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A new force operator, ﬁaz/Qtax , is proposed, which is
obtained from differentiating of momentum expectation of a
quantum particle by time. A wavefunction is approximated to a
planewave, this operator is worked to the wavefunction; then,
force expectation, hkw , is obtained. We «call this force
expectation 'marion force'. It is the same as working force
to a quantum particle which moves cyclic 1in a central force
potential like centrifugal force on the Bohr model. Apllica-
tion of the marion force is proposed as a concept which is
able to be understood easily and intuitively when mechanical
property of mechanical materials 1is analyzed. The marion
force is calculated as a function of electron density in free-
electron solids, average pressure from this marion force is
proportional to five-thirds power of electron density. This
pressure is in a good agreement to virial pressure which is
obtained thermodynamically from average energy of free

electrons.
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1. Introduction

Basic force which causes deformation, fracture, cohesion, friction,
abrasion, crystalline phase :transition, etc., of solid materials, is only the
electromagnetic interaction. Binding force between atoms 1is created by a
change of momentum state: energy of valence electrons which are outmost
electrons of an atom. Thus, when we evaluate mechanical properties of solids,

it is a well-known method to <calculate crystalline energy as a function of
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lattice distortion. Especially, for metals and semiconductors there are many

1_3). Once we obtain the

calculated results by the pseudopotential method
calculated results of energy, we can apply these to questions of elastic
deformation; phonon spectra; phase transition stress; ideal fractural strength,
within the structure of thermodynamics and classical mechanics, and based on

the dislocation theory, to plastic deformation; creep phenomena; mechanisms to

toughen materials 4_7).

Furthermore, if it is able to calculate 'force' directly from the motive
state of electrons, it is very intuitive on evaluating the mechanical property
of solids and very wuseful to discuss the property such as deformation and
fracture strength, which is affected by shear stress, and to discuss the
property of solids which has mechanical anisotropic strength. On this paper,
We propose a new method and a 'force' Hermite operator which is 1led from the
differential of momentum expectation value. We discuss force expectation
which is obtained when this operator is worked to a wavefunction. And we
apply this method to free-electron solids, calculate pressure and compare with

pressure which is led from the normal virial theorem.
2. A New Force Operator

The time derivative of momentum p of a moving particle is F which is

defined as force which is supplied for surrounding field.

- —dp
F = at (1)
If a quantum momentum operator 3: —iH%% ( B is Planck's constant ) is worked
to a wavefunction Y , expectation of momentum <p> is

<p> = -infu" (52)pax

= <u|plu> . (2)
A time-derived function of (2) is
A
d<p> Y (A 3 A3
ST = Bl 2R uscu | 12L, (3)

A
Since p is an Hermite operator, the first and the third term are able to be

rewritten to

Y A 9
<§%Ip!w> = <p><3—‘i’lw> )
and
)
WIBIEL = praw] By (5)
From normalized condition of the wavefunction,
<le> =1 (6)
is given. Hence a time-derived term of the wavefunction is
Ayly>_ 3y v
TH—- Gelv> + <w|5H (7)
=0 .

On the right-hand side of the equation (3), only the second term is remained.



A Force Theorem by Electron Momentum in Solids

A
d<p> 3
o2 ) 28 |y
a2
= —ihidy]| 3tax [b> (8)

A force operator is able to be defined by the equation (8), but the expecta-
tion of <F> must be a real number: a quantum operator must be an Hermite
operator. We define the following formula (9) as a new force operator, .

multiplying (8) by the imaginary unit coefficient i.

R (9)
atdx
Force expectation is
<F> = <v|F|u>
* 32
= WSy ( Ttox Ybdx . (10)

Thus we propose to give a name 'marion force' to this force expectation.

Until now Feynman's method is known as a force operator to obtain force

which acts on quantum particles 8). Feynman force operator is defined as

A
follows. Hamiltonian H works to particle-system moving in a potential field V.

A A A A A
As H equals T + V, where T is a kinetic energy operator and V is a potential

energy operator, expectation of energy is

A
<U> = <]H[W> . (11)
Force F defined by thermodynamics is
_ U
F = 3% (12)
A space-derived function of <U> becomes
A
o<uU> _ oH
ox <¢! 9x lw>
i
= <l 52 o> . (13)
a/\
This - BZ operator is defined as Feynman force operator. When we work this

operator to a wavefunction, we can obtain force expectation <F>

A

*® \
KF> = Ju ( —%; Ybdx (14)
This <F> is potential force called Feynman force. 1In a stationary state we
think that this Feynman force FF and marion force FM defined by the formula

(10) are balanced.
3.Applica;ions and Discussions
3.1 Quantum Free Particles
Assume a wavefunction of a quantum particle is approximated to a
planewave as

U = exp [i(kx-wt)] (15)

where k is a wavenumber and w is an angular frequency. If it is operated by
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the marion force operator, the following equation is obtained as marion force
FM from the formula (10).

FM = Rkw (16)
Kinetic energy U of a particle of which mass is m, is
2,2
- ok :
U = m (17)
and
U = Aw . (18)

The marion force FM is represented the following equation as a function of U.

1/2.3/2
F o= £2m) "7U7° " (19)

h

For a photon, ¢ is the velocity of light and k is equal to , the marion

force is
2
U
FM = % - (20)

For example, we show results of a photon, electron, proton and carbon ion in

Figure 1. These mean the force when a moving particle is stopped quickly ( of

which time is an order of —%— , and the force diverges to infinite in the
classical theory. ) or the force of the maximum when the moving particle
transfers force to environmental field. We think that the marion force will
become an interesting concept about mechanical analyses in rarefield gas and
plasma gas motion; thin and multi-layered film production by sputtering; ion

plating; particle milling.
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Figure 1. Marion force of free particles such as a photon, electron, proton

and carbon ion.

Thinking about an electron such as a hydrogen one, moving in periodic

orbit with Coulomb attraction, a centrifugal force FR is

2
FR = mrw” = Akw = FM (21)
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where r is a orbital radius in Bohr model. This FR is consistent with
the marion force FM' Wavenumber k is
n
= 2
k 2mr (22)
where n is an intéger not equal zero. As the wavenumber is represented

discrete value, the marion force is also discrete eigenvalue. On this time,

Feynman force FF is able to be obtained from the equation (14) by using

Coulomb potential V, and must be balanced with the marionkforce. There is the
same discussion about moving state of valence electrons in free-electron model
(which potential V is zero in one region, otherwise infinite.) of metals or
semiconductor when the condition (22) with cyclic orbit is regarded as

periodic condition for a wavefunction.
3.2. Free-Electron Solids

There are N valence electrons in a metal of which volume is Q : a
potential V is zero: we use free-electron approximation. Energy U of an

electron with a wavevector k is from the equations (17) and (18)

2,02
v LR - (23)

2m
The marion force for X-direction FMX is from the equation (16)
2
n 2
FMx = 2m ,kl kx (24)
n
where kx is wavenumber for X-direction. The total marion force F of electrons

which has positive kx for X-direction in a k space; less than the Fermi energy

is
Y
F = ZkFMX(k)
k| <k, .2
29 | F &R 2
= 3, 7ol kl k db . (25)
(2m)
It is rewritten to spherical coordinates where absolute value of k wavevector
is «
5 2 52 2
F = —3 2m K (x cos 8 )(x" sin B )dxd6dd
4
2
Q h 6 :
= 5= k (26)
24n3 2m °F
Using valence electron density —%— , Fermi wavenumber kF of free electron
solids is
1/3
2,1/3 N
Kp = (31%) (=) . (27)
x
It is obtained that all marion force FM for one direction, substituting this
in (26).
¥ _ 3r? B2 N v8
M= T8 2m % (28)
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Thus the average marion force fM for each electron is

2 .2

_31°8m° N

=" m 0 (29)

It is proportional to valence electron density —%— . Thus, pressurePM for

out direction which is given by the marion force is

o PR

M= o 273 “fu(o)
()

M LY R (30)

8 2m Q

We also call this pressure 'marion pressure'. Otherwise, the average energy u

for each electron of free-electron solids with Fermi energy u, is

F

u = 3 u
5 °F

2
=3 (3n2y2/3 L (_%_)2/3

wnlw

(31)

This pressure Pvcalled virial pressure, which is obtained thermodynamically is
represented

P = - &
v d(Q/N)

- 2 (3)2/ g% (573 (32)
We show both pressure as marion pressure and virial pressure in Figure 2.
There is a few difference between both data. We think that it comes from a
difference between average of force and average of energy. Anyway, in normal

metals in which electron Fermi energy is about 10 eV, there is out-direction
pressure more than 100 gigapascal without any pressure from outside. This
pressure is cancelled by Fermi force which is induced by Coulomb potential
worked between a valence electron and positive ion: the valence electron is

trapped inside the metal.
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Figure 2. Marion pressure and virial pressure as a function of electron

density of free-electron solids.



A-Force Theorem by Electron Momentum in Solids 7

Introducing periodic potential-field by arrange of positive ions, the
marion force of the valence electron has a band gap at Brillouin zone boundary
like energy band structure of a solid-state electron. Thus, we can think force
band structure with the formula (16). We think this force band structure will
be more important like an idea of energy band in electronic solid-state
property. For example, from the idea of the force band gap, it is obtained an
knowledge about stress in crystalline zone boundary; stress of contact between
different materials; surface tension; fracture of brittle-ductility. This
directive method is useful and fruitful when problems approached by an idea of
energy, which are of the property of fracture of metal; semiconductor;
ceramics, brittle-ductility transition with pressure or temperature, hydrogen

brittle, etc., are too confused.
4. Conclusions

We proposed a new force operator worked a wavefunction of quantum
particles, and obtained the following conclusions.
2
(1) An Hermite operator 55?5; which is obtained by time-deriving the
expectation <p> of momentum of quantum particles, operates as the force
operator. When this operates to a plane-wavefunction, expectation of

force <F>=Hkw is obtained, and we call this force 'marion force'.

(2) This marion force 1is agree with centrifugal force mrw2 in Bohr model,
where orbital radius is r in an electron moving cyclic in a central force
potential like a hydrogen atom.

(3) We calculated the marion force as a function of electron density in free-
electron solids, and obtained average force f for one-direction for each

electron.

AL L

M 8 m

From this force, average pressure is

> 372 % (X573

M~ 8 2m Q

It is proportional to fifth-thirds power of electron density. It is

quantitatively almost agree with wvirial pressure which 1is obtained
from thermodynamically average of energy of free electron.

(4) We propose application of force band structure by the marion force which
is understood easily and directly when we analyze solid property of
mechanical materials. Especially, we indicate that an force band gap

is an interesting idea.
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