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Abstract

Elasto-plastic and post-buckling analysis was performed to trace the cyclic
behavior of concrete-filled steel tubular(CFT) beam-columns, which had been
tested previously. Analytical model to solve the deflections of the beam-column
was divided into a number of elements, and the solution satisfying the
equilibrium at each subdivision point was searched by the proposed way of
combining the degrading type moment-curvature relation with the numerical
integration scheme. The effect of local buckling of steel tube was taken into
account by employing the degrading type of stress-stain relation. The paper
first presents how to handle the deflection analysis of a member whose moment-
curvature relation possesses the descending part, which is not possible by the
conventional numerical integration, and discusses the accuracy of the solution
compared with the test results.
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1. Introduction

The building frame consisting of concrete-filled steel tubular (CFT) columns is one of the
hybrid-structures which have been developed recently. The number of construction of CFT system
has been increasing because of its earthquake resistance capacity and low cost of construction. The
research of CFT system has been covering the behavior of short columns (Fujimoto, et al., 1997 a,
b), beam-columns (Inai, et al., 1993, Matsui, et al., 1998, Fujimoto, et al., 1998), connections
(Yoshioka, et al., 1998) and frames (Kawaguchi, et al., 1997). The design recommendations for



40

Akira TSUIKI, Jun KAWAGUCHI and Shosuke MORINO

CFT structures (1997) has been published by Architectural Institute of Japan (ALJ) based on the
result of research activity. According to the investigation on the élastic-plastic behavior of CFT
beam-columns, the limit of the width-to-thickness ration (D/t) was relaxed to the value equal to
1.5 times that for the bare steel tube, counting the restraining effect of the filled-concrete on the
local buckling of the tube in AIJ recommendations (1997). In addition, the filled-concrete can
carry the axial load, bending moment and the shear force, and thus the CFT with large D/t may be
more effectively used in the real practice. In such a case, the local buckling cannot be avoided
under the severe earthquake. The authors (Kawaguchi, et al., 1991, 1992) have been carried out
the experimental investigation on the post-local buckling behavior of CFT beam-columns with
the experiment parameters of D/t, axial load and displacement amplitude, and estimated the strength
deterioration and the energy dissipation capacity. The limits of D/t, axial load and displacement
amplitude were proposed based on the strength deterioration after the local buckling, but however,
it has been impossible to cover the wide range of the experimental parameters, and thus the
simulation by the numerical analysis has been done (Kawaguchi, et al., 1995).

The analysis of the load-displacement behavior of a structural member is usually performed by
the numerical integration scheme by dividing the member into a number of elements. The beam-
column is divided into small elements along the longitudinal axis, and the horizontal deflection at the
top of the column is computed by numerical integration of the curvature which is uniformly distributed
in each element. In this method, a certain moment-curvature relation of the cross section is used,
which is calculated from the stress-strain relation of material. However, this method of analysis is
not applicable to a certain member consisting of a material with unstable stress-strain relation which
causes degrading type of moment-curvature relation. When the numerical integration scheme explained
above is used for the analysis of the load-displacement relation of a cantilever having a degrading
type of moment-curvature relation, the solution depends on the number of subdivide elements. Figure
1(a) shows sample results for CFT beam-columns of [ ]-100x100x4.5 with the length 1000mm and
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Fig. 1 Problem of the conventional numerical integration scheme
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the ratio of axial load to the squash load was 15%. Consider a cantilever subjected to a lateral load H
at the tip as shown in Fig. 1(b), which has the moment-curvature relation consisting of a linear elastic
part and a linear degrading part for simplicity as shown in Fig. 1(c). In the course of the numerical
integration, it is assumed that the curvature uniformly distributes in each of subdivided elements.
When the bending moment at the critical element adjacent to the fixed end, i.e., the element 1 in Fig.
1(b), reaches the maximum value indicated by the point A on the moment-curvature relation in Fig. 1
(c), the load H becomes the maximum, and then the unloading starts. Suppose that the curvature in the
element 1 increases to the point B in the subsequent loading process. Since the bending moment along
the entire length of the cantilever is reduced, the elastic curvature reversal must occur in all the elements
except the element 1, and the curvature distribution becomes as shown in Fig. 1(d). The tip deflection
A at this stage is composed of three components; (i) the deflection of the element 1, (ii) the tip deflection
caused by the slope of the element 1, and (iii) the tip deflection caused by the elastic deformation of all
the elements except the element 1, as shown in Fig. 1(e). Numerically-calculated values of these three
components change, depending on the number of the subdivided elements n. As far as n is sufficiently
large, the value of the component (i) is negligible, and the component (iii) is nearly equal to the exact
solution. However, the value of the component (ii), which is approximately given by O2/n, sensitively
depends on n, and it becomes smaller as n increases. These are the explanations to the contradiction
observed in Fig. 1(a): the solution depends on the value of n, and the slope of the unloading curve
becomes steeper as the value of n increases.

This problem has been notified for a long time, but an efficient method of analysis has not yet
been found, and a simple method was often taken which assumed a uniform distribution of the
curvature in a plastic zone with a finite length in the vicinity of the critical element. Kawaguchi,
Morino, Atsumi and Yamamoto (1991) assumed that the deformation occurred only at the base
portion of a constant length where the curvature corresponding to the bending moment generated at
the base distributed uniformly, and the rest portion was rigid, as shown in Fig. 1(f). Inai, lida and
Shimazaki (1993) proposed the model with the plastic zone which took into account of the elaste
curvature distribution along the beam-column. However, these curvature distribution along the
longitudinal axis in the analysis were quite different from the real one, and the results of analysis
were changed according to the length of the plastic zone. Morino, Kawaguchi and Fukao (1995)
proposed a method of combining the degrading type of moment-curvature relation with the
conventional numerical integration scheme. However, the proposed method was only applicable to
the behavior under the monotonic loading, and there was a contradiction that even an elastic portion
of the beam-column behaved as if it was in the inelastic range, since it was assumed that the increase
in the curvature occurred in every portion after the deterioration started at the critical element. This
paper proposes an improved the method of combining the degrading type of moment-curvature
relation with the conventional numerical integration scheme, modifies it for the cyclic analysis, and
compares the result of analysis with the test result of CFT beam-columns under the cyclic loading.

2. Analysis of CFT beam-columns
2.1 Stress-strain relations

Figure 2(a) shows a degrading type of stress-strain relation which deals with the strength
deterioration due to the effect local buckling. The points P, Y, and U indicate proportional limit,
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start of strain-hardening in tension and occurrence of local buckling in compression, respectively.
The curve consists of linear elastic (point P, to P,), curvilinear elasto-plastic transition (PitoY
and P, to U), strain-hardening (Y to T) and strength deterioration (U to C) paths. They are given
by the following mathematical expressions:

Elastic part
o(e)=F X g (1)

Transition part

6(e)=0,(e) + G, (€) (2)
where v '/ )
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Fig. 2 Stress-strain relations (Steel)
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Hardening part
o(e)zEstX (e—est)+csv 4)

Deterioration part

o®)= (VAN - F () +1) - 24 Fe)} X o, (5)
where
2
F(e)=\/2 X (e-¢,)+(e-¢,) (6)
A=N(D/t) D / t : width-thickness ratio

Equation (3) is written for the curve in compression, and subscript pe should read pt, u should read
v, and cr should read st, for the curve in tension. The values of & should be different for compression
and tension. Equations (2) and (3) are derived by modifying an equation proposed by Richard
according to Smith (1972), in which the parameter k determines the shape of the curve : the curve
approaches the ideal elasto-plastic type with the increase of &, and the curvature of the curve becomes
larger as k becomes smaller , as shown in Fig. 2(b). On the other hand , the parameter N determines
the shape of the deterioration curve shown in Fig. 2(c) for compression. Equation (5) is derived in
view of a technique to replace a locally-buckled plate by a number of buckled bars shown by Morino
et al.(1986). Note that the stress-strain relation shown above includes the effect of local buckling in
a macroscopic way. It is not for an infinitesimal element, but it should be defined as the force-
deformation relation of a bar element with unit area and unit length. The cyclic path of the stress
point in a steel segment is shown in Fig. 2(d), starting from compression. It turns at point 1 after the
local buckling occurs at U, and the stress point follows the linear unloading path and reaches the
turning point 2 passing P, and Y'. The stress levels at P, and Y' are defined, based on the compressive
strain €,,;, at point 1, which is the minimum strain experienced so far , as given by equation (7).

when €,,, <€, and |c(emm)| <o(Y) :
o(Y)=-0o(e,;,) and o(p)=1{c(Y)/o(Y)} X c(p,) %

when €,;,2€. or lc(emm)l Zo(Y) :
o(y)=o(y) and o (P;) = o(P)

The tensile stress-strain relation between P,' and Y' is generated from equations (2) , (3) and (7)
by replacing 6, and ), by 6(Py) and 6(Y"), respectively, and by shifting the value of the strain
by the amount of 6(g,,,;,,)/E-€,,,;,- New proportional limit P.' and local buckling strength U' in
the second cycle of the compression side are similarly determined depending on the maximum
tensile strain €,,,, experienced at the turning point 2 as follows:

X = G(Emax )/E_emax
when X<0 :  o(U)=14"Xo(U) and o(P;)={c(U)/c(L)} Xa(®,) (8
when X20 : oU)=oc(U) and o(p;) = o(p,)

The stress-strain relation proposed by Popovics (1971) was employed for the skeleton curve of
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the filled-concrete up to the maximum strength, and it was assumed that the maximum strength
was sustained by the confining effect of the steel tube , as given by equation (9).

F - N
when 0Se< ¢, : of)= ¢ x &
Na‘l‘*‘(e/gmjva €m 9
)
when €,<¢€ © o(e)=0o,)= F,
where Na =0.00571 'FC + 1 F o cylinder strength

The tensile stress was neglected in the skeleton curve. The cyclic rules for the concrete has been
constructed based on the model proposed by Fujii, et al. (1973) as shown in Fig. 3, in which three
types of the stress-strain paths are shown: path[(A—B—>C—>D—C—A), pathII (A'—>B'—C'
— D'—E), and path III (A" — B" — C" — A"). General rules are as follows: i) If the strain at the
first turning point is larger than €, the path comes back to the first turning point, as in the case of the
paths I and I1I. The value of &g is given by F/E,, where F, and E, denote the cylinder strength and
the elastic modulus of concrete; ii) If the strain at the first turning point is smaller than €, the path
comes back to the point E at which the value of strain is equal to €, as in the case of the path II; 1i1)
In the process of strain reversal, the stress decreases linearly with the modulus E . until the stress level
becomes equal to 1/4 of the stress at the respective turning point, and then the slope changes to E /4,
as in the path A — B — C; and iv) The concrete does not carry the tensile stress, as in the path C —
D.

E =21X10° X o
e T & 200

e =F/E
E c c

Fig. 3 Stress-strain relations (Concrete)

2.2 Analysis of load-displacement relations

The load-displacement relation of a cantilever was analyzed by the numerical integration
scheme. The model cantilever of length [ is shown in Fig. 4 (a), which is subjected to the
constant vertical load P and the horizontal load H at the top. It was divided into n elements of
equal length a. As discussed in detail below, a conventional numerical integration scheme
cannot be directly applied to analyze the load-displacement relation of a cantilever having a
degrading type of moment-curvature relation. Therefore, in the present analysis, the cantilever
was divided into a number of elements and modified moment-curvature relation was assigned to
each element, of which details are discussed in the next section. The solution satisfying the
equilibrium at each subdivision point was searched numerically, based on the assumption that
the curvature was uniformly distributed in each of subdivided elements. In the process of
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determining the deflected shape of the cantilever, a trial-and-error procedure was required, since
the equilibrium of the bending moment involved PA moment. In order to avoid this tediousness,
the PA moment was assumed to distribute linearly along the member axis as shown in Fig. 4 (b)

2.3 Monotonic moment-curvature path

Main feature of the present analysis method is based on the assumption that each subdivided
element of the cantilever follows its own moment-curvature path which is different from others.
Consider the moment(M)-curvature(¢) relation consisting of a linear elastic part (OP), curvilinear
inelastic(PB) and degrading(BC) parts as shown in Fig. 5 (a). When the bending moment at the
critical element adjacent to the fixed end, i.e., the element 1 in Fig. 4 (a), reaches the maximum
value indicated by the point B on the moment-curvature relation in Fig. 5 (b), the load H becomes
the maximum, and then the unloading starts. When the M-¢ point of the critical element moves
from the point B to C in Fig. 5 (b), the M-¢ points in other elements are assumed to move from
the point B' to C', B" to C", and so forth, on the lines connecting the points A and B’ or B",
respectively. The point A is the intersection of the lines BC and OP (P: elastic limit). Since the
bending moment diagram should be linear as shown in Fig. 4 (b), the values of the bending
moment at the points C' and C" are uniquely determined from that at the point C. The M-¢ point
of the element at the point P also moves to the point P'. Note that the elastic strain reversal
occurs in the element which remained elastic when the strength deterioration occurred in the
critical element, and all other inelastic elements follow different M-¢ paths.

T
IWA Alg\ MA A"\
f B R
] ; C C
P/ P ¢
N P
elastic limit CB
El 9 NEI K
My=H-I+P-A O > N >
(a)Cantilever model  (b)Moment distribution (a) (b)
Fig. 4 Analytical model Fig. 5 Monotonic moment-curvature path

2.4 Cyclic moment-curvature path

The moment -curvature relation of the critical element under the cyclic loading can be
calculated from the stress-strain relations of materials shown in Fig. 2 and Fig. 3 by a conventional
procedure, and let us call this relation as the "original M-¢" relation. The cyclic moment-curvature
paths of other elements are shown in Fig. 4. When the M- point of the critical element reaches
the point C, the M-¢ points of other two elements are at the points C' and C", in general, and they
move to the points D' and D", respectively, as the M-¢ point of the critical element moves from
the point C to D according to the original M-¢ relation. The movement of the M-¢ point of a
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general element was defined as follows:

1) If the element is in the elastic range (point C" in Fig. 6 (a)) when the M-¢ point of the critical
element reaches the turning point C, the M-¢ point of this element moves on the elastic line (C"
— D"), where the value of the bending moment is determined by the linear bending moment
diagram based on the value at the point D. The mathematical expressions of the M-¢ point of
this case are given as follows:

MD
. Mpy= M. X (10)

1 M,
¢D"=_(MC"X )
EI c o

M

which means that the elastic element remains elastic from beginning to end of the cyclic loading.

2) If the element is in the inelastic range (point C' in Fig. 6 (b)) when the M-¢ point of the
critical element reaches the turning point C, the movement of the M-¢ point of this element is
assumed to be controlled by the positions of fictitious points X and X', both of which are on the
elastic line OP, and determined in the following manner. First, the point X is defined as the
intersection of the elastic line OP and the line CC'. The position of the point X' is determined so
that the following proportionality is satisfied:

M;: My =My : My amn

where My, M, M1’ and M,' are the difference between the moment values at the point C and X,
at the point X and P', at the point D and X', and at the point X' and P", respectively. The point P’
is in the elastic range, and thus the position of P" is already determined in the step 1) above,
depending on the movement of the point C to D. The expressions for the bending moment and
the curvature at the point X' are given as follows:

o- - M M o - - M M
0. = Oc Cx—L2 ymo - FEI- O € x 2 (12)
X o - EI M. X o - EI M.
where o =_._A4_C_—A4C
0. - 0.

The point D' is assumed to be on the line DX', and the value of the bending moment at the point
D' is also determined by the linear bending moment diagram based on the value at the point D.

M
My ae A
N X6y My) B
m 3TN soenTee 00 M) \ BN C (¢, M)
| QO R A Y i =P
M, Py~ COc M) 1DP
POy Mp) €D(op, Mp) Myt et D0y, M)
(0 M) myl | N (¢D(;D-,)MD)
D" (Ops M) X'®x> My
o ﬂ) el P'@p.Mp) ¢
(a) (b)

Fig. 6 Cyclic moment-curvature path
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The expressions for the bending moment and the curvature at the point D' are given as follows:

0,-0, M M
O, = (M- Mg) ———x—L + ¢ | My=M.x—L (I3
MD-MX, MC C

3. Results and discussion

The post local buckling behavior of cantilever beam-columns with CFT or square hollow sections
was experimentally investigated by the authors (1992). The cross-section was [_]-100x100x3 with
or without filled-concrete, and the length / was 100 cm. The ratio of axial load to the squash load was
15 %. Ten cycles of loading with the constant displacement amplitude were applied to the specimen.
The monotonic and cyclic analyses were performed for the tested specimens, using the material
properties shown in Table 1, which defined the stress-strain relations of the analytical model.

Figure 7 shows the results of the monotonic analysis to verify the uniqueness of the
solution. It is observed in Fig. 7 (a) that the solutions do not depend on the number of elements
n, if the value of n is sufficiently large. The M-¢ paths of 1st, 3rd and 50th elements from the

Table 1 Material properies

CFT Square hollow
E (kN/mm?) 171 200
E,IE 0.01 0.01
O (Nlmm?) 196 196
Ope Nimm®) | -196 -196
oy Nimm®) | 3244 398.9
o, (NImm*) | 4136 -386.1
gy (%) - 1.6 1.6
£, (%) 36 25
k (tens.) 1.5 1.5
k (comp.) 1.3 1.1
N 0.04 0.06
F, (Nimm?) 226
€, (%) 0.2
H[kN] M [kN - m]
20 20
NINy =0.15 i=
=3
10 4 n =20 10<] (n=100)
n = 50, 100 < -
200, 400 =50
A[lmm] ol1/mm)
0 100 200 0 0.003 0.006
(a) Load-deflection relation (b) Moment-curvature relation

Fig. 7 Results of analysis: Monotonic loading
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base in the case of n = 100 are shown in Fig. 7 (b), which indicates that the M-¢ path is all
different for each of the inelastic elements, and the elastic reversal occurs in the 50th element
(midheight element) at the point marked by a triangle.

Figure 8 shows the load-displacement relations in the first loading cycle, and the moment-
curvature paths of the 1st, 3rd and 50th elements from the base in the first loading cycle, both of
which were obtained from the analysis for the tested CFT specimen. It is observed that the
analytical results do not depend on the number of elements n, and the 50th element behaves
elastically, as in the case of the monotonic loading shown in Fig. 7. Figure 9 shows the
comparison of the load-displacement relations obtained from the test and the analysis. The
analytical results show more rectangular shape of the hysteresis loops compared with the test

H[kN] MIkN-m]
20 20

(n =100)
-80 /\ 80 -0.0015 rﬁ“ 0.0015
n =50, 100, Almm] i=50 o[ 1/mm]
» 200, 400 i=3
4 i=0

n =20 -20 -20
(a) H-A relation (b) M-¢ relation
Fig. 8 Results of analysis: Cyclic loading

Hlk
NI/N,=0.15 [ Qg NI/Ny=0.15 H,[gj(\),]
-80 80 80 4 4 80
Almm] Almm]
220 -20
(a) Analysis(CFT) (b) Experiment(CFT)

_ H[kN] _ H[kN]
N/Ny=0.15 20 N/N,=0.15 20

(c) Analysis(Square hollow) (d) Experiment(Square hollow)

Fig. 9 Comparison of load-displacement relations
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results, since the Bauschinger's effect on the stress-strain relation of steel was not properly
considered. However, strength deterioration behavior due to the cyclic loading, and the pinching
of the hysteresis loops in the case of CFT due to filled concrete were well reproduced by the
analysis. The hysteresis loops seem to converge in the case of the CFT specimen, while they
shrink continuously in the case of the specimen with a hollow section, and this convergence-
divergence phenomena were also captured by the analysis. Figure 10 shows the change of the
curvature distribution along the beam-column in the first loading cycle. The vertical axis and
the horizontal axis show the member axis and the curvature, respectively. Figure 10 (a) shows
the curvature distribution at the first turning point of loading, i.e., the point (a) on the moment-
curvature curve. Figure 10 (b) shows the zero moment point at (b), where the residual curvature
appears. Figure 10 (c) shows the state when the curvature at the base element becomes equal
to zero at point (c), the curvature of other parts enter into the positive side. These curvature
distribution seems very similar to the real one.

M )(C) d
top top top top
(b)\f‘
¢ 2 a .8 4
| ] s 5 3
(a)J:ﬁ P =] >
M-¢ relation at the base element & & B &
in the first loading cycle
0] o 0 0 ¢ O o
(@ (b) (©) (@)

Fig. 10 Change of Curvature Distribution
4. Concluding remarks

Elasto-plastic behavior of CFT beam-columns failing in local buckling under the cyclic loading
was analyzed, and the results were compared with test results previously obtained. The method of
cyclic analysis, which used the numerical integration scheme together with a proposed way of allowing
different cyclic moment-curvature path in each of the subdivided elements, was applicable to a
beam-column with a degrading type of moment-curvature relation, and the solution was independent
of the number of subdivided elements. The analysis well traced the characteristics of the test results,
such as the strength deterioration due to the cyclic loading, the pinching of the hysteresis loops due
to filled-concrete, and the convergence-divergence of the hysteresis loops, but the analytical results
showed more rectangular shape of the hysteresis loops compared with the test results.
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