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Abstract

An approximate analysis was carried out for the buckling strength of a single-bay multi-story
steel frame connected to a core wall. The equilibrium conditions for the member end mo-
ments and story shear forces were first expressed in the form of two difference equations
containing the rotation angle at each panel point. The difference equations were converted to
a set of simultaneous differential equations, by treating the rotation angle as a continuous
function. Substituting general solutions for the rotation angle to the differential equations led
to a set of homogeneous simultaneous linear equations, and the buckling strength was deter-
mined from the condition that the determinant of the coefficient matrix of the simultaneous
equations became zero at the instance of the buckling. The size of the coefficient matrix was
only 2, and thus the solution was obtained by simple and easy computation. It was shown that
the accuracy of the approximaté solution was very good, compared with the exact solution

obtained by the eigenvalue analysis for several sample frames.
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1. Introduction
A structural system combining structural walls with steel frames has been employed in the real practice, in

33

which horizontal loads are carried by the walls, and the steel frames carry only vertical loads. The effective length -

of a framed column in such a wall-frame system is usually taken equal to the story height assuming the lateral sway
being prevented by the walls. However, the effective length may be somewhat larger than the story height, since the
lateral sway cannot be completely prevented under the work of the horizontal load. This problem has not yet been
clarified.

In the course of the structural design of steel frames, the buckling analysis is scarcely performed, and align-
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ment charts are often used to evaluate the column effective length. The error involved in the application of the
alignment charts to an irregular frame has been discussed by Lind(1977) and Cheong-Siat Moy(1978), and Chu and
Chou(1969) have suggested a modification of the column effective length applicable to the frames with relatively
small irregularities. Wood(1974) presented an exact method of evaluating the buckling strength of a fish-bone-
shaped frame (multi-story column restrained by beams at each panel point), utilizing the buckling condition that the
summation of the column stiffness reduced by the axial force and the beam stiffness at any arbitrary panel point
became zero at the instance of buckling. On the other hand, Sakamoto(1980) presented a method for the modifica-
tion of the column effective length of a multi-bay single-story frame. In this method, the equilibrium was consid-
ered on the deflected frame, in which the column deflection was approximated by a sine shape with a half length
equal to the effective length determined from the alignment chart. The methods presented by Wood and Sakamoto
are only applicable to a fish-bone-shaped frame or a single-story frame. The authors (Morino, Kawaguchi and
Suzuki 1993) combined these two methods, and presented a method to compute approximately the bucklin ¢ strength
of a multi-story multi-bay frame, which first reformed a given frame to a single-bay frame using Sakamoto’s idea,
and then the buckling strength of the reformed frame was computed by Wood's method. However, this treatment
may not be directly applicable to the steel frames with core walls.

The purpose of the research in this paper is to present an approximate method of evaluating the column
effective length of a frame with a core wall, and to investigate the accuracy of the approximate solution in view of

the exact solution based on the eigenvalue analysis.
2. Approximate Analysis of Frame Buckling
2.1 Description of Model Frame

Figure 1 shows a multi-story single-bay mode! frame for the buckling analysis. A steel beam-and-column
assembly of m-story is pin-connected or rigidly-connected at each beam end to a core wall. The flexural stiffness of
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a column is denoted by EK), and the ratio of the lateral stiffness of the core wall to the column stiffness and the ratio
of the beam flexural stiffness to the column stiffness are denoted by # and £, respectively. The numbering for the
stories and that for the panel points at beam-to-wall connections are given by 1, 2, ..., ¥, ..., m, and that for the panel
points at beam-to-column connections are given by 1',2', ..., ¥, ..., m’, as shown in the figure. It is assumed for the
simplicity that a single vertical load is applied at the top of the column only, and thus the axial force in the column
in each story is constant, and the axial force in the wall is zero. It is also assumed that the values of n, k, the story
height /& and the column stiffness ratio are all constant along the height of the frame.

The following formulations are made for the frame in which the beam ends are pin-connected to the wall.

2.2 Formulation of Difference Equations
The basic slope-deflection equations for a buckled member are applied to member end moments at the panel

points y and y’, and to shear forces in the wall and column of the story y as follows:

M),),+l =nEK0(49y+29y+1 —6Ry+1 ) Myy'-:O

My o =EKy (08, + B0, - YR, ) M, = 3KEKyH, o))
My . = EKy (0B, + B8, - YR,)

nEK, ’ EK,
Oy =- 2 (60, +60, - 12R,) Qyyuy == — = (¥ +70,.; - 8R;)

The definition of the member end moments M and the shear forces O, and their posmve directions are given in Fig.
2. The rotation at the panel point and the chord rotation of the column are denoted by 0 and R, respectively, and their
positive direction is clockwise. The parameters o, {3, y and 8 are stability functions of the load parameter Z, and they

are given as follows:

o= Z sinZ - Z 2 cosZ B = Z2-ZsinZ
2(1-cosZ) - ZsinZ 2(1-cosZ) - ZsinZ
y=a+B §=2y-2° )

E: Young’s modulus I: moment of inertia h: story height

Z="h| P
EI

The equilibrium of member end moments at the points y and y' and the equilibrium of the story shear of the stories
y and y+1 give the following equations:

Myy+1+Myy-1=0 My'y'+1+My‘y'_1+My'y=0 (3)

Oyy1+Qyy1=0 Qyyr1 + Qyye1 =0

ny+l
}’y
7 y' yy+1
yy-l
Oyy
y'-

Fig. 2 Member End Moment and Column Shear
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The expression of a chord rotation angle in terms of the panel rotation angle is derived by substituting the shear
forces in Eq. (1) into the shear equilibrium of Eq. (3), as follows:
1

‘R/v = m{6ﬂ( ey-l + ey ) + 'Y( ey'-l + ey’ )} (4)

R 1:

1
o+ —————S—{Gn( 6y+9y+1)+y(9y,+9y,+1)}

12n +
Substituting Eq. (4) into the equilibrium equations for the member end moments in Eq. (3) leads to

2 - 36n

m )(ey-l + 29y -+ ey+1) + 46y

&Y
- m—— (Gy,_l + 29),: + ey'_H) =0

6ny
- m (ey_l =+ 29) + ey+1) (5)

2
B 5 Oy 20,4 By )+ (2004 3K - 28 )0, = 0

2.3 Conversion of Difference Equations to Differential Equations
Note that Eq. (5) is a set of difference equations in which the terms

X=0,,+20,+6,, Y=0,,+20,+86,, (6)
repeatedly appears. Then, Eq. (5) is written as follows:
(6n-8)X+3yY—(24n+28)9y=0 @)

6nYX - (12nB + BS - y2)Y - ( 12n +8)( 200+ 3k - 2B )0, = 0
Here, by treating 6, and 6, as continuous functions of y and y’, respectively, finite difference expressions of the
second derivative of 8, and 6, with respect to y and y' are given as follows:

d> 9, oo O-26,+6,, a8, W 91-26, 48,

=0 = . =0 .=
dy? y &2 dy? y

(8)

2
a
where a denotes the size of the subdivided segments, but y and y’ are integer numbers, and thus a = 1. Then, the
terms given by Eq. (6) are written as

X=9y+49y Y=(-)y'+49y- ®
Substituting Eq. (9) into Eq. (7) leads to
(6n-38)6", - 680, + 3y0", + 1278, =
6nY8", + 24nY0,, - (121 + B3 - 2 ICEREE (10).
- 4( 12nB+B€>-yZ)9yv-( l2n+5)(2oc-2B+3k)6y'=O

Finally, the equilibrium condition given by Eq. (5) is converted to a set of simultaneous linear differential equations
for 8y and 6.

2.4 Buckling Condition and Its Solution
(a) Frame with Pin Connections at Beam Ends
General solution for 8y and 6, of Eq. (10) is given by
0, = Cy cospy + C, sinpy 8, = C'y cosp'y' + C'y sinp'y' (11)
The condition that integral constants C; and C'; and parameters p and p' must satisfy is derived by the following

manner. First, the fixed condition at the column base; 6y =0y = 0, at y = y'= 0, gives C; = C'1=0, and thus

8, = C, sinpy 8, = C', sinp'y' (12)



Buckling Strength of Frames Connected to Core Wall 37

Next, the condition required for p and p' is derived from the boundary condition at the top floor. That is, considering

a fictitious story m + 1 above the top story as shown in Fig. 3, the member end forces in this story are zero. Thus,

M :”’EKO< 46m+29 —6Rl7l+l )ZO

m m+1 m+1

Mm' m'+l = EKO( 49m' + zem'+l - 6Rm+1 )=0
nEK,

( 6em+ 69m+1 - 12Rm+l ) = 0 (13)

Qmm+l =-

EK,

Qm’ m+1 =

(69m,+ 6emr+1 - 12Rm+1 ) = O

Eliminating R,,;| from Eq. (13) leads to

0,,-96,.,=0 0, -6,.1=0 (14)
Substituting Eq. (12) into Eq. (14) leads to

Cy{sin pm - sin p(m+ 1)} =0 Cofsinp'm' -sinp'(m'+ )} =0 (15)
Thus, the conditions that must be satisfied by p and p' are obtained as shown below:

sinp(m+1) sinp'(m'+ 1)
: =1 — =1 (16)
sin pm sinpm

Since m = m', two equations of Eq. (16) are identical, and the smallest and nontrivial solution for p (= p') is simply
given by ‘

p=p="— 17)

The procedure shown above, that is, to simplify the buckling analysis by deriving a set of difference equa-
tions and converting them to a set of differential equations, was introduced by Bleich (1951), with an application
example of a simplified multi-story rectangular frame.

Finally, a set of homogeneous simultaneous linear equation is obtained by substituting Eq. (12) into (10), as
shown below:

{(8-6n)p2-638}C, sinpy + (12y-3pHC, sinp'y' =0 (18)

(24ny - 6nYp?)C, sin py +

{(12nP +BS - Y )p'2 - (12n + 8)2au + 2B + 3k) + 4y2} C'y sin p'y' =0

In a matrix form, Eq. (18) is written as
all a12 C2 Sin py {O}
a21 az CI2 Sin p’y‘ B . (19)

(8-6n)p”- 68

where

a11
2
ajp = 12v-3vp (20)
2
a,y = 24ny - 6nyp

m+1 ' m'+1

| I
P=0
/:\Mm m+1 =0 /}\Mm’m'ﬂ =0

—+——> 0, m1=0 _I'_)Qm'mq.l:O '
m m'

Fig. 3 Boundary Conditions m- 1] m'-1
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Gy = (1208 +B8 - vV )p? - (120 + 8 )( 200 + 2B + 3k ) + 477
The buckling condition is that the determinant of the coefficient matrix of Eq. (19) becomes zero, when the load

parameter Z takes the critical value, and thus the buckling condition is given by

911 92| _
=apeayy - aypeay =0 (21)

dz1 422
The buckling load parameter Z,, of the frame shown in Fig. 1 is determined as the smallest value of the load
parameter that satisfies Eq. (21) . The effective length of the column I, is given by the formula

h=2- @)
cr

- which is derived by substituting Euler's load expression for the column with length [ into Z in Eq. (2).

(b) Frame with Rigid Connections at Beam Ends
In the case of the frame in which the beam ends are rigidly-connected to the core wall, the slope-deflection
equation for the beam end moments at the panel points y and y’ are given as follows:

M, = KEK)( 48, +26,) M, = kEK,( 46+ 26, ) (23)

Using Eq. (23) instead of M, = 0 and My, = 3kEK¢y in Eq. (1) leads to the following equilibrium equations
which corresponds to Eq. (5):

Gn-—352_ 6 o0 6.+ (4n + 450
12n+0 0170+ 00 Y
_ —1% @1 +20, +06,,) +2k0,=0 @9
- E% (8,1 + 20, +6,,,) + 248,
+ (P - 1—2ZZ+—8 )(G)yr_1 + 29y, +0,,) + (200 + 4k - 23 )Oy. =0

The procedure to derive the buckling condition is the same as the one shown for the frame with pin connections at
the beam ends. The buckling condition is given in the same form as Eq. (21), and four elements are given as
follows:

ay = (60" -nd)(4-p)-(12n+8)(2n+2k)

ap =3nmy(4-p2) k(121 +8) (25)
yy = 6ny(4-p°)-2k(12n+8)

= (Y -12nB - B8 )(4-p?) - (12n+8)( 20 - 2B + 4k )

3. Eigenvalue Analysis of Frame Buckling
3.1 Model Frame A

3.1.1 Description of Model Frame A

Model frame A is the same as the multi-story single-bay frame shown in Fig. 1. The beam ends are pin- or
rigidly-connected to the core wall. The flexural stiffness of the column EKj, the ratio of the lateral stiffness of the
core wall to the column stiffness 7, the ratio of the beam flexural stiffness to the column stiffness k, the story height
h, and the load parameter Z are all constant along the height of the frame.
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3.1.2 Equilibrium Equations
(a) Frame with Pin Connections at Beam Ends

As explained in the previous section, the equilibrium of the member end moments and the story shear given
by Eq. (3) are converted to a set of difference equations, Eq. (5). Applying Eq. (S)toy =1, 2,3, .....,and m - 1, and
y'=1,2,3,...,and m' - 1leads to aset of 2(m - 1) homogeneous equations expressed in terms of 2(m + 1) panel
point rotation angles, among which the number of unknowns are 2m noting that 8 = 8¢ = 0. Additional two
equations are obtained by considering the equilibrium at the top floor. Substituting the expression of the member
end moments given by Eq. (1) into the member end moment equilibrium aty =m and y'=m/, that is, M, ,,.; = 0 and
My oy + My =0, leads to

Mm m-1= nEK0(46m + 2em -1 7 6Rm) =0 (26)

Mm'm'—l + Mm'm = EKO{(a + 3k)9m' + Bem'_l - YRm} =0
Eliminating the chord rotation angles in view of Eq. (4), the equilibrium equations at the panel point m and m' are

obtained as follows:

36n 36n 6Y 6Y
2" v 4.2 v T g ' g =
12n+6)m'1+( l2n+8)m 12n+8 ™! 12n+8 "
6ny 6ny v? v

— 9 -c— 0 _+B-————)0_ ., + (0 +3k-——)0_.=0
122+8 ™' 12n+8 ™ B 12n+8) =1+ 12n+8)m

Finally, a set of homogeneous simultaneous equation with the size 2mx2m is obtained, as shown below.
[Al{®} = {0} (28)

where [A] is the coefficient matrix and {©} is the unknown vector containing 8 ~ 6,, and 8y ~ 6,,. Each element

2 - 0 @n

of the coefficient matrix [A] is a transcendental function of the load parameter Z.

(b) Frame with Rigid Connections at Beam Ends

The equilibrium equations for a general panel points y and y' are already shown by Eq. (24), which corre-
sponds to Eg. (5). Two additional equations corresponding to Eq. (27) are obtained by considering the equilibrium
at the top floor, as follows:

3612 36n2
2 - — )0, | + (dn + 4k -————)0
( 12n+8 ™1 12n+8 ™
6ny 6ny (29)
— e . 4+ QRk-————)0 .=0
onss om1 Tl Ton s s om
6I’L’Y 6n’y
- ——— 0 L+ 2k-———)H0
12n+8 ™1 ( 12n+8) m

v? v?

——————6 ' +oc+4k———————9,=0
® nrs m-1t 2028 om

The final form of the homogeneous simultaneous equations is the same as Eq. (28).

3.2 Model Frame B

In the model frames treated so far, it is assumed that the stiffness of the wall, beams and columns, and the
load parameter are all constant along the height of the frame. Then, a question arises: Is the approximate solution
applicable to real tall buildings?

The buckling analysis starts with the equilibrium of the member end moments at each panel point, and the
shear in each story, and the final form of the simultaneous equation is homogeneous. The equilibrium conditions at
a certain panel point and a certain story are quite local, and not affected by the conditions at other panel points and
stories that are far apart from the point and the story under consideration. This leads to a hypothesis that the
approximate solution is applicable to a frame in which the condition of the constant distribution of the stiffness and
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the load parameter is locally satisfied. More precisely, the approximate solution is applicable to a frame which
satisfies the following conditions: 1) the stiffness ratios of upper and lower columns at each panel point are nearly
equal; 1i) the stiffness ratios of upper and lower walls at each panel point are nearly equal; iii) the stiffness ratios of
upper and lower beams of each story are nearly equal; and iv) the load parameter Z of upper and lower columns at
each panel point are nearly equal. It is understood from the definition of Z in Eq. (2) that the condition iv) is
satisfied , if the height of each story is nearly equal, and the distributions of the column axjal force and the moment
of inertia of column section along the height of the frame are similar. In order to investigate the authenticity of this
hypothesis, model frame B in which the stiffness and the load parameter are linearly varying along the height is
analyzed in the following section.

3.2.1 Description of Model Frame B

Model frame B is the one shown in Fig. 1, but the stiffness and the load parameter are linearly varying along
the height. Figure 4(a) shows the distribution of the column stiffness ratio kcy, where kc; = 1 at the bottom story, and
kcy, = a at the top story. At a general story y, the column stiffness ratio is given by

e
y m-1

The distributions of wall stiffness ratio kwy and beam stiffness ratio kby, are assumed to be similar to that for the

{m-y+aly- 1)} (30)

column, and thus

kw), =n kcy kby =k kcy 3D

The linear distribution is also assumed for the load parameter Z as shown in Fig. 4(b), where Z; = Z at the
bottom story, and Z,, = x Z at the top story. At a general story y, the load parameter Z, is given by

1
Zy= 1 {m-y+x(y- D}Z 32)
i a | | XZ |
m m
met m-I:\
m-2 m-2
Z
y kcy y;l y
> y-1
i ! i 1
i | L ]
] 1 I 1
1 VA
(a) key () Z,

Fig. 4 Distribution of Column Stiffness Ratio k¢, and Load Parameter Z,,
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3.2.2 Equilibrium Equations
(a) Frame with Pin Connections at Beam Ends

The expressions for the member end moments and shear forces are as follows:
M}. )'+l = kW>+1EKO ( 49} + 26}+1 - 6R}+l )
M}. y—l = kWyEKO ( 49y + 29y_1 - 6R}, )

My, =0

Myoyiy = key, 1 EKp ( (xy+19y’ + By+ley’+] - Yy+1Ry+1 ) (33)
My gy = keyEK (000, + ByByr1 - VyRy)

My = 3kb EK .
kw EK o

Q 1=
yYy h

(60, + 66, , - 12R,)

ke EK,
Oy y1=- 'VT 1Oy + 7yByey - ByRy )

The parameters o, By, Yy and Sy are stability functions of the load parameter Z,, computed by Eq. (2). The expres-

sions of chord rotation angles in terms of the panel rotation angles are derived by substituting the shear forces in Eq.
(33) into the shear equilibrium of Eq. (3), as follows:

y= W{6kwy( By .1+ 0y) + Yykey(8yy +6,)] (34)

1

R, = —— {6kwy, (O + 0,1 ) + Vyyrkeyy (B + 650 )}
“Wy+1 y+17Cy+1

Substituting Eq. (34) into the equilibrium equations for the member end moments in Eq. (3) leads to
kwy(2-ay)8y 1+ { kwy(4-ay)+kwy, (4- Ay )10y + kw1 (2 - ayyp )0y,
- kwyb By - Ckwyb, + kwy 1By )0y - kwy by 10y =0 (35)
- keyb'y 0y - Ckeyb'y + keyy1b'y iy )0y - key 10,1054
+ key( By - €, )8y - (ke + Oy ykeyy + 3kby - keyey - keyy1Cyyg )6,

+ kcy+1( By+1 - Cytl )Oy’+1 =0

where
kw
Yy
B 36 e, b = 6v,
ay - kw y 12 kwy 5 (36)
— +
12 kcy +5y kcy y
kw
2
6'Yy e Yy
b)’ - > = ke
y 22— 45
12 kcy +8y kcy 'y

Equations (35) can be applicable to the panel pointsy=1,2,3, ....,andm- 1,and y’' =1, 23", ....andm’ - 1, in
view of 6 =0y =0, and kcp4) = kwyp1 = 0. Then, a set of homogeneous simultaneous equations with the size
2mx2m containing 6; ~ 0,, and 6 ~ 8,,, is obtained.

(b) Frame with Rigid Connections at Beam Ends

The expressions for the member end moments and shear forces are given by Eq. (33), except for the beam

41
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end moments, that is,
M, = kbyEK; (48, +20.:)

The equations corresponding to Eq. (35) are given by

My, = kb EK (48, +26,) 37)

k(2 -y )0,y + {wy(4 - ay ) + kg (4 - ayp ) + 4kb, 10, + kwyy (2 - ayy) )0,

- kwyb By - (howyby + Koy 1byy - 2k6,)8)0 - Kwyy by B, = 0 (38)

- kcyb Iy 0 y+1

y-l - ( k(,yb'y + kcy+lb’y+l - 2kby)9y - kcy+1b')+]9

+ kcy( B}. - Cy )eyr_l - ( Otykcy + ()L},+Ikcy+1 + 4kby - kcycy - kcy+1Cy+1 )ey'

+ kcy+1( By+1 © Cyyl )ey’+l =0
3.3 Model Frame C

3.3.1 Description of Model Frame C

) Model frame C shown in Fig. 5 is a multi-story single-bay connected to a perfectly rigid wall, and thus the
sidesway is prevented. The beam ends are pin- or rigidly-connected to the wall. The flexural stiffness of the column
EK), the ratio of the beam flexural stiffness to the column stiffness &, story height £, and the load parameter Z are all
constant along the height of the frame.

3.3.2 Equilibrium Equations
For the buckling analysis of the frames shown in Fig. 5, it is only needed to consider the equilibrium of the

member end moments at the panel points along the column in view of the chord rotation angle R being 0.

(a) Frame with Pin Connections at Beam Ends
At a general panel point y’ of the frame shown in Fig. 5(a), the equilibrium is given by My y 1 + My + My
y+1 =0, and substituting the expressions for the member end moments in Eq. (1) in viw of Ry = Ry = 0leads to

BBy 1+ (20 + 3k )0y + BBy, = 0 (39)
At the top floor, the equilibrium becomes M, -1 + My, = 0, and
B6m.y + (0 + 3k )0, =0 (40)

is obtained. A set of m equations, (m - 1) equations obtained by applying Eq. (39) to the panel points y'=1", 2, 3,
...... ,and m’ - 1 and Eq. (40), forms the homogeneous simulta-

neous equations with the size mxm similar to Eq. (28), in which P i P l
{©} contains 87 ~ 6,,-, noting that 8 = 0. 3 \
—_ —_—
(b) Frame with Rigid Connections at Beam Ends P A
For the frame shown in Fig. 5(b), two equations correspond- \ .
ing to Egs. (39) and (40) are obtained as follows: — y ——
BBy 1+ (200 + 2k )8y + BBy, = 0 (42) e e
BBy + (0ot +2k)0, =0 43) j' il
Again, a set of homogeneous simultaneous equations with the size ] —
mxm containing 0 ~ 0, is obtained. N 4
P F—
7

3.4 Buckling Condition and Its Solution »
The final form of the equilibrium equations of a buckled
frame is given by Eq. (28), regardless of the model frame consid-

(a) beam end:

pin-connected

AT,
(b) beam end:
rigidly-connected

Fig. 5 Frame Models for Sidesway Prevented
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ered, although the size of the coefficient matrix is 2mx2m or mxm, depending on the frame considered. The buck-
ling load parameter Z,., is determined from the condition that the determinant of the coefficient matrix of Eq. (28)
becomes zero. In the numerical computation, a trial-and-error procedure was taken in the following manner. First,

the elements of [A] was computed for a trial value of Z, and an eigenvalue problem was set as follows:

[AT{X}-A{X}=(0} - (43)
Since the determinant of the matrix is given by the product of all eigenvalues, that is,
[[A] = Ay Aoy (44)

where N = 2m or m, it was checked whether an eigenvalue with the smallest absolute value changed the sign. If yes,
a range for the existence of Z,, was captured, and if not, another trial value for Z was set and the procedure was
repeated. This procedure is actually more tedious and more time-consuming than the procedure of checking the
change of sign of the determinant, but it is effective and safe to avoid missing the point of zero determinant, since
the determinant does not change its sign, if even number of eigenvalues change their signs together in the case of
the increment of the trial values for Z is too large. Analysis of the eigenvalues was carried out by the combination
of QR and Householder’s methods.

4. Results of Analysis

The buckling analysis was carried out for a number of sample model frames with the following parameters:
i) the beam stiffness ratio k = 2, ii) the wall stiffness ration =1, 2, 10 and 100, and iii) the number of stories m = m’
=3, 50 and 100.

4.1 Accuracy of Approximate Solution
(a) Constant Distribution of Stiffness and Load Parameter along the Height of the Frame

The buckling analysis was carried out for the model frame A, in which the stiffness ratios of the column,
beam and wall, and the load parameter Z are all constantly distributed along the height of the frame. Table 1 shows
the values of Z,.,, obtained by the approximate analysis shown in Chapter 2, and the exact analysis in Chapter 3, and
the error that is defined as the ratio of the difference between the values of approximate and exact solutions to the
value of the exact solution. The positive error indicates the approximate solution is higher than the exact solution.

The following characteristics are observed from the results shown in Table 1:

Table 1 Comparison of Zcr Obtained by Approximate and Exact Analyses
Frame A: constant stiffness and load parameter

L \ m beam end: pin-connected beam end: rigidly-connected
approx.  exact  error approx.  exact  error
3 2.07 2.21 -0.06 3.40 3.52 -0.03
1 50 1.98 1.98 -0.00 3.36 3.36 -0.00
100 1.98 1.98 -0.00 3.36 3.36 -0.00
3 - 212 2.28 -0.07 3.66 3.82 -0.04
2 50 1.98 1.98 -0.00 3.59 3.59 -0.00
5 100 1.98 1.97 0.01 3.59 3.59 -0.00
3 2.47 2.71 -0.09 4.09 438 -0.07
10 50 1.98 1.98 -0.00 3.84 3.84 0.01
‘ 100 1.98 1.98 -0.00 3.84 3.84 -0.00
3 4.88 4.60 0.06 5.67 4.81 0.18
100 50 2.00 2.01 -0.00 3.91 3.93 -0.01
100 1.98 1.99 -0.01 3.91 3.93 -0.00

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution
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1) The accuracy of the approximate solution is very good, except for the case of 3-story frames.

ii) The effect of wall stiffness ratio on the buckling strength clearly appears in the 3-story frames, and in the frames
in which the beams are rigidly-connected to the wall, while the buckling strength of 50- and 100-story frames are
not sensitive with the change in the wall stiffness ratio in the frames in which the beams are pin-connected to the
wall. This tendency is observed in both approximate and exact solutions.

1ii) The buckling strength does not change with the number of story, if it is sufficiently large, that is, 50-story in the
present numerical example.

iv) The value of Z,., of the 50- and 100-story frames in which the beams are pin-connected to the wall is smaller than
7, and thus the effective column length is larger than the story height. The contrary is observed in the 50- and 100-
story frames in which the beams are rigidly-connected to the wall, even in the case of small wall stiffness: the value

of Z,, is larger than 7, and the effective column length is smaller than the story height.

(b) Linearly Varying Distribution of Stiffness and Load Parameter along the Height of the Frame

The buckling analysis was carried out for the model frame B, in which the stiffness ratios of the column,
beam and wall, and the load parameter Z are all linearly varying along the height of the frame, with the following
parameters: i) the parameter a, defining varying ratio of the column stiffness in Eq. (30), a = 1/m, and ii) the
parameter K, defining varying ratio of the load parameter in Eq. (32), 1 / ¥ = 1.00, 1.01, 1.05, 1.10, 1.125. The
distributions of the beam and wall stiffness ratios are given by Eq. (31), which are similar to that of the column
stiffness ratio.

Table 2 shows the values of Z.,, obtained by the approximate and exact analyses, and the error. The values
of the error are plotted against the values of 1/x for various values of n in Fig. 6.

The following characteristics are observed from the results shown in Table 2:
1) The accuracy of the approximate solution is very good, except for the case of 3-story frames. The value of a = 1/
m is too small, and such a steep variation of the member stiffness never occurs in the real building frames. This
indicates that the approximate solution is applicable to the real case of more gentle variation of the stiffness.
ii) Similar observations to those indicated in items ii) and iv) in the previous section are also made in the frames
with linear variation of stiffness and load parameter.
iii) A little difference is observed between the exact solution of Z., of 50- and 100-story frames, which is not
observed in the frames with constant distribution of the stiffness and load parameter, and the difference becomes
larger, as the wall stiffness ratio » increases.
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Table 2.1 Comparison of Z,, Obtained by Approximate and Exact Analyses
Frame B: linearly varying stiffness and constant load parameter, 1/x = 1.00

beam end: pin-connected beam end: rigidly-connected
8 " approx. exact error approx. exact error
3 2.07 2.31 -0.10 3.40 3.67 -0.07
1 50 1.98 1.99 -0.01 3.36 3.37 -0.00
100 1.98 1.98 -0.00 3.36 3.37 -0.00
3 2.12 2.35 -0.10 3.66 4.01 -0.09
2 50 1.98 1.99 -0.01 3.59 3.60 -0.00
100 1.98° 1.98 -0.00 3.59 3.60 -0.00
3 2.47 2.64 -0.06 4.09 4.72 -0.13
10 50 1.98 1.99 -0.01 3.84 3.86 0.01
100 1.98 1.98 -0.00 3.84 3.85 -0.00
3 4.88 4.78 0.02 5.67 5.00 0.13
100 50 2.00 1.99 0.01 3.91 3.96 -0.01
100 1.98 1.98 -0.00 3.91 3.93 -0.01

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution

Table 2.2 Comparison of Zr Obtained by Approximate and Exact Analyses
Frame B: linearly varying stiffness and load parameter, 1/x = 1.01

n m beam end: pin-connected beam end: rigidly-connected
approx. exact error approx. exact error
3 2.07 2.32 -0.11 3.40 3.69 -0.08
1 50 1.98 1.99 -0.00 3.36 3.38 -0.01
100 1.98 1.99 -0.00 3.36 3.37 -0.00
3 2.12 2.36 -0.10 3.66 4.04 -0.09
2 50 1.98 1.99 -0.00 3.59 3.62 -0.01
100 1.98 1.99 -0.00 3.59 3.61 -0.00
3 247 2.63 -0.07 4.09 4.75 -0.14
10 50 1.98 1.99 -0.00 3.84 3.88 -0.01
100 1.98 1.99 -0.00 3.84 3.86 -0.00
3 4.88 4.80 0.02 5.67 5.03 0.13
100 50 2.00 2.00 -0.00 391 3.98 -0.02
100 1.98 1.99 -0.00 - 391 3.94 -0.01

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution

Table 2.3 Comparison of Z.r Obtained by Approximate and Exact Analyses
Frame B: linearly varying stiffness and load parameter, 1/x = 1.05

" m beam end: pin-connected beam end: rigidly-connected
approx. exact  error approx. exact error
3 2.07 2.34 -0.12 3.40 3.76 -0.10
] 50 1.98 2.01 -0.01 3.36 3.40 -0.01
100 | 1.98 2.00 -0.01 3.36 3.38 -0.01
3 2.12 2.38 -0.11 3.66 4.12 -0.11
2 50 1.98 2.01 -0.01 3.59 3.63 -0.01
100 1.98 2.00 -0.01 3.59 3.61 -0.01
3 2.47 2.69 -0.08 4.09 4.87 -0.16
10 50 1.98 2.01 -0.01 3.84 3.91 -0.02
100 1.98 2.00 -0.01 3.84 3.89 -0.01
3 488 . 4.86 -0.00 5.67 5.13 0.10
100 50 2.00 2.02 -0.01 391 4.05 -0.04
100 1.98 2.00 -0.01 3.91 3.99 -0.02

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution
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Table 2.4 Comparison of Z¢- Obtained by Approximate and Exact Analyses
Frame B: linearly varying stiffness and load parameter, 1/x = 1.10

P " " beam end: pin-connected beam end: rigidly-connected
approx. exact error approx. exact error
3 2.07 2.38 -0.13 3.40 3.83 -0.11
1 50 1.98 2.01 -0.02 3.36 3.41 -0.01
100 1.98 2.00 -0.01 3.36 3.39 -0.01
3 2.12 2.42 -0.12 3.66 4.21 -0.13
2 50 1.98 2.01 -0.02 3.59 3.65 -0.02
2 100 1.98 2.00 -0.01 359 - 3.63 -0.01
3 2.47 2.73 -0.09 4.09 5.32 -0.23
10 50 1.98 2.01 -0.02 3.84 3.94 -0.02
100 1.98 2.00 -0.01 3.84 3.91 -0.02
3 4.88 491 -0.01 5.67 5.24 0.08
100 50 2.00 2.04 -0.02 391 4.11 -0.05
100 1.98 2.00 -0.01 3.91 4.04 -0.03

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution

Table 2.5 Comparison of Z.- Obtained by Approximate and Exact Analyses
Frame B: linearly varying stiffness and load parameter, 1/x = 1.125

k " m beam end: pin-connected beam end: rigidly-connected
: approx. exact error approx. exact error
3 2.07 2.39 -0.13 3.40 3.85 -0.12
1 50 1.98 2.01 -0.02 3.36 3.42 -0.02
100 1.98 2.00 -0.01 3.36 3.40 -0.01
3 2.12 243 -0.13 3.66 4.25 -0.14
2 50 1.98 - 2.01 -0.02 3.59 3.66 -0.02
2 ) 100 1.98 2.00 -0.01 3.59 3.63 -0.01 )
3 2.47 2.75 -0.10 4.09 5.07 -0.19
10 50 1.98 2.03 -0.02 3.84 3.95 -0.03
100 1.98 2.00 -0.01 3.84 3.90 -0.02
3 4.88 492 -0.01 5.67 5.28 0.07
100 50 2.00 2.03 -0.01 3.91 415 -0.06
100 1.98 2.01 -0.02 3.91 4.05 -0.03

k: beam stiffness ratio  n: wall stiffness ratio  m: number of story
error: (approximate solution - exact solution) / exact solution

The following characteristics are observed from the results for 50- and 100-story frames shown in Fig. 6:
1) The error linearly increases, as the value of 1/x increases.
ii) In the case of frames in which the beams are pin-connected to the wall, 4 lines indicating the errors in the frames
with 4 values of the wall stiffness ratio n become almost identical.
iii) The error in the 100-story frames is generally smaller than those in the 50-story frames.
iv) The largest error appears in the 50-story frames with » = 100 in which the beam ends are rigidly-connected to the
wall.
v) Within the limitation of 1/x < 1.125, the error is within 5 %, except one case, that is, m = 50, n = 100 and 1/x =
1.125.
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4.2 Alignment Chart

The numerical resuits of the buckling analysis of the model frame B shown in Table 2 and Fig. 6 conclude
that the approximate method of analysis is applicable to tall buildings, but not to low-rise frames such as the 3-story
frame. The accuracy of the approximate solution has been investigated from the numerical results of the buckling
analysis of the model frame A with k = 2 and n = 10 by changing the number of story m, and it is revealed that the
value of Z,, does not change much and the error is very small, if the vale of m is not less than 30. Then, the
approximate values of Z. have been calculated for the model frame A with m = 30, by changing the beam stiffness
ratio k and the wall stiffness ratio n, and the alignment charts shown in Fig. 7 are obtained. These charts are
applicable to a general frames in which the beam ends are pin- or rigidly-connected to the wall, with the limitation
of m =230 and 1/x £1.125.

4.3 Effect of Sidesway

Eigenvalue analysis was carried out for the case that the sidesway of each story was assumed to be com-
pletely prevented. Table 2 compares the exact solutions obtained by the eigenvalue analysis for the frames with the
sidesway permitted (model frame A) and prevented (model frame C). The error is defined as the ratio of the differ-
ence between the buckling strengths for the frames with the sidesway permitted and prevented to the strength with
the sidesway permitted.

Note the following points from the results shown in Table 2:
1) The difference in the buckling strength between the sidesway permitted and prevented is very large, even in the
case of the wall stiffness ratio equal to 100, except for the 3-story frame. This indicates that the effect of sidesway
cannot be neglected in the case of tall buildings, even though it is connected to a structural wall with large lateral
stiffness.
ii) The buckling strength does not change with the number of story, if it is sufficiently large, regardless of the
sidesway condition.
iii) In the case of the sidesway-prevented frames with the beam ends pin-connected, the wall stiffness does not
affect the buckling strength.
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Fig. 7(a) Alignment Chart for the Frames with Beam Ends Pin-Connected
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Table 3 Comparison of Z¢r for Sidesway-Permitted and Prevented Frames
Frames A and C: constant stiffness and load parameter
beam end: pin-connected beam end: rigidly-connected
k h m sidesway  sideswa sidesway  sideswa
permit)t]ed preven};ed error permit)t)ed preven);ed error
3 221 4.61 -1.08 3.52 4.69 -0.33
1 50 1.98 4.35 -1.20 3.36 4.43 -0.32
100 1.98 4.35 -1.20 3.36 443 -0.32
3 2.28 4.61 -0.21 3.82 4.72 -0.24
2 50 1.98 4.35 -1.20 3.59 4.47 -0.25
2 100 1.97 4.35 -1.21 3.59 4417 -0.25
3 2.71 4.61 -0.70 4.38 4.79 -0.09
10 50 1.98 4.35 -1.20 3.84 4.54 -0.18
100 1.98 4.35 -1.20 3.84 4.54 -0.18
3 4.60 4.61 -0.00 4.81 4.82 -0.00
100 50 2.01 4.35 -1.16 3.93 4.58 -0.17
100 1.99 4.35 -1.19 3.91 4.58 -0.17

k: beam stiffness ratio

n: wall stiffness ratio  m: number of story

error: (sidesway permitted - sidesway prevented) / sidesway permitted
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4. Concluding Remarks

A method of approximate analysis was proposed for the buckling strength of single-bay multi-story steel
frames connected to a core wall. The solution was obtained by a simple and easy computation. It was shown that the
accuracy of the approximate solution was very good, compared with the exact solution obtained by the eigenvalue
analysis for several sample tall frames. Alignment charts for the effective column len gfh were prepared, which are
applicable to the frames in which the beams are pin- or rigidly-connected to the wall, with the limitation that the
number of story of the frame should be not less than 30, and the inverse value of the parameter x defining varying
ratio of the load parameter Z should be not larger than 1.125.

The frame model treated in this paper is a single-bay frame as shown in Fig. 1, while the real frame has
multi-bays. The buckling strength of the frame consisting of a steel beam-and-column assembly with s-bays (s
columns) connected to a core wall may be obtained by breaking down the given frame to a series of s single-bay

frames of the type shown in Fig. 1. The effectiveness of this procedure is left for the future investigation.
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