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Abstract

One of the most important property of 3-layered neural networks is the se-
lectability of the basis functions. In this paper, to focus on the selectability
in the context of the regression model, we restricted our attention to function
representations in which the basis functions are modified according to the as-
sociated discrete parameters. For such function representations, we derived
lower and upper bounds for the expectations of the empirical loss and the
expected loss with respect to the distribution of the set of samples by taking
the squared error as a loss function, provided that the given set of samples is
a Gaussian noise sequence and the basis functions satisfy the orthonormality
condition. Based on these results, we showed that the statistical properties
of the function representations with adaptive basis functions is different from
conventional function representations with fixed basis functions.
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1. Introduction

In wide-ranging applications of layered neural networks, a basic and an important task
of networks is to identify an unknown input-output relation of a target system with stochastic
nature. When there are few a priori knowledges about the system, the relation should be
identified based on a finite set of pairs of input-output samples observed according to the system.
Usually, the given samples are utilized to estimate connection weights of a network with a
predetermined complexity, so as to decrease the average squared error on the samples by an
algorithm such as the well-known backpropagation[13]. This procedure is intended to minimize
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the empirical loss by taking the squared error as a loss function.. In the task, although we
expect the estimated network performs with low error on unseen samples ; i.e. the network
generalize to data outside the given samples, the above procedure does not necessarily give
us the network with a better generalization performance. Indeed, the generalization ability
depends on the complexity of a network as follows. If the network is too complex, one obtains
the estimated network with the outputs which are very close to the given output samples at
the corresponding input samples. The input-output relation of such network, however, may
deviate from the invariant input-output relation of the target system. Conversely, when the
network is too simple, the error on unseen samples also will be large because the small size
network cannot represent the underlying input-output relation enough. This is often called
bias/variance dilemma(7]. Under the minimization of the empirical loss, thus, it is necessary
to determine the optimal complexity of the network. In statistics, the issue mentioned above
is known as the problem of model selection. There have been proposed criteria for the model
selection since Akaike’s pioneer attempt of AIC (Akaike Information Criterion)[1][2]. Also, in
neural network field, there are some attempts to apply traditional criteria such as AIC directly
to neural networks[9][6] and to develop considerable criteria[10][11].

The generalization performance of a network can be naturally measured by the expected
loss, which corresponds to the error on unseen samples. The basic idea of the model selection
given by AIC is to estimate the expected loss based on the empirical loss. Therefore, once the
relation between the expected loss and the empirical loss is derived, one can construct a model
selection criterion. Generally, the estimation of the expected loss based on the empirical loss
yields the estimation bias. The AIC is the unbiased estimator of the expected loss based on
the empirical loss, in which the loss function is taken to be the negative log-likelihood. In the
derivation of the AIC, the bias is approximately given as the number of modifiable parameters
in an assumed statistical model, which can be regarded as penalizing the model complexity. In
the case of taking the squared error as a loss function, Barron[4] has derived a criterion called
PSE (Predicted Squared Error) for linear regression models. The penalty term of PSE is given
by 2-5-02/N, where s, 02 and N denote the number of coefficients in the model, the variance of
additive noise and the number of samples respectively. Recently, based on the above viewpoint
of model selection, Murata et. al[ll] have proposed the most extended criterion called NIC
(Network Information Criterion) under a general condition. Under the assumption of a certain
smoothness condition on loss functions, the NIC has derived as the unbiased estimator of the
expected loss, in which the bias term is given by tr GQ™!/N, where G is the variance-covariance
matrix of the first partial derivatives of a loss function with respect to the parameters and Q
is the expectation of the second partial derivative matrix of a loss. If a loss is taken to be the
negative log-likelihood and the true distribution which defines a sample generating mechanism is
in an assumed model family, the NIC reduces to the AIC. However, the authors(8] have pointed
out that there exists the case where AIC cannot be derived for 3-layered neural networks under
the latter condition because the matrix G and Q degenerate and Q! does not exist in such case.
This is due to the nonuniqueness of connection weights originated from the nonlinear parameters
of a network; i.e. connection weights form input units to hidden units and thresholds at hidden
units. Therefore, although the model selection problem looked te be given a solution by the
NIC, there remains a vagueness in the problem.

On the other hand, in the framework of the function approximation, the capability of

3-layered neural networks to avoid the curse of dimensionality has been revealed by taking
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account of the selectability of basis functions in function representations given by 3-layered
neural networks[5]. The selectability is achieved by the nonlinear parameters associated with
the basis functions and is important because they essentially characterize the nonlinearity of
the parameters of 3-layered neural networks, which is hard to analyze directly. Actually, the
hardness of the model selection problem of 3-layered neural networks is caused by the existence
of the nonlinear parameters as mentioned above. Thus, the viewpoint of the selectability of the
basis functions may enable us to develop the theory of neural network regression.

In this paper, to find a solution to the model selection problem of 3-layered neural net-
works, we focus on the selectability of basis functions in the context of regression models. Here,
to simplify the problem, we deal with the function representations, in which the parameters as-
sociated with the basis functions are restricted to a finite set of allowed values ; i.e. the function
representations whose basis functions are modified according to the associated discrete param-
eters. We first give the definition of such function representations and conventional function
representations with fixed basis functions. And we define the expectations of the minimum of
the empirical loss and the expected loss with respect to the distribution of samples by taking
the squared error as a loss. Also we briefly summarize the statistical properties of regression
models using the function representations with fixed basis functions. Next, we give the least
square parameter estimation algorithm for regression models using the function representations
with adaptive basis functions and derive lower and upper bounds of the above expectations
for such models. Lastly, based on these results, we compare the statistical properties between
the function representations with fixed basis functions and the function representations with

adaptive basis functions.

2. Function Representation

We deal with a function representation (FR) whose output for an input z € R? is given
by

g(ziws) = Y cjd(z;by), 1)
7=1

where w, = (¢s,bs) € 2, C R*(+1D) g o parameter vector of the FR and ¢, = (c1,...,¢) ,
¢j € R, b, = (by,...,bs) , b € B; C R';j=1,...,s. {2, is a parameter space of the FR.
#(z;b;) denotes a basis function and a set of basis functions ®,(z) = (¢(z;b1),.--,0(z;bs)) is
called a basis, where s is the number of basis functions . We call ¢, a coefficient vector and b,
a basis parameter vector. A family of FRs is denoted by G, = {g( - ;w;) ; ws € ,}. The FR
given by (1) is a linear combination of basis functions in a basis @ s(z). We call a set B; a basis
parameter space, whose elements are ¢ dimensional vectors. If B; = R! then t can be regarded
as the number of basis parameters. FRs are characterized by its basis parameter space.

For a FR, if |B;=1; j =1,...,s and the basis ®,(z) is linearly independent, the FR
is said to be fixed basis type, where | - | denotes the number of elements in a set. In other
words, when we set B; = {bg} ; j=1,...,s, by which a basis ®,(z) = (¢(z;b}),...,d(z;b}))
is determined, the FR is fixed basis type if the basis is linearly independent. The parameters of
a fixed basis type FR are only the coefficients ; i.e. w, = ¢,. On the other hand, if |B;| > 1
then the FR is said to be variable basis type. The parameters of a variable basis type FR are

pairs of the coefficients and the basis parameters ; i.e. w, = (¢s,bs). The basis of a variable
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basis type FR can be modified according to the basis parameter vector b,. When we choose
b; = b;-, j =1,...,5 so as to hold linearly independency of ¢(z;b;), 7 = 1,...,5 and set
B; = {b},...,b5} ;4 =1,...,s for an integer 3, the FR is said to be discrete variable basis
type. That is, the basis parameter space of discrete variable basis type FR is a finite set while
that of a 3-layered neural network is uncountable, which can be described as B; = R4 for all
J by regarding the input connection weights and the thresholds as the basis parameters. Thus,
discrete variable basis type FRs give a natural restriction of 3-layered neural networks.

Example Let us set d =1 and &,(z) = (z,...,2%). If B; = (i}, i=5-1;j=1,...,s
then we have a basis ®,(z) = (2°,...,2°1) and the basis functions are linearly independent.
Thus, the FR is fixed basis type. On the other hand, if we set B; = {0,...,5}, s <3 < oo for
all 7 then the FR is discrete variable type. Moreover, in this example, the family of the discrete
variable basis type FR includes that of fixed basis type FR. |

For a discrete variable type FR, a basis is determined by choosing a basis parameter
vector from By X --- X B,. Because By =--- = B, and |Bj| =5, the choice corresponds to the
sampling of s elements from a set of size § with replacement. Hence, the number of ways of the
choice is equal to 3°. In the ways of the choice of a basis parameter vector, there exist the cases
that a corresponding basis functions will be linearly dependent ; e.g. in the above example,
b, = (1,...,1), and so on. Indeed, the number of ways of the choice in which a corresponding
basis functions will be linearly independent is equal to the number of ways of the sampling
without replacement. Furthermore, the ordering of elements in a basis parameter vector is not
important because the outputs of the FRs with the same elements of the basis parameter vector
except their ordering are exactly the same. As we shall see later in the section 6., we deal
with the ways of a choice of the basis parameter vector, in which the linear independency of
the corresponding basis functions holds and the ordering of the elements in the basis parameter
vector is not taken into consideration. The corresponding number of ways of the choice is equal
to 5C,.

Throughout this paper, we assume that the number of input points N and input values
{zi;2; € Ri1<i< N} are predetermined. We denote a input vector by zx = (z1,...,zx)%.

Under this assumption, a FR can be described by a vector formulation as follows.

9, = (g(:cl;w,),...,g(a:N;w,))T=d5,ca (2)
o, = (¢17""¢3) (3)
b; = ($(21;6:),9(2;05),...,8(zn;0))T 5 j=1,...,s, (4)

where T denotes the transpose of a matrix?. Since each ¢; is N dimensional vector, rank @, < N
holds. And, it is possible to choose b; = b} ; 3=1,...,N so as to hold linearly independency of
¢;; j=1,...,N. By the choice, N x N matrix @y will be nonsingular. In this case, we reform
the definition of the discrete variable basis type as follows. When we choose b; = b;» ;i=1,...,N
so as to hold linear independency of ¢; ; j =1,...,N and set B; = {b,...,by} ; j=1,...,s,
the FR is said to be discrete variable basis type. That is, we set = N in the previous definition.

1The linear independency of basis functions depends on not only basis functions but also an input vector.
Throughout this paper, the input vector is assumed to be predetermined properly.

2 Although we previously defined a coefficient vector as a row vector, we deal with the coefficient vector as a
column vector in the vector formulation of the FR. But there may be no confusion with this notation.
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For basis functions, the condition
N
1 =
SUCISICINE { y 6
or, similarly,
_J1 (m=n)

is called orthonormality. If ¢; ; j =1,...,s satisfy the orthonormality condition for a fixed
type FR then the FR is said to be orthonormal fixed basis type. On the other hand, when we
choose the b; = b;- ; j=1,...,N so as to hold orthonormality of ¢; ; j = 1,...,N and set
B;={by,...,by} ; i=1,...,5,the FRis said to be orthonormal discrete variable basis type.
Namely, when we set ¢; = (¢(z1;8)),. - d(en;b3)) 5 5 =1,...,N, qb'de)'n =1(m=n); =
0 (m # n) for any m,n (1 <m,n,< N), the FR is orthonormal variable basis type.

3. Regression Model

We assume that the outputs of a target system for inputs z; € R ; i =1,2,... are

generated by adding noise to outputs of a function h;ie.
yi=h(-'ﬂi)+5',‘; 7'=1;2, ) (7)

where ;s are independent random variables with a common normal distribution NV (0,02). The
h is called a true function, which determines an invariant input-output relation of the system.
Now we assume that we observed a set of N pairs of input-output samples, which is denoted by
(z,y)x = {(zi,3:);1 < i < N}. Here, we denote an output vector by yy = (y1,.-.,un)T whose
ordering corresponds to the ordering of @y. Under the setting,

yy=hn+exn (8)
and the distribution of the random vector yy is given by
YN NN(hNaO'EIN)v (9)

where hy = (h(z1),:..,h(zn)) and ey = (€1,...,€N).
Now we describe a generating rule of samples (x,y)y as follows.

yi=g(wi;ws)+ei; t=1,2,...,N, (10)

where ¢; ; i =1,..., N are independent random variables with a common normal distribution
N(0,02). The above representation of the sample generating rule is known as a regression
model. The parameter vector of the model is denoted by 8) = (w,,0?2), which consists of the
parameter vector of the FR and the unknown variance of the normal distribution. We assume
that G,, C G, for s; < sz and there exists s* such that h € G- holds ; i.e. there exists w} € £2,
for s > s*, which satisfies

h(z;) = g(zs;wi) ;5 i=1,...,N. (11)
w? and g( - ;w?) will be refered to as the true parameter vector of the FR and the true FR
respectively.
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We denote a fixed basis type FR and an orthonormal fixed basis type FR by FFR and
OFFR respectively. The regression model using FFR and OFFR are denoted by MF(s) and
MOF () respectively. Since the parameters of both FRs are only coeflicients, MF(s) and
MOF (5) are linear regression models(3]. On the other hand, We denote a discrete variable basis
type FR and an orthonormal discrete variable basis type FR by DVFR and ODVFR respectively.
The regression model with DVFR and ODVFR are denoted by MPV (5) and MPPV(s) respec-
tively. Since both FRs have basis parameters, MPV (s) and MPPV (5s) are nonlinear regression
models[3].

4. Loss Function

We employ the squared error as a loss function ;
r(zi, vi;ws) = {vi — g(@isws)}?5 i =1,..., N, (12)

and define the empirical loss by

— 1 T — 1 - e 1
remp(""-s) = 'N'(yN -9,) (yy—9,) = WZT(m.,y.,w,). (13)

i=1

The estimator of the parameter vector based on the set of samples (#,y)y is denoted by B =
(&s,62), which is defined as the minimizing parameter vector of the empirical loss, that is,

‘:’s = a-rgmin 7'emp(‘-“".s) . (14)
w,ef2,
33 = rexup(as)' (15)

The estimator 8, is the least square estimator. We define the expectation of the minimum of
the empirical loss with respect to the distribution of the samples by

Remp(, V) = Ey,, [remp(@,)] = Ey,, [37], (16)

where Ey [ -] denotes the expectation with respect to the distribution of yy ; i.e. the joint
distribution of y1,...,yx. On the other hand, we define the expected loss by

N
R(ws, N) = Bzy (e 9.7 (2w =9,)| = Bz, H >rla zi;ws)] : a7)

i=
where zy = (z1,...,2y) denotes an independent and identically distributed random vector with
yy and Ez, [ - ] denotes the expectation with respect to the distribution of zy. The expected
loss at the least square estimator, R(&,, N), is also a random variable since it is a function of
yx- Therefore, by taking the expectation of R(®,, N') with respect to the distribution of yy,

we define the expectation of the expected loss at the least square estimator by

R(s,N) = By,, [R(@s, N)]. (18)

As mentioned in the introduction, the model selection criterion can be constructed as the
unbiased estimator of R(s, N) based on remp(@,). Generally, the estimate of R(s, N) based on
Temp (@) is biased. The expectation of the bias is given by the difference between the expectation
of R(@,, N) and that of remp(@,), which are R(s, N) and Remp(s, N) respectively. For example,
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in case of linear regression models, it can be shown that

R(s,N) = Remp(s,N) + 202 N (19)
By using this relation, the model selection criterion PSE[4] is given by

PSE(s) = remp (@) + 26°~, (20)

where 52 is a proper estimate of o2. Thus, it is essential to derive R(s,N ) and Remp(s, N)
for an assumed model or a FR. In the following, Remp(s, N) and R(s, N) are simply called the

expectation of empirical loss and the expectation of expected loss.

5. The Statistical Properties of M (s) and MO9%(s)

In this section, as a preliminary, we briefly summarize the statistical properties of the
MPF(s) and MOF (5), which are linear regression models. Moreover, MOF (5) is a special case
of MF(s). In the following, we assume that h € G,.

By solving the normal equation :

(QZQs)Es = 453111»/, (21)
the least square estimator of coefficient vector of MF(s) is given by
e = (279,)7 Py (22)

Under the assumption of normality of the noise term in (7), the distribution of the least square

estimator ¢, is given by
2 ~ N(ct, o2(®Td,)71). (23)
In case of MOF(s), QZ‘Q, = I, holds by the orthonormality of the column vectors q,‘)j 1] =

1,...,s of ®,, where I, denotes the s x s unit matrix. Thus, the least square estimator of the
coefficient vector of MOF (s) is given by

& =dTyy. (24)

The elements of (24) is written by
N
& = uidlzib); =1, (25)
i=1

From the relation (23), the distribution of &, of MPF(s) is given by
E.s ~ N(C:, O'ZI_,), (26)

where w* = ¢} = (c},...,c}) in (11). Hence, by the property of multivariate normal distribu-
tions, each ¢j has the normal distribution N(cj, 02) and those are independent.

From this fact, (cJ -ct ) /o2 ; j =1,...,s are independent random variables with a
common x? distribution with 1 degree of freedom Thus, we obtain

3

Z(c]-—c) Jo? ~x,, (27)

i=1
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where the x2 denotes the x? distribution with s degrees of freedom.. We denote Remp(s, N) and
R(s, N) of MPF(s) by Remp(s,N) and ROF (s, N) respectively..
On the other hand, by using (24), the empirical loss of M?F(s) given by (13) is easily

reformulated as follows.

ren () = A - 278, (28)
Then, taking the expectation of (28) with respect to the distribution of y,, we easily obtain
ROE (5, N) = 0% + Thhy — + By, [e2]. (29)
On the other hand, from (17), we obtain
R(&,,N) = o? +lh7,;hN - lhgqs,,a, L —eTe,. (30)
N N N
Hence,
OF 2, 1l.p 2 7 1 SN
ROF(s,N) = 02 + S-hihy — = h} By, [8.8]+ < By, [e72,]. (31)
In the remainder of the paper, we assume that hy = o0 ; h(z;)) =0; i=1,...,N. In

this case, AIC can not be derived for 3-layered neural networks[8]. Therefore the assumed case
is important in the analysis of FRs with adaptive basis while it is the simplest case. Under the
assumption, yy = €y, thus, the distribution of ¥ is given by

yy ~ N(o,07Iy), (32)

which means that y; ; 1 =1,...,N are independent random variables with a common normal

distribution N(0,02). We will use the term “the set of samples is a Gaussian noise sequence”

*

to refer this assumption. Furthermore, c;

= 0 because the ¢; ; j = 1,...,s are linearly
independent. Thus, the following relation holds by (26).

¢, ~ N(o,07Iy), (33)

which means that ¢; ; j = 1,...,s are independent random variables with a common normal
distribution N(0,02). Under the above assumption, we can easily obtain the following theorem
by putting hy = o into (29) and (31) and by taking into account (33).

Theorem 1 Let us define

COF(s,N) = Ey

N

g } - (34)

Then, COF (s, N) is given by

COF(s,N) =s (35)
and the following equations hold.
OF 2 a? OF
RON(s,N) = o2 = 3CO(s,N) (36)
2
ROF(s,N) = 03+%00F(3,N). (37)

It can be shown that this theorem holds for M¥(s), thus for MOF(s), without assuming
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that Ay = o or the normality of the noise term. We however omit the detail here.

6. Parameter Estimation Algorithm of MPV(s)

As mentioned in the section 2., in case of MPV (s), there exist the situations that the
basis functions of a FR will be linearly dependent according to-a-choice-of the basis parameter
vector. The error given by such FR must be larger than the error given by the FR with the
linearly independent s basis functions. Thus, in the choice of a basis parameter vector, it is
sufficient to take into account the basis parameter vector by which the basis functions will be

linearly independent. The parameter estimation algorithm of MPV(s) is as follows.
The parameter estimation algorithm of MPV (s)

stepl  We determine a basis parameter vector by m = (bim,---,bsm), bjm € B; and obtain
the least square estimate .of the coefficient vector €,m = (Ci,m,...,Csm) at the basis
parameter vector by, by solving the normal equation (21). Remark that, for any
J1, J2, if j1 # jo then bj, m # bj, m and, for any my, my, if my # mg then there exists
at most one element of b, ,,, which is different form every element of b, ,. Hence,
1<m < NCs = M,. Set Opm = (@oym, 02 m), @sym = (€5,m, bs,m). Repeat the ahove
procedure for all m.

step 2  Define m* so as to satisfy

A2
m* = argmin &} ,. (38)
1<m<M,

Then, the least square estimate of the parameter vector of MPV(s) 8 = (&,,52) is

. . ~ _ (M~ ~ _ =~ T ~2 __ A2
given by putting &, = (,,bs), €5 = C e, bs = by =, 55 = 5 e m|

Obviously, this algorithm gives us the global least square estimate of the parameter vector
of MPV (s) in the parameter space £2,. The step 1 corresponds to the estimation of a coefficient
vector, which is the same procedure for M¥ (s), and the step 2 corresponds to the estimation of
a basis parameter ; i.e. the selection of the basis which gives the least square error for a given

set of samples.

7. Parameter Estimation Algorithm of M9PPV(s)

In case of applying the parameter estimation algorithm of MPV(s) to MOPV(s), by
recalling (28), the minimum of the empirical loss at m is given by

. 1 1. . 1, 1&,
"'emp(cs,m) = N?IN'!JN - Ncg,mcS,‘m = N Zy,' - ﬁ Echn‘ (39)
=1 7=1

Because the first term does not depend on the FR, we determine m* so as to maximize Z;=1 E]z’m

in the step 2. That is, (38) in the step 2 can be rewritten as

L
m* = argmax &2 . 40
ISmSME im (40)

Moreover, by using the orthonormality of the basis, the parameter estimation algorithm of
MODY (5) can be simplified as follows. Because b; € B; = {b},...,by} ; i=1,...,s, every
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element of bym = (b1,m,..-,bs;m) is in {b},...,by}. On the other hand, by setting s=N
and by = (b},...,bly) in (24), we can obtain the least square estimate of the coefficient vector
ey = (c1,---,¢n). The estimated coefficient. vector. is denoted by €, = (¢1,...,¢n). Because
¢; depends only on ¢(z;b}) as seen in (24), the estimate of a coefficient vector E,,m at a basis
parameter vector bym = (b1m,--.,bsm) = (b),,---,bj,) is given by Cm = (@Lmy- -+ Com) =
(jyy---»65,). That is, for any m, each element of c,ym is sure to be in {¢1,...,cx}. Hence, we
denote by {&,,...,éy} the estimated coefficients {¢i,...,En} rearranged in increasing order
of {E%,,E%,} Then, in the step 1, there exists the m such that €,m = (C1,m,--- 1Cam) =
(e,,---,c1,) holds and such m satisfies (40) ; i.e.

1<rrn"zz}il c]‘m = Z = Z <, (41)

We summarize the parameter estimation procedure of MODPV () for (z,y)n as follows.
The parameter estimation procedure of M9PV (s)

step ' By applying (24) under the setting of s = N and by = (b},...,bly), we obtain the
least square estimate of the coefficient vector €, = (€1,...,Cn)

step 2’ Reorder E%, e ,E%, in increasing order of magnitude and obtain Eﬁ,. .. ,E'lz o Where
& >...2F,. Set

a=2ey, ... 0=, (42)
bi=by, ... ,by=by,, (43)
and obtain €, = (¢1,...,%), b, = (31,...,3,). Hence, set &, = (E,,B,) and obtain
6, = (G,,&f), where 52 = Temp(@s)- O

For MO9PV (s), we define

1 g 1 ¢
COPY(s,N) = By, | 52 C?} =By, |77 22 Eﬁ] (44)
¥ =1 * j=1
oDV oDV :
and denote Remp(s,N) and R(s,N) by Rg." (s, N) and R (s, N) respectively. Then, under

the assumption that the set of samples is a Gaussian noise sequence, the following holds.

Theorem 2

2

RODY (s, N) = o2 = 22 O (5, N) (45)
2

RODY (s N) =02+ UN COPY (5, N) (46)

Proof By applying the parameter estimation algorithm of MPY (s) to MODV (5), the empirical
loss is given by (39) at every m. Hence,

1Y 1
Tomp(Eome) = =D 6= = DT e

- N 1.=1€‘ Nj=1clj ( )
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holds because y = €y under the assumption. Taking the expectation of the both side of the
above equation with respect to the distribution of yy, we obtain (45). On the other hand,
because zy is an independent and identically distributed random vector with yy,

N
~ 1 ~
R@,,N) = Bzy |5 21z~ 9(z:0)}"

=1

1 N

o2+ = 9(2is @) (48)
N =1
Because the estimated output of the ODVFR is given by

g(wl;‘:’s) = izqub(mi;blj) (49)

i=1

and from the orthonormality of the basis,

=3 9(zi;3,) = = )7, (50)
N i=1 N j=1 !
holds. Thus, (48) can be rewritten as
—~ 2 1 - ~2
R(@,,N) = a:+NZc{j. (51)
, et

By taking the expectation of the both side of (51) with respect to the distribution of yy, we

obtain (46). |
By (33), we know that ¢; ; j =1,..., N are independent random variables with a common
normal distribution N (0,02). Hence, ¢2/02 ; j = 1,...,N are independent random variables

with a common x? distribution. Therefore, by taking into account the way of the choice of

Clyy- -1 €1, in the parameter estimation algorithm and the definition of CODV (s, N), the calcu-

lation of COPV (s, N) reduces to the calculation of the expectation of the sum of the s largest

values in an sequence of the independent N random variables with the common X% distribution.
Let us define

— 1 K,
Us=—=) ¢, 52
Uz = 1; ( )
and
COPV(s,N) = By, [ T, ]. (53)

In this paper, we give lower and upper bounds for CODV (s, N), by which we obtain lower and
upper bounds for R9PV (s, N) and RODV (s, N). In the following, we omit yy from Ey,[- ]-

emp
The following lemma is basic throughout this paper.

Lemma 1 Let U and V be random variables with finite mean. If U >V then E[U] > E[V].

We may use above lemma without proof of the finite mean property of random variables
because the random variables, for which we apply the above lemma, are obviously finite if the

number of samples is finite as will be seen in the following.
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Lemma 2 Let Uy,...,Upy be independent random variables with a common X3 distribution. Let
us define
=M
U = A%, Un (54)
and
c*2,M)=E [UM] . (55)

Furthermore, let §(M)(> 0) be a proper function of M such that (M) — 0 as M — co. Then
2-{y+logM —6(M)} <C*(2,M) < 2-{y+logM + 6(M)} (56)
and §(M) can be taken arbitrarily small, where v 1s the Euler constant ; i.e. y = 0.5772156--- .

Proof Since the x3 distribution is the same as the exponential distribution, the density and

the distribution of U,, are respectively given by

fw) = e 6
Fu) = /O“f(u)du=(1—e~“/2). (58)

Because Ui,...,U) are independent and identically distributed, the density of T is given by
fm(u) = MA{F@)}¥™" f(u). (59)

Thus, by applying the binomial formula and the integration by parts, we obtain

cr M) = /0 " ufgae (u)du

M3 o M-1 1
= 2M mzzo(—l) ( m )m, (60)
where
{ M M!
< m ) = M —m)! (61)

denotes the binomial coefficient. Since

1 (M-1\_1( M
m+1 m T M\ m+1

M M
o (%)s-2s @

hold, the following equation is obtained.

and

M
cre,M)=2%"

m=

-
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Finally, by using the relation

a1
Jim {mz=1 — logM} =7 (63)
and taking §(M) properly, (56) is proved. a

First, we will give a lower bound for CODV (s, N), which is denoted by CODV (s N).
Lemma 3
COPY(2,N) > COPY(2,N) =2 {y+log M - §(M)}, (64)

where M = I'%] Here, [q] denotes the integer which does not exceed q.

Proof When we define
Vi=@+&)/o, Va=@G+)/ol, ... (65)

the number of the above random variables is at least M. Since ?:'12/ o2; j=1,...,N are inde-
pendent random variables with a common X% distribution, V1,...,Vy are independent random

. . 9 . . .
variables with a common x% distribution. Hence, when we define

—M = 122)34_‘[,,, (66)

we can apply Lemma 2 to Vs and obtain

E [VM] =C*(2, M). (67)
On the other hand, since, & > &, > & for  # 1 # o,
@ +e&)/[0F2Va (68)
holds for any n < M. Thus,
U= (& +)/02 2 Vu (69)

From this inequality, (67) and Lemma 1, we obtain
COP(2,N) = E [T2] > B [V = C*(2, 0. (70)
By setting COPV (2, N) = C*(2, M), we obtain (64). a
Next, we give the following lemma.
Lemma 4 Fors2> 1,

COo%Y(s,N) < s-COPV(1,N). (71)

Proof When s =1, (71) obviously holds with equality. When s > 2,

- 1 & 1 . —
Vi= gl @ <gedf=sT (72)
* p=1 *

holds because E?l > E'lz“ for any n < N. By this inequality and Lemma 1, we obtain (71). ]
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Lemma 5 For s> 2,
COPY (5, N) > COPY (s, N) = 2- {y +log M — 6(M)} . (73)
And
COPY(1,N) > COPV(1,N) =y +log M — 6(M). (74)

Proof Fors > 2,
1 SN
= Eczn =Ua+— D & (75)
0‘* n= * =3

holds. Because & > 0, Uz < U, in the above equation. Hence, we obtain (73) by Lemma 1 and
3. On the other hand, when we set s = 2 in Lemma 4,

COPV(1,N) 2 £ COPV (2, N) (76)
holds. Thus, by putting

oY (1,N) = £ COPV (2, V), (77)
we obtain (74) from Lemma 3. ]

As shown in Lemma 2, COPY (s, N) goes to infinity as N — oo. Consequently, COPY (s, N)
goes to infinity as N — oo while CO9F (s, N) does not depend on N, which is given in Theorem
1. This is a remarkable property which is induced by the selectability of basis functions. In the
following, we will give an upper bound for COPV (s, N), which is denoted by EODV(S, N).

Lemma 6 Fors>1,

COPY (5, N) < TPV (s,N) =52 {y +1log N + 6(N)}. (78)

Proof When we write U[ = ?:?/af ;l=1,...,N,U;; l=1,...,N are independent random
variables with a common x distribution. We choose Vi,...;Vy with a common x% distribution
so as to hold the independency of the random variables W; = U+ V; ; I = 1,...,N. Then,
W;; I =1...N are independent random variables with a common X3 dlstnbutlon By defining

~ = max W, (79)

U; < Wy holds because V; > 0. Thus, by Lemma 1 and 3,
COPV(s,N)=E[U,| <s-E[U1| <s-E [Wn] =s-C*2,N). (80)

holds for any s > 1. Hence, we immediately obtain (78) by Lemma 2. O

Taking into account the fact that C°PY (s, N) an _ODV(s N) are of the order of log N

if s is fixed, the following theorem is obvious from Theorem 2, Lemma 3, 5 and 6.

Theorem 3
‘ 2
ol - ”N"’DV( ,N) < RGDY (5,N) < 0% = 22 COPV (s, N) (81)
2
72+ %2 COPY (s, N) < ROPY (5, N) < 02 + T2 07V (s, ) (82)
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and, under the fired number of basis functions,

COPV(s,N) =0 (logN). (83)

8. Discussion

In this section, based on the previous results, we discuss about the expectations of the
minimum of empirical loss and the expected loss of MODV (5). Furthermore, we compare the
statistical properties of MPPV(s) with that of MOF(5). In the following, when we mention
the behaviour of MOPPV (s) and M9F(s) with the increase of N, we keep the number of basis
functions fixed.

When we define BOF (s, N) = 62C9%¥(s,N)/N in Theorem 1, Reonf;(é, N) is smaller than
the true variance o2 by B?F (s, N) and, conversely, ROF(s,N) is larger than o2 by BOF (s, N).
BOF (s N) arises obviously from the parameter estimation. On the other hand, in Theorem 2,
when we define BOPV (s, N) = 62 COPV (5, N)/N, Rglﬂ,v(s, N) is smaller than the true variance
o2 by BOPV (s, N') and, conversely, RODV (s, N) is larger than o2 by BOPV(s,N). It is clear
that BOF (s, N) is of O(1/N) by Theorem 1 while BODV (s, N) is of O(log N/N) by Theorem 3.

Thus, we immediately obtain the following corollary.

Corollary 1 Under the fized number of basis functions,

Jim ROL(s,N) = lim ROV (s,N) =0l (84)
lim R9F(s,N) = lim ROPV(s,N) =02 (85)
N—oo N-x

Since the estimated variance G- is defined as the empirical loss, (84) asserts that the
estimated variance of MOPV(s), as well as that of MOF(5), is an asymptotically unbiased
estimate for the true variance. Hence, in both of MPPV(s) and MOPF(s), if the number of
samples is sufficiently large, the estimated output is close to the output of the true function

: ie. h(z;) = 0; 4 =1,...,N. However, because the convergence rate of Rg,,ﬂ,v(s, N) is
slower than that of Rgf;,(s, N), the sample size needed for MPPV (s) is larger compared to the

sample size needed for M9F (s) if we keep the same deviation between the true output and the
estimated output for both of MPPV (5) and MOF(s). Furthermore, by Theorem 2 and Corollary
1, we can conclude that ROPV (s, N) and ROF (s, N) asymptotically attain their minima because
BODV(s N),BOF(s,N) > 0.

CODV (5, N) increases monotonically with the increase of N by Theorem 3. By the def-
inition of the DVFR, the basis parameter space is spread as N increases, which is regarded as
increasing in variety of the FR. However, by Corollary 1, the difference between Rg,ﬂ," (s,N)
and o? decreases in the order of log N/N. Consequently, the FR cannot pursue the large size
samples although the variety of the FR increases with the increase of the number of samples.
This is due to fixate the number of basis functions.

By Theorem 1 and 3, there exists the N such that COF (s, N) < C9PV (s, N) if the number

of basis functions is fixed. Thus, the following is true.

Corollary 2 When the number of basis functions s is fired and s < N,

ROE (s,N) > R9DV(s,N) (86)

emp

ROF(s,N) < ROPV(s,N) (87)
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holds.

That is, the minimum of the average squared error given by the ODVFR may be smaller
than the minimum given by the OFFR while the expected loss at the estimated parameter vector
for the ODVFR may be larger than the expected loss for the OFFR. In the above corollary, (86)
agrees with the result in function approximation[5][12], in which the capability of neural networks
brought about by the selectability of basis functions has been shown. Generally speaking, good
fitting to the given samples induces bad generalization for unseen samples. The above corollary
tells us that this is ture in our situation and the phenomenon is more remarkable for the ODVFR
compared to the OFFR. Thus, the number of samples needed for the ODVFR is larger compared
to the number of samples needed for the OFFR to identify the true function buried under noise,
which is mentioned above.

Furthermore, let us devote a little more space to discussing the model selection problem

of M9PV (s). The following relations hold by Theorem 1 and 2.

, ‘
0.*

ROF(s,N) = Rgf;,(s,N)+2ﬁCOF(s,N) (88)
2

RODV (5 N) = Rg,ﬂ,v(s,N)—!-?%[’iCODV(s,N). (89)

As mentioned in the last part of section 4., the relation for MPF(s) is exactly the same as the
relation employed in PSE[4] since COF(s,N) = s. The PSE is a model selection criterion in
which Reonﬁ,(s,N ) and o are substituted by the empirical loss and the proper estimate of the
variance respectively. The second term of PSE is determined by CPF(s, N), which penalizes
the model complexity. By Theorem 1, Rg;ﬁ,(s, N) decreases as COF (s, N) increases. The same
is true for MPPV (s) by Theorem 2. Under the least square error method, the average squared
error decreases as the complexity of the FR increases. Thus, C9PV (s, N) and C9F(s,N) can
be regarded as the complexity of each FR. Consequently, we should notice that, under the fixed
number of basis functions and the fixed number of samples, the ODVFR is more complex than
the OFFR by Corollary 2. Moreover, it is found that we can not directly apply the PSE for
MODV(5) by Theorem 3. However, unfortunately, the above discussion holds provided only
that the set of samples is a Gaussian noise sequence. Therefore, we need more general results
to discuss about the adequate model selection criterion for MPPV (s) and this is a part of the
future work.

Finally, we consider the variable basis type FR with the continuous basis parameters. We
denote the family of the ODVFR by G9PV. We define an orthonormal continuous variable basis
type FR as follows. We call a FR an orthonormal continuous variable basis type, which satisfies
that B; = R'; j =1,...,s and GOPV C GOCV, where GPCV is a family of orthonormal
continuous variable basis type FRs. The orthonormal continuous variable basis type FR is
denoted by OCVFR. In the above, ¢t corresponds to the number of basis parameters in a basis
function. The regression model using the OCVFR is denoted by M9V (s). The Remp(s, N)
of MOCV (s) is denoted by ROCY (s, N). The Temp(@,) of MOPV(s) and that of MOCV(s) are

emp
obv (&,) respectively. Because 0 < R9CY (s, N), RO9DV(s N) < o2

denoted by 92V (@,) and r§5Y onp oy

holds provided that the set of samples is a Gaussian noise sequence, Rg,%v(s, N)and Reonﬂ,v(s, N)

are bounded. On the other hand, because GZPV C GICV holds, rgﬁ,v(@,) < rODV(5,) under

emp

the least square error method. Thus, by Lemma 1 and Theorem 3, we obtain the following

corollary.
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Corollary 3 When the set of samples is a Gaussian noise sequence with the mean 0 and the

variance o2,

2
RSV (s,N) < 02 = 2 COPV (s, N). (90)

emp

Generally speaking, in the parameter estimation of MOCV (), there is no guarantee to be
obtained the global minimum of the empirical loss. So, we should remark that the above corollary

holds only if the global minimum is attained in the parameter estimation algorithm.

Example Let the range of inputs be [0,27) and determine the N input points so as to satisfy
z; = 2n(i—1)/N ; i = 1,...,N. In this situation, it can be shown that the basis described

below satisfies the orthonormality condition.

In the case that N is even :

1 cosz sinz sin(% —1)z cos %’—m (01)
VN’ vN/2' /N2 N2 ' VN
In the case that N is odd :
1 cosz sinz cos([¥1)z sin([¥])z (92)
VN' /N2 /N2 /Nj2 ' N2 |’

Let us consider the case that N is odd. We choose b} = (0, ) so as to satisfy sin(x) = 1/v/2
and determine by = (1,7/2), by = (1,0), by = (2,7/2), b5 = (2,0), ..., byy_; = ([¥1,7/2),
'v = ([51,0). Then the basis parameter space is given by Bj = {b},...,bly}. The basis is

constructed as follows.

(sin(by - Z)/\/N/2,sin(bz - Z)/4/N/2,...,sin(b, - Z)/{/N/2) , bj € Bj ; j=1,...,s  (93)

where T = (z,1) and - denotes the inner product. The FR. prescribed by the above basis is the
ODVFR. Thus, Theorem 2, 3 and Corollary 1, 2 hold for the FR. Now, we consider a 3-layered
neural network with one-input and one-output, which has threshold to hidden layer. And the
networks has the sinusoidal function in hidden layer and linear function in input and output
layers. Then the network with s hidden units is the OCVFR. Hence, if the global minimum of
the average squared error can be obtained by learning, Corollary 3 holds for the network. O

9. Conclusion

In this paper, to focus on the selectability of basis functions in the context of the regression
model, we analyzed the statistical properties of the orthonormal discrete variable basis type
function representations by taking the squared error as a loss function. We showed that the
calculation of the expectations of the minimum of the empirical loss and the expected loss with
respect to the joint distribution of the given samples is reduced to that of the expectation
of the sum of the s largest values of the sequence of independent random variables with a
common x? distribution with one degree of freedom, where s corresponds to the number of basis
functions. Along this line, we obtained lower and upper bounds for the expectations. Based
on these results, we obtain the fact that the minimum of the empirical loss is asymptotically
unbiased and the expected loss attains its minimum in the limit. Furthermore, the results tell
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us that the expectation of the minimum of the empirical loss given by the orthonormal discrete
variable basis type function representations is smaller than the expectation of the minimum
given by the orthonormal fixed basis type function representations and the converse relation
holds for the expectation of the expected loss. The results also tell us that the model selection
criterion for the regression models using the orthonormal discrete variable basis type function
representations should be different from the PSE. Furthermore, by using these bounds, we
obtained an upper bound of the expectation of the minimum of the empirical loss given by the
_orthonormal continuous variable basis type function representations. And we obtained an upper
bound on the expectation of the minimum of the empirical loss for a specific type of 3-layered
neural network.

Our results obtained here are restricted in terms of the function representation. Thus,
we should extend the results for the case of discrete variable basis type function representations
and function representations with continuous variable basis functions, which include 3-layered
neural networks. And, although we dealt with the case that the set of samples is a Gaussian
noise sequence, we will consider the case that the set of samples in which the true function is not
0 or the true function is not in a class of function representations. Furthermore, we will consider
a reasonable model selection criterion for the variable basis type function representations.

References

[1] Akaike H. : “Information Theory and an Extension of the Maximum Likelihood Principle”,
In 2nd International Symposium on Information Theory, B.N.Petrov and F.Cséki eds.,
Akadémia Kiado, Budapest, pp.267-281, (1973).

[2] Akaike H.: “A New Look at the Statistical Model Identification”, IEEE Trans. Automat.
Contr., AC-19, 6, pp.716-722, (1974).

memiya T. : vanced econometrics”, Basil Blackwell Ltd., (1985).
3] A iya T. : “Ad d ics”, Basil Blackwell Ltd 98

[4] Barron A. R.: “Predicted Squared Error : A Criterion for Automatic Model Selection”, In
Self-Organizing Methods in Modeling, S. Farlow, ed., Marcel Dekker, New York, pp.87-103,
(1984).

[5] Barron A. R. : “Universal Approximation Bounds for Superposition of a Sigmoidal Func-
tion”, IEEE Trans. on Information Theory, 39, 3, pp.930-945, (1993).

[6] Fogel D.B. : “Criterion for Optimal Neural Network Selection”, IEEE Trans. on Neural
Networks, 2, 5, pp.490-497, (1991).

[7) Geman 8., Bienenstock E. and Doursat R. : “Neural Networks and the Bias/Variance
Dilemma”, Neural Computation, 4, pp.1-58, (1992).

[8] Hagiwara K., Toda N. and Usui S. : “On the Problem of Applying AIC to Determine the
Structure of a Layered Feed-Forward Neural Network”, Proceedings of International Joint
Conference on Neural Networks; Nagoya, Japan, Vol.III, pp.2263-2266, (1993).

[9] Kurita T. : “A Method to Determine the Number of Hidden Units of Three Layered
Neural Networks by Information Criteria”, Trans. IEICE, Vol. J-73-D-II, pp.1872-1878,
(1990), in Japanese.

[10] Moody J. E. : “The effective Number of Parameters : An Analysis of Generalization
and Regularization in Nonlinear Learning Systems”, In Advances in Neural Information
Processing Systems 4, pp.598-605, Moody J. E., Hanson S. J. and Lippmann R. P. eds.,
Morgan Kaufmann, {(1992).

[11] Murata N., Yoshizawa S. and Amari S. : “Network Information Criterion — Determining



On the Statistical Properties of Function Representation 81

the Number of Hidden Units for an Artificial Neural Network Model”, IEEE Trans. on
Neural Networks, 5, 6, pp.865-872, (1994).

[12] Murata N. : “Function Approximation by Three-Layered Networks and Its Error Bounds
— An Integral Representation Theorem”, Technical Reports, Mathematical Engineering
Section, METR. 94-19, Univ. of Tokyo, (1994).

[13] Rumelhart D.E. and McClelland J.L. (Eds.) : “Parallel Distributed Processing”, MIT
Press, (1986).



