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Introduction

I proposed the concept of dynamical graphs for Clinical Mathematics Education in [2], and discussed
their mathematical theory in the case of reduced divisor sums in [3], and in the case of reversed differences
in [5]. And in [8], I determined the number of the isomorphism classes of dynamical graphs with vertex
number k£ =10. There we know the structures of dynamical graphs are rather complicated even in such
a small size case.

In this note, we will describe some structures of basic elementary dynamical graphs, especially of

addition graphs and multiplication graphs. We use somtimes the abbreviation DG for dynamical graphs.

* Math. Dept. of Fac. of Ed., Mie University
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§1. Brief Reviews of Finite Dynamical Graphs

Let V be a finite set. A dynamical graph G = (V, E) is an oriented graph on V whose every vertex v € V
has only one outgoing edge from v, that is, there is only one vetex w with (v,w) € E. An oriented edge
(v,w) € E is sometimes drawn as v — w and is called an arrow.

Denote by D(V) the set of all dynamical graphs on V, which is bijective to the set Map(V,V) of the
maps of V to itself. The correspondence is given as follows.

Given f € Map(V,V), take the graph E(f) = {(v, f(v)) | v € V} of the map f as the set of edges of G,
then G(f) = (V, E(f)) is a dynamical graph.

Conversely, given a dynamical graph G = (V. E) on V, for any v € V we have only one vertex w € V
with (v.w) € E. So let f(v) = w. Denoting f by f(G), we get that G = G(f(G)) and f = f(G(f)).

Two maps f € Map(V,V) and g € Map(W, W) are called isomorphic, if there exists a bijection ¢ : V —
W {called an isomorphism) satisfying the equality

pof=gopef=¢plogop
Then we write as f = g, and call the dynamical graphs G(f) and G(g) are isomorphic with each other and
denoted by G(f) = G(g).

In describing structures explicitely, there are some cases where it is important to specify labels of verteces,
and to distinguish isomorphic DG’s. So we denote o * f = @ o fo ™! and ¢ * G(f) = G(p * f), and call
¢ * G(f) the ¢-transfer of the DG G(f). Then we say that the DG G(f) on V is p-transfered to the DG
¢ * G(f) on W. Moreover, if G’ is a DSG of G, then ¢ x G’ is also a DSG of ¢ x G(f).

I is called the inverse

If f is bijective, the dynamical graph G(f~!) defined by the inverse mapping f~
graph of G = G(f), and G is called invertible. Write G~! = G(f~!) for the inverse of G, then it can be
obtained by reversing all directions of arrows of G

Denote by D(V) the set of all dynamical graphs on V', and by D'(V) the set of all invertible dynamical
graphs on V. The cardinality of V is called of size of G = (V, E), denoted by s = s(G), which coincides
with the number #F of edges of G.

Denote by D (V) and D'(V) the set of isomorphism classes of D(V) and D'(V) respectively.

Now we prepare some basic notions about DG.

Let G = (V.E) = G(f) be a DG. A dynamical graph G’ = (V', E’) is called dynamical subgraph(DSG)
of G, if V! C V, E' C E and every edge in E’ consists of verteces in V.

For a vertex v € V', the set of all ‘descendants’ of v:

V) ={weV |w= f*v) for some a > 0}

is a DSG by v and is called the future of v. This subgraph is the minimal subgraph containing the vertex
v, so it is also called the subgraph generated by v and is denoted by (v). For any subset U C V, denote by
(U) the DG generated by U.

For a vertex v € V, the set of all *ancesterts’ of v:
V=) ={w eV |v= f*w) for some a > 0}

is called the past of v. but it is not a DSG in general.
For an integer n 2 0. denote by G the subgraph G(flnvy) = (f*(V)) on the f-invariant subset f"(V'),
and call it the n-th future graph. Also denote G'") = G’ and call it the derived graph of G. Then we get

V=WV 2/ (V) =wv) =

—_— 2 —
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for some h > 0. Introduce the set
Lo(G) = fHVIN(V) (1€ <), La(G)=fM(V).
A vertex v € £,(G) is called of life n (If(v) = n), and v of life 1 is called a leaf.

A DG G is called connected, if (v) N (w) # @ for any v,w € V,

For a vertex v or a connected subgraph G’, the maximal connected DSG F containing v or G’ is called the
connected component of v or G’, denoted by F(v) = F(v; G) or F(G') = F(G’; G) respectively. The number
¢ = ¢(G) of connected components in G is called connectivity of G. ¢ = 1 means that G is connected.

§1..1 Cycles and invertible DG

If a subset C = {vy,---,v,} of (mutually different) verteces satisfies
vig1 (i <p)
fleg=¢ "0
vl (i =p),

then the subgraph (C) is called a cycle. Sometimes the set C itself is also called cycle. The number
p = p(C) is called the period of the cycle C, and is nothing but the size of C. For any vertex v of C,
C = (v) = V~(v). Denote by C, the isomorphism class of a cycle of period p.

Let G be a dynamical graph, then every connected component contains only one cycle. A cycle C' of G
is called a limit cycle of G, if 7(C)2 C. For any vertex v of a limit cycle C' the set V= (v) = V~(C) =
F(v) = F(C) is a DSG. A DG G is called of cycle type, if its every conneted component is a cycle. The
subgraph £ (G) consists of all limit cycles, and is of cycle type.

A cycle of period 1 consists of a single vertex, and is also called a fized point (so denoted as C';). A
connected DG T is called pseudo-tree, if the limit cycle of T is a fixed point. In a pseudo-tree T the cycle
consists of a single vertex v. this unique gate v is called a root of T.

The subgraph (v) generated by a vertex v € V has no branch points outside its limit cycle. A pseudo-tree

T is called linear, if the fixed point is the only one branch point.

Let v be a vertex of a limit cycle C, then a vertex w ¢ C is called a gate of C to v, if w — v. For a
vertex v of C, let W = W(v) be the set of gates to v, that is.and its past V'~ (W) is called the outer past
of v, and is denoted by O~ (v) D W. And consider two number. the width w(v) = #W (v) = degv — 1 and
the weight wt(v) = #07 (v) of the vertex v € C.

A vertex u € C is called the n-th cyclic past of v. if f*(u) = v. Then u is uniquely determined by u and

n, and is denoted by u = f*"(v).

Remark. Here we changed the definition of the gate in [8]. but other definitions are not unchanged around
the concept of gates.

Let C' be a cycle of G. For a vertex v € F(C), put
ht(v) = hte(v) = min{n=20| f"(v) € C'}.

and call it the height of v w.r.t. the cycle C. Write the set of verteces of height h as F,(C) = {¢v €
F(C) | hte(v) = h}. then

h(C)
F(C)= | Fn@) = | Au(C). FolC)=C.
h=0 h=0

where h(C") is the maximal height hA(C') = max{hc(v) | v € F(C)} in F(C'). and fPO(F(C)) = C.

_3_
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§1..2 Degrees and Size and Period Characterisitc

For a vertex v € V, the number of arrows whose target is v is called the degree of v, and is denoted by

deg(v). That is, deg(v) is the number of the preimage of v by f = f(G):
deg(v) =t 1(0) = #{w e V | w — v}.

Let D;(G) = {v € V | deg(v) =i}, then Dy = L; is the set of all leaves.
Put D;(G) = 4D;(G) and D(G) = (Dy, Dy,...) = ZiZ o D,k ;, then there holds the degree equation:

S(G)=#E =3 cydegv =3 > Di =3, > iD

We say that a vertex v is a branch point if deg(v) > 1, then cycles have no leaves and no branch points.

Proposition 1 The followings are equivalent with each other.
(1) f is bijective, that is, G is invertible.
(2) degv = 1 for every vertex v, that is, D(G) = s(G)k ; = 15(%),
(3) G is of cycle type.
(4) P(G) =S(G).

Remark. In an ordinary graph theory, this notion of degree is called the indegree. The reason why we
choose this definition, the outdegree of every vertex is 1(constant) in our theory.

In DG theory, (2) in Proposition 2 means the the homogeneity in degrees, that is degv are the same for
any verteces v, A DG G is called quasi-homogeneous, if the degree characteristic D(G) has two nonzero
components. Then D(G) has the form (s(G) — ¢)k ¢ + ck 4, where ed = s(G).

Let G = G(f) be a finite DG, and ¢ = ¢(G) be the connectivity ¢ = ¢(G). Let {G*,---,G°} be the set
of connected components of G, C* be the unique cycle of G* (1<i<¢). In this situation, G is written as a
disjoint sum G = U$_,;G* of all connected components, and L (G) = US_;C? is the sum of all limit cycles.

Now introduce the size characteristic S(G) = {s,--- , s°} and the period characteristicP(G) = (p*,--- ,p°)
of the dynamical graph G, where s* = s(G*) and p* = p(C*). Then s(G) = s! + --- + s°.

For covenience sake, we use the following notation for sets S = {sj,-- , 8.} of ¢ natural numbers. Let
= #{s; | s = j}, then write S = Z]gonjkj = szo j™. Then we get

c
ZSJ‘Z Z'fljj, Cc = Z'ﬂj.
=1 iZ1 iZ1

¢) is isomorphic to a graph G, then we use the abbreviation cG for US_;G*. Then
) = cP(G), D(cG) = cD(G). Moreover, S(Cp) = k5, P(Cp) = kp, D(Cyp) = pk .

If every G* (154

s
S(cG) = S(G), P(cC

§1..3 Attaching

Given a graph G = G(f) € D(V), a vertex v € V, a pseudo-tree T = G(t) = (U, F) € T with the root
u € U, then define the dynamical graph G(h) € D(V’) one the set V' =V U (U \ {u}) by

fw) (weV)
h(w) = ¢ t(w) (we€ U and t(w) # u)
v (weUand t{w) =u).

We say that G(h) is obtained from G attached by T' at v, and denote G(h) = GV, T. Then

— 4 —
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s(GV,T)=s(G)+ s(T) — 1 =s(G) + wt(T),
c(GV, T)=¢(G), P(GV, T) =P(G).

Any connected dynamical graphs can be expressed as a cycle C with pseudo-trees T; attached at gates
v (1=1,---,9: G=CVy T1 -~ Va, Ty. Then the size of G is given as

g
s(G) =p(G) + > _ wt(Ty).
i=1

Linear pseudo-trees of weight w are isomorphic with each others, so denote their isomorphism class by
Ly.

Any pseudo-tree T can be expressed as a linear pseudo-tree L,,, with linear pseudo-trees L., attached
at branch points v; (i =1,---,b(T)): T = ((--- (Lwe Voy Lw;) ") Vay, Lus,- Then s(T) =1 + Z?:o w;.

In particular, Ly = K = Cy, and attaching Ly does not change any graph: GV, Lo =G foranyv € V.

If v is a leaf of a linear pseudo-tree T, then Ly, Vy, Ly = Ly, in particular Ly, V, Lo = Ly,.

§1..4 p-nary Pseudo-tree

Fix (p,£) (p > 1,£ > 0), we define p-nary pseudo-trees Bf, inductively on / as follows: At first let B) = Ly,

and put
B;;-H = Lg Vg p(Ll V1 Bf;)

Then B¢ is a pseudo-tree of height 2, #L1(BY) = p*(the number of leaves), and

/41 pl/ -1

I3 ¢
, p -1 , pt—1
s(Bf,):E:plz—p_l : wt(Bf;):pp_l, Do(BL) = p'ko +
1=1

p—1

k.

In fact, we can verify inductively

‘1 p17+1_1
(B =p (14 p2 =
wt(B,") =p s i —

B¢ is a linear pseudo-tree L, of weight ¢, and B% is called a binary pseudo-tree of height /.
The multiplication graph M22£ is expressed as L V; Bg‘l, and in general the multiplication graph M:)’i
is expressed as Lo Vo (p — 1){L; V; Bﬁ‘l). Its size can be computed as

¢
p-—1 &
—1) =p~.
1 )=p

s(]\/[;’,_,) =1 +wt(]\x1§2) =1+(p-1)(1+

§2. Realization of Dynamical Graphs
For explicit realizations of dynamical graphs, fix the size k, and take the k-skelton of N :

;oo lieN0Si<k}={01,2...;k—1} (k: finite)
Tl N (k = o0)

as a set of verteces. Then Iy is a representative system of the quotient ring Zy (= Z/kZ). In this note, we
identify I, with Z; and use the notation 7 for the residue class of m € Z.

Denote D(I;) and D’(I;) by Dj. and D}, respectively. And D and D) by D (I;) and D’ (Ix) respectively.
We know easily that #Dy, = k*, #D, = k! and #D}, = p(k), where p(k) is the partition number of k. By
[8], we know the number &, = #, as follows.

E|1|2]3|4]5| 6 7 8 9 10
O /13711846130 | 343 | 951 | 2615 | 7207
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Thus there are so many different nonisomorphic DG’s, even if the number of verteces is small as 10. For
an educational purpose, we want to clearify the structures of DG’s at least with the size <100, then we
must restrct ourselves to small groups of DG’s such as elementary dynamical graphas(EDG).

§2..1 Shifts anf Extension

Let V = I for some k£ > 0 and G = G(f) be a DG on V.

For any b € Z, define the bijection ¢ : V' — V defined by (i) = i + b. If of = fy, then the o-transfer
operation gives an automorphism of the DG G = G(f), which we call the b-shift and denote by Ty. Note
Tp is the identity mapping. Then if G’ is a DSG of G, then TG’ is a DSG of G. And if G’ is a connected
component or a cycle of G, then TG’ is also a connected component or a cycle respectively.

For an integer b > 0, define the injection ¢ : Iy — Iy defined by (i) = bi, then we denote the p-transfer
@ * G on the subset {bi | i € I} of Iy by E.G, which we call the times b-eztension or simply b-extension
of G.

§2..2 Elementary DG

Let P € Z[z] be a polynomial with integral coefficients, then define a mapping Py : I, — I as

Pr(i) = P(i),
and the corresponding dynamical graph G(Py) is also denoted by G (P). Such dynamical graphs are called
elementary.

Note that Py = @y may happen even if P # @ € Z[z]. In general, there are numbers A > h/(> 0)
such that (z")y, = (¢" )i For example, (22); = (z)2, (&%) = (2)s, (244 = (2%)a, (2%)5 = (@), (2%)6 =
(2)s, (z7)7 = (2)7, (2°)8 = (2%)s, (2%)9 = (2%)9, ()10 = (2)10-

In this note, we will treat the following three groups of elementary DG’s on I;. Let a be an integer.

The Constant Graph K} stands for Gx(P), where P(z) = a. K¢ is a pseudo-tree of height 1, a is the
root of degree k, and S(K{) = k¢, P(K{) = k1, D(K¢) = (k- ko + k.

The Addition Graph Af stands for Gi(P), where P(x) = z + a. Obviously, Az“‘ = A{ and the mapping
Py is bijective, so A{ is of cycle type. In particular, S(A}) = P(A}) = ki, D(A}) = kk ;. In particular,
S(K?) =P(K{) =D(K?) =1' = k ;.

The Multiplication Graph M} stands for Gi(P), where P(z) = az. Obviously, M,‘:+k = M} and the
mapping Py is not bijective in general. Mg is of cycle type, if and only if ¢ and k are coprime, that is,
(a,k) =1.

A = M}! = kKY is the identity graph w.r.t. the pointwise product in Dy.

§3. Facts from Elementary Number Theory

In this section, we summarize the facts from elementary number theory which will be used below. For

references, see [1] or [10] for example.

§3..1 The Group of Reduced Residue Classes

For an integer £ > 0, denote the ring of residue classes modulo k by Z/kZ. For an element z € Z/kZ,
define the order ox(z) of x as the minimal positive integer n such that nz = 0 (mod k), that is, nT = 0.

— 6 —



MENET 57 OHE

(Here, the same statement holds, even if z is an integer. So we sometimes use the notation  for T in the set
Z/kZ of congruence classes modulo k.) It is wellknown that og(z) = k/d, where d is the greatest common
divisor d = (z,k) of z and k, and {iz | 024 < k} = {iz | 054 < k/d}. In particular, if (z,k) = 1, then
{iz | 0Si < k} = Zx. The additive subgroup (z) generated by z concides with the set {iz | 05 < k/d}.

In this note, we will use the notation K} for the set {Z | (z,k) = 1,0 < z < k}. K} is a multiplicative
group, usually denoted by (Z/kZ)* and called the group of reduced residue classes modulo k. The set K
is also obtained as the set of units(invertible elements) of the ring Z/kZ. For an element a € K}, define the
multiplicative order ox(a) of a as the minimal positive integer n such that a™ =1 (mod k). In other words,
ok(a) = #{a) as multiplicative subgroups. If K = (a), then a is a generator and is called a primitive root
modulo k.

Define the Euler’s function ¢(k) by ¢(k) = #K. By Lagrange’s theorem, ox(a) is a divisor of ¢ (k).
Then

Theorem 1 (1) Let p be a prime number, then @(p) = p— 1 and ¢(p™) = p"* Y (p — 1). In particular,
p(27) = 21,
(2) Let p be an odd prime, then (Z/p*Z)* = Lpe-1(p—1) = Lpe-1 @ Zyp_1. Here consider a multiplication
group on the left hand side, and an additive group on the right hand side.
Zoe-1 (e=1,2)
Zy®Zoye—2 (e23)
(4) If (k,n) =1, then p(k)p(n) = @(kn).
(5) (Euler’s Theorem) If (a,n) =1 (that is, @ € (Z/nZ)*) , then a¥"™ =1 (mod n).
)

(3) (2/2°% Z)

(6) (Chinese Remainder Theorem) Assume (m,n)=1. Then
(i) Z/mZ & Z/nZ = Z/mnZ, adb— ab.
(ii) (Z/mZ)* x (Z/nZ)* = (Z/mnZ)*.

(7) Let k = p{* - p5? ---p&r be the prime factorization of k, then
(Z/kZ)* = (Z)p'Z)" x (Z/p3Z)* x -+ x (Z/p Z)”,

and so . . . .
=TTt =TT "o~ 0 =TT (1- ) =+IT (1-5 )
i=1 =1 i=1 i=1

Remark. Z/p — 1Z is decomposed according to the prime factorization of p—1, where other prime factors
g’s or factors of ¢ — 1 may occur. In particular, if there are two odd primes, then the factor 2 actually
occurs in different ¢ — 1’s.

Hence by Theorem 1 (6-i), (Z/kZ)* can be written as (Z/p'Z) & --- & (Z/p*7Z) & (Z/¢N'Z) © - &
(Z/qvZ) @ - - -. Then, the number p°q/ - -, where e = max{ey,...,e;}, f = max{fi,...,f,}, --- is the
maximal order o (a) of elements a € (Z/kZ)*, and there are elements with the maximal order, which will
be denote by moy in this note. Moreover, there exist elements with orders which are factors of moy.

In particular, assume that k£ = pis odd prime. Then, threre are ¢(p—1) generators b of the multiplication
group (Z/pZ)*, and any element a € (Z/pZ)* can be uniquely expressed as a = bt (0 <t < p—1).

Fort=0,a=1b"=1and o(a) =1, and so M) = pCy. Let t > 0. If d = (t,p—1), then o,(a) = (p—1)/d
and My = Cy UdC,_1y/q- In particular, if t and p — 1 = ¢(p) is coprime, then a is also a generator,
o(a) =p—1and (a) = (Z/pZ)*.
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§3..2 Quadratic Residues

Let n € N and a € Z. We call a a quadratic residue modulo n, if the equation 2 = a (mod n) has a

2

solution. And call a is a quadratic non-residue modulo n, if the equation 2* = a (mod n) has no solutions.

Theorem 2 a is a quadratic residue modulo n, if and only if the following two conditions are satisfied.
(1) a is a quadratic residue modulo p for any odd prime factors p of n.
(2) a =1 (mod 4)in the case where n = 0 (mod 4), and a = 1 (mod 8) in the case where n = 0
(mod 8).

Introduce the Legendre symbol for an odd prime p and an integer a with p fa, defined by

p

( a ) 1 a is a quadratic residue modulo p

—1 ais a quadratic nonresidue modulo p

then the following theorem holds.

Theorem 3 (1) Ifa =b (mod p), then <%> = 2)

a b ab
@ (3)(3)-(5)
(3) (Euler’ criterion) % =a?~1/2 (mod p).

(4) (law of quadratic reciprocity) (-Z—) (%) = (=1)P=1D@=D/2 for odd primes p,q(p # q).

(5) (first and second complementary laws)

<_—1> = (=1)P-1/2, | (3) — (=1)®*-1/8
b D

for an odd prime p.

§4. Addition Graph A¢

In this section, we consider addition graphs Aj{. They are of cycle type, and the inverse graph (Aﬁ)"l of
k
A$ is nothing but A’;—a‘ As for isomorphism classes, it is necessary to consider A§ with a (1£a< 5] ),

since A2T* = A? and A9 = kK?. More precisely,

Theorem 4 Let k > 0. For any a (0< a < k), A¢ is of cycle type, and S(A}) = P(A}) and D(AZ) = 1% =
kk 1. In particular, there are no leaves: L£1(A%) = 0.

(1) If (a,k) =1, then A is a cycle of period k. A} = Cy, P(A) = k.

(2) If(a.k)=d>1, then A} = Uf;()l T;(Eq(A%)) = dE4(AL) =2 dCy, where k' = k/d. P(AR) = dk .

There are distinct & non-isomorphic DG’s among addition DG’s A%, where § = §(k) is the number of
divisors of k.

(3) Dynamical graphs G with homogeneous periodic chartacteristic, that is P(G) = ck , for somec,p > 0,

can be realized as an addition DG, for example, P(AS,) = ck ;.

Proof. (1) By elementary number theory, #{ia | 05i < k} = k.
(2) Since (a,k’) = 1, A%, is a cycle of period k', by (1). Its d-extension G’ = E4(A%) is a DSG of
A§. For any b € Z, the b-shift T,(G’) is also a cycle and DSG of Af. Then we can check easily that

—8 —
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Ty (G') = Ty (G') if and only if b = b’ (mod d). Hence T3(G’) (0S b < d) are mutually disjoint. Thus we
get A2 = U] Ti(Ea(AL)) = dCy. ged.

Ezample. k=12, a =8, d=(a,k) =4, d =k/d = 3.

_.h._>2

0
A =AY (=47 ] A= UL A
1

0—8
BaA%): | T (Eo(A5)) -
4 /

(452 EE—_

2 3
To(E4(AD)) : T T3(E4(A5)) : T
2(E4 (A5 . / 3 3 ; /

§5. Multiplication Graph M}

Fix an integer k > 0. In this section, we consider multipication graphs Mg2. They are not of cycle type in
general, but they have rather simple structures. For example, (0) is a cycle of period 1, and the connected
component F(0) is either a cycle or a pseudo-tree. Remember that the set £,(G) is the subgraph consisting
of all limit cycles for any DG G. Denote by C(G) = L (G) this DG of cycle type. Main result is that it
is sufficient to study the structures of the pseudo-tree T and C(Mg). In fact,

Theorem 5 Let k > 0 be an integer.
(1) Mg = MZ*, for any integer a.
(2) If (a.k) =1, then M is of cycle type. S(M) = P(M2), D(M2) = kk.

In the following, assume that (a,k) =d > 1. Put k' = k/d.
(3) Mg is not of cycle type, and the the connected component F(0) is a pseudo-tree T of a positive height
h. Mg is isomorphic to C = C(M?) attached at all verteces by T:

ME=2C(ME) Ve T
In particular, the width and weight of all verteces v of C are given as
w(v) =w(0) =d—1, wt(v) = wt(0).
(4) For every vertex c € C, the outer past O~ (v) is obtained from T as
O (Ww)y={w+ f™w) | weT, n=ht(w)},

where f*™(v) is the n-th cyclic past of v.

(5) The degrees of all verteces v ¢ L£1(M{) are the same: deg(0) = d. Moreover, D, = k'.

(6) The set L1(My) of all leaves is {w € Iy | a fw}, and so its cardinality is k — k'. Hence D(MZ) =
(k—k)ko+Kkgq.

Proof. (1) and (2) is obvious. (4) implies imediately (3). (3) Since n = ht(w), f*(w) = a"w = 0 (mod k)
and v = f*(f**(v)) = a" f**(v), thererfor f*(w+ f**(v)) = a™(w + f**(v)) =0+ v = v (mod k) . Since
f(w) € T and ht(f(w)) =n—1, w+ f**(v) — f(w) + X" V(v) € O~ (v).

_9_



B L ¥ 14
(5) implies (6)

. (5) v — 0 & av = 0 (mod k) & dv = 0 (mod k), since a = a'd, (a’,k) = 1. Put
k' = k/d. For every i (0<i<d— 1), 0Sik’ < k and ik’ — aik’ = a’dik’ = a’tk = 0. Hence deg(0) 2 d.

Take a vertex v with deg(v) > 0. Then there exists a vertex w such that w — v. So w 4w’ — v for any
w’ — 0, hence degv 2 d.

On the other hand, {v € I | deg(v) > 1} D {ai | 054 < k'} = {di | 0=4 < k'}. Since dk’ = &k,
#{v € Iy | deg(v) > 1} =k’ and deg(0) = d.

Now we will show the special cases of MDG.

ged.
1
L
Proposition 2 (1) Mf = M = K} : Constant Graph. 0—1
| N
pseuo-tree of height 1. P=k, D= (k—1)ko+ ky k-1

(2) Two special cases of cyclic type:

(2-1) M,i:kK?zkcl;G) G Cz @—1 P=1*

1 2 i
(2-2) Mt 0 H H H k/2 (k : even)
k-1 k—2 k—i
k—1 -1
ci U Cy k1+k2 ko (k‘Odd)
M " ,P(METY) = f .
2Clu<3—1>02 : 2k1+<5—1>k2 (k : even)
(3) Let k = c™.

a
n

(3-1) Ifc=a, thend = a, k' = a™~ ', M% is a pseudo-tree of height n, and
Br=1). D(M%) =a™ Y(a — 1)ko +a" 'K,.

Mg, = Lo Vg (a - 1)(L1 Vi

£y = 4 € Tor @i @ fi} (12 55m)
{0y (j = o)
(3-2) If cla, that is a

bc for some b > 0, then
Moreover, if (b,c) = 1, then M% = M&

a

2. is a pseuodo-tree whose height is at most n.

(4) For any a € Z\, M} is of cycle type. The connected component F(1; M) is nothing but the subgroup
(a). Its period is the order of a and is a divisor of ¢(k).

Moreover If k is prime, then ZY = Z \ {0} and p(p) = p— 1. The coset decomposition by (a) gives a
connected component decomposition of the MDG My .

5) If a € Z, then there exists b € Z) such that ab=1 (mod k), and (M)~ = M.
k k k k

(6) If F(1; M) = V*+(1), then it is a cycle and a € Z;}. And F(1; M) = (a) is a subgroup of Zj
period of this cycle is the order of a, and a divisor of p(k) = |Z;|.

. The
Proof. (3-2) a™v =0 (mod ¢f) for any v € I.

Assume (b,c¢) = 1. Consider the reduction scheme:

Mg'n :A{g"—lﬁ"':Mf?:Mg:Mg:Kg
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% is obtained from E.(M?) by attaching K? at each leaves of E.(M?). In fact, (b,c) = 1, hence b € ZX
and there exist integers z,y such that xb + yc = 1. Then introduce the number w (0 < w < ¢) by w = zv
(mod ¢). For every leaf cv (1S v < ¢) of E.(M?), take verteces {w +ci | 0<X4 < ¢}, then

w+c —  a(w+ci) = be(zv + ci) = cvbz + (cb)ci = cv(1 — ye) + 2bi

= cv+cbi—yv)=cv (mod c?),

and the number of these new verteces is (¢ — 1)¢ = c® — ¢, so no other verteces remain in M’ 5.

By induction on n, we will show M& 2 Ly Vo (c—1)(Lq vV, B~ 1). Assume Mg, = LoVo(c—1)(L; Vq
B?72). As for the case n = 2, L1(E.(M%_,)) = {cv | 1 < v < ¢}. Consider the set {w+ci | 0<i < ¢},
where w (0 < w < ¢) is defined by w = zv (mod c¢), then c(w + ci) = cv (mod ¢?). However, ¢ < cv < 2,

hence cv deterimined also as modulo c". qed.

Ezamples for (3-2). (1) M{, ¢ = 2,n = 4,a = 6,(c",a) = c. D(ME) = 8ko + 8k, L1 = Dy =
{v]@2)=1}, Lo ={v|2v, 4 v}, L3 ={v | 4|v, 8 v}, L4 = {v | 8lv, 16 fv} = {8}, Lo = {0}.

4 44<f3

08
3

—
12 2 &

\ 11
10+—7

15

(2) M3¢, c=6,n=2,a=12,(c",a) = a = 2c. D(M4Z) = 33k o + 3k 12, L1 = Dy = I3\ Loc, Loo = {0},
D1z = {0,12,24).

W) = {3v | 1Sv < 12} C B3(M%), 0-(12) = {3v+1 | 0Sv < 12} = 1 + E5(MY,), O~ (24) =
{Bv+2|0sv <12} =2+ E3(MY,).

Remark 1. By Theorem 5 (6), if (k,a) = (k, b), then the degree characterisic coincide: D(ME) =D(M, )
but they are not necessarily isomorphic with each other. For example, M}, ¥ M3},, since P(M},) =
2k 1 + k2, P(MD,) = 4k ;.

1

7 \
6 3.9
\8 \10

/
\
NavE 7 C
M, -
s U \10

M?23 0

Remark 2. It is very difficult problem that to determine the order ox(a) explicitely. For example, it is

not yet known whether for infinite number of primes p, the number 2 is a generator of (Z/p°Z)* for some
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e > 0. This is a partial form of Artin’s conjecture on primitive roots.

Remark 3. If a is a generator of the group (Z/kZ)* of reduced residue classes modulo &, this group is a

cycle of period (k).

Remark 4. Let k = p be prime. Then P(My) = ko + k-1 is equivalent with that a is a generator of
(Z/pZ)*.

Remark 5. Let k = p® (e > 0) be a power of a prime p. Then the group (Z/kZ)* is generated by a single

element.

Remark 6. If k is not prime, then the sets {0} and (Z/kZ)* does not cover the whole Z/kZ.

If a € (Z/kZ)*, then the subgroup (a) of (Z/kZ)* is a cycle of M2, and (Z/kZ)* is a sum of cycles
of period ox(a). (Z/kZ)\ (Z/kZ)* is also a sum of cycles, but it is difficult in general to determine their
periods. The periodic structure can be detected through reductions M = M, ,‘:/ 4 for all divisors d of k.

If a ¢ (Z/kZ)*, then the connected component F(0; M) is a pseudo-tree. The periodic structure can
be detected through a reduction M = Mg, ,, where d = (a,k).

Remark 7. Assume that there are 2 cycles C’ and C” in M{. Put s = p(C’) and t = p(C”), then a’v =7
and atw = W for any v € C’ and w € C”. Then a™v = T and a™w = W for any positive integer n.
Therefore O (v + w) becomes a cycle whose period is the least common multiple of s and t. Denote this
cycle by C" P,y C”, and call it the amalgamation of C’ and C” at (v,w). Note that C’ &, ) C” may
not be identical with C’ @,/ ,,) C" for different pairs (v, w) nad (v',w’).

For example, consider M 125, and the reduction scheme

M = M2
(3 3|8
M = MZ=M?=0C,

MZ is of cycle type. F(0) comes from M? as E15(M32). F(3) comes from M2 as E3(F(1; MZ?)) and F(5)
comes from M3 as E5(F(1: M3)). And other cycles are obtained by amalgamation: F(1) = F(3)®3,5) F(5)
and .7:(11) = .7:(3) @(3'10) .7:(5)

1—*2 3—6 7—14 5
S R U R B I B
8§+—4 9+—12 11+—13 10

Remark 8. For general k > 1, the pseudo-tree structure of the connected component F(0; M) and
periodic structures of M2 can be detected through the reduction scheme

a a a a a
M; :>M,c/d:>---¢M,Cl :>Mk1/d1 == M,

where d = (k,a), m = max{n > 0| d"|k}, k1 = k/d™, d1 = (k1,a), m1 = max{n > 0| d}|ki}, k2 = k1/d7",

v ke = kg_l/d;"_‘{‘, (ke,a) = 1. The pseudo-tree structure of F(0; M¢) is the same as F(0; M,‘c‘/k[). The

reduction scheme is parallel to the above:
0
M,‘j/kg = M,‘j/ked == M,;‘l/,w = M,‘;l/kedl = ... => M =M;

and the periodic structure My is same as M, .
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Ezample. k =420, a =6, d = (k,a) =6, k1 =70, dy = (k1,a) =2, ko =35, £ =2, d/d; = 12.

Mgy = M3y => Mgy , MP, = Mg = M} = MY
/ 2 1
140 / 105 /4 /3
F(0; Mgy) : &280 §245 My, \8 ‘\7
315 \ xg
350 385 10 11

The periodic structures of M§; can be detected through the reduction scheme:

Mg = Mg =M;
4 4
Mf = MS=M=C
Five C;’s arise as Ez(M¢). One C; = F(0; M$;) comes also as E7(F(0; M§)) = Es(F(0; MS)). Three Cy’s
arise as E5(M% \ {0}). Other 12 Cy’s are obtained by amalgamation of Cy and C; besides {0}. See §7..5

in detail.

In the following, we will consider pseudo-tree structures of the connected components F(0) and periodic

structures in the individual cases.

§5..1 Case of k = p: prime

Let k = p be a prime number. M} is the constant graph KJ) = B} (p-nary pseudo-tree of height 1). For
a € (Z/pZ)*, My is of cycle type. From the remark after Theorem 1,

K? (a=0)
Mi={pc,  (a=1)
CiUtCs (a>1,s=o0p(a),t=(p—1)/s)

The values of s(a) may run throught the set of all divisors of p— 1 = ¢(p) = |(Z/pZ)*|. Hence the number
m(p) of the isomorphism classes among M, is 1 +d(p—1), where §(p—1) is the number of divisors of p—1.
In particular, if ¢ and p —1 = ¢(p) is coprime, then a is also a generator, o(a) = p—1 and (a) = (Z/pZ)*.
Here we list divisors s of p — 1 and m(p) for prime numbers p< 131. For any s in the column of p, there
exists an integer a € (Z/pZ)* with op(a) = s. Then (a) is a subgroup of (Z/pZ)* of order s, and the
coset decomposition of the multiplicative group (Z/pZ)* gives the all connected components of My. More
precisely, 7(0) = {0}, F(1) = F(a) = (a) = C, and My = C, UdC;.

» [2]3 7 1 13 17 19 23 29

p—1[1]2 6 |10 |12 16 18 22 28

s 112 |12 |1, 2,01, 2 3,{1,2 4,[1, 2, 3,1, 11,]1, 2, 4, 7,
2 36 | 510 |4,6,12 816 |6,9, 18 |22 14, 28

m(p) || 2|3 5 |5 7 6 7 4 7
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D 31 37 41 43 47 53 59
p—11 30 36 40 42 46 52 58
s 1,2,3,5,(1, 2, 3,(1,2,4,5,11,2,3,6,|1, 2,1, 2, 4,|1, 2
6, 10, 15, | 4, 6, 9,8, 10, 20, { 7, 14, 21, | 23, 13, 28,29, 58
30 12,18,36 40 42 46 52
m(p) || 9 10 9 9 5 7 5
D 61 67 71 73 79 83 89
p—11| 60 66 70 72 78 82 88
s 1,23 |1, 2 31,25 [1234,6 |1, 2, 3,[1,2, |12
56,10, | 6,11, 22, | 7,10, 8, 9, 12,6, 13, |41, |48,
15, 20, 33,66 |14,35 |18,36,72|26, 39,|8 |11,22
30, 60 70 78 44,88
m(p) || 11 9 9 12 9 5 9
D 97 101 103 107 | 109 113 127 131
p—11{ 96 100 102 106 | 108 112 126 130
s 1,2,3, 1,24, 11,23, |12, | 1,23, 1,24, |1,2,3, | 1,2,5
4,6,8, 5,10, |6,17, |53, |4.,6,9, 7,8, 6,7,9, | 10,13,
12, 16, | 20,25, | 34, 106 | 12,18, 14,16, | 14,18, | 26,75
24, 32, | 50, 51, 27,36, 28,56, | 21,42,
48,96 | 100 102 54,108 112 63,126
m(p) || 13 10 9 5 |13 11 13 8
Proposition 3 (1) The number of cycle of of odd degree is even.
(2) For any s > 1, there exist multiplicative dynamical graphs with cycles of period s.

Proof. (1) In fact, M} = 2C; for p = 2. An odd prime p can be written as p = 4n + 1, therefore
p—1=dn, 4n—2 = 2(2n — 1) is even.

(2) The famous Dirichlet’s theorem states that if (a,q) = 1, there exist an infinite number of primes of
the form a +ng (n > 1). Hence there exits a number n=> 1 such that ns+1 is prime. Then p(ns+1) = ns,

and there is a number a € (Z/(ns + 1)Z)* with order s = op541(a).

Here we list the smallest primes p(s) = ns+ 1 (n > 1) for s< 100.

s 516|718 |9(10]11|12}13 1415|116 17 |18
p(s) 10113129 117(19]11(23 1353|2931 |17|103 |19
s 19 (201212223 24| 25 (26| 27 128(29{30| 31 32|33
p(s) || 191 [ 41 |43 (23|47 |97 |101|79|109 (29|59 313119767
s 34 |35 (36 37 | 38 [39]40 (41 (42| 43 |44 | 45 |46 | 47 | 48
p(s) || 103 | 71 | 73 | 149 | 191 | 79 {41 | 83 |43 [ 173 | 89 | 181 | 47 | 283 | 97
s 49 | 50 | 51 | 52| 53 | 54 | 55 | 56 | 57 [ 58| 59 [ 60 | 61
p(s) || 197 | 101 | 103 | 53 | 106 | 109 | 331 | 113 | 229 | 59 | 709 | 61 | 367
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] 62 | 63 | 64 | 65 |66 67 | 68 | 69 | 70| 71 |72} 73 | 74
p(s) | 311 | 127 | 193 | 131 | 67 | 269 | 137 | 139 | 71 | 569 | 73 | 293 | 149

s 75| 76 | 7T | 78| 79 | 80 | 81 |82 83 | 84 | 8 | 8 | 87
p(s) || 151 | 457 | 463 | 79 | 317 | 241 | 163 | 83 | 167 | 337 | 1021 | 173 | 349

s 88189 |90 91 | 92|93 /94|95 |96 97 | 98 | 99 | 100
p(s) || 89| 179 | 91 | 547 | 277 | 373 | 83 | 659 | 97 | 389 | 197 | 199 | 101

§5..2 Case of k =2™ (m > 0)

For m > 0, put K, = (Z/2™Z)*, then |K| = ¢(2™) = 2™~1. Recall Theorem 1 (3).

Let 0 < a < 2™. The multiplicative dynamical graph M$. is of cycle type in the case a # 0 (mod 2), is
a pseudo-tree otherwise(a = 0 (mod 2)).

Assume (a,2™) =29>1. Let m=ng+r (n > 1, 0 <7 < q), then the reduction scheme is

Mg => Mo g => -+ == Mn_ng = Mg = M3, = K,
and M. is a pseudo-tree. In this case, we get

Lo Vo (2(1 - 1)(L1 V1 ng_l) ‘ (7’ = 0)
Lo Vo ((29 = 27)(L1 Vi B3 ) U (2" = 1)(Ly Vi BE,))  (r > 0)

a o
2ng+r —

Proof. Factor a as a = 29, where (b,2) = 1. Then 1< b < 2. Consider the reduction Mg, = M.
and the subgraph G’ = FEaq(M3,) of Mg,... We get the set V(G’) = {29i | 0 < i < 2" — 1} of verteces of
G', the set L(G';1) = {29 | 1 < i <27 — 1} of leaves of G’ and the limit cycle £(G'; 00) = {0}.

Let b = b (mod 27), then 1 < b < 29, b=b+ 293 and (h,2) = 1. Hence there are c,d € Z satisfying
bc + 29d = 1. Here we may assume 1 < ¢ < 29. For i with 1 <i<27 -1, let j =29"¢i (mod 27), then
J=29""ci + 29 and

aj = 27bj =2"b(29"ci + 2%) = 2%ci + 2"
= 29(b+298)ci = 29bci = 29(1 — 29d)i = 2% (mod 291").

Thus j — 2% and also j + 2"h (mod 29%7) — 294. Since
{7 +2"h (mod 277") | h20}| = [{j + 2"k (mod 297") | 0S h< 29 — 1}] = 29,

the pseudo-tree 29L,(=Bj,: 29-nary pseudo-tree of height 1) is attached at every vertex 29 Wl <i<2m—1).
Consider the gate W(0) to the fixed point {0}. {27k | 1S k<29 —1} — 0, since 27b- 27k = 29+7bk = 0
(mod 29%7). However {29’ | 1<k'} C L£(G’;1). Let 27k = 29K/, then k = 29~"k' < 29 — 1, so k' <
1
2r — pr that is &' <27 — 1. Thus (29 — 27)L; is attached newly to {0}, hence
Mo = Lo Vo ((29 — 27)(L1) U (27 — 1)(L; Vi BL)) .
and |[L(My,,,;1)| = (27 — 1)29 4 (29 — 27) = 29+7 _ 27,
Next, consider tghe reduction Mg,., = MJ,., and the subgraph G” = Eye(M,..), then
LG"1) = {29G+27h) [1<j<2—1,0<h <291}
U277k [ 1<k <29 — 13\ {2%K |1 <K <27 —1})

is the set of leaves of G".
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For every point v € £(G";1), there is a vertex w € Mg%,,, such that v = @w = 29bw (w — v), and as
before w 4+ 2"h — v, vV, 29L; C M3,,... Hence we get

Magsr 2 Lo Vo ((27 —27)(Ly V1 Bl) U (2" — 1)(L1 V1 BZ,)) .
It is similarly proved for higher m. ged.

For a € (Z/2™Z)*, define the sequence a(a) = (am = a,@m-1,...,a1) by a; = a (mod 2°) € (Z/2Z)*

and let s; = 0g:(a;), s(a) = (Sm,Sm—1,---,51), then

211

MQ’":CIUU

=1 Si

1..

Here s; is a power of 2, since (2*) = 2°~1. Periods of any cycles in Mg, are of the form 2" (0 < n < m—1).
Note the sequence of orders satisfy the condition s; = s;_; or 2s;_;.
Ezample. m = 4. We list all MDG Mg, of cycle type:

a a(a) s(a) f6
1| (1,1,1,1) | (1,1,1,1) 16C,

31 (3,3,3,1) |(4,2,21)]20:U3Cu2C,
51 (5,51,1) | (4,2,1,1) ]| 40, u2C, U 20,
7

9

(7,7,3,1) |(2,2,2,1) 2C,UTC,
) 2CL U TC,
11 | (11,3,3,1) | (4,2,2,1) | 2C1 U3C, U 2Cy
13 | (13,5,1,1) | (4,2,1,1) | 4C; U2C, U 2C,
15 | (15,7,3,1) | (2,2,2, 1) 2C, UTC,

9,1,1,1) | (2,2,2,1

1—3 5E—>15 2 4 14

M3 {0,8} are fixed points. T l T l T 1 T i I l
I1<=—9 7+-—13 6 12 10

1—5 3—=15 2 6

Mjy:  {0,4,8,12) are fixed points. | | | H H
13«<—9 7+—11 10 14

\ /

M§; . {0} is a fixed point. 10 — 0 — 8 — 9
/'0 11
14 13
15
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§5..3 Case of k = p? (p: odd prime)

Let K = (Z/p*Z)* and K = (Z/pZ)*. Then the order of K is |K| = p(p?) = p*> —p = p(p — 1), and its
divisor is a divisor s of p — 1 or its p multiple ps, since p is prime.
For a € K, put @ = a (mod p), then @ € K. Put 5 = og, then s = o (a) = 5 or ps.
In fact, if a®* =1 (mod p?), then there exist poistive integers ¢, and @ € K such that a® — 1 = gp? and
a = a+ rp. Hence
0=gp’=(@a+rp)°-1=a*—-1 (mod p),

thus s = § for the case s < p.
Let p < s, then § = s/p devides p—1. In fact,a?~! =1 (mod p) by the little theorem of Fermat(Theorem

1 (5)). So

a*—1=a"”-1=(@")-1=a"-1=0 (mod p).
Thus
0 _
K (a=0)
Lo Vo (p—1)By  (pla)
ZC —
M = p L (a )
pC1U(p—-1)C, (ac€ Z;z and o(a) = p)
Cy UtC, (a € Z); and s = o(a) < p,t = (p* ~1)/s)
CyUtCy,, UtC, (aEZ;2 and s = o(a) > p,t =p(p—1)/s)

Let a =kp+1 (0 < k < p), then o(a) > 1 and p|o(a), and thus o(a) = p. In fact,
a? = (kp+1)? = ,C; - kp+,Co- 1 =1 (mod p?).
Let a = p? — 1, then o(a) = 2 and

p—

]\'.’[;)12 = Cl U

—1 2 __ 2_1
Mg =Cut—cui Lo =cu

Any divisors of ¢(p?) = p(p — 1) can be periods of cycles of some M, (0 < a < p?). The number m(p?)
of the isomorphism classes among MY, is 1+ 1+ d(p(p — 1)) = 2(1 + d(p — 1)) = 2m(p), where 4(d) is the
number of divisors of d.

Now, we list maximal periods and m(p?) of M (0 < a < p?):

p 2135|713 l1ol23]2]3] 3] a | a3
o) || 2|6[20]42]110] 156 | 272 | 342 | 506 | 812 | 930 | 1332 | 1649 | 1806
m@p?) |46 8]10[ 101412 |14 8 [14] 18] 20 | 18 | 18

From this list, we know the case where the values k for which cycles of period s appear in MDG M} are
lower than p(s) in the subsection §7..1. For example, a cycle of peirod 6, 20 or 55 appears in MZ, M3 or

M%,, respectively.

1l—2—4

MZ: |0 T | 3.6

S+ T7+—8
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01 02 04 08 ~16 =07

13 14
19 03
5 —>10
ML: | © T l 22 06
15— 20
11 12

18 09 17<+—21+—23 24

§5..4 Case of k = p™ (m > 0, p:prime)

Let p be an odd prime and K,, = (Z/p™Z)* for m > 1, then |K,,| = ¢(p™) = p™ '(p — 1). Let
0 < a < p™, then the multiplicative dynamical graph M. is of cycle type in the case a # 0 (mod p), is a
pseudo-tree otherwise(a = 0 (mod p)).

Assume (a,p™)=p? > 1. Let m=ng+r (n > 1, 0 <r < gq), then the reduction scheme is

¢ 4 e ,-a — A — 0 ~ 0
M == Moy = - = Mg = M% = M = K5,

and M. is a pseuodo-tree. In this case, we get

Lo Vo (p? = 1)(L1 V1 By ™Y (r =0)
Lo Vo ((22—2")(L1 V1 By YY) u (2" = 1)(Ly V1 B)) (r>0)

a o~
pnq+r -

Proof. Factor a as a = p%b, where (b,p) =1. Then 1 < b < p™4. Consider the reduction M;q+, = M;))T
and the subgraph G’ = Epq(MJ,) of MZ,... We get the set V(G') = {p% | 0 < i < p" — 1}, the set
L(G;1) ={p% | 1 <i<p" — 1} of leaves of G’ and the limit cycle L(G’;00) = {0}.

Let b = b (mod p?), then 1 < b < p9, b = b+ p?B, (b,p) = 1. Hence there are c,d € Z satisfying
bc + p?d = 1. Here we may assume 1 < ¢ < p?. For i with 1 <i < p" —1, let j = p?~"ci (mod p?), then
j=p? "ci + pa and,

I

aj p'bj = p"b(p? "ci + pla) = plhci + p"Ha

p?(b+ p?B3)ci = plbci = p?(1 — p?d)i = p%  (mod p?*").

H]

Thus j — p% and also j + p"h (mod p?*") — p%. Since
{i+p"h (mod p™*") [ hZ0} = |{j+p"h (mod p?") | 0Sh=Sp? -1} = p7,

the pseudo-tree p?L, (= B;q: pI-nary pseudo-tree) is attached at every vertex p?i(1 <i <p" —1).
Consider the gate W ({0}) of the fixed point {0}. W ({0}) contains {p"k | 1S k< p? —1}, since p"b-p"k =
p?*t7bk = 0 (mod p?*"), that is, p’k — 0. However {p?k’ | 1S k'} C L(G’;1). Let p"k = pk’, then
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1
k=pl"k'Sp?—1,s0 k' < p" — pret that is, ¥’ < p” — 1. Thus (p? — p")L; is newly attached at {0},

hence
Mgr = Lo Vo ((p" = p")(L1) U (0" = 1)(L1 V1 Bpa))
and |L(Mp.n;1)| = (p7 = 1)279 + (p? = p7) = p?*" —p".

P

Next consider the reduction Mz,,, = M, .. and the subgraph G" = Epa(My,..), then
LG = {p(G+2'h)|1<j<p -1, 0<h<p?-1}

U({p™ "k | 1<k <p" —1}\{p™k | 1<K <p —1})

is the set of leaves of G”.
For every point v € £(G";1), there is a vertex w € Mp,., such that v = aw = p%w (w — v), and as

before w + p"h — v, vV, p9L; C M;2q+,. Hence we get

M:2q+r = LO Vo ((pq _pr)(Ll Vi B;Q) U (pr - 1)(L1 Vi qu)) .

It is similarly proved for higher m. ged.

Proposition 4 Let m > 2. For a € (Z/p™Z)*, define the sequence a(a) = (am = a,am—1,...,a1) a8
a; = a (mod p*) € (Z/p'Z)*.

(1) 8; = psi—1 0or sy fori > 2.

(2) Leti <m—1. If s, = ps,—1, then s;41 = ps;.

Proof. (1) For a € (Z/p'Z)*. put @ = a (mod p'~!) and s = 0,:-1(a), then there are e, f € Z such that
a*=14+e-p"'.a=al+ f-p~!, hence

a* =@+ f-pWP)P=@) =@@P=0+e-p =1 (modp')
and s< s; = o, (a) S ps, si|ps. Therefore s; = s or ps, since p is prime.

(2) It is sufficient to show aji, # 1 (mod p**'). We use notations a = a;,a@ = a;_; as in the proof of (1),
thenaP®* =1, a®* # 1 (mod p*) and @® =1 (mod p*~!) Hence a® = (a+ f-p" 1) = a*+ fsp~ ' = 1+ hp'~!
(mod p'). Here h = b’ + fs and (h,p) = 1. In fact, if (h,p) > 1, then (h,p) = p and @®* = 1 (mod p*).
Thus a® = 1+ h”p' + hp*~!, where h” is an integer.

Write a4 as aiy1 = a + h'p, then aji| = (a + h'p*)*? = ((a + h'p)P)* = (aP)* = (a®)P = (L + K'p' +

hp~1)P =1+ hp* #1 (mod pit!) & % 5. qed.
For a € (Z/p™Z)*, take sequences a(a) and s(a) = (Sm,Sm—1,---,81) as Proposition 5, then
moi=1(, _ 1
Mg xcu |y e,

i=1 *

As for s, any divisors of p — 1 actually apear, but from the proposition above, the order sequences s(a)
of a may occur in the very restricted form, such as (p™'s,...,ps,s,...,s), where s is a divisor of p — 1.
Thus the number of isomorphism classes of MDG M. of cycle type is mé(p — 1), where d(p — 1) is the

number of divisors of p — 1.

Example 1. k =27, p=3, m = 3. We list here all Mg, of cycle type.



a a(a) s(a) Mg,

1] @,1,1) | 1,11 27C,

2 1 (2,2,2) ](18,6,2) | C1 UC, UCsUCig
4] (4,4,1) | (9,3,1) | 3C1U2C5U2C,
51 (5,5,2) |(18,6,2) | CLUC,UCsUCHs
70 (7,7,1) | (9,3,1) | 3CLU2C3U2Cy
81 (8,82 | (622 | C1U4C,U3Cs
10| (10,1,1) | (3,1,1) 9C; U 6C5

11| (11,2,2) | (18,6,2) | C1 UCL U Cs U O
13| (13,4,1) | (9,3,1) | 3C1U2C;U2C,
14| (14,5,2) | (18,6,2) | C; UCo U Cg U C13
16 | (16,7,1) | (9,3,1) | 3C;U2C3U2C
171 (17,8,2) | (6,2,2) | C1U4C,U3Cs
19| (19,1,1) | (3,1,1) 9C, U9C,

20 | (20,2,2) | (18,6,2) | CLUCL UCs U Cys
22| (22,4,1) | (9,3,1) | 3C;U2C;5U2C,
23 | (23,5,2) | (18,6,2) | CLUC2 U Cs U C1s
25 | (25,7,1) | (9,3,1) | 3C,U2C;U2C,
26 | (26,8,2) | (2,2,2) CLU13C,

Thus there are 6 possible sequnces of orders such as (1,1,1),(3,1,1),(9,3.1), (2,2,2),(6,2,2), (18,6,2),
and the 6 possible period charateristic as 27k 1, 9k ; + 6k 3, 3k + 2k 3 +3kg, k; +13k,, ki + 4k, +

3kg, k1 + ko+ kg + kg respectively.

Example 2. k = 81, p =3, m = 4. We list here all M§, of cycle type. There are 8 possible sequnces
of orders such as (1,1,1,1),(3,1,1,1),(9,3,1,1), (27,9,3,1), (2,2,2,2),(6,2,2,2),(18,6,2,2), (54, 18,6, 2),
and the 8 possible period charateristic as 81k ;, 27k ; + 18k 3, 9k + 6k 3 + 6kg, 3k; + 2k 3 + 2kg +
2k o7, k1 +40k 2, ki1 + 13k +9ke, k1 +4ko +3ke +3k s, k1 + ko + kg + kg + k 54 respectively.

The sets of a with s(a) are given as

{a €I | s(a) =(1,1,1,1)} = {1}, {a € Is1 | s(a) =(2,2,2,2)} = {80},

=(3,1,1,1)} = {28,55},
= (6,2,2,2)} = {26,53},
=(9,3,1,1)} = {10,19, 37,46, 64, 73},

{a € Ig; | s(a)
{a € Is1 | s(a)
{a € Ig; | s(a)
{a € Is | s(a) = (18,6,2,2)} = {8,17, 35,44, 62, 71},

)

(
{a €I | s(a) =(27,9,3,1)} = {4,7,13,16, 22,25, 31, 34,40, 43, 49, 52, 58, 61, 67,70, 76, 79},
{a € Is1 | s(a) =(54,18,6,2)} = {2,5,11, 14, 20,23, 29, 32, 38,41, 44, 47,50, 56, 59, 65,68, 74,77},

We observe that

{a €ls | s(a) =(1,1,1,1)} = —{a € Ig; | s(a)

(2.2,2,2)},

= ( =
{a €Ts | s(a) = (3,1,1,1)} = —{a € Is: | s(a) = (6,2,2,2)},
:( (1) =

(

(
{a € Is1 | s(a) 9,3, 1,1)} =—{aecIs | s(

(

(18,6,2,2)},

{a € I; | s{a) =(27,9,3,1)} = —{a € Is1 | s(a) = (54,18,6,2)},

and there hold similar relations also Example 1.
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§5..5 Case of Composite Numbers k

The case where k is a composite number, is very comlicate to describe the structures of multiplication
DG Mp’s. If (k,a) > 1, then by Remark 8 after Proposition 3, the pseudo-tree structure of A2 can be
detected through the reduction scheme

M= = M},

where (k,a) = 1, and the periodic structures of M and M are same: P(M2) = P(M,).
Hence for the purpose to investigate periodic structures of MDG’s, we may assume that (k,a) = 1.

Decompose k as k& = pq, the composition of mutually prime numbers p, g. Consider the reduction scheme

Mg, = M
4
M

Then My and M7 are also of cyclic type, since (p,a) = (¢,a) = 1. If we know their periodic structures,
then the cycles of M, are obtained as the extensions E,(My) and E,(M¢), and their amalgamtions.

Given k explicitely, one may carry out these procedures inductively on the size k of MDG'’s.

In this subsection, we treat the case where these factors p and q are prime themselves. Let 0< a < pg.

Case 1. a = 0. M, = KJ_ is the constant graph.

Case 2. (a,pq) = p. Decompose a as a = bp (1 < b < q), then by Euclid’s Algorithm, there are ¢, @ with
¢, € Z, 1< e < g, satisfying be = 1 + agq.

Consider the reduction M, = 1\[5}1’ = Alé’p, then Z\Ié’” is of cycle type, since (bp,q) = 1. The structure
of .Mfl”’ is determined in §7..1, and the extension E,,(AIQ’”’) is also of cyclic type with the same periodic
characteristic: IP’(A*[T’,’{]’) = P(E,(MP). Its vertex set is V(E,(M[P)) = {ip | 0<i<q}.

Then define the numbers j with 1< j < g as j = ¢i (mod ¢q), then j — ip in My, In fact, there is an

integer 8 € Z satisfying j = ci + (3¢ and
aj = bpj = bp(ci+ Bq) = bepi = (1 + aq)pi = ip (mod pq).

Moreover, it is obvious that {j + ¢¢ | 1 < ¢ < p} — ip, and we know the gate to the vertex ip, hence we
get

g—1

a b 0
My, = Ey(MP) \/ (VipKJ) |

i=0

and
P(Mp,) = ]P’(JW;), V(My,) = pP(M]), D= (p—1)gko + gk .
Case 3. (a,pq) = q. Similarly as in the case 2.

Case 4. (a,pq) = 1. Then a € Z; = Zpg 2 Zp_y & Zq—, and My, is of cycle type. Put s = o(a), then

a a (p — 1)((1 - 1)
A{Pfl = EP(A{;) U Eq(Mp ) U fcs \ Cl-
Here the reason why we delete one C, is that Cy = {0} is included both in E, (M) and E,(M}).
Note that we may take s as any divisors of ¢(pg) = (p — 1)(¢ — 1). Put a, = a (mod p) and a, = a

(mod gq).
Case 4-1. s|{(p—1),s f(g—1).

. p—1
M =c,ul

Pg

) —1
. M = qCy, M2 = qCy U %C&



gL ¥ &

Case 4-2. s f(p—1),s|/(g—1) .

-1
A[aq =C1 U 1\/1&’7 = pC’l A[:q = pCl U MCS
s s
Case 4-3. s|(p—1),s|(g — 1).
-1
M =cul= M- vl M =au e,
s s
Case 4-4. s flp—1),s flg—1)
; . p—1)(g—1
Mpy? =pCy, M+ =qCy My, = (p+q—1)C1 U p-Dle-1) Cs.

S

Example 1. k=2-3,a=2,...,5.

2 1
M2 <\o<_3 1-2_, 4«5 Mg : <\0/ <\3/
9 U Ny J N

]Wéli @)(——3 Glhl CQ+—5 A’[gt @) G

Ezample 2. k=10=2-5,a=2,....9.

1 7
\2~—»4’/
M2(= (M3)~1) I | {05
/6<—8\
9—6
‘A/[?O( ‘N[lO T l
4+—38
My : G)<—5 1—4 6—9 39 87
2 1
/4 /3
M, - @) < 5 ‘<
\6 \7
8 9

e (3 (G 00T
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§5..6 Miscellaneous Cases

Here we list miscellaneous cases(k < 100), which may serve good exercises.

Case 1:k = 2™q. One may take k = 12,20, 24, 28, 40, 44, 48,52, 56, 68, 76, 80, 88, 92.
Case 2:k = p%q, p:odd prime. One may take k = 18, 45, 50,63, 75, 99.

Case 3:k = p*q?, p,q:prime. k = 36, 100.

We list orders 01g9(a) for a € Z1y,.

a (1113179 1113171921 |23|27|29|31]|33
o(a) /11204101020 20|10| 5 [20{20 101020

a |37|39|41 43|47 (49|51 |53|57|59](61]63]67
ofa) 201054 f20[2]2[20]4|10]5][2]20

a 69 | 71| 73177179 |81 83|87 8 |91|93|97]|99
o(a) ||10]10| 20|20 |10 5 |20[20[10|10| 4 |20 2

~ X

100 =Ly X Ly = Ly & Zy @ Zs and any divisors of 20 = 4 - 5 may occur as orders.
Case 4:k = par, p,q.r:prime. One may take k = 30,42, 66, 70, 78.
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