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A new proof of the global existence theorem of
Klainerman for quasi-linear wave equations

Kunio HIDANO and Kazuyoshi YOKOYAMA

Abstract

We give a new proof of the global existence theorem of Klainerman for the Cauchy problem of
quasi-linear wave equations in space dimensions #>4. In addition to the Klainerman-Sideris
inequality, a space-time -estimate plays a key role in the proof. We answer a question raised by
Metcalfe.

1 Introduction

In this paper we consider the Cauchy problem for a system of quasi-linear wave equations
(1.1) Clu = F(6u, 8°u) in R "

subject to the smooth, compactly supported initial data

(1.2) u(0)=f, 6u(0)=g.

Here and in the rest of this paper we mean bydu (resp. 8%u ) the set of all the first (resp. second)

derivatives of components of vector-valued function w: R —R"”, m>1. We define the d'Alembertian

] as
. 62
(1.3) U= diag (3, 5---,[,,), Dk=6t—2—c§A,

which acts on vector-valued functions . Since higher-order terms have no influence over our concern
of large-time existence of small-amplitude smooth solutions, we suppose that the nonlinear term F is
quadratic in(8u, 8*u) and linear in@’x. We therefore assume the k-th component of the vector function

F to be of the form F* (du, 0*u) = G* (u, u) + H" (u, u) , where

(1.4) Gruv)=> Y GEau )80 ), Hrwv) =3 Y Hy7(@u') (@)
ij=1 a,p7=0 ij=1 a.p=0

(8, = 8,) for real constants Gijf’am, H;’”ﬁ. Since our proof is based on the energy integral method, we

naturally assume the symmetry condition

(1.5) Gl_jffﬂﬂtf =G;mﬂ :Gi{cyaﬂ"/'

The commuting vector fields method of John and Klainerman has brought a remarkable progress in the
theory of large-time existence of small solutions to the Cauchy problem of nonlinear wave equations [3].
The theorem of Klainerman is the most fundamental in this research and it states global existence for
n 2~4 and almost global existence for n=3 of small solutions to quadratic, quasi-linear wave equations

[6]. The heart of the method of Klainerman is the use of the Killing vector fields and the radial vector
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field S =105, +x -V to prove the global Sobolev inequality in the Minkowski space R"*, known by the
name of the Klainerman inequality [7]. Thanks to good commutation relations between these vector
fields and the d'Alembertian, the standard energy integral argument together with the Klainerman
inequality efficiently works for the proof of the fundamental result.

Recently, one of the present authors has given another proof to the theorem of Klainerman [1]. His
proof relies on an effective use of the Klainerman-Sideris inequality (see (3.1) below), by which we get
some weighted L*(R") -estimates of the second and higher-order derivatives of local solutions. The weight
involved is the type of{cf—7) for a wave-propagation speed c, and therefore we obtain time decay estimates
of the I? (D,) norms (D, := {x e R":|x| < ct/2} for each t > 0) of the second and higher-order derivatives.
It is safe to say that weak decay estimates of the L*(D,)-norms have been compensated for by the time
decay estimates of the L*(D,) -norms. In this way the use of Lorentz boosts L; =x,0, +10; has been
completely avoided in [1], by which the validity of the theorem of Klainerman has been extended to
systems of quasi-linear equations with multiple speeds.

Interestingly enough, from the motive for studying the initial-boundary value problem of semi-linear
wave equations in an exterior domain, Metcalfe [9] has recently devised a method by expanding the
enterprise of Keel, Smith and Sogge [4]. The feature of the analysis of Keel, Smith, Sogge and Metcalfe
lies in a revival and an efficient use of the integrability in time over the interval (0,00) of spatially local
energy, the fact which was already in the literature (see, e.g., Morawetz [14] and Strauss [19]). Metcalfe
has shown global existence of small solutions to the initial-boundary value problem as well as the Cauchy
problem of quadratic, semi-linear equations in space dimensions » >4, and moreover Metcalfe has raised
a question how to handle quasi-linear equations via similar techniques of [9]. The purpose of the present
paper is to explain that the integrability estimate of the local energy such as (2.5) below actually plays a
prominent role in giving a new proof of global existence of small solutions to systems of quasi-linear wave
equations with multiple speeds when we consider the Cauchy problem.

Technical differences between this paper and previous one [1] should be described clearly. For a clear
explanation of some technical points it is suitable to give notation used in this paper. Let 5 denote the
space dimensions. We consider systems of m quasi-linear equations. Points in R'™ are denoted by
(x°, x",eesx") = (£, x). In addition to the usual partial differential operators g, = 5/6x“ (a =0,...,n) with the
abbreviation ¢ = (0, 0,,..., 0,) = (G, ,V), we use the generators of Eﬁclid rotations Q=(Q,,..,;,,Qyssenr,
Q,,,) with Q, =x'9, —xkﬁj (1< j<k<n), and of space-time scaling § =15, +x-V. The set of these
v=(n +n+ 4)/2 vector fields are denoted by I'=(I",I3,...,T,_;)=(6,Q, §), and we also denote I'\{S}
by = Tg> ey I, 5) =(8, Q). For multi-indices a = (ay,...,a,;)and b= (b,...,b, ,), we denote

(1.6) =0 --rY, Tl=Tr..IM3.

v-1 2

Associated with the d'Alembertian [ ] given in (1.3), the energy is defined as

(1.7) Ey(u(f) =%i _[Q(
k=1

We also introduce two types of generalized energy as

6,uk(t, x)|2 + cf]Vuk(t, x)lz)dx‘
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(1.8) Eu(t)= Y, E[u@)
lalsl-1
(1.9) Eiu(t)= Y, E [ uo)

lal</-1

for 1=23,.... Note that E;(u(t)) < E,(u())-

The auxiliary norm

m

(1.10) Mu®)=Y I{cxt = ryo°Tou* (1)

k=1 lal=2 bi<]-2

ILZ(]R")

will play an intermediate role in the energy integral argument below. Here, and in what follows, we use
the notation 7 =|x|and (4) =+ 1+ [A|2 for a scalar or vector 4. For simplicity we often denote the
L’ (R") -norm by | -||,» - The main theorem is stated as follows.

Theorem 1.1. Let n>4 and assume (1.4)—(1.5). Let & be small so that 0< 5 <1/2,and let | be large so that

4 fgser g

There exists a positive constant & with the following property: If the initial data satisfy E 1”2 (u(0)) < &, then there exists
a unique, smooth global (in time) solution to (1.1)—(1.2). It satisfies

(1.12) ER () <26, E* () < 2E @(0) (1+1)%, 0 <1 <o

for a constant C >0 independent of & .  Moreover, the solution also satisfies

(1.13) Z > e

a=0 lal<i-[n/2]}-2
a,_;<1

, <Cel+0)%, 0<t<w.

L7((0,)xR™)

Remark. The quantity E}/z(u(()))depends on the size of the initial data (f, g). Indeed, for sufficiently
small data (f,g) at t=0 we can calculate the derivatives of the solution u at =0 up to the /-th

order by using the equation (1.1). In this way we can explicitly determine E*(u(0)).

It was a key point in [1] that weak decay estimates of the L*(D,)-norms are compensated for by those
of the [*(D,)-norms. On the other hand, we find in Section 6 that space-time I? -estimates, which
follow from the integrability estimate of the local energy, pl;iy a role as an alternative to the time decay
estimates of the L*(D,)-norm. As a remarkable result, the number of vector fields §' can be limited to
at most one in the definition (1.8) of the generalized energy E,(u(¢)) which is employed in the a priori
estimate of local solutions. This is in accordance with the thought in a recent paper of Keel, Smith and
Sogge [5]. In that paper the method of vector fields is shown efficient in the proof of almost global
existence of small solutions to initial-boundary value problems for quasi-linear wave equations in a three
space dimensional domain exterior to a star-shaped obstacle with a compact, smooth boundary if the
number of vector fields S is limited to at most one. In this paper we consider the Cauchy problem for
quasi-linear wave equations in space dimensions n >4 and we get the same result of global existence as
the theorem of Klainerman. The main point of this paper is that the operator involved in our proof is
somewhat restricted. Namely, we mainly use the generators of translations and spatial rotations (3,Q)
and we use the generator of dilation S with only a single power. The authors have the hope that our
present analysis will offer some insight into the study to prove global existence of small solutions to

quasi-linear wave equations in an exterior domain of space dimensions n>4.
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We organize this paper as follows. In the next section some Sobolev-type inequalities and space-time
I? -estimates are presented. Section 3 is devoted to the weighted [?-estimate of local solutions. In
Section 4 we carry out the energy integral argument for the higher-order energy, and space-time
L? -estimates of local solutions are given in Section 5. In the final section we obtain a temporally uniform

estimate of the lower-order energy and hence complete the proof of the main theorem.

2 Preliminaries

In addition to the well-known facts

(2.1) 6, L1, 1=0, [Q,, O,]=0, [S, O,1=-20,,

7

we shall need the following Sobolev-type inequalities.
Lemma 2.1. Leta =01,..n and j=1.2,..,m.
(1)Let n>3. Theinequality

(2.2) (" et =) auu’ (6, 0| € CE 120 @(0) + CM 0., (le))

holds.
(2)Let n=4 and 0<d <1/2. The inequality

(2.3) (" |a,u’ (2, %)| < CE V¥(u(z)

holds.
(3) Suppose n=5. The inequality

(2.4) (" o,u’ (1. x)| < CE 12, ,(u(@)
holds.
Proof. This lemma has been proved in Hidano [1]. L]

Remark. After completing this work, the authors knew that Metcalfe, Nakamura and Sogge proved an
exterior-domain analogue of (2.2) and they used it as one of their key tools in the proof of global existence
of small solutions to the initial-boundary value problem in a domain exterior to an obstacle. See [10]

[11], and [12]. See also the review article of Sogge [18].

As is mentioned in Introduction, the following space-time [L? -estimate also plays an intermediate role

in our energy integral argument.

Lemma 2.2. Let n>1, §>0 and let (f,g) ES(R")X S(R"). Suppose that v solves the Cauchy problem
[lv=G,v(0)= f,0v(0)=g. Then the estimate

n

(2.5) || Py

a

a= 220, TRR™ SCVAlz +lglz) + ClGl g o,m2 @

holds.
Proof. We draw attention to the fact that, essentially in line with § 27 of Mochizuki [13], one can
prove by the multiplier method that the solution #:RxR'— R of [Ju=0with data (f, g)at t=0

satisfies
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(2.6) Z||< Yy ou

if n=1o0r n>3. Itis also possible by the Duhamel principle to show that the solution v: (0, 0)x R"

RXR")_ C “V.f‘"l,2 +I|g"L

SR of [Jv=G with zero data at 7 = 0 satisfies

(2.7) Z"( ry 1

if n=1 or n>3.

= C”G"L] (0,7);

((0.T)xR™ 1244:9)

In Proposition 2.8 of [9] Metcalfe has discussed global (in time) integrability of the local energy by

making use of the space-time Fourier transform, and he has proved

z“< >— n— 1)/4

for n>4. The present authors have verified in the Appendix of [2] that, with slight modifications, the

F(RxR" ™ C(”Vf“r +”g"1_2

argument of Metcalfe is actually valid for the proof of a variant of (2.6) for all n>1 (see (8.1) of [2]).
The argument of [2] obviously remains true for the proof of (2.6) in any space dimension without any
essential modification, and therefore the estimate (2.5) also holds for all #>1 by the Duhamel principle.

For the details, we refer to the Appendix of [2]. L]

3 Weighted L’(R")-estimates

Since weighted L’ -norms M,(u(t)) appear on the right-hand side of the Sobolev-type inequality
presented in the previous section, it is necessary to bound M,(u(f)) by E,”2 (u(r)) for the completion of
the energy integral argument. The next crucial inequality, which is due to Klainerman and Sideris, is

the starting point of our proof.

Lemma 3.1 (Klainerman-Sideris inequality). Assumec 22 and n>2. The inequality

(3.1) Mg(u(t))sCE[’,/z(u(t))+Ci D e+ O w0,

k=1 |also-2
holds for any smooth function u:R'™"—s R™ if the right-hand side is finite.
Proof. See Lemma 3.1 of Klainerman and Sideris [8] and Lemma 7.1 of Sideris and Tu [16]. Note that

their proof is obviously valid for all n>2. ]
Following Sideris [15] and Hidano [1], we prove a couple of lemmas.
Lemma 3.2. Let u be a smooth solution of (1.1)—(1.2). Seto' =[(c-1)/2]+[n/2]+2 forc>2. Then, for

all |la|<o-2

(3.2) i"(r + )0, T Ut ()] o< CE2 l®) ) (u(t)) + CM,. (u()) EJ (u(2))-
k=1

Proof. We may focus on the estimate of the L? -norm of t[lki:”uk because we can treat that of
0, T°"* in a similar way. Set p=[(c-1)/2]. By (1.4) it is necessary to estimate the contribution

from the quasi-linear parts

(3.3) Z 18,T%u’ (1) 8,0,T “u’ (1) > |b]+|c| <o -2

a,p,y=0

as well as the contribution from the semi-linear parts
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(3.4) Z t||6af”u"(t)-aﬂf‘uf(t>
a,B=0

We shall start with the estimate of (3.4). Let us assume |b|< p without loss of generality. It follows

from (2.2) that

bl+|c|so-2.

*’

(3.5) fo.Tu' ()-8, Fu’tr) -

< (et =)o T o' ()] ]| 8, T cu’ (1)

LZ

< C{Efamata ) + My, (a0) Bl w0))

—1/2

< C(B o (e + My, ) B ()

—1/2

< CEY ult)) + M., (u(e)) B u(e)).

For the estimate of (3.3) we separate two cases: |b|< por|c|< p-1. For the former case the estimate is

carried out as

(3.6) 0. T %' (1) - 8,6,T “u’ (1)

12

< Cl(r¥et - 1o, T 'u' )] .

8,0,T “u’ (1)

2

=12

< ClEW b (ult)) + My ) Bl (2))
< C(EX2 () + M u(®))) Ev” (u(z).

On the other hand, for|c|< p—1, we have only to exchange the roles which 6aI:bui(t) and aﬁéyf”uj(t)
have played in (3.6). The proof of Lemma 3.2 has been completed. Ll
Lemma 3.3. Letn>4and let | be large so that

e

Set p=1-[n/2]-2. There exists a small, positive constant £, with the following property: Suppose that, for a local
smooth solution u of (1.1Y—(1.2), the supremum of Egz(u(t)) on an interval (0, T)is sufficiently small so that

(3.8) sup E:‘/Z (u(®)) < &-

0<r<T

Then the inequalities

(3.9) M () < CE*(u(t), 0<t<T
and
(3.10) M, (u(t)) < CE*(u(t)), 0<t<T

hold with a constant C independent of T .

Remark. This lemma is actually valid for any integer / satisfying

o [

We have assumed (3.7) for the later use.
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Proof. Set

w2422 zfs[.l;l}r[ﬁ}z.
2 2 2 2
Employing Lemmas 3.1 and 3.2 witho = y, we see

(3.12) M, () < CE” ) +CY ¥ e+ 0T o),

k=1 |a|spu-2
< CEY (u(t) + CE (u(t)) E) (u(®)) + CM , (u()) E,* (u(0))
< CE)(ult) + CeE, (u(t)) + Ce M, (u(r)),

which yields (3.9). Taking account of a simple but crucial inequality g’ <[/'< <[, we see that

E, (u@) < Eﬂ(u(l)) s M ()< M ,(u@) < CEL/2 (u(®), 0<t<T and therefore

(3.13) M, (u(n) < CE,”Z(u(t))+Ci > e +0 Tt o)

k=1 |al<i-2

L2

< CE" (u(t)) + CE}* (u(t)) E)”* (u(t)) + CM, (u(t)) E}* (u(1))
< CE(u(t)) + Ce E)* (ult)),

which leads us to (3.10). ]

4 Energy estimates I. Higher-order energy

The main result of this section is the following proposition.

Proposition 4.1. Let n>4 and suppose that [ is large so that (3.7) holds. Set p=1-[n/2]-2. Suppose
that initial data of a local solution to (1.1)—(1.2) satisfy EI”2 (u(0)) < & for a sufficiently small & such that 2¢ < g,
(see (3.8) fore, ). Let T, be the supremum of all T >0 for which the unique local solution satisfies

(4.1) E(u(t) <2& 0<t<T.
Then the solution has the bound
(4.2) Eu(t)) < 2E*u(0)) 1+, 0<t<T,.

Remark. Suppose T, <. By the continuity of EL/Z (u(t)) on [0, T,] as well as the definition of T, we
see that the maximum of Ejl/z(u(t)) on the closed interval [0, 7,] is 2&. In the last section it will be
shown that E:I/z(u(t)) <2¢ on the interval 0<¢<T,, which is the contradiction and hence means that
the local solution actually exists for any length of time.

Proof. The proof is in line with the previous works [16], [1]. Note that the following calculations are

valid on the interval 0<¢<T7,. Introducing the modified energy
(4.3) E_(u(t))

1 m n " ; a . a §
EEa(u(t))“E E E E G: ﬂynf .[R"a"u 0w’ - &I u*dx
ia|=o;l i,j.k=1a,p.y,0=0
a, 1<

( r]f =diag (1, - L,..., ~ 1)), we get



Kunio HIDANO and Kazuyoshi YOKOYAMA

(4.4) Ewm)<cY % S [ortul-8,8,0% | ot
Pk @by S Pl cre
YT TS farar farel,

ik By lali=1 [bl+{clal
a,_1<1 b, _1+e,1<1

(see Sideris and Tu [16] on page 484). Since it easily follows from the Sobolev embedding that

(4.5) %Eg(u(t)) <E,(u(®)) <2E, (u(f)), 0<t<T, (0 = pryoens])

for the small solution # satisfying (4.1), we may be free to replace the norm E"?(u(t)) with E'T;/z (u(t)) in the
estimates below. Set g =[//2]. We start with the estimate of the first term on the right-hand side of
(4.4) which is the contribution from the quasi-linear part.

Quasi-linear part. We separate two cases:|b| < g or |¢|<g-1.

Case|b|< q. If T’ contains the operator S, then we have by (2.3)—(2.4)
(4.6) |6.T%u" - 8,8,Tu7| .

<y (|6, T u’ - (et —r)o,0,T u’

e, Tru’-g,8,Tu’| 2)

<t (Kot Tl s e o, Fou

)

—-—1/2

<cly” (E|]b/[i[n/2]+2 () M\ () + Ejpigy,2 (1)) Edivz (u(f)))
< CU) B2,y ) BV ) + M, )
<Oy EL () B} u(t)-

If T'® does not contain §, then we obtain by (2.2)

(4.7) |e.Tu" - 8,0, u’

12

<)o Xe,t —r)8, T’

Vs aﬂa}'rcuj" 12
1 (=172 12
< () (bt () + My g2 (u(2))) 72 (w(2))
< Cy" EY () E) (u(r)).
Case|c|<g-1. If '’ contains § , then we easily have
(4.8) |6.T%u - 88,1 u’| .
< (e | T 2 J(r) e, e = 7)8,8, T |
-1 1/2 —1/2
< ()™ BV ult)) (B piorapos (0) + M,y (u(2))
<C@Y T EP ) B (ulr)).
If T’ does not contain § , then we see, noting |b|</~2 in this case,
(4.9) |lo.T%u" - 8,6,Tu| »

<0 (|- et -no.Fou' 8w, +[o.T'u' - ()30 w )
¥

_8_.__
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IA

(| er-na T, +jo.F

“u' ll_2 ) ”(r)aﬁé’yl“cuj ”L"’

1{==1/2

< O i wle)) + Mipyp 0))) Bl )
<Oy EV ) + M, () EV2 e 0))
<COTE ) EV (u(®)),

where we have used the Hardy inequality at the third inequality.
Semi-linear part. When estimating the second term on the right-hand side of (4.4) we may assume
|b|< q(g=[/2]) without loss of generality. If I'? contains the operator §, then we have, noting

lc|]<1~2 in this case,

(4.10) |6.T %" -8, u’

2

= ;

I2)
LZ

c, J bi_

2t ” (r)o,

Tc,

< C(t)*’(” ¥0,T%u’ - —l—(cjt—r) s
r

< ()" |¢rya,rhu -

1
( H—(cjt -
v

< OO B oo w0)) (Bl (w0) + My, )
< Oy BV ) (B ) + M, (1))
<) B @)+ w@)

If T'* does not contain S, then we get, using (2.2),

(4.11) |e,T%u’ - 8,00’ -

)

(0| et - 1), Tt

< C(t>_] (f;z:]i[n/z]n (u(®)) + M{b|+[n/2]+2( u(t ))) ]c/ﬁ](u(f))

C() " E giwe2 (@) EV2 () < C{OY " EV () E) (ul0)).
Conclusion of the proof. Using the equivalence (4.5), we have from (4.6)—(4.11)
(4.12) Elu(6) < Celty E,(u(t)), 0<t<T,,

which yields

—;—E, (u(t) < E, u(t)) < E, (u(0)(1 + ) < 2E,(u(0))(1+ 1)
therefore,
(4.13) ' E”(u(t)) < 2> @(0)(1+ )¢
for a suitable constant C . . O

5 Space-time [’-estimates

What makes a crucial difference between the two proofs of [1] and the present paper is a use of temporal

— 9 —
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integrability estimates of the local solution. We shall employ Lemma 2.2 to prove the following
proposition which plays a key role in the estimate of the lower-order energy in the final section.

Proposition 5.1. Let & > 0. Under the same assumptions as in Proposition 4.1 the local solution satisfies

(5.1) Z "<> I/Z)Jara

a=0 |a|l<u
a,_;sl1

E2(0)+ Ce()™, 0<1<T,

((0.1)xR™ <

Jor constants C independent of ¢ .

Proof. By Lemma 2.2 we may focus our effort on the estimate of

(5.2) Z": Z I;||8al“bui(z')-6ﬂ6,F‘uj(r)||L2dz'
obi'o e,

If I'® contains S, we see by noting e < u-1

(5.3) I|6anui(r)A6ﬂ8yf u’

< C(z) |8, tu’ (x ~r)3,0,T “u’(

C(z) E11b/111 u(t)) (E|Ic/\1[n/2 2 u(T)) + M, i (u(r)))
< ()" E,w(©) < C(e) ™ E,(u(0))-

Here we have made use of Lemma 2.1 at the second, Lemma 3.3 at the third, and Proposition 4.1 at the
last inequality.

On the other hand, if T'* does not contain §, it is easy to obtain

(5.4) |0, T"u' (z)- 8,8,

<C(r)” [ et = 7Y 8,T *u' (1) |88, T u” (7))
C(r) (Bl g () + My g1, (1)) B ()
< C(r) E,(u(1)) < C(z) " E, (u(0)).
Combining (5.3) — (5.4) with (5.2), we find that the estimate of (5.2) is continued as
(5.5) < Celt), 1< T,
The estimate of

(5.6) > [e.r'w@)-gru )] pdr
By,

remains to be done. But it is obvious that the arguments in (5.3) —(5.4) are still valid for the estimate of

(5.6). We have therefore finished the proof of Proposition 5.1. ]

6 Energy estimates II. Lower-order energy

Let T, be the time defined in (4.1). Suppose T, <o. The last section is devoted to the proof of the first

inequality of (1.12) for 0<r<7,, which completes the proof of Theorem 1.1 (see Remark below
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Proposition 4.1). Our consideration starts with the standard inequality

(6.1) EYu(t) <EV@0)+C Y. |T°F(@u,6%u)|

Jalspu-1
a,_1<1

20s2(R™)

for g =1-[n/2]-2 asbefore. It is necessary to estimate the contributions from quasi-linear terms

(6.2) Y Y [lartut-gerwol,de

i,j=1 a,B,y=0 |b|+|c|su-1
b,_1+c, <1

and from semi-linear terms

2 ,drT.

(6.3) i Z Ha Iu'(7)- 8T u’ (1)
R

Set ¢, = min{cj : j=1,2,...,m} for the propagation speeds. Dividing (6.2) into three pieces

(6.4) > j |8,07u'(2)-8,0,0°u (1)) dz
+ Z J.]" .- ”Lz(r<c0c/2) dr +Z _[11" . ||L2(r>cor/2) dr
= +1,+1,,

we begin with the estimate of [,. If I’ contains S, we see for 0<5<1/2

(6.5) l6,0%u' () 8,8, T u’ (x

) “LerqOr/l)

<o) " 80 2 e 7-1)8,0,T “u’ (1) .

b

< C<T>-—]+C£E]/7 “< ) (1/2)-6

by modifying the computation in (5.3). On the other hand, if '’ does not contain §, we have

(6.6) |0, T u' (2)- 8,0,Tu’ (D) 2,

*( r<egt/2)

<(@) ()" e 7= )0 T @) L Jr) P 8p8, 0w’ (1)

e L2

-(1/2)-6

< C(e) B wO))|(r)
as in (5.4). With the help of a useful technique of the dyadic decomposition of an interval as in Sogge
[17] (see [17] on page 363), we obtain

(6.7) I, < ngz > Z LJ e

i=l a=0|alsp j=0
a,_ <1

25539202 (HChe r)m||<r>""”‘5aar“u*

=1 a=0|alsy j=0
ay_1<1

8,0,T°u’ ()

L.‘!

dr

(" r (z) B

LZ((O,Zj“)x R")

0
Z 21 (-1/2)+Ce <C£ ,
j=0

where we have abused the notation to mean 7T, by 2% This is the place where Proposition 5.1 plays a

crucial role.

For the estimate of ,we separate two cases: |b|<[w/2] or |c|<[w2]-1. If |b|<[w/2], then we get
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by (2.3)—(2.4), (4.1)— (4.2)

(6.8) ' ”aarb”i 7) 6ﬁarrcuj(T)”Ll(»q,r/z)
<Cly ) 8, ()] 850, T ()
< C(2) " By () EV2 (u(2))
—3'+Ce

< C(r)']_& EL/Z () EV (u(z)) < C&*{z)”

for a suitable §'>0. Otherwise, we have

(6.9) 0.0 u'(2)-8,0,Tu’ (2)] 5., oo

<c(ry™? |6.T%" ()] 2| ¢ "0 8,0,0u’ () . < Ce{r)™o"

asin (6.8). Since ¢ is sufficiently small, /,is estimated as

(6.10) I, <Cé J'f(r)‘l“s'*“ dr < Ce2.
Finally, it is easy to see [, < Cg”, and we have shown that the estimate of (6.3) is continued as

(6.11) < Cg?

for a constant C independent of ¢. Obviously the computations in (6.4)—(6.11) are still valid for the

estimate of (6.3), and we have therefore proved
(6.12) Ew@))se+Ce®, 0<t<T,

Since ¢ 1s sufficiently small, we can conclude EL/Z (u(f)) < 3¢/2 on the interval [0, 7,]. The proof of the

first inequality of (1.12) has been finished.
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