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Dimension Set of Self-Affine Fractals on the Real Line

Masakazu TAMASHIRO, Megumi HATTORI
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Abstract. Let X be a non-empty compact connected subset of d-dimensional euclidean
space and S a conformal iterated function system on X. For A C S, we denote the limit
set with respect to A by Ja and the Hausdorff dimension of it by HD(J4). The dimen-
sional and measure-theoretical properties for the limit set were studied in details by Mauldin
and Urbanski [5]. We are interested in the problem of deciding whether the dimension set
{HD(JA) : A C S finite} is dense or nowhere dense in the interval [0, HD(Js)]. Such
problem was studied by Kessebohmer and Zhu [3] for the first time. In this paper we shall
discuss the problem in the case where X is a closed interval and S a collection of affine

transformations on X. Then the clear sufficient conditions of this problem will be obtained.

1 Introduction

Let (X, p) be a non-empty compact metric space and S = {¢; : i € N} a collection of injective maps

from X to X. We assume that there exists a constant 0 < r < 1 such that we have

p(¢:(x), 9:(y)) < rp(x,y) for any i € N and for any z,y € X,
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then S is called a uniformly contractive iterated function system (IFS).
For each i = {iy} € N> and n € N, we set @3, = ¢;,0¢;,0---0¢;,. Then the set N, ¢;, (X) is a singleton,

because {¢;,(X)} is a non-increasing sequence of compact subsets of X and we have p(¢y, (z), ¢3, (¥)) <

r"p(x,y) for any z,y € X. Let A C N be a non-empty set, then the limit set J5 with respect to the
restricted IFS {¢; € S : i € A} is defined by

= U Nu.X).
ieAe n=1

Obviously, we have Jy = U;ep ¢i(Ja). Especially if A is finite set then Jj is compact.

The dimensional and measure-theoretical properties for the limit set were studied in details by Mauldin
and Urbariski [5] in the case where S is a conformal iterated function system. We are going to introduce
and use some of their results below.

We are interested in the problem of deciding whether the restricted dimension set :

{HD(Js) : A CN finite }

is dense or nowhere dense in the interval [0, HD(Jy)]. Such problem was discussed for the first time by
Kessebohmer and Zhu [3]. For example, as an application of their arguments, they proved the following. Let
ai,az, ... are positive integers and Jlaj, az, ...] a space of irrationals in [0, 1] with entries in the continued

fraction expansion restricted to a1, as,.... Then the dimension set

{HD(J[a1,as,--.,a4]) : a1,02,...,an, € N}

is dense in [0, 1], especially we have { HD(J[a1,az,...]) : a1,a2,... e N} =[0, 1].

In this paper, we assume that X is a closed interval and that the IFS S satisfies the following :
(1.1) S satisfies open set condition with U = Int(X), that is U D U;en ¢;(U) with the union disjoint,
(1.2) ¢; are affinities and |¢}] > 0 for every i € N, where |¢| means the norm of the derivative.

In this case, the limit set will be called an self-affine fractal. Mauldin and Urbariski [5] proved that the

Hausdorff dimension of the self-affine fractal is given by

HD(Jy) =inf{s >0 : > |p[* <1},
keA

In particular, it is well known [2, 6] that if A is finite then

HD(JA) is the unique number s satisfying E |55 = 1.
keA

Using these two characterizations of the dimensions, we are going to prove the following.

Theorem A. Suppose there exists an 0 < so < HD(Jy) such that we have

Z |55 > |¢r, |5 for any m € N.

k>m

Then the restricted dimension set { HD(J5) : A C N finite } is dense in the interval [0, so]. In particular,
we have {HD(JA): ACN} =0, so].

An IFS S is said to be absolutely reqular system if ), _, [¢}|° = 1 has a unique solution for any A CN.
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Theorem B. Let S be an absolutely regular system and assume |¢}| > |9y = |¢5] > ---.
(i) Suppose there exists an m € N such that
Z |¢;C|HD(J{1,2 ..... m}) < |¢:n[HD(J{1,2 ..... m))_
k>m
Then there exists an interval (o, 8) C [0, HD(Jy)] with {HD(JA): ACN} N (a, 8) = 0.
(ii) Suppose there erists an m > 2 such that
Z |¢;C|HD(J{1,2 ,,,,, m-1}) < |¢;n_1IHD(J(1,2 ..... m—1})
k>m

Then there ezists an interval (o, 8) C [0, HD(Jy\(m})] with {HD(JA): ACN, mgA}N(a, B) =0

Theorem C. Let S be an absolutely reqular system. Suppose there exists an 0 < sy < HD(Jy) such that
E |%]%° < |¢l,|°°  for any m € N.
k>m

Then the dimension set { HD(J5) : A C N} is nowhere dense in | sy, HD(Jn)].

In the next section we discuss some elementary properties of the Hausdorff dimensions of the self-affine
fractal and prove Theorem A. In Section 3 we consider a regular system and prove Theorem B and Theorem
C. As an application, we prove in Section 4 that in the case where |¢'| = const.r~%, r > 1, a dense interval
narrows as r grows and a nowhere dense interval extends. A part of the discussions in this article are
completely elementary and may be already known. We give a full discussion, however, in order to make

the paper readable and self-contained.

2 Properties of the Dimensions of Self-Affine Fractals

From now on, we set a; = |¢,.|. Then we obtain ar <1 and ax > 0 for all k from (1.1) and (1.2).
k k

Let A C N be a non-empty set and define, for each s > 0,

pa(s) =Y _ai.

keA

Evidently pa(s) is non-increasing in s. It also has the following properties[5]. Denote

Or =1inf{s > 0: up(s) < o0}

and

F(A) _ { (0/\1 OO), Zf ,U'A(BA) =00,

[0a, 00),  if pa(fr) <oo.

Then p, is strictly decreasing, convex and continuous on F(A). In particular, if A is finite then pa(s) is
convex, strictly decreasing and continuous in s.

Recall that the Hausdorff dimension of the limit set is given by

(2.1) HD(Jp) = inf{s >0 : pa(s) <1}

Since Y, ax < 1 we have ua(1) <1, hence HD(J)) <1 for any A C N.
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Proposition 2.1 Let A, A’ CN.

(1) Suppose HD(J5) > 0 and there exists an sg > 0 such that pa(s) < pas(s) for all s < s < HD(Jy).
Then HD(J4) < HD(Jy/).

(ii) Suppose there exists an so > HD(Jp/) such that pa(s) < par(s) for all HD(Jp/) < s < sg. Then
HD(J,) < HD(Jy).

ProOF. (i) Choose an s such that so < s < HD(Jy), then pa(s) > 1 by (2.1). Thus the assumption
implies pa+(s) > 1, which proves HD(Jx/) > s by (2.1) again. So we have HD(J)) < HD(J/). Similarly
we may prove (ii). O
Proposition 2.2 If A C A’ then HD(Jy) < HD(Ja/). Moreover if A is finite, A # A’ then HD(J)) <
HD(Jy).

Proor. Let A C A’ C N then pp < pas, thus the assertion is proved by Proposition 2.1. Next we

suppose A is finite. Since HD(J,) is the unique number s satisfying pa(s) = 1 and since A # A’, we have
HD(Jx) < HD(J4/). O

Proposition 2.3 Suppose that {A,} is a non-decreasing sequence of sets of positive integers. Then we
have HD(Jy, , ) = sup,, HD(J4a, ). As a result, {HD(J) : A C N finite } is dense in {HD(Jy) : ACN}.
PROOF. Since it holds py, A, = sup, pa,, the assertion is concluded by (2.1). a
Proposition 2.4 {HD(J,) : A C N finite } has no isolated point.

PROOF. Let A C N be a finite set and set ', = AU {maxA + n}. Then we have ps(s) = inf, ur, (s),
hence the assertion is observed by (2.1). O

Denote for each m € N
A ={1,2,...,m} and £, =N\{m}.

For convenience sake we put Ag =@, 9 = N and pg = 0. Then the following follows from Proposition 2.2.

Lemma 2.5 We have HD(Jx,) < HD(J4,) < HD(J4,) < HD(JA,) < -- -

Lemma 2.6 LetI' CNand ke, l € N. If a; > a; then we have HD(Jrnq, ) < HD(Jrng,)-
ProoF. Ifay > a;, k € I', | € N then we have urng, (s) < prng,(s) for any 0 < s < 1. Hence the

assertion follows from Proposition 2.1. O

Proposition 2.7 Suppose there exists an 0 < s < HD(Jy) such that

ZazZafn for any meN.
k>m

Then there exists a non-decreasing sequence of finite sets of positive integers {I'p,} such that
supHD(Jr, )} = s.
n
PROOF. First we shall construct a non-decreasing sequence of finite sets of positive integers {I',} and a
strictly increasing sequence {m,} such that

(%) pr, (8) <1< pp,umay(s) for alln.
Since s < HD{Jy) we have un(s) > 1 by (2.1), hence

my =min{m > 2 : p12,.. m(s) > 1}
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is well defined. Set I'; = {1,2,...,m; — 1}. Suppose I';, and m,, are given, then by hypothesis

B G (mat 1 mat2..y(8) = pro () + D ai = pr, (s) + a5, = pr,ugm,)(5) > 1.
k>my,

Thus the following is well defined:
Mpy1 =min{ m > mn +1 1 pr,Ufmnt1,ma+2,..m}(8) > 1},

‘We denote
Fn, ifmn+1=mn+1,
Fn+1 =

rLu{m,+1m,+2,...,mue1 -1}, if mpy1 >mp+1.

Then {I',} and {m,} satisfy (x). Observing 0 <1 — pur, (s) < aj;, — 0, we have sup,, ur,(s) = 1.

Next we shall prove sup,, HD(Jr,, ) = s. Since ur, (s) < 1 for any n, sup,, HD(Jr, ) < s is trivial by (2.1).
Assume sup, HD(Jr,) < s and set ' = U,I',, then HD(Jr) = sup,, HD(Jr,,) by Proposition 2.3. Since
pr is strictly decreasing on F(I') and since HD(Jr) < s, we have ur(s) < 1. On the other hand, we have
pr, (s) < pr(s) <1 for all n, which contradicts to the fact sup,, ur, (s) = 1. Thus sup,, HD(Jr, ) =s. O

Proof of Theorem A. Suppose ), |6, > |¢],|* for any m € N. Then we have >, a; > a;,
for any 0 < s < sp and for any m € N, thus the restricted dimension set is dense in [0, so] by Proposition

2.7. The second assertion follows from Proposition 2.3.

3 Dimension Set of Absolutely Regular System
In this section we assume S = {¢;, : k € N} is absolutely regular. Thus for any A C N, we have

HD(JA) =s if and only if up(s) =1

Then, for example, it has the following property.
Lemma 3.1 Let ACN, a> 0 and assume pp(e) < 1 then HD(J,) < a.

Proposition 3.2 Let I' C N. Suppose there ezists an |l € T such that a; = min{ax : k € TN A;} and

Z agD(JrnAl)<a;{D(JFnAl)'
k>l kel

Then {HD(JA) : A C T} N (HD(Jrag,), HD(Jraa,)) = 0.

Proor. First we shall prove HD(Jrng,) < HD{Jrna,). By the assumption we have

HD(JrA
praa, (HD(Jrna,)) = pa,_,ar(HD(Jpen,) + D 4y (ron)
k>1l,kel
HD(Jra
< pia_aer(HD(Jena,)) + @ M = e, (HD(Jpaa,)) = 1.

So Lemma 3.1 implies HD(Jrng,) < HD(Jrna,)-

Next we shall prove HD(J)) € (HD(Jrng, ), HD(Jrna,)) for any A C T

Let A CT. If [T NAJ C A then HD(Jy) > HD(Jrny,), hence HD(J5) ¢ (HD(Jrna,), HD(Jraa,))-
Assume [[' N A;] € A, then there exists j € I'N A; such that A C [['N Q;]. Then we have HD(Ja) <
HD(Jrng,). On the other hand the hypothesis and Lemma 2.6 implies HD(Jrng,) < HD(Jrnq,), so
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HD(Jx) € (HD(Jrng,); HD(Jrna,) ), which complete the proof. |

Proof of Theorem B.
(i) Choose I' = N and ! = m in Proposition 3.2 then we have the conclusion.

(ii) Similarly choose I' = N\{m} and | = m — 1 in Proposition 3.2 then we obtain the assertion.

Proposition 3.3 Suppose there exists a finite set Ay C N and mg € N such that mo < maxAg and
Z aED(JAO) < aiD(JAO) for any m € Ay, and for any m > my.
k>m

Then there exits two sequences {ay,} and {B,} such that By < an < By, inf, o, = HD(Jy,) and

{HD(JA) : A C Ay or min[A\Ag] > mg } N (an, Bn) = 0.

for any n.
PROOF. Set ng = maxAg and for eachn=1,2,...

Ipn=AU{ng+n}, I, =AU{ng+n+1,no+n+2 ...}, B, =HD(Jr,), o, = HD(J, ).

First we shall prove 3,4, < a,, < 3, and inf, a,, = HD(Jy,). Since I'41 C T, Bnt1 < oy, is trivial.
Since HD(Jr,,) > HD(Jr, ), the hypothesis implies
e, (HD(Jr, ) = pag (BD(Jr,)) + > ag™)

k>no+n

< o (HD(Jp,)) + abntln) = pp (HD(Jr,)) = 1,

thus o, = HD(Jr, ) < HD(Jr,,) = 3, by Lemma 3.1. We also have inf,, a,, = HD(J4,) since inf, ur,, = ur,.
Now we shall prove the last assertion. If A C Ag then we have HD(J)) & (an, B,) for any n, since
a, > HD(Jy,). So we need to prove HD(J,) & (@, Br) for any n and for any A C N with min [A\Ag] > mg.
Fix any n and fix such A.
If I',, C A then we observe HD(Jy) & (ay, B,). Otherwise put j = min{k € ', UA: k ¢ T, or k € A},
then we have I', NA;_; = ANA;_;. Since maxT', =ng+nand ', Z A, wehave j <no+n. If j =ng+n
then since no +n ¢ A, HD(Jr, ) > HD(J4) and by the hypothesis we have

pa(HD(JT,, ) = panAng4n 1 (HD(JIr, ) + Ban{ne+n+1,mo+n+2...} (HD(JT;, )

HD(Jp )
< /"’Fnﬂ/\no-}-n—l(HD(JFir)) + Z ak -
k>no+n
HD(Jp )
_ MAO(HD(JF'/”)) + Z ak L = )U‘PLL(HD(JFLL)) = ].7

k>ng+4n

hence HD(J;) < HD(Jr ) = apn. If j <ng +n and j € A then j € Ay and similarly
pA(HD(Jao)) = pana;_, (HD(J,)) + Bangi+1,5+2....3 (HD(Ja,))
< or, s (HD(J,)) + a7 < pun, (HD(J,)) = 1.
hence HD(J3) < HD(Jj,) < @5, Finally assume j < ng+n and j € A then j & Ao, j > mo and
pur,, (HD(Ja)) = pr,na,_, (HD(JA)) + br,ngi+1,+2,..3 (HD(Ja))

< pann, - (HD(J0)) + 057 < pa(HD()) =1,
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hence HD(JA) > HD(Jr, ) = (3., which complete the proof. d

Proof of Theorem C. Assume there exists a A C N such that HD(J,) € (sg, HD(Jy)). By Proposition
2.3 we observe HD(J, ) € (59, HD(Jy)) for some finite set Ag C A. Thus the assumption implies
Z aED(JAO) < agD(JA“) for any m € N.
k>m
According to Proposition 3.3 there exist two sequences {a,, } and {3, } such that 8,41 < o, < By, inf, an =
HD(JAO) and
{HD(JA): ACN} N (an, Br) =0

for any n, hence the dimension set { HD(J5) : A C N} is nowhere dense in [so, HD(Jy)]. O

4 Example

Consider a collection of affine transformations S = {¢x(x) = axz + by : k € N} on the unit interval as
follows : let r > 1 and set
{ ap=(r—1)r* for k=1,2,... and
by =0, bp=a1+as+---+ar-1 for k=23,....
Then for any 0 < s < 1 we have
S —8 l

dap=(-1°>r F= -1

k>1 k>1
hence S is absolutely regular and HD(Jy) = 1 since }, ay = 1. Similarly we have for any 0 < s <1

—sm 1

< r
Zak——-(r—l)srs_l = rs—laf"'

k>m

Claim 1. If1<r <2 then {HD(Jy) : A CN finite} is dense in [0, 1]. .
rom

T—— > a,, for any m. Thus the assumptions of

Theorem A are satisfied for so = 1, hence {HD(J,) : A C N finite} is dense in [0, 1].

proof. If 1 < r < 2 then we have » . ar = (r—1)

Claim 2. Suppose r > 2 then {HD{JA) : A C N finite} is dense in [0, log, 2], and nowhere dense in
[log, 2, 1].
proof. Assume r > 2. Since Y, .. a7 % = aEr? for any m € N, applying Theorem A we conclude that
{HD(J)) : A C N finite} is dense in [0, log,. 2].

On the other hand, we have ), a; < a;, for any m € N and any s € (log, 2, 1), hence {HD(Jj) :
A C N finite} is nowhere dense in [log, 2, 1] by Theorem C.

Claim 3. Ifl<r < 1—‘523@ then {HD(Jx) : A C N finite, m & A} is still dense in [0, HD(Jy\{m})] for
any m € N.

proof. Let 1 <7 < -13%‘@ then it satisfies 1+r—r? > 0. Fix any m € N and we shall prove Dok Lkgm Ok 2 QL
for any I # m, then the claim follows from Theorem A. If | > m then the inequality follows from the similar
arguments to claim 1. If [ = m — 1 then we need to show } ... ar > am—1. In fact, we have

p—m 7’_1 1
doar=(r=1) === g 2 = )Y = age,
k>m
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Now we suppose [ < m — 1. Then we need to show ), ax + Z,T:_lil ay > a;. Actually we have

m—1 —m m~—1
Z ar + Z ar = (r— 1):—_-1 +{(r—-1) Z P> (= 1) 3D g (r = 1) D > g,
k>m k=141 E=l+1

hence {HD(J}) : A C N finite, m ¢ A} is dense in [0, 1].

Claim 4. Suppose 1+T‘/5 < r < 2. Then, for any m € N, {HD(Jp) : A C N finite, m ¢ A} is
dense in [0, logT-HT‘/g]. On the other hand, for large enough m € N, there exists an interval I C
llog, /5, HD(Ji\ (my)] such that {HD(J5) : ACN, m¢g A}NI =10

proof. Suppose 1+2———‘/5 < r < 2and put sy = log,. 1+2\/g' Then we have 1 +7% —r2% = Qand 1+7r°—r2 >0

if and only if 0 < s < s¢.
By the similar arguments to claim 3, we may prove that {HD(Jy) : A C N finite, m ¢ A} is dense in
[0, so] for any m € N.

Next, choose mg so that HD(J ) > sp for any m > my and fix such m. Then we have

3

HD HD
Z a; (Jam) <ol (Jam)

k>m—+1

hence the second assertion follows from Theorem B(ii).
By a similar discussion, we conclude the following :

Claim 5. Let n be a positive integer and r,, a real number such that r*(r, — 1) =1,1<r, < 2.

If1 <r <ry then {HD(Ja) : A C N finite, my,...,m, & A} is dense in [0, HD(Jy\{m,....m,})] for any
my,...,My, € N,

Suppose v, < v < 2. Then, for any my < --- < m, € N, {HD(Jp) : A C N finite, my1,...,m, &
A} is dense in [0, log,r,]). On the other hand, for large enough m € N, there exists an interval I C
[log, 7, HD(Jr\ {m.....m4n—1})] such that {HD(Jp) :ACN, m,.... m+n—-1¢A}NI=90.
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