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Abstract

Effects of loading path on the ultimate strength and the moment-curvature relation of com-
posite cross sections subjected to axial load and biaxial bending were investigated by analyz-
ing four kinds of cross section: steel wide-width H-shape, steel square tube, concrete-filled
steel square tube and SRC containing steel wide-width H-shape. Three types of loading path
were considered: i) monotonically increasing bending moment M x with constant M _, ii) pro-
portional loading with a constant ratio of bending moments, M y/M v and iii) proportional
deformation with a constant ratio of biaxial curvatures, ¢ y/¢ - It was found that the same
point on the ultimate strength interaction was reached regardless of the loading paths, the
maximum values of bending moments may be different from those at the ultimate strength
point on the interaction, in the case of the cross section of which flexural strengths about two
principal axes were largely different, and the strength deterioration after the maximum strength
attained appears most severely in the case of loading type with constant M y

Keywords: Biaxial bending, Ultimate strength, Numerical analysis, Moment-curvature
relations, Beam-column, Steel-Concrete composite cross section

1. Introduction

Reinforced concrete column with a wide-flange steel encased is frequently encountered in the lower stories
of the high rise building, and this type of column is regarded as steel reinforced concrete column. In the previous
days, encasing structural steel columns in concrete was a widespread practice for fire protection purpose only, and
the increase in stiffness and strength of the column resulting from the encasement was not taken into consideration
until some years later. With the development of the theory on the strength of reinforced concrete column section
under the axial load and uniaxial bending moment, the ultimate strength of concrete encased steel column under
such loading condition has been investigated. It became known that the ultimate strength of a relatively short steel
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reinforced concrete column under uniaxial compression was equal to the simple sum of the strengths of steel and
effective reinforced concrete sections. It was also confirmed by experimental works that the application of the
ultimate strength theory on a steel reinforced concrete section under combined axial load and uniaxial bending
would estimate well the real strength of such a section.

When a building is subjected to the horizontal loads in an arbitrary direction, biaxial bending moments as
well as the axial load act on the column section. In such a case, the ultimate strength of section is expressed as an
interaction surface in the general force space, and the ultimate strength theory developed for the uniaxial bending
may be extended, although the formulation of the problem is quite complicated.

In 1956, ACI-ASSE Joint Committee 327 published a report summarizing the method of ultimate strength
design of reinforced concrete members, where the problem of biaxial bending was not mentioned. Later, Whitney
and Cohen (1956) showed the detail of analysis and design of reinforced concrete columns under uniaxial bending
based on the ultimate strength, and briefly indicated how to solve the problem of the biaxial bending. AU (1958)
seems to be the one that first published the detail of the formulation of the interaction relationship between the axial
load and biaxial bending moments. When a rectangular reinforced concrete cross section of subjected to axial force
N and bending moments, Mx and My’ about its principal axes, x and y, respectively, the interaction relation giving
the ultimate load carrying capacity may be presented as a surface in the N-M x'My coordinate system. Bresler
(1960) tried to approximate the interaction curve between ultimate values of Mx and My at constant value of N in

M, )“ (My )“
+|55~=| =10 (1)
(Mx() MyO ’

where M 0 and M 30 are the ultimate moments of the section under the axial load N and uniaxial bending about x

the form

and y-axis, respectively, and a is an exponent depending on column dimensions, amount and distribution of steel
reinforcement, stress-strain characteristics of steel and concrete, amount of concrete cover, and arrangement and
size of lateral ties or spiral. Numerically computed values of o were compared with experimental results. Bresler’s
work was quoted in Commentary on Building Code Requirements for Reinforced Concrete - ACI 318-63 (1963).
Similar works were presented by Furlong (1961) and Pannel (1963), and the latter showed the results of the para-
metric study on the factors affecting the value of o.. One of few experimental results of the ultimate strength of
reinforced concrete section under biaxial bending was provided by Meek (1963), and Weber (1966) prepared de-
sign charts for the case of diagonal bending of square reinforced concrete sections with symmetrically arranged
reinforcing bars in four faces, with amount and arrangement of reinforcing bars being chosen as parameters.

Research works mentioned above all dealt with the reinforced concrete sections under biaxial bending, and
assumed Whitney type stress distribution in concrete, i.c., rectangular stress block with 0.85 fC’, where fC’ is the
cylinder strength of concrete. Unfortunately, very little work has been done on the biaxial bending problem of steel
reinforced concrete section. Brettle (1971, 1973) presented numerical results for the interaction surface of the case
where wide-flange steel was encased in rectangular or circular reinforced concrete section, assuming the stress-
strain relation of concrete to be elastic-perfectly plastic. Design charts were furnished in his works in the form of
relations between the ultimate axial load and eccentricity with the ration of the steel area to the concrete area as a
parameter. Biaxial interaction curves have been numerically investigated by Matsui, Morino and Ueda (1984),
Kawaguchi and Morino (1992), and Tsutsui and Sera (1992) for SRC sections containing H- and cross H-steel and
concrete-filled steel tubular (CFT) section, and the value of the parameter a in Eq. (1) was discussed. As to the
experimental investigation of the biaxial interaction curves, very few work has been done except for the work by
Morino, Matsui and Watanabe (1984) and Morino, Uchida and Ozaki (1987). Thorou’gh reviews of the general
research works concerning the steel reinforced concrete members were given by Mcdevitt and Viest (1972, a and b)
and Wakabayashi, Naka and Kato (1972).
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As revealed in the course of the literature survey, no research was found which mentioned the effect of
loading procedure, although some tests and analysis about the column subjected to biaxial bending have been
carried out, and the beneficial data have been obtained, as described above. The purpose of this investigation is to
clarify the effect of the loading procedure on the ultimate strength by numerical analysis which is based on the
moment-curvature relation considering the strain reversal and the local buckling of steel elements.

2. Method of Analysis
2.1 Analytical model

The wide flange, the square hollow section, the concrete-filled steel tube and the wide flange section en-
cased in the concrete were investigated. The shapes and the dimensions of the cross sections are shown in Fig. 1.
The cross sections were assumed to be formed by the straight plate elements, and no curved part existed. The
stress-strain relations of steel, reinforcements and concrete were assumed as shown in Fig. 2. The relation of the
steel contains the stress reduction part caused by the local buckling on the compressive side, which was expressed
by the authors (1991) in detail, and those of the reinforcement and the concrete were expressed by the bilinear
shape. The strain hardening of the reinforcement were considered. The tensile stress was neglected and the ultimate
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strain were set equal to 0.4 or 0.6 % in the case of the concrete. Materials assumed here were SM490 class (
F=323.4 Nimm?) for steel, SD40 class ( F=211.6 N/mm?) for reinforcement, and the 300 kgffcm? for cylinder strength
concrete. Other parameters for the stress-strain relations are shown in Table 1.

Table 1 Parameters

st EGN/mm?) 205.8
LE&N/mm?2) 205.8
GPC(N/mmZ) 196

u‘{m(N/mmz) -196
s O Nmm?) | 3234
<10, (N/mm2) 288.6

st€u (%) 0.14
stéer (%) 0.67
£, (%) 0.6(CFST)
conu 0.4(SRC)

2.2 Moment-curvature relations

The moment-curvature relations about each major axis were calculated for the cross-section subjected to the
axial load and the biaxial bending. On the assumption that the plain of the cross-section remains plain, the strain
distribution in the cross-section subjected to the axial load N and the biaxial bending moments Mx and M y are as
shown in Fig. 3. Suppose that the strain at the center of gravity of the cross-section is denoted by €y the curvature
about the bending axis by ¢, and the inclination angle of the bending axis against the x-axis by 6 p then the curva-
tures ¢x and ¢y about x- and y-axis are given as

(¢x,¢y)=(¢c0s9f,¢sin9f) )

Thus, the strain € at a reference point in the cross-section (xi, yl.) is given as

€=+ 0yx; Op) 3)

y
Fig. 3 Strain distribution
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where the vectors of moments and curvatures are positive when they are directed to the positive
directions of x- and y-axes, and the compressive strain is taken positive. The stress distribution can
be directly obtained from the strain distribution. First, the cross-section is divided into small elements and the
stress is assumed to be uniformly distributed in each element. Then, the axial load N and the bending moment about
Xx- and y-axis (Mx’ My) can be calculated by numerical integration as follows:

N=Zal~0'i
M,=%a;0;y @
My= Ea,-oixi

where a: the cross-sectional area of element;

The moment-curvature relations about each axis of the four kinds of cross-section are calculated according
to the following three loading procedures.

A: keep the moment about y-axis to constant, and gradually increase the moment about x-axis.

B: keep the deformation direction (0 )= ¢y / ¢x) to the value which is obtained at the ultimate point in the

procedure A, and gradually increase moment.
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C: keep the bending direction (op = My /Mx) to the value which is obtained at the ultimate point in the
procedure A, and gradually increase moment.

The flow charts of the analysis are shown in Fig. 4. In the procedure A, the axial load N and the moment
about y-axis M. y were kept to the certain value by controlling the strain at the center of the gravity (eO) of the cross-
section and the curvature about y-axis ¢y while the moment increased. After ) and ¢ were determined, the strain
and stress distribution were computed. Then, the moment M and My were calculated The trial and error proce-
dure between N and €y and between M_ and ¢ Y were solved by using the Newton-Raphson method. In analysis C,
the value o, = M M x) was taken in the trial and error procedure instead of My in the analysis A.

In the analysis B, if the curvature about x-axis ¢ is given, the curvature about y-axis ¢ is simply determined

by the following equation:
9y
~—=tan 0 (5)
Oy s

Then, the only condition to satisfy is the equilibrium of the axial load.
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Fig. 5 Flow chart for ultimate strength curve
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In all analysis, the calculation was proceeded by increasing the curvature about x-axis. The value of M
which had been kept constant was set to the value equal to the long-term allowable bending moment calculated by
Standards for steel structures (1973) or SRC structures (1987).

2.3 Ultimate Strength

The ultimate strength was calculated under the condition that the curvature about the bending axis increased
until the any element of compressive side reached to the strain of the local buckling of the steel or the squash strain
of the concrete. Then, the relation between M X and My was obtained by changing the bending axis. The flow chart
of this procedure is shown in Fig. 5.

3. Analytical Results and Discussion

Figure 6 shows the M x'My relations of cross-section obtained from previous analysis. The analysis A in
which M_ kept constant, and the analysis C in which the bending direction kept to the constant show the linear
relation from the beginning to the ultimate strength on the interaction curve. On the other hand, analysis B shows
the curved relation. However, the ultimate points of all analysis met the exactly same point on the interaction curve
for the ultimate strength of the cross-section subjected to the axial load and biaxial bending.
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The maximum values of M x and My of the wide flange and the wide flange section encased in concrete are
different from the ultimate strengths given by the interaction curves. This is because these cross sections have
unequal strength about each major axis.

Figure 7 shows the moment-curvature relations about each major axis obtained from the analyses A, B and
C. The black triangles show the points where the strength of the cross-section reached the interaction curve for the
ultimate strength. From these figures, the following facts were observed: The peak points of all moment-curvature
relations obtained from these analysis met at the identical point; the initial stiffness of M ¢ relations of the
analysis C was the largest; and the strength deterioration after the peek point of the analysis A was the largest. As
mentioned before, the maximum values of M . and My appeared after and before the ultimate strength point on the
interaction curve, respectively in the analysis B of the section having unequal strength.
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Fig. 7 Moment-curvature relations

4. Conclusion

1) The identical point on the interaction curve for the ultimate strength of the cross-section subjected to the axial
load and the biaxial bending moment was reached regardless of the loading procedure.

2) The moment-curvature curves obtained from three different analyses met at one point, and the value of the
moment at this point is on the interaction curve for the ultimate strength.

3) The ultimate strength point on the interaction curve was not the same as the maximum point of M and M v in the
case of the analysis of deformation angle kept constant (Analysis A) for the section having unequal strength about
each major axis.
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