1. 

3. Cyclic p-extensions 

In the following p denotes a prime, Fi。/Qa finite extension and F / Fi。acyclic 
extension of degree pe, e 2: 1. We determine explicitly the decomposition of px / pxp 

under the action of the Galois group G = Gal (F / Fi。)．
In this section we fix notation and summarize necessary facts about the extension 

F/F;。. We use the following notation: 

a: a fixed generator of the Galois group G, 

Fi: the fixed field of the subgroup〈aバ， 0:s; i :s; e, in particular F = Fe, 
N~/F; := 1 +研＋戸＋・・・十 a(PJ-i~l)p; E Z[G], 0 :s; i :s; j :s; e. 

As for the last one, we regard N * F'j/ F, as an operator actmg on px. Its restriction to 

F/ coincides with the usual norm N Fd F;. The operator acting on px / pxp induced 

by N~/F; will be denoted by the same symbol. 

Since F / Fi。isa p-extension the primitive p-th root of unity belongs to F if and 
only if it belongs to Fi。. In the case島EF;。thefollowing propositions are known, 
cf [I, Ch. 10]: 

Proposition 3.1. Suppose thatらEF;。andthat there exists a cyclic extension 
E/F;。。ifdegree pe+I with Fこ E. Then心ENF/Fi。(Fx), and one may write 
E = F(s1IP) with s E px satisfying 
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(a -l)s E pxp, 

NF/Fi。(t)=匂forany solution t E Fx。if(a -1)s = tP. 
Proposition 3.2. Suppose that ( p E NF/Fi。(Fx). Then there exists a unique class 
in px / F;。rpxp whose representative s E px satisfies the two conditions in Proposition 
3.1. For such s, E = F(s1IP) is a cyclic extension of Fi。。ifdegree pe+I. 
Fors E px satisfying the above conditions we define the element S of the Fp[G]-

module px / pxp by S := sFxp. Then S satisfies 

S E ker(a -1 : px / pxp→ px / pxP), S (/ pex__lpxp / pxp_ 

That S. 1s contamed in the kernel is clear. If SE px e-1 pxp / Fxp we may choose s in 

F/_1, hence F(s1IP)/Fe-l contains independent intermediate fields F and Fe_1(s1IP), 

both have degree p over Fe-I・Hence a contradiction. 

For k = 0, ... , e -I we may consider the condition匂ENF/FJF汀. If k < j we 
have NF/h = NF/F'jN~/Fk'hence (p E NF/h(F汀 implies島ENF/F/F汀. If F;。con-
tains (pe-k+1, a primitive pe-k+1-th root of unity, the condition島ENF/Fk (F汀 is
always satisfied. In the case where (が'-k+I 茫 F。 and 砂—k E F;。,there exists a cyclic 
extension F / F;。ofdegree pe such that 

品¢=NF/Fk (F汀， 匂ENF/Fk+I (F汀．

In fact, we may choose a prime I of Fi。whichis not a divisor of 2 and does not 
split completely in Fi。((『'-k+1). Then the local field Fi。」 doesnot contain (p← k+i, hence 
尽 isdecomposed as〈(p←K〉xN with an open subgroup N. Let E be the cyclic 
extension of Fi。」 ofdegree pパ withN鱈 1(Ex)= N. By Grunwald-Wang theorem 
we can find a cyclic extension F / Fi。ofdegree pe such that FL= E for a prime L 
of F lying above /, cf [l, Ch. 10]. Ifダ isa prime of凡 lyingabove I we have 

Fk, 2 = F;。,1, hence島茫NF/Fk(F汀. On the other hand we have (p E NF/Fk+i (F汀
automatically. 

4 Decomposition of F 
． 

x / pxp for cyclic p-extens10ns 

We maintain the assumptions and notation of Sect. 3. The structure of the 

group algebra Fp[G], G =〈ぴ〉 ~Z/(pり， is described as 

Fp[G]~Fp[x]/(げ— 1)~Fp[t]/(tが'), a -I+----+ t. 

Then it is easy to see that there are exactly pe isomorphism classes of indecomposable 

Fp[G]-modules represented by 

V(d) := Fp[G]/((a -1/), d = I, 2, ... , pe, 

cf [3, Sect. 64]. The set Lp(G), which we defined in Sect. 2, is given by 

ら(G)= { V(pり： i = 0, ... , e} 

because Fp[G/〈aP'〉]is isomorphic to V (pり. Hence by Theorem 2.1 we may write 
e 

px /Fxp =④ V(pり釘① ④ V(d)④ m(d) 
i=O d 
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where each d is not a power of p and 1 < dくが. The Galois module structure 
of px;pxp is determined by the multiplicities m(d). In the following ker(a-1), 

d d im(a -1) etc. denote ker(a -1: px / pxp→ px /FXP), im((a-1) : Fxjpxp→ 

px / pxp) etc. Then one can easily verify the following multiplicity formula: 

m(d) = dimFp [ker(a -I)「)im(a-1/-1/ker(a-l)「1im(a -1)り．

We simplify the right-hand-side of the above formula. Note that for d =『-I, 
(a -1) d coincides with N* 

F,/F;。as an operator on px / F望

Lemma 4.1. (i) If匂茫NF/F;。(F汀onehas ker(a -1) = F;。(pxp/F望
(ii) If (p E NF IF;。(F汀onehas ker(a -1) =〈S〉X(F;。rpxp I pxp) where s = sFXP 
is the nonzero element of px / pxp de.fined in Sect. 3. 

Proof Letダ=aFxp, a E px, be an arbitrary element of px / pxp. Then 

a E ker(a -1)⇔ (a -l) (a) = bP （ヨbE『)

and the element b must satisfy NF; Fi。(bげ=1. If (p¢NF/Fi。(Fx)we have NF/Fi。(b)= 
1 namely b E (a -l)(Fx). Thus ker(a -1)こ pxpxp。/px and the converse inclus10n 

is obvious. Hence we get (1). Next, suppose島ENF/Fi。(Fx). Then S is an ele-
ment of ker(aー 1)and any t E px with tP = (a -l)(s) satisfies NF/Fi。(t)=品， cf
Sect. 3. If the above element b satisfies NF; Fi。(b)= (; then b E t'(a -l)(F汀 and
(a -l)(a) E (a-l)(s'FxP). Hence ker(a-1)こ〈S〉(Fi。(pxp/ pxp) and the converse 
inclusion is obvious. By definition of S the product of〈S〉andF;。(Fxp;pxpis 
direct. Thus we get (2). ロ

Lemma 4.2. One has ker(a -1) n im(a -1)こ F。(pxp/ pxp_ 
Proof By Lemma 4.1 we may assumeらENF/Fi。(Fx)and our task is to show 
that S¢im(a-1). Suppose SE im(a-1) and write S = (a-l)(R), RE px /F吼

First we treat the case e = 1. If p = 2, a -1 coincides with NF I Fi。onpx /FXP 
and we get S E Fi。(pxp/ pxp a contradiction. So assume p # 2. We then have 

2 RE ker(a -1) こ ker(a-l)p-l _ Writing R = aFxP, a E px, we get NF/Fi。(a)E Fi。rn
pxp_ Kummer theory then implies a E〈q〉(a-l)(F汀F。r'withq E px such that 
(a -1)(q) = (p. Hence we may write (a -1)(a) =ご(2p a-1) (b), bEFx. This 

argument for a applies to b and we get (a -1) (a) =ぐ(a- 3 1) (c), c E px. Pro-p 

ceeding this way we get (a -1) (a) E〈(p〉(a-l)P-1(Fx). Since (p E NF/Fi。(Fx)we 
get SE im(a -l)P-1 = im N hence SE『 pxp/ pxp F/F;。, 0 a contradiction. In the case 

2 e > I we use ker(a -1) c二ker(a-1)P = ker(aP -I). Replacing F;。by F1 in 
Lemma 4.1 we see that ker(吋ー 1)=〈S〉x(F{ pxp / pxP), so we may write 

R=S'Q, QEFげ xp/ pxp_ We then have, modulo F(pxp / F丸

S三 (aー l)(SrQ)= r(a -l)(S) = r2位― 1)2(S)

三・・・三 rが一1(a-1)が一1(s)三 rが一INF/Fi。(S).

Hence s E px pxp I pxp 1 , a contrad1ct10n, because S茫PXe-1 pxp / pxp and e > I. ロ
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By Lemma 4.2 our multiplicity formula is simplified to 

m(d) = dimFp[(F;。~pxp/ FXP) n im(a -1 /-1 / (F;。~pxp/ FXP) n im(a -1/]. (4) 

Lemma 4.3. (i) F;。~nN~/F;(F汀= NFi/Fi。(F/)F;。?1-ifor O~i~j~e. 
(ii) (F;。~nN~/F;(Fx))圧= N~;Fi。（月）pxp for O~i < j~e. 

Proof Let a= N~/F, (b), b E Fx, be an element of F;。~n N~/F;(Fx). We have 

(a -l)a = 1⇒ NF/F;((a -l)(b)) = NF/Fi((a -l)(a)) = 1 

⇒ (a-l)(b)E(研-l)(Fx) = (a -l)N;,/Fi。(F汀

⇒ bEN五(Fx)F;。X
⇒ a EN五(c)F;。;pJ-1 （ヨCEF汀．

Here we have (吋ー l)c=(a-I)N;;/Fi。(c)= 1, hence c E F/. Thus the left-hand-
side of (i) is included in the right-hand-side, and the converse inclusion is obvious. 

Statement (ii) is clear from (i). ロ

Now we can describe the explicit decomposition of px / pxr. If p = 2 we 

assume e z 2, because the set Sp(F / F0) in Theorem 2.1 is clearly empty in the case 
p = 2, e = I. 

Theorem 4 4 When G :::: Z /(p) the Fp[G]-module px / pxp is decomposed as 

follows: 

(i) Suppose〈p¢Fi。or島ENF/Fi。(F汀 orp = 2 and -1 E NF/Fi (Fx). Then 
e 

Fx /Fxp~ ④ V(p予竺
i=O 

(ii) Suppose島EFi。and匂¢=NF/F;。(Fx)and, if p = 2, suppose -l¢= NF/Fi (F汀．
Let k, 0 ::;; k < e, be the integer such that島¢=NF/Fk(Fx) and (p E NF/Fk+t (Fx). Then 

e 

『/Fxp~ ④ V(p予°° ④ V(pk + 1). 
i=O 

Proof We determine the multiplicities m(p1 + I), ... , m(pi+1 -I), 0 ::; i < e, by 
using the multiplicity formula (4). Here we assume i > 0 if p = 2. We hence 
investigate the descending chain 

(F0xpxP;pxP)nim(a-I)がコ・・・コ (F;。;pxp / pxp) n im(a -it'+I_J. (5) 

Let a=aFxP, aEF;。(,be an arbitrary element of F;。(FxPjpxp_ Then 

. ( ;  a E 1m a -1)P = im(尻ー I)⇔ aE(研-l)(F汀pxp

⇔ NF/F,(a) = aPe-i E NF/F,(F> p

⇔ NF/F;+i (a)= aが―,-1E砂VF/F;(Fx) (:lr). 
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Note that in the case品¢F;。(wehave r = 0, because砂¢F(. Hence in all cases the 
last condition is equivalent to 

ら―rNF IF;+, (a) E F;。(nNF/F,(Fx) (3r), 
O F/F; = NF/Fi。(Fx)F;。?e-i. Hence ct= aFXP be-but Lemma 4.3(i) implies px n N (F汀

longs to im(a -1)P'if and only if a E F;。rsatisfies 
ら— rNF /F;+l (a) EN F/Fi+l (N;,+,!Fi。(Fx)F;。?)

We now pass to case-by-case arguments. 

（ヨr). (6) 

Case A: 島¢=NF/F;+1 (F汀 (includingthe case島¢=Fi。). In this case we have r = 0 
hence the condition (6) is rewritten as 

aE(aP;+1-l)(『）N;;+1/Fi。(『）F。?= N;,+,/Fi。(『）F。?
which implies rx E Im(a -l)P;+i_1. Thus all modules in the chain (5) are equal in this 

case. 

Case B: 島ENF/F,+1 (F汀. In this case島 belongs to F;。~and Lemma 4.3(i) 
e-1-l 

implies F;。~nNF/Fi+i (F汀=NF/Fi。(Fx)F;。? = NF/F;+1 (N;;+1/Fi。(Fx)F;。r). We may, 
therefore take t- E l』 N* (Fx)F;。~with N 

F□ I Fi。 F/F,+, (ti+1) = (p・Then (6) is rewntten as 

a E tF+1Ni□ I Fi。(Fx)F;。? (:3r). 
Choosing an element ui+1 of F;。~n いN;,+,/Fi。 (F汀 we have 

(F;。rpx P / F xp) n im (a -1)I'i =〈Ui+J戸〉((F;。X戸 /FXP)nim(a-l)Pi+l_1). 
Case B.l: 品ENF/F;(F汀. In this case there exists an element ti of N;,/Fi。(FりF。X
with NF/F;(ti) =品， andwe may put ti+I = N; □ /F;(ti)- Then 

Ui+IFXP E (F;。rn N;i+1/F;(『）N;;+1/Fi。(Fx))Fxp/ pxp 
= (F;。rn N;,+1/F; (Fx))Fxp I pxp 
=N肛 IFi。(F,□ pxp / pxp (by Lemma 4.3(ii)). 

Thus all modules in the chain (5) are equal in this case. 

Case B.2: 匂ENF/F;+1 (F汀，品 ¢NF/F;(Fx). We may put ti+! = (aP'-l)(h), 
h E px, because NF;F(ti+i) = N肛 /F,島） = 1. Set 

C := NF/F;+1 (h), ふ：=C久 S; := s;F, 戸．

Then si and Si are exactly "s" and "S" if we replace the extension F / Fi。by
Fi/Fi。. In fact we have (吋ー l)(c)=ら bydefinition, which implies (a―l)(c) E F'iぃ
NF;/Fi。((a-l)(c)) =島，ふ EFi. We now prove Ui+lpxp¢im(a -1v'+1. Suppose 
u□ pxp E im(a -1) p'+I . Then we have ti+1pxp E im(a -l)I';+I by definition. Since 
im(a -1)が+I= im(戸 -l)(a-1)we may wnte 

ti+I = (研-1)(h) = (研-l)(a -l)(g)vP, g, VE  px. 

We then have NF/F,(vl = I and the assumption匂茫 NF/F;(F汀impliesNF;FJv) = I. 
Hence we may write h = (a -l)(g)wPf with g, w E px, f E F/. If p #-2 we have 
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ふ=NF/F;(h) E (a -l)(F/)F/P. If p = 2 we have si = -NF/F;(h) but -1 E (a -1)・ 

(F/) (we have assumed i > 0 if p = 2). Hence in all cases we have si E (a -1)• 
(F()F/P, namely 

Si E ker(a―1: Ft /F/P→ F(/F/P)nim(a-I :F(/F/P→ Ft/ F/P). 

This is clearly a contradiction if i = 0. Replacing F by Fi in Lemma 4.2 we see that 

this is a contradiction also in the case i > 0. Hence we have 

(F;。rpxp I pxp) n im(a―1t'=〈U;+J戸〉 X((F;。rpxp I pXP) n im((J―1t1+1_1), 
U;+1Fxp ft (F;。rpXP/FXP)nim(a-1)が+l'

(F;。rpxp I pXP) n im((J -I)『+I= (F;。rpxp I pXP) n im(a — 1t;+1_1 _ 

Theorem is now clear from the above results. ロ

In Sect. 2 we have dicussed the Z/(n)[G]-module Gal(F(n) / F). The above 

theorem implies 

Theorem 4.5. When G~Z/ (pe) and (p E F;。,the Fp[G]-module Gal(F(P) / F) is 
decomposed as follows: 

(i) Suppose (p E NF/Fi。(F汀orp = 2 and -IE NF/Fi (Fx). Then 

e 

Gal(F(P) / F)~IT V(pi)00. 
i=O 

(ii) Suppose島¢=NF/Fi。(Fx)and, if p = 2, suppose -l¢= NF/Fi (F汀. Let k be as 
in Theorem 4.4(ii). Then 

e 

Gal(F(P) / F) ::::::: IT V(pり00X V(pk + 1). 
i=O 
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