赤混黒米の色素の安定性

磯部 由香・森岡めぐみ・成田 美代

Stability of pigment from black rice (akamajirikuro-mai)

Yuka Isobe, Megumi Morioka and Miyo Narita

要旨

アントシアニン系色素のシアニジン-3-グルコシド (Cy-3-Glc) およびタンニンの二種類以上の色素を有する有色米である「赤混黒米 (あかまじりくろまい)」から色素を抽出し、その安定性について検討を行った。赤混黒米から抽出した色素は、pH が低く、加熱時間が短く、加熱温度が低いほど安定であった。酸、糖、金属イオンの色調に対する影響を調べたところ、金属イオン添加時の色調の変化が最も大きかった。また、紫外線 5 時間照射に対しては変化が見られなかった。

1. 緒 言

現在、日本では様々な有色米が栽培され、食されて いる。有色米の中には、米粒の種皮が紫黒色の黒米、 赤色の赤米、緑色の緑米などがあるい。これまでの研 究により、各有色米の主な色素成分については、黒米 はアントシアニンジ、赤米はタンニンジ、緑米はクロロ フィル¹⁾であることが明らかとなっている。三重県で は、通称「赤混黒米(あかまじりくろまい)」と呼ば れる有色米が一時期栽培されていた。この米は個人的 に中国から持ち帰り栽培されたものが伊勢神宮に奉納 され、栽培されるようになったとされているが、詳細 については不明である。平成2年頃から約10年間、 明和町五木宮歴史博物館において、古代米の伝承を目 的として、伊勢神宮から譲り受けた赤混黒米について の栽培が行われていたが、利用法の確立がなされなかっ たために、現在では栽培が中止されている。赤混黒米 の外皮は黒い部分と茶褐色の部分が混ざっており、著 者らは、赤混黒米の色素にはアントシアニン系色素の シアニジン-3-グルコシド (Cy-3-Glc) およびタン ニンの二種類以上の色素からなり、この色素は抗酸化 性を有することを明らかにしているい。有色米の色素 を用いた加工食品としては、黒米色素を用いた酒類の 製造がありおよび赤米色素を用いた酒類の製造につい ての報告なるなのがあり、その際に色素の安定性につい ての検討が行われているが、ここで得られた結果はい ずれもアントシアニン系色素またはタンニン系色素単 独についてのものである。そこで、今回は、赤混黒米 の利用拡大のために、調理・加工を行う上で重要な要 因となる色素の安定性について検討を行った。

2. 実験方法

(1) 試料

平成11年に、三重県多気郡明和町で収穫され、供 与された赤混黒米を試料として用いた。

(2) 試薬

試薬はナカライテスク㈱、和光純薬工業㈱製の特級 品を用いた。

(3) 粗色素の調製

有色米 20g に 100ml のジェチルエーテルを加えて一晩放置し、脱脂を行った。ジェチルエーテルをろ過して除き、乾燥させた米に 0.1%トリフルオロ酢酸を含む 95%エタノール 100ml を加え、一晩放置して色素を抽出し、これを減圧濃縮した後、真空乾燥を行い、粗色素とした。

(4) 安定性試験

1) 試料

赤混黒米、黒米から調製した粗色素をイオン交換水で溶解し、不溶性成分をろ過して除去し、528nmにおける吸光度1.0に調製した色素溶液を原液とした。

2) 色調の測定

色素の安定性の指標として、測色色差計(日本電色 (㈱製、Color Meter NE2000)で L 値(明度)および a、b値(彩度)を測定した。

3) pH の影響

色素溶液に水酸化ナトリウム溶液を添加し、pH3、5、7、9 に調製し、30℃、暗所で静置し、48 時間後に 測色色差計で L、a、b 値を測定した。

4) 加熱の影響

色素溶液をpH3 に調製し、暗所で30、60、80、100 ℃で加熱し、15、30、45、60 分に測色色差計で L、a、 b 値を測定した。

5)酸の影響

色素溶液にクェン酸、酢酸、アスコルビン酸を 1%、 になるようにそれぞれ添加し、暗所で 30、60、80、 100℃で 60 分間加熱し、測色色差計で L、a、b 値を 測定した。

6) 糖の影響

pH3 に調製した色素溶液にグルコース、サッカロース、フラクトースを 10%になるようにそれぞれ添加し、暗所で 30、60、80、100%で 60 分間加熱し、測色色差計で L、a、b 値を測定した。

7) 金属イオンの影響

pH3 に調製した色素溶液に、Al³+、Na⁺、K⁺、Zn²+、Ca²+、Mg²+、Sn²+、Fe²+、Fe³+、Cu²+を100ppmの濃度になるようにそれぞれ添加し、30℃、暗所で静置し、48 時間後に測色色差計で L、a、b 値を測定した。なお、金属イオンは全て塩化物を使用した。

8) 耐光性

色素溶液を紫外線殺菌灯(TOSHIBA 製、殺菌ランプ GL 15)で 5 時間照射し、測色色差計で L、a、b 値を測定した。

3. 実験結果

(1) pH の影響

色素溶液をpH3、5、7、9 および 11 に調製し、48 時間放置後のL、a、b 値の変化について検討した結果を表 1 に示す。L 値はpH3 から 9 ではあまり変化せず、pH11 では大きく増加した。a 値はpH5 以上でかなり低下しb 値はpH の上昇とともに増加している

ことから、赤味が減少し、緑味が大きくなった。デー タは示さないが、pH 調製後の経時的変化を彩度の変 化率により検討したところ、pH5 以上では約50~70 %と変化率が大きく、赤混黒米色素は pH3 の強酸性 下で安定であることが明らかとなった。一般にアント シアニンの安定性に関しては、pH が低いほど安定で あり¹⁰、黒米から抽出された Cy-3-Glc は酸性で赤色、 中性で紫色、アルカリ性で暗藍色に変化する"ことが わかっている。また、タンニンを含む赤米の色素液は 酸性および中性では 450~460nm 付近に吸収ピークを 持つ黄褐色、アルカリ性では 500nm までピークが続 く赤褐色に変化する^{3,5)}。赤混黒米の色素には Cy-3-Glc とタンニンの両成分が共存しているが、上記の結 果からみて、本色素の色調の pH による変化には Cy-3-Glc が主な要因となっていると思われる。また、 赤混黒米色素を赤色色素として応用の際には強酸性下 での利用が望ましいと思われる。

(2) 加熱の影響

加熱による色調の変化を表 2 に示す。L 値は 30、60 度の加熱ではほとんど変化がなかったが、80、100 度の加熱では増加し、色が薄くなった。a 値はいずれの温度においても、加熱時間が長くなるほど低下し、赤味が退色した。また、その変化は温度が高いほど顕著であり、 100° C1 時間の加熱で a 値の減少率は約 30%であった。本色素と同じ Cy-3-Glc を含む黒米色素抽出液は 80° C2 時間の加熱ではわずか 10% ほどの退色であった"。この変化の違いは共存する色素などの影響であると思われる。

表 1 pH による色調の変化 T. a

pH	L	a	b
3	50. 5	35, 4	13. 5
5	51, 2	13.6	14.5
7	55. 7	11.4	17.0
9	54. 9	9.6	26, 5
11	68. 4	10.2	34. 2

48 時間放置後

表 2 加熱による色調の変化

				,	加熱	温	度(℃)				
加熱 時間		30			60			80			100	
(分)	L	а	b	L	a	b	L	a	b	L	a	b
0	63.0	51.5	18. 4									
15	61.1	54.4	20.6	64.7	48.4	17.6	64.9	47.7	18. 2	66. 3	45.0	18.8
30	63, 3	50.3	17.8	64.7	48.3	17.8	65.0	45.9	18, 3	68.3	40.4	18.8
45	63.2	49.9	17.7	64.8	47.9	17.7	65.6	44.6	18. 5	70.2	36, 2	18.9
60	62.8	49. 2	17.6	64.7	47.6	17.8	66. 2	43.9	18, 7	72. 1	33. 2	19. 1

(3) 酸添加の影響

酸添加時の加熱による色差の変化を表3に示す。そ れぞれ加熱前の L、a、b 値を基準とし、各温度 60 分 間加熱後のL、a、b値との色差を算出した。アスコ ルビン酸添加の影響が最も大きく、30℃で色差が約 16、100℃では約35であった。クエン酸、酢酸の影響 は少なく、80℃での加熱でもそれぞれ色差は約5およ び7と小さく、かなり安定であった。データは示さな いが、a、b値についてみると、クエン酸、酢酸添加 により、a、b値とも上昇し、アスコルビン酸添加に より、a、b値ともわずかに低下したが、色調は無添 加とほとんど変わらなかった。また、アスコルビン酸 および酢酸添加では、80℃までの加熱において、クエ ン酸添加では、100℃加熱においても色調は変わらな かった。各酸を添加したときの pH は、アスコルビン 酸添加時が2.42、クエン酸添加時が2.08、酢酸添加 時が2.40と、クエン酸添加時が最も低かったことか ら、各酸添加による安定性の違いは、溶液の pH に起 因すると思われる。

表3 酸添加時の加熱による色差の変化

	_	色	差*	
添加物		加熱温		
	30	60	80	100
無添加	2, 5	4. 4	8, 3	20. 5
1%アスコルビン酸	16. 1	7.6	24.8	34. 9
1%クエン酸	1.1	1.7	4,6	16.5
1%酢酸	1.9	5.5	6.9	25, 2

*酸無添加、加熱前を基準として色差を算出した。 加熱時間:60分間

(4) 糖添加の影響

糖添加時の加熱による色差の変化を表 4 に示す。糖 無添加、糖添加いずれの場合も、加熱温度の上昇によ り、色差は大きくなり、その値もほとんど同じであっ た。また、糖による違いも見られなかった。データは 示さないが、いずれの糖の添加においても、L値は加 熱温度、加熱時間の増加に伴い、上昇し、80℃までは、 a、b値はほとんど変化がないが、100℃では加熱時間 の増加に伴い、a値が低下し、赤味が弱くなった。ア ントシアニン色素に対する糖の効果については、イチ ゴ中に含まれる色素を用いて、糖濃度の低い場合、糖 が色素保護に作用するという報告" 、これとは逆に色 素分解に作用するといういか制度する報告がある。今 回は、糖添加時と無添加時の退色率にあまり差がなかっ たことから、糖添加による分解促進はないことが明ら かとなった。また、太田らばはブドウ果汁(キャンベ ル、アリー)のマルビジン3,5-ジグルコシドについ て、供試糖類は全て520nmにおける吸光度の増大効 果を示し、糖濃度と 520nm における吸光度との間には直線関係が成立し、分子量が大きいほどその濃色効果が強かったと報告しているが、今回は単糖と二糖による影響の違いはみられなかった。

表 4 糖添加時の加熱による色差の変化

		色	差*	
添加物				
	30	60	80	100
無添加	2, 5	4.4	8. 3	20, 5
10%グルコース	2.8	5. 1	9.2	22.0
10%サッカロース	2.0	6. 2	9.8	23.5
10%フラクトース	2.0	4. 2	9.5	23.7

* 糖無添加、加熱前を基準として色差を算出した。 加熱時間: 60 分間

(5) 金属イオンの影響

金属イオン添加による色調の変化を表 5 に示す。 Fe^{3+} 、 Cu^{2+} 添加では、a 値が低下、b 値が上昇し、赤味が弱まり、黄味が強くなった。 Fe^{2+} 、 Sn^{2+} 添加では a、b 値とも低下し、赤味、黄味が弱まった。 Al^{3+} 添加では a 値が上昇、b 値が低下し、赤味が強まり、青味が強くなった。その他の金属イオンはほとんど変化がみられなかった。L 値は Zn^{2+} 添加で上昇し、 Fe^{2+} 、 Al^{3+} 、 Sn^{2+} 添加では低下した。L 値は Cu^{2+} 添加では上昇し、 K^{+} 、 Al^{3+} 、 Ca^{2+} 、 Mg^{2+} 、 Na^{+} 、 Sn^{2+} では低下した。

黒米から抽出した Cy 3-Glc を含む色素を添加したリキュールに Fe^{3+} を添加すると 10ppm 以上で赤味が退色すること 60 や、赤米から抽出した抽出したタンニン系色素に Fe^{3+} を添加すると 50ppm で 500nm での吸収ピークが減少すること 60 が報告されている。両色素が共存している本色素溶液においても Fe^{3+} 添加では赤味が弱まっており、同様の傾向が見られた。 Cu^{2+} については上記リキュールへ 100ppm 添加すると赤味が増加し 60 、タンニン系色素では 1ppm で赤味が退色

表 5 有色米抽出色素の金属イオン添加による色調の変化

金属イオン	L	a	b
無添加	52.6	35, 1	13.6
Al^{3+}	33, 6	68. 3	-31.5
Na^+	56.8	38, 5	13. 1
K^+	54.8	36. 3	12.8
$\mathbb{Z}n^{2+}$	67.5	36. 6	12.8
Ca^{2+}	59. 7	37. 1	12.9
$\mathrm{Mg}^{\scriptscriptstyle 2+}$	51.5	35, 8	13.3
Sn^{2+}	14. 1	28, 8	2.4
$\mathrm{Fe}^{^{3+}}$	52. 9	3. 7	21.1
Cu^{2+}	55.9	2.6	16. 3
Fe^{2+}	44.9	11.7	2.7

する⁹と報告されており、本色素では Cu²⁺添加で赤み が弱まっているので、タンニン系色素の変化の影響が 大きかったと考えられる。また、赤混黒米色素と同じ Cy 3-Glc を主色素とするムラサキトウモロコシ色素 において、Fe²⁺添加では b 値が低下し、Cu²⁺添加では a 値が上昇する¹⁵⁾という報告や、Sn²⁺での変化が最も大 きく、1ppm でも変色し、Fe²+では 1~10ppm で変色、 Al³+では 10~50ppm で変色、Cu²+では 50~100ppm で 変色する心という報告がある。また、赤混黒米色素と 同じ Cy 3-Glc を含むブドゥ果汁色素は Sn²+、Fe²+、 Mg²⁺、Zn²⁺で最も変化が大きく 1ppm で変色、Al³⁺で は 10~50ppm で変色する¹⁶⁾ と報告されている。以上 のように、主成分が同じアントシアニンでありながら、 影響を受ける金属イオンが異なるのは、赤混黒米に含 まれる Cy3-Glc 以外のアントシアニンやタンニン系 色素によるものだと思われる。また、今回は金属イオ ン濃度 100ppm での影響を調べたが、より低濃度での 影響も検討する必要があると思われる。

(6) 耐光性

紫外線照射による色調の変化を表6に示す。時間の経過による L、a、b値の変化は若干あったが、5時間紫外線照射の値は、照射なしとほとんど差はみられず、赤混黒米色素は耐光性を有することがわかった。シソに含まれるシソニンにおいて、紫外線照射4時間の残存率は77%い、赤キャベツ、シソ、イチゴ、リンゴに含まれる色素は254nmの紫外線照射5時間で10~50%と低い残存率を示したと報告されており10、同じアントシアニン系色素でも耐光性が異なることがわかった。また、ハスカップ色素は紫外線照射7時間までは変化が少なく、14時間から色素の残存率が低下している10ので、赤黒米色素の耐光性試験は24時間以上の長時間で検討する必要もあると思われる。

表 6 有色米抽出色素の紫外線照射による色調の変化

照射条件	L	a	b
照射なし	63. 9	48. 2	16, 3
照射あり	63, 6	49.8	16.8

紫外線照射 5 時間

4. 要 約

赤混黒米から抽出した色素は、pHが低く、加熱時間が短く、加熱温度が低いほど安定であった。酸、糖、金属イオンの色調に対する影響を調べたところ、金属イオン添加時の色調の変化が最も大きかった。また、紫外線5時間照射に対しては変化が見られなかった。

引用文献

- 1)猪谷富雄、小川正巳:わが国における赤米栽培の歴史と 最近の研究情勢、日本作物学会紀事、73、137-147 (2004)
- 2) 高橋康次郎、杉本多起哉、三浦孝志、鷲巣幸夫、吉沢淑: 赤米色素の分離同定、醸造協会誌、84、807-812 (1989)
- 3) 前川季義、新家龍:赤米色素の性質と赤米を原料とした 清酒製造試験、醸造協会誌、84、787-793 (1989)
- 4) 磯部由香、森岡めぐみ、小宮孝志、寺原典彦、成田美代: 赤混黒米の色素の抗酸化性、日本調理科学会誌、39、247-250 (2006)
- 5) 門倉利守、丸山智香、中里厚実、竹田正久、金子太吉、 名越時秀、大森俊一: 黒米および赤米を原料とした赤ラ イスワインの試醸、東京農業大農学集報、40、1-7 (1995)
- 6) 吉永和彦、高橋康次郎、吉沢淑:赤米色素を用いたリキュールの製造、81、5、337-340 (1986)
- 7) 高橋康次郎、吉沢淑:赤米色素とそれを利用した酒類の 製造、醸協、82、740-744(1987)
- 8) 山中信介、松沢一幸、川西祐成:赤米を用いた着色酒類 の製造、奈良工試研究報告、12、4-7(1986)
- 9) 山中信介、松沢一幸、川西祐成:赤米タンニンを用いた 着色酒類の製造(第2報)、奈良工試研究報告、13、58-62(1988)
- 10) 大庭理一郎・五十嵐喜治・津久井亜紀夫: アントシアニンー 食品の色と健康 —、p. 46、建帛社 (2000)
- 11) 竹花秀太郎: 果実・野菜のペクチンおよび色素の安定性 に関する研究、千葉大学園芸学部特別報告、3、69-80 (1969)
- 12) I. J. Tinsley, A. H. Bockian: Some effects of sugars on the breakdown of pelargonidin-3-glucoside in model systems, Food Res., 25, 161-173 (1960)
- 13) Daravingas, G. and Cain, R. F.: Thermal degradation of black raspberry anthocyanidin pigments in model systems, J. Food Sci. 33, 138-142 (1968)
- 14) 太田英明、渡部博和、筬島 豊:色素の及ぼす糖の影響、 日本食品工業、**26**、111-115(1979)
- 15) 谷村顕雄、片山脩、遠藤英美、黒川和男、吉積智司: 「天然着色料ハンドブック」、287-288、光琳(1979)
- 16) 大庭理一郎、五十嵐喜治、津久井亜紀夫:「アントシア ニンー 食品の色と健康 一」、48-49、建帛社(2000)
- 17) Tsukui, A., Suzuki, A., Nagayama, S., and Terahara, N.,: Stability of anthocyanin pigments from purple leaves of Perilla ocimoides L. var. crispa, Nippon Shokuhin Kagaku Kogaku Kaishi, 43, 113-119 (1996)
- 18) 津久井亜紀夫、鈴木敦子、小巻克巳、寺原典彦、山川理、 小林一也:さつまいもアントシアニン色素の組成比と安 定性、日本食品科学工学会誌、46、148-154(1999)
- 19) 松坂裕子、知地英征:ハスカップ色素の安定性に及ぼす pH、温度、光の影響、藤女子大学・藤女子短期大学紀要、32、7-11 (1994)