Res. Rep. Fac. Eng. Mie Univ., Vol. 11, pp. 43-54 (1986)

Original Paper

Algebraic Specification Method of

Programming Languages

Hidehiko KITAY, Toshiki SAKABE
and Yasuyoshi INAGAKI®

(Common Chair of Engineering Mathematics)
(Received September 18, 1986)

The purpose of formal specification of programming
languages are to establish the mathematical foundation for
specification and verification of programs, proof of compiler
correctness and automatic compiler generation. We propose a
purely algebraic approach to develop a new algebraic
specification method of programming languages. In this paper,
the syntactic and semantic domains are considered as algebras,
i.e., abstract data types, and the semantics of the language is
given by a mapping from the syntactic domain to the semantic
one. As an illustrative example, we describe a very simple

language by our method

1. Introduction

The purposes of formal specification of programming languages are to
establish the mathematical foundations for specification and verification of
programs, proof of compiler correctness and automatic compiler generation.

The formal specification of a programming language consists of a syntactic
specification and a semantic one. Our understanding of the former has now
reached a practical level. We are now able to automatically construct
reasonably good lexical and syntactic analyzers for most programming languages
directly from defining grammars.

As for the latter, recently the mathematical foundations of programming

* Department of Electrical Engineering, Faculty of Engineering, Nagoya

University

44 ' H. KITA, T. SAKABE and Y. INAGAKIL

language semantics have become much better understood, but not yet as well as
those of syntax. The formal specification of programming language semantics and
its automatic translation into machine language semantics are still in active
research areas.

Among many approaches such as attribute grammar, axiomatic semantics, VDL,
and denotational semantics, the algebraic specification method has been given
much attention by many researchers since ADJ—groupa) and Mossese). In their
approaches, the syntactic and the semantic domains are considered as algebras,
i.e., abstract data types, and the semantics of the language is given by a
mapping from the syntactic domain to the semantic one.

Many algebraic specification methods have been proposed so far. Most
attractive one among them is Mosses’s approach in the sense that the compiler
can be considered to be the composition of the semantic mapping and
implementation mapping as illustrated by the conceptual diagram in Fig. 1. In
the diagram Mosses considered the semantic domain S and the target language T as
abstract data types. But, the concept of his abstract data types is somewhat
vague and the semantic domain S can not be described in a purely algebraic way.
He used some operators not belonging to S for the specification of S. For
example, the binding operators of S are given with the help of the notation for
syntactic substitution, which is considered as a meta—notation. On the other
hand, some operators act on infinite families. These seem to undermine the
whole algebraic framework. This injures the comprehensibility of the
specification and makes it difficult to directly apply the results obtained in
the theory of algebraic specification. Thus, it is required to overcome these
defects.

In this paper, we have taken a purely algebraic approach to develop a new
algebraic specification method of programming languages. That is, we have
developed a new algebraic specification method which uses only the equational
logic. We have also applied our method successfully to specifying the
programming language PL/0, which Wirtth) used as an illustrative example to
explain the structure of compiler in his book. PL/0 has the fundamental
features of programming languages although it is a very simplified one. Our
experience shows that our specification method has enough power and formality
for our purpose.

The rest of this paper is organized as follows: Section 2 introduces the
fundamental algebraic notions and notations which will be used throughout this
paper. Sections from 3 to 6 describe our specification method of programming
languages. Finally, section 7 describes how we can specify the language PL/0 by

using our specification method.

Syntactic compile
Domain L h‘"""‘*---_-_-----—-a>
Semantic Target
Mapping Language T
Semantic
Domain S implement

Fig.1

Algebraic Specification of Programming Languages 45

2. Many-sorted algebras and related notions

This section introduces the concepts and notations concerning many—sorted
algebras, which will be used throughout this paper. Our notations are similar to

those of ADJZ).

[Def. 2.11 Let S be a set of sorts. An S—sorted signature is a set X of
operation symbols associated with mappings sort: £ -> S and arity: X —> S* where
S* denotes the set of all sequences over S including the empty string &. We
call f€X an operator symbol with arity w and sort s if arity(f)=w and sort (f)=s.

An operation symbol f with arity & is called a constant.

[Def. 2.2] Let X be an S—sorted signature. A X-algebra A consists of an
S—sorted set A! and a function fA: lA:S X.. . X :A:S —-> (A} _ for each f€X with

arity Sy 8, and sort s, where an S—sor%ed set is 3 set :A? associated with
function sort: A} —> S, and

lAlS = {a€iA! | sort(ad)=s}
1AL (IA:S) is sometimes called the carrier of A (of sort s). In what follows,

we often write A to denote algebra A and its carrier 'A} in the case that no
confusion is caused. Note that for each f€X if arity(f)=e and sort(f)=s then fA
designate an element of AS. Therefore, we regard fA as an element of As as well

as a nullary function

[Def. 2.3] Let X be an S—sorted signature. Define T[X]l to be the smallest
S—-sorted set TI[X] satisfying the following two conditions:
(1) If f€X is with arity € and sort s then fET[Zﬂs‘
(2) If f€x, arity(fd)=s S sort (f)=s, and tiET[Z]s for i=1,...,n then
£Cy, .., t DETE] !
n s
Elements of T[X] are called X-terms.

R

[Def. 2.41 For an S—-sorted signature X, we define the X—term algebra T as

follows:
(1) For each sort s€S, !T!s = T[E]S, that is, we define the carrier of sort

s to be the set of all X—terms of sort s.

(2) 1f f€X and arity(f)=e then fT = f.
(3) If f€X, arity(f)=s.,...s_and t . €TI[X] for i=1,...,n then f_G_ ,...,t)
1 n i s, T "1 n
= £Ct,,...,t). !
1 n

We will often use the notation TI[X] instead of T in order to explicitly

indicate the signature Z.

3. Algebraic Approach to Programming Languages Specification

Generally, formal specification of a programming language consists of two
parts. One is syntactic specification which defines the set of well-formed
programs. The other is semantic specification which gives meanings for well-
formed programs.

In this paper, we take an algebraic approach to specification of

46 H. KITA, T. SAKABE and Y. INAGAKI

programming languages. That is, we consider the syntactic and semantic domains
strictly as algebras and specify the meaning of the language by defining a
mapping from the syntactic domain to the semantic one. This approach allows us
to capture these domains as abstract data types and to directly apply the theory
of abstract data types to specification of programming languages.

Our specification of a programming language consists of three parts, i.e.,
the specification of the syntactic domain, the semantic domain, and the semantic
mapping.

Here we adopt the following definition:

[Def. 3.1] A specification of a language is a triple <G, D, I'> where G is
the specification of the syntactic domain (the context—free grammar), D is the
specification of the semantic domain (the specification of an abstract data
type), I' is the specification of the semantic mapping (the set of semantic

equations).

In the following three sections, we discuss how to specify the syntactic

domain, the semantic domain, and the semantic mapping.
4. Specification of Syntactic Domains

Context-~free grammars have been used for formal syntactic specification of
programming languages since the publication of the Algol 60 report. The
associated theory of context—free languages has become so well understood that
we are now able to automatically construct reasonably good lexical and syntactic
analyzers for most programming languages directly from defining grammars. We
naturally decide to use context—free grammars to define the specifications of

syntactic domains.

[Def. 4.11] (Specification of Syntactic Domain)

A specification of a syntactic domain is an unambiguous context—free
grammar G = <V, VT' P, SO>. where V and VT are the disjoint finite sets of
nonterminal and terminal symbols, respectively, S0 is the distinguished symbol
of V called the start symbol, and P is the set of productions, the form of which

is p:N->a , where N€V,a€ (VUV)*, and p is the name of the production.

T

An unambiguous context—free grammar induces a term algebra which gives the
syntactic domain: Let G = <V, VT' P, So> be a context—free grammar. We regard
the set V of nonterminal symbols as a set of sort and define the V-sorted
signature Zﬁ as follows.

ZG = {p | p:N->sa € P}
and

arity(pd=nt(a) and sort(p)=N
for each p:N—>a in G, where nt(a) denotes the sequence of nonterminal symbols
obtained from @ by removing all terminal symbols occurring in @. We denote such
a signature EG induced by a grammer G by G for short.

According to the definition 2.4, the signature G defines the G~term algebra

Algebraic Specification of Programming Languages 47

TI[G], which constitutes the syntactic domain

[Def. 4.2] (Syntactic Domain)

For a context—free grammar G, which is a specification of a syntactic
domain, the specified syntactic domain is the G—term algebra TIG]. It will
often be denoted by L(&).

Elements of the carrier of the term algebra TI[G], which are G—terms,
correspond to the usual derivation trees in the 1:1 manner. That is, the
carrier of sort N corresponds to the set of derivation trees with the root node
labeled by N.

5. Specification of Semantic Domains

In this paper, we take the semantic domain to be an abstract data type and

adopt an algebraic approach to abstract data type specification. ADJS),

5,6),TD,9

Mossesa) and other authors have already tried algebraic approaches to

formal specification of programming languages. These approaches (except for
PairS)) contain some informal treatments in specifying semantic domain, which
seem to undermine their whole algebraic frameworks.

To overcome this point, we have the idea that the semantic domain should be
an abstract data type and it should be interpreted through only the equational

logic.

We begin with introducing some concepts of the equational logic. Let X be
an S—sorted signature and X be an S—sorted set of variables. The signature
obtained by adding variables of X to X as constants is denoted by Z(X). A
formula of equational logic is a sequence of the form £==7», where £ and » are
2 X>)-terms of the same sort, and == is the logical symbol of equational logic.
An equation over X(X)-terms will often be called the X—axiom. The inference

rules of equational logic are the following five rules.

(1) Reflexitivity b g==

(2) Symmetry ==n b n==

(3 Transitivity E==n, n=={ + &==

(4) Substitution E==p — E1&/vI==nl&/Vv]
(5) Replacement E==n F {&/vI==LI[n/v]

where £ ,7 and £ are X (X)-terms and S[Zl/v1

obtained from £ by simultaneously replacing all vi's occurring in & by 7, for

ve..>,& /v_1 denotes the term
n 'n

i=1,...,n For a set E of X—axioms, if an equation §==7 is obtained from E by a
finite number of applications of above inference rules then we write E I &==»€
and say that £==» is deducible from E.

Using the concept of this deducibility, we define the congruence relation?t
= over the term algebra TI[X] by: For any terms t and t' in TI[X], t=t' iff E +

f For an S—-sorted signature X, a X-congruence = on a X—algebra A is an
equivalence relation = such that if aiEbi and sort(ai)=sort(bi)=si for
i=1,...,n, and f€X is with arity CFERRIE N then fA(al,...,an)EfA(bl,....an

For a€A let [al denote the =—equivalence class of a, that is, [al = {(bGA | a=b}.

48 H. KITA, T. SAKABE and Y. INAGAKI

t==t’.

The quotient algebraf} of the term algebra T[X] by congruence relation =
is the initial algebra of the class Ang,E of X-algebras which satisfies the set
E of Z-axioms. That is, for any algebra AeAng,E’ there exists the unique
homomorphism from TIX1/= to A. The initial algebra is unique up to isomorphism
and can be used to define the meaning of abstract data types which is specified

by the set of axioms E.
From the above observation, we give the following definition.

[Def. 5.11] (Semantic domain)

The specification of a semantic domain is a quadruple D = <S, X ,X ,E>,
where S is a set of sorts, X is an S—sorted signature, X is an S-sorted set of
vqriables, and E is a set of X—axioms.

The meaning of the specification D, i.e., the semantic domain specified by
D is the quotient algebra TI[ZI/=. It will be often denoted by SD(D).

6. Specification of Semantic Mappings

We are now ready to define the semantic mapping from the syntactic domain
to the semantic domain. Here, we use a primitive recursive scheme to specify a

semantic mapping.

[Def. 6.11 (Specification of Semantic Mapping)

Let G = <V, VT’ P, SO> be a specification of a syntactic domain and D =
<S8, % ,X ,E> be a specification of a semantic domain. The specification of of a
semantic mapping is a quadruple ' = <d, M, Y, R> where d is a function d: V -> S
which associates each nonterminal symbol with a sort of the semantic domain, M
is a set of function variables MN with arity(MN)=N(€V) and sort(MN)=d(N)(ES), Y
is a V-sorted set of variables, and R is a set of semantic equations (Rp P p:N-—
>a€P} For each production p with arity N1...Nn and sort N, the semantic
equation Rp is given in the form

MN(p(yl,,.,,yn) > = &L MNI(v, 10 e MNn(v,
where vy is a variable with sort Ni, Xy is a variable with sort d(Ni> on the

)% dYrx]
n

semantic domain for each i=1,...,n, and & is a Z((yl,....yn))-term

Note that the class of sets of semantic equations is a subclass of

- . . 4>
primitive recursive schemes used in Courcelle .

The semantic mapping determined by the specification I' is defined to be the

tt For a X—congruence = on a S—algebra A, the quotient algebra A/= is a X-
algebra defined as follows.
(1) 1A/=) = {lal | a € 1Al
(2> If f€X is with arity Sy

then fA/E([aIJ""’[an]) = [f(al,....an)] for all [ai] VA=)
G=1,...,m.

.s_,and sort s,
n

S,
1

Algebraic Specification of Programming Languages 49

solution of the set of semantic equations R. Let ' = <D, M, Y, R> be a
specification of a semantic mapping and A be a Z—algebra. The solution of the
set of semantic equations R over the Z—algebra A is the indexed family of

A _ A, _
functions M = <MN. T[G]N > Ad(N)>N€V

(with arity(p>=N1...Nn and sort(p)>=N) and any tiET[G] with sort Ni for

such that for any semantic equation Rp

i=1,...,n,

_ A
MN(p(tl,...tn)) = SA(MNl(tl Y, ... 'MNn(tn >)

Here, EA is the derived operationfft of £ over A.

A

Since the specification of semantic mapping is a primitive recursive

scheme, we can easily prove the following result,

[Proposition 6.11 Let A be Z—algebra. A set of semantic equations R given

in the form of Def.6.1 has the unique solution over A,
Now we can define a semantic mapping

[Def. 6.21] (Semantic Mapping) Let I' = <D, M, Y, R> be the specification of
a semantic mapping and SD(D) be a semantic domain. The semantic mapping sem (I
is the solution of the set of semantic equations R over the semantic domain
SD (M.

The next corollary is immediately obtained from Proposition 6.1.

[Corollary 6.21 For a specification I' of semantic mapping, we can uniquely

determine the semantic mapping sem I
7. Example

We have tried to give the specification of PL/0, a toy programming language
given by Wirth, to show that our specification method works satisfactorily
PL/0 is, of course, a very simplified language but it has fundamental features
of programming languages. It has declarations of variables, constants and
procedures, arithmetic operations over integers, assignment statements, and

control structures such as sequencing, if—then statement, and while statement.

1t For a Z({yl,...,yn))—term £ with sort(yj)=si (i=1,...,n), we define a

mapping SA: AS X, .. X AS -> AS , called the derived operation of § over A, as
1 n
follows:
If a=(a,,...a)EA X, ,.X A then
1 n S5 n
SA if &=f€X, arity(f)=e¢ and sort(fd=s
SA(a) = a; if §=yi

£,¢, @,..., & (N
ALy iy .
if §=f(§1....,§m). fex, ar1ty(f)=sl...sm, sort (f)=s, and

{iET[({yl,...,yn))]Si for i=1,...,m

50 H. KITA, T. SAKABE and Y. INAGAKI

By using our method, the specification of programming language PL/0 is

given as follows.

(k Specification of the syntactic domain (Excerpts) %)

G =<V, Vi, P, S5 >

V. = (PROGRAM BLOCK CONST_DEF_PART CONST_DEF VAR_DCL_PART VAR_NAME
PROC_DCL_PART PROC_DCL STATEMENT STATEMENT_LIST CONDITION
EXPRESSION IDENT ... }

VT = { . const ; , = var procedure := call begin end if then
while do 0odd <> < ><=>= + - % / () a .., z0... 9}

P = { p010 : PROGRAM -> BLOCK .
p020 : BLOCK —> CONST_DEF_PART VAR_DCL_PART

PROC_DCL_PART STATEMENT

p030 : CONST_DEF_PART —> const CONST_DEF_LIST ;

p070 : CONST_DEF —> IDENT = NUMBER

p080 : VAR_DCL_PART —> var VAR_NAME_LIST ;

p120 : VAR_NAME -> IDENT

p130 : PROC_DCL_PART -> PROC_DCL_LIST ;

p170 : PROC_DCL -> procedure IDENT ; BLOCK
pl80 : STATEMENT —> IDENT := EXPRESSION

p190 : STATEMENT —> call IDENT

p200 : STATEMENT -> begin STATEMENT_LIST end
p210 : STATEMENT ~> if CONDITION then STATEMENT
p220 : STATEMENT => while CONDITION do STATEMENT
p230 : STATEMENT ->

p240 : STATEMENT_LIST -> STATEMENT
p250 : STATEMENT_LIST —> STATEMENT ; STATEMENT_LIST

S0 = PROGRAM

Ok Specification of the semantic domain (Excerpts) %)

D =<S§, %, X, E>

S = { STATE (k tree and stack for dynamic link %)
STATE-STATE ¢k function from STATE to STATE %)
STATE-STATE-STATE (¥ function from STATE to STATE-STATE %)
POS (k pointer denoting current scope %)

NODE (k node that keep informations for procedures
such as local symbol table)
TREE (¥ tree keeping the static scope for identifiers %)
1D (k identifier)
TAB (k symboltable %)
}

2 = { INIT_STATE : —> STATE
EMPTY_TREE : —> TREE
EMPTY_POS : => POS

ADD_ID, UPDATE : STATE ID ATTR -> STATE

RETRIEVE : STATE ID -> ATTR
ENTER_BLOCK, LEAVE_BLOCK : STATE —> STATE
I_STATE-STATE : —> STATE-STATE
APPLY_STATE : STATE-STATE STATE -> STATE
APPLY_STATE_D : STATE-STATE-STATE STATE-STATE —-> STATE-STATE
IF_STATE_D : STATE-BOOL STATE-STATE STATE-STATE
—> STATE-STATE
ITERATE : STATE-BOOL STATE-STATE -> STATE-STATE
COMPOSITION : STATE-STATE STATE-STATE —> STATE-STATE

ADD_ID_D : ID ATTR —> STATE-STATE

Algebraic Specification of Programming Languages

ENTER_BLOCK_D, LEAVE_BLOCK_D : —> STATE-STATE

UPDATE_D : ID STATE-ATTR —> STATE-STATE
GET_TAB : TREE POS -> TAB

PUT_TAB : TREE POS TAB —> TREE
RETRIEVE_TAB : TAB ID —> ATTR

UPDATE_TAB, ADD_ID_TAB : TAB ID ATTR -> TAB

{ s0, sl, s2 | s€S}

UPDATE (MAKE_STATE (tree0O, pos0), id0, attr0)
== IF_STATE(IS_IN_CURRENT_NODE(tree0, pos0, id0),
MAKE_STATE (
PUT_TABC(tree0, posO,

{ INIT_STATE(O MAKE_STATE(EMPTY_TREE (O, EMPTY_POSO >

UPDATE_TAB(GET_TAB(tree0, pos0),

id0, attr0)),
pos0),

UPDATE (MAKE_STATE (tree0, FATHER (pos0)),
UPDATE_TAB(ADD_ID_TAB(tab0, id0, attr0>, idl, attrl)

== IF_TAB(EQUAL_ID(ido0, id1),
ADD_ID_TAB(tab0, idl,attrl),
UPDATE_TAB (tab0, idl,attr1))

ADD_ID(MAKE_STATE(treeQ, pos0)>, i1d0, attrO)
== ADD_ID_TAB(GET_TAB(tree0, pos0>, id0, attr0O >

APPLY_STATE(I_STATE~-STATEQO, state0) stateO

APPLY_STATE (IF_STATE_D(state—-bool0,state-state0,state—-statel),

state0)

== IF_STATE (APPLY_STATE_BOOL (state—bool10,state0),
APPLY_STATE(state—state0,state0),
APPLY_STATE(state—-statel,state0))

ido > >

APPLY_STATE(ITERATE(state—bool0,state-state0), state0 >

== IF_STATE(APPLY_STATE_BOOL (state-bool0. state0),
APPLY_STATE (
COMPOSITION (

ITERATE(state—-bool0,state—-state0),

state—-state0),
state0),
stateO D

APPLY_STATE(COMPOSITION(state—-state0, state—statel),
== APPLY_STATE(state—state0, APPLY_STATE(state—statel,state0) >

APPLY_STATE(ADD_ID_D(id0, attr0), stateO >
== ADD_IDC(stateO, id0, attrO)

(k Specification of the semantic mapping (Excerpts) %)

r

d

<d, M, Y, R>

vV ->S5

d (PROGRAM> = STATE
d (BLOCK> = d (CONST_DEF_PART) = ... = d(STATEMENT) = STATE-STATE
d (CONDITION> = STATE-BOOL
d (EXPRESSION) = STATE-INT

i

N

(M_N ! N-V, sort(M_N)=d(N), arity(M_N>=N)

= Unev'y

Y
Y

BLOCK CONST_DEF_PART
STATEMENT ™

={ blkO) Y ={ c_d_p0)

={ stm0)} YCONDITION=(cnd0)

state0)

51

52 H. KITA, T. SAKABE and Y. INAGAKI

R = ((x p010 : PROGRAM —-> BLOCK . *)
M_PROGRAM(p010<b1k0d> >
= APPLY_STATE(M_BLOCK(blkO), INIT_STATEO)

(kx p020 : BLOCK —> CONST_DEF_PART VAR_DCL_PART
PROC_DCL_PART STATEMENT *)
M_BLOCK (p020¢c_d_pO,v_d_pO,p_d_pO0, stm0> >
= COMPOSITION ¢
M_STATEMENT(stm0O),
COMPOSITION ¢
M_PROC_DCL_PART(p_d_p0),
COMPOSITION (
M_VAR_DCL_PART(v_d_p0),
M_CONST_DEF_PART(C ¢_d_p0 > D))

¢k p070 : CONST_DEF —-> IDENT = NUMBER *)
M_CONST_DEF ¢ p070(id0, num0))
= ADD_ID_DC M_IDENTC id0 D,

MAKE_ATTR_CONST ¢ M_NUMBER (num0 >))

(% p120 : VAR_NAME -> IDENT *)
M_VAR_NAME (p120¢id0))
= ADD_ID_DC M_IDENTC id0), MAKE_ATTR_VARC ZEROO))

¢k p170 : PROC_DCL —> procedure IDENT ; BLOCK *)
M_PROC_DCL(p170(id0, b1k0> >
= ADD_PROC_ID_D(C M_IDENT(idO >,

MAKE_ATTR_PROCC M_BLOCK(C b1k0 >) >

(k p180 : STATEMENT —> IDENT := EXPRESSION %)
M_STATEMENT ¢ p180(id0, exp0))
= UPDATE_D(M_IDENT(id0),

MAKE_ATTR_VAR (M_EXPRESSION C exp0 >))

¢k p190 : STATEMENT -> call IDENT %)
M_STATEMENT (p190¢id0))
= COMPOSITION (
LEAVE_BLOCK_D O,
COMPOSITION (
APPLY_STATE_D(
MAKE_STATE-STATE_D (
RETRIEVE_PROC_D ¢ M_IDENTC id0 >) D,
ENTER_BLOCK_DO >)

¢k p210 : STATEMENT —> if CONDITION then STATEMENT %)

M_STATEMENT C p210<cnd0, stm0> >

= IF_STATE_D(M_CONDITIONC ¢nd0 >, M_STATEMENTC stmO 5,
1_STATE-STATEO O

(% p220 : STATEMENT —> while CONDITION do STATEMENT *)
M_STATEMENT ¢ p220(cnd0, stm0) >
= ITERATE (M_CONDITIONC ¢ndO >, M_STATEMENTC stm0 >)

Finally we should make some words concerning our idea in writing the above
specification : To capture the meaning of programs, we introduced the concept of
state which is the abstraction of configuration of the computation mechanism.
And we consider that the meanings of a program is the final state after
executing the program. That is, we consider that the meanings of stateﬁents as
well as declarations are the functions to change the states. For example, an
assignment statement changes the state through renewing the value of a variable,
and a variable declaration also changes the state by entering a new variable
into the name table.

Note that we use a conveniently simplified way to treat semantic errors in

Algebraic Specification of Programming Languages 53

the specification of PL/0. For example, if the update operation is applied to
the initial state that is the state where no variables are yet declared, then
the result is specified to be the initial state. But, this should be specified
to be a semantic error. Thus, how to specify and treat semantic errors is one

of the future problems.
8. Conclusion

In this paper, we have proposed a purely algebraic method for specification
of programming languages. The semantic domain of our specification is specified
as an abstract data type by using only equations. This gives us the
mathematical foundations of our algebraic approach for the formal specification,
implementation, verification of programs, the formal proof of compiler
correctness, and the automatic compiler generation

As an illustrative example, we have also given the specification of the
programming language PL/0. It shows that our method works satisfactorily.

There are many future problems. For example, the error handling problem is
one of them. In fact, in our example of PL/0 specification we used convenientiy
simplified ways to treat semantic errors, e.g. we assumed that if a number is
divided by zero then the result value is zero. We are now developing the system
for automatic compiler generation based on our specification method. We already

have a prototype of the system but there are many problems to be solved
Acknowledgement

The - authors wish to express their gratitude to Dr.Namio HONDA, President of
Toyohashi University of Technology, Dr. Teruo FUKUMURA, Professor of Nagoya
University and Dr. Nariyasu MINAMIDE, Professor of Mie University for their
encouragements to conduct this work. They also thank their colleagues for their

helpful discussions.
References

1) ADJ (Goguen,J.A.,Thatcher,J.W. ,Wagner,E.G. ,Wright,J.B.)>: Initial Algebra
Semantics and Continuous algebras, J.ACM, Vol.24, pp.68-95C1977).

2) ADJ (Goguen,J. A.,Thatcher,J.W. ,Wright,J.B.>: An Initial Algebra Approach
to the Specification, Correctness and Implementation of Abstract Data
Types, Current Trends in Programming Methodology, Vol.4(Yeh,R.T.,ed.),
Prentice—-Hall (1878).

3) ADJ(Thatcher,J.W.,Wagner,E. G, ,Wright,J.B.): More on Advice on
FStructuring Compilers and Their Correctness, Theor. Comput. Sci.,

Vol. 15, pp.223-249C1981).

4) Courcelle,B.,Franchi-Zannettacci,P.: Attribute Grammars and Primitive
Recursive Schemes, Theor. Comput. Sci., Vol.17, pp.163-181, pp.235-
257(1982). '

5) Despryroux,J. :An Algebraic Specification of a Pascal Compiler, SIGPLAN
Notice, Vol. 18, Neo. 12, pp.34—-48(1883>.

6) Gaudel,M.C. :Specification of Compilers as Abstract Data Type

54

H. KITA, T. SAKABE and Y. INAGAKI

Representations, Proc. on Workshop on Semantics-Directed Compiler
Generation, Aarhus, in Lecture Notes in Computer Science 94 (1980).

7> Goguen,J.A. and Parsaye—-Ghomi, K. : Algebraic Denotational Semantics using
Parameterized Abstract Modules, in Lecture Notes in Computer Science
107, pp.292-309(1981).

8> Mosses,P.:A Constructive Approach to Compiler Correctness Proc. of
Workshop on Semantics-Directed Compiler Generation, Aarhus, in Lecture
Notes in Computer Science 94 (1980).

8> Pair,C.: Abstract Data Types and Algebraic Semantics of Programming
Languages, Theor. Comput. Sci., Vol.18, pp.1-31(1982).

10> Wirth,N.: Algorithms + Data Structure = Programs, Prentice-Hall (18976).

