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1.0X10?% respectively.
These values may have a .
1ittle surplus bias,
b e ¢c a u s e t h e
experimentally measured N
constants for hydrolysis
of some weak acids and Kbz
bases have a tendency to -8
curve concavely downward

and deviate from the

pKy
pKy 2

straight lines over 250 °C
gradually!'?®’ S10F

Kbl

3. Calculation of pH of : )

sodium phosphates solution

Simultaneous

equations for calculation i 1 1 ! L O
of pH were set up from 1.5 2.9 2.5 3.0 3.5 4.0
t h e f ollowing I/ T

relationships
@ All the equations of Fig. 1 Temperature dependence of the equlibrium

equilibrium constants constant for neutralization of phosphate
relating to neutralization ions
of all postulated species. K,, = [H2PO, 1/[HsPOs1[0H" ]
) The equation of K,, = [HPO?~ ]/[H.PO.  J[CH ]
electroneutrality between
ionic species.
{(c) Mass balance equation pertaining to a material remaining in water.
The procedure wWas applied to neutralization of sodium phosphate, which contains
the six ions - H' , OH™ , Na' , H.PO, , HPO4? , PO,4°3

The neutralization reactions, in addition toc the equation (1) and (2), are

as follows

HPO.,2  + OH = PO, + H:0 K., = [P0.% 1/[HPO.? j{oH ] 3)
NaOH + H * = Na’' + H.0 Koy = [Na® 1/{H " ] {4)
H,0 = H' + OH K., = [H* 1[0H ] )
It was known that the equilibrium constant of the equation 3), Kys, Was

n

smaller than 3 over 150 °C and then the concentration of H formed from

dissociation of HPO0.? is smaller than that from water®’ . Sodium hydroxide
completely dissociates in bulk boiler water''!’ . Eguation (3) and (4), and the
concentration of P0.3 , therefore, may be disregarded when calculating pH at

elevated temperatures.
The equation of electroneutrality is

[Na' ] + [H° 1 = [H,PO. 1 + 2X[HPO.?' ] + [OH ©)

—

The mass balance equation in water is
[A] = [HsPO.] + [H,POs 1 + [HPO.?' ] m
where [A] is the total concentration of all phosphate species.
From equation (1) and {2} and K, = 5.01x10 " !'?®
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ig. 2 pH of dilute Na,HPO, solution Fig. 3 pH of dilute Na;PO, solution

and effect of disappearance and effect of disappearance

phosphate species due to phosphate species due to

hide-out at 350 ¢ hide-out at 350 <

I : Na,HPO., I : Na3;PO,.,

IT : Complete disappearance of II : Complete disappearance of
phosphate species from bulk phosphate species from bulk
water water

{H2POs ] = [H;P0,][0} ] X 2.8 X 106 = 1.4 X 10 % [H;P0,]1/[H * ] 8)
(HPG.? ] = [H,PCs J[OH ] X 1.0 X 102 = 7.1 X 10 ~'7 [H;P0.1/[H * ]2 ]
substituting equation (8 and 9) in (6) and {7V, and solving the obtained
H " concentration can be derived as a function of [A]
for Na,HPO. ([ Na " ] = 2[A]) and for Na3sPO.([Na' ] = 3[A])} respectively

Na HPO, ; [AIX[H®' 1% + (7.05X10 7[A)] - 2.51X10 ~'3)[H* ]2

simultaneous equations,

(
- 3.52X10 '*[H * ] - 1.77X10 %= @ )
NasPO. ; [AIX[H' 1% + (9.40%X10 “7[A] ~ 1.67X10 -13)[H' ]2
(2.52X10 '7[A] - 2.52X10 '7)[H' ] - 1.18X10 2°= @ D

Values of pH at 350 °C were calculated from these equations with a personal
computer. The results were plotted against the total concentration of all
phosphate species, as shown in Fig. 2 and Fig. 3.

In order to clarify the increment of pH attributed to a decrease in the
concentration of the phosphate species in bulk water, pH was calculated by
assuming that the phosphate species have completely disappeared by the hide-out
and all sodium ion left in the bulk water. Results were plotted against the
original concentration of phosphates in Fg. 2 and Fig. 3. By comparing the
curves With those of sodium phosphate, it will be noted that the increment of pH
due to the hide-out is only 0.3 pH units even under the extreme condition,
Further, it would seem that the increment of pH would be slightly smaller than O,
3 units, because K,, and K,, of phosphoric acid have a surplus bias as mentioned

above.
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4, Discussion

As the characteristics of water and aqueous solutions change considerably
with increase in temperature, the quality of boiler water should be regulated
and controlled on the base of the data obtained under the high temperature and
pressure conditions. But we have not yet had any specific method to perform the
analysis and measurement under that condition. It is, therefore, necessary to
cool boiler water to room temperature, in order to analyze, measure it.

In the case of phosphate treatment, the molar ratio has been regulated for
pH adjustment by using data of sodium phosphate solution at room temperature,
which is shown in Fig. 4 and Fig. 5. This data indicates that pH increases
significantly as the molar ratio increases due to the hide-out of the phosphates.
It, therefore, is evident that the molar ratioc should be controlled in the

narrow range, in order to adjust pH to optimal value for corrosion controll.
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II : Complete disappearance of IT : Complete disappearance of
phosphate species from bulk phosphate species from bulk
water water

But the characteristics of phosphate solution at high temperature are
considerably different from that at room temperature. The results of
calculations indicated that pH increment was only slight under boiler water
conditions, even if the concentration of phosphate species comes close to zero
due to a complete hide-out and the molar ratio increases remarkably. Table 1
shows that the predominant species is di-hydrogen phosphate ion, H.PO, , at
350°C, in contrast to hydrogen phosphate ion, HPOs?2  , at room temperature.
This means that in terms of pH the sodium phosphate solution resembles sodium
hydroxide solution with an increase in temperature, and the molar ratio is not
a significant factor in controlling of pH of bulk water at the boiler water
temperature. Even if the excess of sodium concentrates on the boiloing-heat-
transfer surface, this is not considered to cause the surface to be highly
caustic, because sodium will be neutralized by the phosphate species previously

concentrated due to the hide-out on the surface in any form.
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Table 1 Share of phosphate species in water

at room temperature and 350°C

Phosphates Temperature Share of phosphate species { %)
C
HiPO, H.PO, - HPO, ? PO, 3 -
|
NaHPO, 25 0 11 88.8 0.005
350 0.9 98.6 0.5 0
Nas PO, 25 0 0.3 99.5 0.2
350 0.005 99.8 0.015 0

Practically, a blowdown of boiler water and reinjection of Na.HPO. is
carried out frequently to keep the molar ratio within the regulation range.
Continuous loss of the boiler water which is rich in sodium will deplete sodium
inventory in the boiler and reduce total molar ration in the boiler. Further,
when the plant load reduced, the phosphate species disappeared by hide-out in
normal opearation return to bulk water and its concentration increases.
Therefore, during load reducing and low load operation, the cumulative loss of
sodium and the phosphate return may eventually result in a significant phH
depression and require inverse procedure such as injection of NasPO.. This is
very complicate and burdensome to operators of cycing plants.

From above consideration, it was concluded that there was little need to
perform the blow-down and reinjection of sodium hydrogen phosphate in normal
operation if it is only for adjustment of pH and the molar ratio, even though
the hide-out occured, as long as the concentration of phosphate species in
boiler water is kept above the lowest limit for prevention of scale deposition
of hardness ions and leakage of condenser water is not detected. Theoretical
estimation of the limit and its dependence on the degree of leakage of
condenser-cooling water is an important concern to boller operators. But it is
difficult to estimate the limit theoretically at the present time, because of
lack of suitable data on equilibrium constants of reactions between phosphate
species and hardness ions under high temperature and pressure. This is

considered to be a subject for further discussion.
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