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On absolute continuity of convex functions.

Masakazu TAMASHIRO*
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Abstract

A concept of a convex function was introduced by Jensen. Convex functions play an
important role in the information theory, statistic, engineering ... as well as lots of branches
of mathematics. A lot of mathematicians work on analyses of the convex function, and many
important properties, for example continuity, differentiability and monotonicity of it have
been clarified. As is well known a convex function defined on an open interval I is absolutely
continuous on every closed interval contained I. Unfortunately it is not true on I in general.
The aim of this paper is to consider the problem of absolute continuity of a convex function
on an open interval. We shall also discuss integrability of the derivative of a convex function

on infinite interval. Moreover we study the same problem about a )-convex function.

1 Introduction

Let I be an interval in the real line.

A real-valued function f defined on [ is said to be convex (or strictly convez) on I if it satisfies
(%) flhz + (1= k)y) < kf(x) + (1 —k)f(y)
(<)

for any 0 < k < 1 and for any z,y € I, © # y.

Geometrically a convex function is defined as follows.

y—° 1.
y—x

Let ¢ be a point in the segment zy C I and assume 0 < k =

Then
c=kx+(1-k)y.

Moreover let P(c,y’) be a point on the straight line segment connecting

(z, f(x)) and (y, f(y)). Then

y =kf(z)+ (1 -k)f(y)

The point (¢, f(c¢)) on the curve of a convex function f is always below or on the point P. Hence it

satisfies

flo) <kf(x)+ (1 =k)f(y)

This definition is equal to the analytic definition ( % ).

It is well known that a convex function on an open interval is continuous on I and differentiable at almost

everywhere (see below).
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Here is a typical example and application of a convex function.

(Relation between the arithmetic means and the geometric means) Let f(x) = —logx for z € (0,+00).

Then f is strictly convex on (0,+00), hence

x1+x2+...+xn
n

VT1T2 Ty S
holds for any n and x1,xs,...,x, > 0. There is equality if and only if t1 =xo = -+ = xy,.

On the other hand a function f defined on I is called Q-convex function on I if there exists an integer

p > 2 such that

(x1+x2+"'+xp)§ f($1)+f($2)++f($p)

(5%) f ’ ’

forany x1,%2,...,2p € 1.

Particularly f is said to be a middle convex function if it satisfies the above condition for p = 2.

The term @ means Quotient, that is if f is Q-convex on I then f(kx + (1 —k)y) < kf(z)+ (1 —k)f(y)
holds for any rational number 0 < k < 1 and any z,y € I.

It is well known that the middle convex function becomes convex on I if and only if it is continuous on
I. In [5], Kazamaki gave an example of a middle convex function on the real line which is not continuous

almost everywhere, hence it is not convex.

A function f is said to be absolutely continuous on I if it satisfies the following property :

For any € > 0 there exists § > 0 such that whenever a finite family of pairwise disjoint sub-intervals

{lax, b) C I} satisfies 37, |ax, — by| < 6 then
S 1 (ak) = F(be)] <=
k

The absolutely continuous function has important properties as follows.

Let [ be an absolutely continuous function on a finite interval I. Then there exists a Lebesgue integrable

function g on I such that

f@) = [ gls)ds+ (0
for any x,c € I, that is f is differentiable at almost everywhere.

Remark that this proposition does not hold if I is infinite (e.g. f(x) = x).

The author is interested in the problem of absolute continuity of a convex and Q-convex functions. For
example the convex function f(z) = —z® (0 < a < 1, = > 0) is absolutely continuous on (0, 1). If a > 1
then the convex function f(z) = (z > 0) is Lipschitz continuous on (0, 1), consequently it is absolutely
continuous on there. If a < 0 then this function is not Lipschitz continuous, nor is absolutely continuous

(cf. the examples of the next section).
The first aim of this paper is to prove the following :

Theorem 1.1 Let f be a real-valued function defined on an open interval I in the real line.
Assume f is convex on I. If f is bounded on I then f is absolutely continuous on I. Moreover if I is
finite then f is absolutely continuous on I if and only if f is bounded on there. Even if f is Q-convex, the

comparable results are obtained on I.
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By the way, it is well known that a convex function has the following properties.

Theorem 1.2 (A. Zygmund) Let f be a convez function on a finite interval I = (a, b). Then there exists

a right-continuous and non-decreasing function g such that

f@) = [ " g(s)ds + £(0

for any x,c € I, that is f has a right-continuous and non-decreasing derivative.

This theorem claimed that the convex function on I = (a, b) is Lipschitz continuous on any closed interval
[c, d] C I. Unfortunately, in general, neither Lipschitz continuity nor absolute continuity does not hold on
I, as seen in the above.

On the other hand, combining these results the following theorem can be obtained.

Theorem 1.3 A convez function f on an interval I has a non-decreasing and right-continuous derivative.
If I is closed then the derivative is integrable on I. If I is open and finite then the derivative is integrable

on I if and only if f is bounded on I.
The second aim of this paper is to prove the following.

Theorem 1.4 Let f be a real-valued function defined on an infinite interval I.
If f is bounded and Q-convex on I then the derivative of it is Lebesque integrable on there. Assume f is

convex on I. Then the derivative of f is Lebesgue integrable on I if and only if f is bounded on there.

The composition of this paper is as follows. In the next section we shall analyze the slope of the secant
line of the curve y = f(x), where f is a convex function, and characterize the convexity by the slope. In
Section 3 we shall prove Theoreml1.1 and Theoreml.4 concerning convex function, and give examples of
convex functions which is not differentiable at a denumerable set of points. In Section 4 we shall study the

properties of a QQ-convex function and prove the remaining parts of Theorem1.1 and Theoreml.4.

2 Slope of the secant line

The following lemmas may provide some fundamental properties, for instance continuity, differentiability

and monotonicity, of a convex function in the next section.

Lemma 2.1 Let f be a real-valued function on an interval I. Then the Fol- @) 5

lowing three conditions are equivalent.

(1) f is convex on I. Y
(2) Forz<y<z, x,vy,2 €I we have 1) — /(@) < 1(z) = f(@) .

y—x z—x 3) z
(3) Forz<vy<z, xvy,2z €I we have 1)~ f(@) < fl2) — 1) . "

z—x z—y

proof. First we assume that f is convex on I.

Let x <y <z z,y,2 €I and put k = " Y Then y =kx + (1 — k)z, and the assumption implies
z—x

fy) S kfle)+ (1 =k)f(2).
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Hence we have

fly) = fx) _ kf@)+ A =k)f(z) = flz) _ f(z) = [(2)

y—x - kx+(1—k)z—=x z—x
and
fR) = fly) o f)—kf@) - -Kf(z) _ f(z) - f(z)
z—y z—kr—(1—k)z z—z

which prove (2) and (3).
Next we assume (2). Forx <y, z,y € Tand0 <k <lputc=kx+ (1—-k)y (0 <k <1). Then

r < c<yand

£lo)— f(@) _ f) -~ f(a)
c—x - Yy—T
by the assumption. Thus
1= LOZIE ¢y ) = ko) + (1= WS,
which mean that f is convex on I. Similarly we may prove that (1) is deduced by (3). O

Lemma 2.2 Let f be a real-valued function on an interval

1. Then the Following three conditions are equivalent.

(1) f is convex on I.
(2) Forzx <y, z,y €1 and z,w € (x,y) we have

£~ @) _ S) ~ flw)
z—x - y—w (3) Y

(3) Forz<z<y, x, 2,y €I we have

FE) = @) _ S~ SE)

Z—T - Yy—z

proof. (1)=(2) Let f be a convex function on I and x <y, z,y € I, z,w € (x, y). Then Lemma2.1

implies

fG) = f@) _ fly) = flx) _ fly) = f(w)
z—x - y—x - y—w

thus (2) holds

(2)=(3) is trivial.

(3)=(1) Letz <y, z,y €I and put ¢ =kx + (1 — k)y, 0 < k < 1. Then by the assumption we have

£~ @) _ 1)~ F(©)
c—x - y—c ’
thus f(c) <kf(z)+ (1 —k)f(y) and (1) holds. O

Corollary 2.3 (Cheraru) A function f is convex on an interval I if and only if for any y € I

Pl W)= I@)

L rel\y)

18 nondecreasing on I.
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Corollary 2.4[4] Let g be a non-decreasing function on an interval I in the real line. Suppose that the

function f satisfies .
f(:v)=/ g(t) dt + f(a)

for any a,x € I. Then f is convex on I.

proof. Letz <z <y, x,y,z € I. Since g is non-decreasing we have

f(2) ~ f@) _ [Zg(s)ds

z—x z—x <9(2)
" fly) = f(z) _ [7g(s)ds
R Zy_z > g(2),
thus the statement (3) in Lemma2.2 holds. Hence f is a convex function on I. O

Examples. Here we give some examples of the convex functions on I = (0, 1).
(1) Let 0 < o <1 and put f(z) = —2%, g(z) = —az®"!. Since g is increasing on I and since f(z) =
f; g(s)ds + f(a), x,a € I, f is a convex function on I. For z <y, xz,y € I

f(ﬁ:g(y) = fwzg(_s;”ds Zg(y) — +oo (y—0),

thus f is mot Lipschitz continuous on I. On the other hand, f is absolutely continuous on I because g is

integrable on I.

(2) Leta<0ora>1andput f(z) = 2% g(r) = az®~ !, then f is convex on I. For a > 1 f is Lipschitz
continuous on I, hence it is also absolutely continuous on there. On the other hand, for « < 0 f is not

absolutely continuous on I because g is not integrable on I.

3 Absolute continuity of the convex function

In this section we always consider a convex function f on an open interval I = (a, b).
Fix any ¢,d € I, ¢ < d and choose ¢/, d’ € I such that ¢/ <c<d<d'.
For z,y € [¢, d], © < y, we have by Lemma2.2

dl
fl) = f(¢) o fly) = fl) _ f(d) = f{d)
c—c - y—x - d—d
c/
By Lemma2.1, since M is non-decreasing as = " y, and since d
y—x C Y
M is non-increasing as y \, z, the one-sided limits x
y—x

iy — i 4 W) = f(2) e ) = f)
D f(y)fg/n;yT and D+f(x),;1\rﬁ%7x

exist and bounded on [c, d]. On the other hand Lemma2.2 implies that D~ f(z) and D% f(z) are non-
decreasing on [c, d]. Moreover for any x € [¢, d] we have D~ f(z) < D* f(z) by Lemma2.2.
Hence for ¢ < x < y < d we have the following well known results.

f(C) B f(cl) S D_f(x) § D+f(1') S f(y) B f(:L‘) S D_f(y) S D*f(y) S f(d/) B f(d) )

(xk) p— y—x d—d

Then we may prove the following result immediately.
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Proposition 3.1 Let f be a convex function on an open interval (a, b). Then f is Lipschitz continuous

on (a, b) if and only if

lim sup ( lim sup

‘ﬂw—ﬂ@
y\a z\a

’ﬂw—ﬂ@
y—x

T ‘)<+oo.

‘) < 400 and limsup (lim sup
z b y,/'b

Now we shall prove the following theorem which provides Theorem1.1 concerning convex function.
Theorem 3.2 Let f be a convex function on an open interval (a, b). If

limsup |f(z)| < +00  and limsup|f(z)| < +o0
zN\a x b

then f is absolutely continuous on (a, b). If the interval is finite then f is absolutely continuous on (a, b)
if and only if f is bounded on there.

proof. Assume limsup |f(z)| < +o0 and limsup |f(x)| < +o0. There are four cases :
z\a z b

(1) Df4(x) is bounded on (a, b), (2) li{‘n DT f(z) = —co and l% Dt f(z) = 400,

3) lim DT f(x) > —oo and lim DT f(x) = 400, (4) lim DT f(z) = —oo and lim DT f(z) < +o0.

(3) Jim D f(a) lim D* 1(z) (4) Jim D* 7 (2) lim D* 7 (2)
If (1) is true then f is Lipschitz continuous on (a, b) by (%%), so f is absolutely continuous on (a, b). Next
we shall consider the case (2). Then there exist ¢,d € (a, b), ¢ < d such that

DY f(x) <0 for z€(a,c)

and
DY f(x) >0 for z€(d,b).
Since
TS < prjw) <0 for syefa o y>e
and since
0<0s(@) < LOZIE g vy e ), y>a

it is obtained that f is non-increasing on (a, ¢) and is non-decreasing on (d, b). Hence lim,~ , f(x) > —o0
and lim, ~, f(z) < 400 by the assumption (2).
Fix any € > 0. Choose a. € (a, ¢) and b. € (d, b) such that

0.< lim f(z) ~ f(ac) < < and 0< lim /() — f(b:) < <

Put K = max{ |D" f(a.)|, |D" f(b:)| } then by (%%) we have

[f(x) = f(y)l < K|z —y| for .y € lac, be].

Denote § = 3% and consider a finite family of pairwise disjoint sub-intervals {[ay, bx) C I} such that

> ok b —ax| < 6. Then

Uslag, be) € (a0, a2) = D7 1F(bs) = flaw)| < lim f(@) = flaz) < 5
k

Uklak, bk) C [ac, b.] = ; |f(br) — flak)| < K6 = %,
Uklag, b) € (b ) = DT 1f(bw) — flaw)| < lim f(@) — £(b) < 5
k
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Therefore f is absolutely continuous on (a, b). By the similar arguments, it is clear that f is absolutely
continuous on (a, b) in other cases.
Assume that f is absolutely continuous on the finite interval I = (a, b). Then there exists 6 > 0 such

that if the finite family of pairwise disjoint sub-intervals {[ay, bx) C I} satisfies ), |by — ax| < 0 then
> 1 f(ar) = fbr)] < 1.
k

b—a

h—
Choose an integer n such that <4 and put zp =a+ 2Tay (k=0,1,2,...,n). Then
n

| f(z) = flap) <1 for z€ (p—1, xk), k=1,2,...,n

Denote

M =max {|f(z1)], [f(z2)], -+, [f(@n-1) } +1
Then we have |f(z)| < M for any x € (a, b), hence f is bounded on I. O

Examples. Here we construct examples of the convex functions which are not differentiable at a denu-

merable set of points.
1 n—1

(1) Leta,=1—-— = ,n=1,23... and {b,} a convergence sequence of positive numbers.
n n

Denote for s € I = (0, 1)

by, 0<s<as
b1+b2’ CLQSS<(13
9(8) = D balia,,1(s) = - :
n=1 by +by+ -+ by, ap <5< Gpyi

Then g is non-decreasing on I. Hence the following function f defined in I is convex on I by Corollary2.4.

bz, 0<ax<as
by 1
7+(bl+b2)(x—§), az <z <as
x .
f@) = [ g(s)ds =
0 n—1 k bl i n—1
274_ bi(x — ), anp < T < apy1
k=1 I=1 k(k+1) k=1 n

By Proposition3.1 and Theorem3.2, we have
@ f is Lipschitz continuous on [ if and only if " b, < 400,
@ f is absolutely continuous on [ if and only if > % < 4o00.
On the other hand we have
Q@ fl@)=br+ba+-+b, for a,<z<anpii,

@ f is not differentiable at x = as, a3, a4, .. .. O

(2) Let {a,} be a non-decreasing sequence of positive numbers. Denote by = ay, b, = a,, — ap—1 (n > 2).
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Also denote for z € I = (0, +00)

g(z) = Z bnl[n_l,n)(:z:) and fla) = /Owg(s) ds.

Then f is convex on I by Corollary2.4. By Proposition3.1 and Theorem3.2, we have
@ f is Lipschitz continuous on [ if and only if sup,, a, < +oo,
@ g is integrable on I if and only if Y a, < +ooc.

On the other hand f is not differentiable at the set of natural numbers. O

Remark. By (%) we get the following results which was proved by Zygmund[4].
Let f be a convex function on a finite open interval (a, b).
Then f is Lipschitz continuous on [c, d] for any ¢,d € I, ¢ < d, thus it is absolutely continuous on there.
f has the unilateral derivatives DT f(x) and D~ f(x) for any x € (a, b) and they are non-decreasing on

(a, b), hence they are continuous almost everywhere. Moreover they satisfies for any x,y € (a, b), x <y
D™ f(z) < D¥ f(z) < D~ f(y).
Thus D~ f(x) = DT f(x) almost everywhere, that is f is differentiable almost everywhere.
Denote g(x) = limy~ . D™ f(x), « € (a, b), then g is non-decreasing right-continuous on (a, b) and we
have for any x,c € (a, b)

£ = [ gty ds + 7o)

Combining this results and Theorem3.2, we understand that a convex function on a closed interval [a, b]

is absolutely continuous on there.

Proof of Theorem1.4(concerning convez function) Let f be a convex function on an infinite interval

I = (a, b) and f’ be the derivative of f. Since f’ is non-decreasing there exist a < a’ < b’ < b such that

f/(z) has same sign on (a, a’) and (b’, b). Then we have

#@) = s@)| =] [ e = [ 17l foramae @ )
T T
and . .
[#@) ~ @) =| [ £ as = [ 1 )lds for anyz € ¥ )
1% 1%
Furthermore since f is bounded on [a/, V'] the proposition may be proved. O

4 ()-convex function

Recall that a Q-convex function is a function defined on I which satisfies
<

(Titeet o F T fl@n) + flwa) + -+ flap)

(%) f ’ ’

forany x1,x2,...,2, € 1.
for some integer p > 2

Lemma 4.1 Let f be a Q-convex function on an interval I which satisfies (¥c). Then we have for any
positive integer n

Bt ot by fle) @) b ()

() S e e

for any x1,x2,...,2pn € 1.
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proof. The condition (J¢v¥) is trivial for n = 1. Assume (¥¥c) hods for n. Then for z1,z2,...,Zpnt1 € I

T1+ T2+ Tpntr
f( anrl )
T1+-+Tpn Tpn 41+ +Topn . T(p—1)pn1t T4l
Y e s +o i
p
1+ -+ xpn Tpna1 + -+ Topn T(p—1 n+1+"'+l'n+1
f( . p)+f(p+ . p)+-~-+f( (p—1)p . P )
< D p
B P
fle) + ot flap) | S@pran) + At flazpe) | S @eenprin) 4o )
< p" p" "
p
~ fl@) + fla2) + 4 fpn)
- pn+1 :
Thus we complete the proof by induction. O

The following result is well known.

Lemma 4.2 Let f be a Q-convex function on an interval I. Then f is convex on I if and only if f is
continuous on there.
proof. If f is convex on I then f is continuous on I by Zygmund result, and @Q-convex trivially.

Let f be a continuous function on I and satisfies (3c3¢). Let 2,y € I, + < y and 0 < k < 1. Choose a
sequence of integers {k,}, 0 < k, < p" such that

Then by Lemma4.1 we have

flkx+(1—k)y) = lim f(k—Z:E—i-(l—k—n)y) < lim

n—o00 D pr n—o00 {

which complete the proof. O

Proof of Theoreml.1 and Theorem1.4 (concerning Q-convex function) If f is absolutely continuous

on a finite interval I then it is bounded on there by the proof of Theorem3.2.
Let f be a Q-convex function on a finite or infinite interval I = (a, b). Assume sup |f(z)] = K < +oo.
zel
We shall prove that f is continuous on I.

Fix any « € I and any € > 0 and choose h > 0 and integer n such that

2K
(x—h,z+h)CI and —— <e.
p

h
Put § = — then if |z — y| < § we have
pn

) — fa) = (P DT {pi*p"(y LD S
1) o
S f()+pnf( +p"(y — ) — flx)

= %{f(ﬁp"(y*fv)) —fo)} < p—{f <e
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and

(p”—l)y+{w—(p"—1)(y—w)})
p’l’L

f(y) - %f(x @ - Dy —2)

fly) = @) = fly) — £(

(p" 1)
p’ﬂ

= %{f(y) —flz=(p"-Dy-2)} > Tf{ > —¢,

hence |f(y) — f(x)| < &, so that f is continuous on I.

> f(y) —

Then Lemmad4.2 implies that f is convex on I, hence f is absolutely continuous on I by Theorem3.2.

Moreover Theoreml.1 implies that the derivative of f is Lebesgue integrable on I. O

The following Proposition explain why we use the term Quotient.

Proposition 4.3[5] Let f be a Q-convex function on an interval I. Then for any integer n > 2 we have

Tt f(@1) + f(a2) + - + flan)

n n

for any x1,xs,..., 2y € 1,

I

hence f(kx 4+ (1 — k)y) < kf(z) + (1 — k)y) for any rational number 0 < k < 1 and any x,y € I.
proof. Assume

i T2+ T f(@1) + flza) + -+ f(apm)

f( pr ) < p for any x1,x2,...,2pn €1,
where p > 2 and n > 1. Fix any integer n > 2 and x1, 2o, ...,2, € I. Denote
Tk k=1,2,...,n
Y= x1+x2—|7;-~-—|—xn k=n+1,n+2,...,p"

then by the assumption

f(y1+y2ﬂ;n"'+yp")< fly) + fly2) +

f(ypr)

)
< o

..._|_
_f<$1)+f(1'2)+—|—f($n) P"—n ($1+$2++$n)
p" p" n
On the other hand
Y1ty +typr T+ T2+,

)

b n
thus
ittt T, flx) + flze) +-- -+ flwn)
I ) < :
n n
which complete the proof. O
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