Res. Rep. Fac. Eng. Mie Univ., Vol. 26, pp. 51—68 (2001)

Original Paper

Code Scheduling for Multi-Processor Systems

Yoshikazu MATSUBARA} Michio OYAMAGUCHI and Yoshikatsu OHTA
(Department of Information Engineering)

(Received September 17, 2001)

Abstract

This paper considers the scheduling problem of multi-processor systems under the condition that
each processor is uniform and every instruction executes in one cycle. We propose two linear time
scheduling algorithms which are respectively applicable to the two classes of dependence graphs, one
of which consists of graphs with instructions of in-degree at most 2, and the other class of in-degree at
most 3. We show that these algorithms produce optimal schedulings when these dependence graphs
satisfy some more restricted conditions.

Key Words: Code Scheduling, Compiler Optimization, Multi-Processor

1 Introduction

Processors such as superscaler and VLIW machines can execute many instructions in parallel. In order to
achieve high performance of these machines, code(instruction) scheduling by compiler plays an important
role [1]. But, the scheduling problem is NP-complete in general [2]. So, it is expected to obtain heuristic
algorithms producing a good approximating (or near optimal) solution to this problem. Dependences
between instructions are represented by a directed acyclic graph (DAG) called a dependence graph: the
vertices represent the instructions and the edges represent the dependences. The scheduling problem
is the problem of finding out an optimal schedule for a dependence graph and a number of processors
k. Our previous paper has proposed a heuristic scheduling algorithm which produces in linear time
under the assumption that every dependence graph has only instructions of in-degree at most 2 (ie.,
the number of the parents of each instruction is at most 2). The reason we restrict the number of the
parents of each instruction to at most 2 is that where we use 3-address code as program’s intermediate
code and schedule its instructions before register allocation, in many cases the number of parents of each
instruction is limited to at most 2 because no antidependence! induced by register redefinition occurs.
In this algorithm, the set of vertices of a given DAG are divided into subsets S,(0 < h < H) of vertices
with the critical path length (the height of the vertices)h (where H is the height of the DAG), and a
local allocation method is proposed which schedules each subset Si(h > 0) using ordering the connected
components of the subgraph consisting of S, and Sp—1 according to some priority. We have shown that
this algorithm produces an optimal scheduling if |Sn| > 2k — 1 holds for every Sp, where |Sy| is the
number of vertices in Sy [5].

In this paper, we first extend this previous algorithm to the one in which a new local allocation method
schedules each Sp, by investigating the subgraph consisting of three subsets Si, Sp—1,Sh—2. (Note that
Sh—_s is added and investigated.) We show that this new algorithm operates in linear time and produces
an optimal solution if |Sp| > 3k for every S,. This extends the previous result since |Sy| > 2k — 1 is
relaxed to |Sp| > 3k. '

*Currently with Hitachi Corporation
1 Antidependence is such a dependence between instructions that when some register is reused, the following instructions
cannot write a new value into this register before all the preceding instructions referencing to this register’s old value.

52

Yoshikazu MATSUBARA, Michic OYAMAGUCHI and Yoshikatsu OHTA

Next, we consider the case that the in-degree of every vertex in a given DAG is at most 3. Note that
when a program to be scheduled handle array variables, the number of parents of some vertex(instruction)
might be 3. In this paper, we propose a linear time heuristic algorithm which is applicable to a DAG in
which the in-degree of every vertex is at most 3. And we show this algorithm gives an optimal scheduling
if |Sp| > 2k ~ 1 and when k > 2 (|S| > 2k if k = 2) holds for every Sj.

2 Instruction Scheduling

For instruction scheduling, we must obey data dependences between instructions in order not to change
the result of the program execution. These data dependences are represented by a DAG usually: instruc-
tions are represented by vertices and data dependences between instructions are represented by directed
edges. For a DAG, we define the critical path length of an instruction by the maximum path length from ._
this instruction to a‘leaf (i.e., the height of this instruction). It is well known that given a DAG and a
number of processors k, the optimal scheduling problem to minimize the execution cycles is NP-complete
in general [2].

In this paper, we consider the scheduling problem under the assumption that the following conditions
(1)-(3) hold.

(1) The number of parents of every instruction is at most n (where n = 2 or n = 3).
(2) Every instruction completes its execution in the same number of cycles.
(38) All the processors are uniform, i.e., have the same function.

Even if we assume the conditions (1)-(3), the scheduling problem is still NP-complete in general [5].
Whether the scheduling problem in the case where the condition (2) and (3) hold and the number of
processors is 3 is NP-complete or not is unsolved yet [4]. In the case of k¥ = 2, polynomial algorithms
have been known [6][7].

Henceforth, we consider a fixed DAG and assume that H is the maximum critical path length (i.e.,
the height of the DAG), Sy, is the set of instructions whose critical path length is h{(0 < h < H), and k
is the number of processors (k > 2).

[Notation] We denote the number of elements of a set S by |S|. For a real number 7, we denote the
minimum integer m satisfying r < m by [r] and the maximum integer ! satisfying I < 7 by |r].

3 Scheduling of DAG in which every node has at most 2 parents

3.1 Allocation Algorithm

The scheduling algorithm proposed in this paper allocates instructions in the decreasing order of the
length of critical path (i.e., in the order of Sg,Sy-1,---,S0) as shown at Fig.1 and uses two methods,
called “local allocation method” and “extended local allocation method” to allocate instructions.

Allocation Algorithm A,
(0) Initialization: gy :=0;h:=H ;t:=1
L
e case of lp11 = 0: S}, := 5.
e case of lp41 # O:
Let V C Sj, be the set of elements which can be allocated at k — I3, idle processors at

time t. If |V} > k — lp41, choose k — lj,41 elements from V arbitrarily and let the subset
be V'. Otherwise, let V' = V. Allocate V' at time ¢. S}, := S, ~V';t:=t+1

Code Scheduling for Multi-Processor Systems 53

(Stepl) I 1
timel s “ [local allogitlon method]
{extended allocation method]
time2
(Step2)
timel S H
7
time2 Spo1 allc_x:ate 'allocatable elements
arbitrarily
(Step3)
timel S H
g j
time2 S
A H-1
g! [local allocation method]
time3 H-1 or
[extended allocation methodl
time4

Figure 1: The algorithm for allocation

(2)If S;, #£0, allocate all the elements of S}, as follows:
(2-1) case of h > 0:
Ih:= |8S},| mod k.

e case of I, = 0:
Allocate all the elements of S}, in an arbitrary order. ¢ := ¢+ |S;|/k
e case of I, #0:
(a-1)caseof h=1o0r Ji(h—2<i<h)|Si| < 2korin+ | Sh |>2k
Allocate all the elements of S}, by “local allocation method” (described later). h:= h —1;1t :=
£+ 11} 1/K] - 1
(a-2) case of h > 2 and Vi(h— 2 <i < h)| Si | > 3k and Ip+ | Sh—1 |< 2k
Allocate all the elements of S, and S,_; by “extended local allocation method” (described later).
h:=h-2;t:=t+[|S;|/k]

Return to (1).
(2-2) case of h = 0:
Allocate all the elements of Sy in an arbitrary order. |

3.1.1 Allocation S}, by “local allocation method”

Let G' be the maximal subgraph consisting of the vertex set Sj, U Sp_1 of DAG: the edge set consisting
of all the edges of DAG between S}, and Sp—;. We change all the directed edges of G' into undirected
and obtain all the connected components Ci,---,Cy,. We call elements of S}, and Sy_; in C; parents
and children, respectively. We divide these connected components into two parts II; and II; as follows.
1I; = {C; | the number of parents of C; < the number of children of C;,1 <7 < m}
T, = {C; | the number of parents of C; > the number of children of Cj,1 < i < m}
We allocate the elements of S}, at time ¢,t +1,---,t+ [|S},|/k] — 1 as follows.

(1) Allocate all the elements of S}, belonging to C;(1 < i < m) in the order II; and then II,.

54

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

(2) For any connected component C; whose parents need at least two processor times for their allocation,
we first allocate a parent which has the most children. Then, we allocate a parent which is connected
to the element immediately before allocated by length 2 (through one child). Continue this process
until all the parents are allocated. Note that as C; is a connected component, all the parents are
chosen in this repeating process). O

Henceforth, we use the auxiliary functions put, ko, oya which are defined as follows.
put((t1,---,t,), X) : function put takes as inputs a list of times (1, - --,,) and an instruction set X and
allocate all the elements of X allocatable in the time list (¢;,---,%,) to the unallocated processors.

In case of X C S;,
ko(X)={y € S;—1 | 3z € X. x is a predecessor (parent) of y}
oya(X) = {y € Siy1 | Iz € X. y is a predecessor (parent) of 2}
And let ¢ and ¢’ be the start and last time of allocation of S}, respectively.

3.1.2 Allocation of S}, and S;_; by ‘extended local allocation method’

Make a list L of the elements of S}, in the decreasing order of the out-degrees, where any the element
whose out-degree is more than 5 is regarded as out-degree 52. 51 := (I +|Sh_1|) mod k; m :=k—Is_;

(I) case of k > 61},

We extract 55 elements from the tail of list L, divide this into 5 blocks with I, elements. Let these
blocks be By, Bs,:--,Bs in this order. Choose one B;(1 < i < 5) satisfying |ko(B;)| < ls_; and
{ko(ko(B;))| < |Sh—2| — m and choose any m elements from S,—2 — ko(ko(B;)) (Let this set be M).
put(t', B; U oya(M)); put((t,---,t' — 1), S} — B;); put(t' + 1, ko(B));

put((t',t' + 1), (Sh—1 — oya{M) — ko(B;)))

(IT) case of k < 6.
We extract 21, elements from the head of list I, divide this into 2 blocks with I, elements. Let these two
blocks be L; and Lo.

We extract k — 2m elements from the head of L and let this set be L'3.
Let Ni = ko(Li), Pi = ko(Ni) (i = 1,2),
X =NINN2 (]| X |=2),Y = Sp—1 — (N1UN2). (Fig.2). Without the loss of generality, we assume
that | N1| < | N2 |

Select m elements of P1U P2 C Sp_ according to the following priorities 1-4 (Let this set be M).

1. The elements u satisfying that oya(u) C X. (Let this set be X1, | X1| = z;).

2. The elements u satisfying that one parent of u is an element of X and the other is an element of
N1UN2— X (Let this set be X2, | X2| = z,).

3. The elements u satisfying that oya(u) € N1UN2~ X (Let this set be B, |B| = b). Or the elements
u satisfying that one parent of v is an element of X and the other is an elements of Y (Let this set
be X3, | X3| = z3).

4. 2z; + x> elements chosen arbitrarily from the elements of (P1U P2) — (X1U X2U X3U B). (Let
this set be C, |C| = ¢). Here, if the number of the elements is less than 2z; + x5, let C be all the
elements.

In the case where |[X1U---UC| <m,let M = X1U---UC.

According to the following cases, we apply one of the sub-allocation methods (II-1)-(II-6) described
later.

o If |M| = m, then apply sub-method (II-1)

2We can make this list in linear time by using bucket-sort.
3L' D L1 UL, holds (ref. Property 3.1(3)).

Code Scheduling for Multi-Processor Systems

S h 11 12 0 | T
N1 N2
Y
S po1 X
P2 P2
Sh-2

Figure 2: Li, Ni, Pi(i = 1,2),Y

[0 01000001600 [O

Figure 3: X1,X2,X3,B,C

e If [M| < m and z > m, then apply sub-method (II-2)
o If [M| <m and z < m and

% if | N1| < lp—; and
- if | P1|<| Sp—2 | —m, then apply sub-method (II-3)
- if | P1|>| Sp—2 | —m, then apply sub-method (II-4)
* if | N1| > lp—1 and
- if |Y'| > | 2], then apply sub-method (II-5)
- if |Y| < | 2], then apply sub-method (II-6)

3.1.3 Sub-allocation methods (II-1)-(1I-6)

o (II-1)
put(t, L' U oya(oya(M)));
put(t', oya(M));
put((¢,---,t'),(all the remaining elements of S}));
put((¥',¢ + 1), (all the remaining elements of Sy_1)) (Fig. 4)

o (I1-2)

Choose (m — x1 — x2 — z3) elements from Sp_2 — (X1U X2 U X3) arbitrarily (let this set be D).

Let M := X1U X2U X3U D. Apply the sub-allocation method (II-1).

o (I1-3)
Choose m elements from Sp_2 — ko(N1) arbitrarily (let this set be M).
put((t,- -+, = 1),5, — L1); put(t’, L1);
put(t' + 1, N1); put(t', oya(M));
put((#',t' + 1), (all the remaining elements of Sp—1))

55

56

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

.
t L’] [oya (oya (M)
N v

h
ol [oya (M) Syo1
t+l 1 h-1 M
vy S h-2
le— m —

Figure 4: The extended local allocation method

o (II-4)

Apply (II-3). Where L1 and N1 in (II-3) are replaced by L2 and N2, respectively.

(11-5)

Let Z={z € P1IUP2||oya({z})NY |=1}.

Make a list of ¥ in the decreasing order of the out-degrees in the subgraph whose vertex set is
Y U Z* and choose the top |2 | elements of the list. (Let this set be Y”).

Let Z/ ={z' € Z | |oya({z’})NY" |=1} .

Choose m elements from Z' arbitrarily if possible. If we can choose only the m — 1 elements(it
happens in only the case where m is odd), we add any one element from X1U X2U B to Z’ in
order to m elements. Let the set of the chosen m elements be M. Apply (II-1).

(11-6)
Let Z = {z € P1UP2 | |oya({z}) NY| = 1} and choose m elements from Z arbitrarily. Let this
set be M. Apply (II-1). O

In this algorithm, given an adjacent list of a DAG, it is obvious that the following problem (1)-(5)
can be solved in linear time.

1.
2.

The problem of obtaining the set Sy, Sg-1,---,S0 (e.g., by depth-first-search).

The problem of obtaining the list oya({v}) for every vertex v.

- The problem of obtaining all the connected components for the subgraph of each S} USy_; (0 <

h < H).

. The‘problem of obtaining ko(L;), ko(ko(L;)) and oya(L;), 1 < j < I of subsets Ly, Ly,---,1L;

(where, if j # j', Ly N Lj» = 0) of each Sy (0 < h < H) where [is 'some constant.

. The problem of obtaining the set X,Y,X1,X2,X3,B,C,M,Z,Y’,Z’ defined in “extended local

allocation method” for each S},Sh-1,5,-2(2 < h < H)

By these facts, we can show that the time complexity of this algorithm is O(n). (Where, n is the
number of all instructions, i.e., the number of nodes of DAG). Note that the number of the edges are at
most 2n because the DAG satisfies the assumption (1) in Section 2.

4

we use bucket-sorting regarding all the outdgrees greater than 2 as 2.

Code Scheduling for Multi-Processor Systems

3.2 The properties of the allocation algorithm

The “local allocation method” in this algorithm has been proposed in [5] and the following lemma holds.

Lemma 3.1 (/5], p.972, [Lemma 2]). Having allocated the last I5(= |S}|mod k) elements of S}, at time
t by “local allocation method”, if |S}| > k+1 and |Sp—1| > k, we can allocate elements of Sp—1 ot all the
unallocated k — lp, processors at time t. 0

Using this lemma we have shown that the “local allocation method” produces an optimal scheduling
if |Sp| > 2k—1(0 < h < H) in [5]. We show that the algorithm given in Section 3.1 produces an optimal
scheduling if |Sy| > 3k(0 < h < H). Henceforth, we assume that |Sy| > 3k (0 < h < H). And to
show some properties of “extended local allocation method” allocating S}, and Sp_1, we also assume the
following condition (*0)

h>2,0p>0,lp+|Sh1]| <2k ---(x0)

and let ¢ and ¢’ be the start and last time of the allocation of S}, respectively.
Property 3.1

1) |Sh-1l=k+1lp1—1n

(2) 1> 3k+1,

3) k>2p+2m

(Proof)

(1) Obvious from the definition of {5, and (*0).

(2) By (1), I + 2k <k + l4—1. Therefore, (2) holds.

(3) Bym=k—lp—1 and (2), m < k— (3k + 1) = 3k — I Therefore, (3) holds.
[Notation] For v € Sh, let out(v) be the number of the out-edges from v to S,_;. For a set of instructions
L, let out(L) =), out(v).

Lemma 3.2 Let k > 6l and |S}| > k. For the allocation (I) of “extended local allocation method”, there
erzists some i(1 < i < 5) such that |ko(B;)| < ln—1 and |ko(ko(B;))| < |Sh—2| —m

(Proof) See Appendix 1.
The following Lemmas are concerned with the allocations (II-1)-(II-6) in the case of k < 6.

Lemma 3.3 Let k < 6l and |S,| > k. We assume that the elements of L' are allocated at time
t. Allocating the remaining unallocated elements of S} at time (t,t + 1,---,t') in any order, we have
out(Ly) < lp—1 for the set Ly of the elements allocated at time t' satisfying that |Ly| =1y, Ly C Sy,.

(Proof) See Appendix 2.
Lemma 3.4 min(| N1|,| N2|)<lp_1or |Y | <(m—-Ip)+ | X |

(Proof) Assuming that |Y |> (m —)+ | X | holds, we have

[N1|+]|N2|

| Sh-1 |+ X | =Y |
| Sh—1 | =(m —1p)
2lp—1 (by Property 3.1(1) and m =k — lp—_1)

IA

Therefore, this lemma holds. O

57

58

Yoshikazu MATSUBARA, Michio OYAMAGUCHTI and Yoshikatsu OHTA

Lemma 3.5 Let 0 < h < H. In the allocation of Sug,Sg—1,-+,Sh+1 in this algorithm, if there exists
no idle processor except the last time and S} is defined, then |Sy| > k holds.

(Proof) In the case of h = H, by |Sy| = |Sg| > 3k, this lemma holds. Assuming that this lemma
holds for h satisfying h > h', we prove that this lemma holds on A’ by dividing into the following two
cases.

Case(1): S, is not defined(i.e.,S}, ,, is defined and (a-2) is applied to S}, ,). In this case, by
Property 3.1(2), lp41 > £k +lp2 > 1k holds. Therefore, the number of idle processors at the last time
t' of the Sp4+1’s allocation is less than —21—k Therefore, the number of instructions of Sj allocatable at
time #' is also less than k. So, by |Sy/| > 2k this lemma holds.

Case(2): S}y is defined. In this case, lp41 = 0 or the allocation (a-1) is applied to S ,. In the
former case, [S},| = |Sw| > 3k, In the latter case, lp41 + |Sh| > 2k.

So, by |S},:| = |Skr| — (k — lny1) > k, this lemma holds. O

Property 3.2
Let k < 6l5. Then,

1) 2,>m

(2) lh1>2m

(3) k> 3m
(Proof)

(1) By Property 3.1(3), 6l > k > 25 + 2m. Therefore, (1) holds.

(2) By Property 3.1(3) and Property 3.2(1), we have I, _y = k —m > 2, + m > 2m.
(3) Obvious from (1) and Property 3.1(3).

Lemma 3.6 Assume that S}, is defined and |S}| > k where 1 < h < H. If the allocation(a-2) is applied
to S}, then elements of Shp—1 are allocatable to all the remaining idle processors at the last time the
allocation of S, terminates and elements of Sn—2 at the last time the allocation of Sn_1 terminates.
Thus, no idle processors at the both times. ’

(Proof)

We show that this lemma holds for all the cases (I} and (II-1)-(II-6) in “extended local allocation
method”.

(Proof of (1))
By Lemma 3.2, there exists i(1 < ¢ < 5) such that |ko(B;)| < lp—1 and |ko(ko(B;))| < |Sh—2| — m.
Hence, we can choose a set of the m elements M C Sj,_» — ko(ko{B;)) satisfying that

|B; Uoya(M)| <1n+2m <k (by Property 3.1(3))

and
[ko(BY)UM|<lp_1+m=k

Therefore, we can allocate B; Uoya(M) at time ¢’ and ko(B;) U M at time ¢’ + 1.

(Proof of (II-1)) In order to allocate one elements ¢ € Sy_» at time ¢ + 1, we need to allocate
oya(oya({g})) C S}, at time ¢. If g belongs to any of X1, X2, X3, B,C, then |oya(oya({q})) — (L1 U L2)]
(i.e., the number of elements except L1 U L2 needed to allocate) is given as follows.

X1|X2|X3|B|cC
o] 1]z2]2]3

Code Scheduling for Multi-Processor Systems

For the set M chosenin (a-2), let |M| = m = z} +zh+z5+b'+c where z} < 2;(1 <7< 3),b' <b,c <¢
are the numbers of elements chosen from the corresponding sets X, B, C. In order to allocate M at time
t' + 1, the number of elements of oya(oya(M)) in S} — (L1 U L2) needed to allocate at ¢’ are at most
0-z1 +zh+2z5+2b' +3c' <2m (by ¢ < 22/ +z}). And by Property 3.1(3),L' D L1U L2. Therefore,
put(t, L' U oya(oya(M))) can be completed:

Moreover, by Property 3.1(3) and |oya(M)| < 2m, put(t',oya(M)) can be completed and M is
allocatable at time ¢' + 1. Even if we choose any [elements from S} — (L' U oya(oya(M))) at time ¢/,
Lemma 3.3 ensures that the (k — I,) elements of Sp_; including oya(M) are allocatable at time ¢'. It
follows that there exist no idle processors, as claimed.

(Proof of (II-2))

By |X1U X2U X3| < m, we have z; + 22 + 3 < m. Let the number of the elements of D be d(=
m—(z1+z2+23)). By |X| < 221+z2+23 and m < | X|, wehaved < z1, |M| =m = z1+z2+x3+d and the
number of the elements of oya(oya(M)) in S} —(L1UL2) is at most 0-z1 +22+223+4d < 2m (by d < x1)
by a similar proof to that of Case (II-1). Therefore, by the same proof as the latter half that of (II-1),
this lemma, holds.

(Proof of (II-3))

By | N1|< lj_1, we can allocate at least | Sh—1 | — | N1|(> k—1n (by Property 3.1(1)) elements of
Sh-1 at time ¢, and m elements of Sp_» — P1 at time ¢’ + 1, since |P1| < |Sp—_2} — m.

Therefore there exist no idle processors, as claimed.

(Proof of (1I-4))

In this case, we first show that | N2 |< [4_1 . To the contrary, we assume that | N2 |> ln—;. Then,
we will have a contradiction.

Since |[V2| > 2m (by Property 3.2(2)) and |oya(X1UX2UX3UBUC)NN2| < 2z 4222 +23+2b+c¢ <
2m (by |M| < m), the children of some element of N2 — X have not been chosen as the elements of C.
Therefore, ¢ = 21 + 2 holds by the definition of C, so that x; +z2+z3+b+¢ = 3z + 222+ 33 +b < m.
And by z < 2z + 25 + 3, we have

z+T1+T2+b<m (*1)
We define subset A’, B’',C’ of Sy_2 as follows.

S
1

{v € P1 | oya({v}) N (N2 - X) # 0}
{ve P2 P1 | aya({v}) C (N2— X)}
¢ = (P2—-P1)-B
Let the numbers of the elements of A', B,C’ be a’, V', ¢, respectively. By the definition of X2 and B,

&
I

d+b <zo+b<m—z—z1 (by (x1)
By |[N2|<z+a' +2V + ¢,
2m<(z+d +b)+b + <(m—z1)+¥ +¢
Therefore
m<b+c=|P2-P1 --- (x2) ‘

But, by |P1] > |Sp—2| — m, |P2 — P1| < m holds. This is a contradiction to (*2). Thus, |[N2| < l;_1, as
claimed.

Next, we show that |P2| < |Sp_2| — m holds. To the contrary, we assume that |P2| > |Sp_2| =m. By
|P1N P2| < 21 + 25 + 23 + b < m, we have

|P1U P2| |P1] + |P2| — |P1N P2
2lSh—21 - 3m

>
> |Susl+3b (by [Sucal > Sk, Property 31(3))

59

60

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

This is a contradiction to |P1U P2| < |Sy_2|.

Therefore, | N2 |< [,—1 hold, so that | P2 |<| Sh—2 | —m, there exist no idle processors by a similar
argument to that of the case (II-3) . (That is, in (Proof of (II-3)), we simply replace L1 and N1 by
L2 and N2, respectively).

(Proof of (II-5))

If m = 2n or 2n + 1 for some positive integer n, then we show that | Z’ |> 2n holds.

To the contrary, we assume that | Z' |< 2n. Let G be the DAG whose vertex set is Y U Z. Then, Y’
has at most 2n — 1 edges(i.e., out(Y"') < 2n —1). As we have chosen the elements of Y’ in the decreasing
order of the out-degrees from Y, every element of ¥ — Y’ has at most one edge in G.

Therefore, we have

1Z| < 2n——1+|Y|—|_%J:n—1+|Y|

< —12~m+|Y|
< gm —Ilp+z (by Lemma 3.4)---(x3)
|PLUP2| = zi+za+b+|2] -+ (x4)
[PLUP2| > (IN1+|N2|—2)—(z1+z2+b) - (x5)
By (*4) and (*5), we have
1 + z2+Db

> |N1|+|N2]—(E—|Zl-—($1 +$2+b)

> U i-z- (gm ly+a)— (@ a2 4B) (by [N > laes, IN2| > Loy, (+3))

> 21— gm +1lp—2m (by z < m,(x1))

3 1
> 4m— 5m + gm= 2m (by Properties 3.2(1) and (2))

= m
Therefore, z; + 22 + b > m. This is a contradiction to (*1).
Thus, | Z' {> 2n holds, as claimed.

(1) Case of m = 2n:
In this case, | Z' |> 2n = m holds. For each element of Z', one of the parentsis in Y’ (| Y’ |= | 3])
and the other is in N1 U N2, so that in order to allocate M at time t' + 1, the number of the
elements of S}, — L' belonging to oya(oya(M)) needed to allocate at time ¢ is at most 2m.

(2) Caseof m =2n+ 1: :
In this case, | Z' |> 2n = m — 1 holds. In the case of | Z' |> m, |oya(oya(M)) — L'| < 2m holds by
the same argument as that of (1). In the case of | Z' |=m —1, | oya(oya(Z')) — L' |< 4n holds and
for the element d € (X1U X2U B), | oya(oya({d})) — L' |< 2 holds, so that | oya(oya(M)) — L' |<
4n + 2 = 2m holds. And the existence of d € (X1U X2 U B) can be proved easily.

Therefore in the both cases (1) and (2), put(¢, L' U oya(oya(M))) can be completed.
And, by Property 3.1(3), so put(t',oya(M)). Thus, M can be allocated at time ¢’ + 1.
Moreover, from Lemma, 3.3 there exist no idle processors at time ' and ¢’ + 1, as claimed.

(Proof of (1I-6))
In this case, note that

INLUN2| = |Sp-1| = Y]
3 m
> k| —
> 3-12)
> 4m (by Property 3.2(3))

Code Scheduling for Multi-Processor Systems

o QOOOOX

idle processor

Figure 5: Example of a DAG with non-allocated processor time units in any allocation (k = 6).

Hence, |P1U P2| > 2m. By this and (*4), we have

1Z] > 2m—(z1+2z2+1b)
> m (by (x1))

Therefore, | Z| > m. By a similar argument to that of the case (II-5)-(1), |oya{oya(M)) — L'| < 2m holds,
so that there exist no idle processors. 0

theorem 3.1 For all (0 < h < H), if | Sy | > 3k, this algorithm gives an optimal scheduling.

(Proof) By showing that for any h (0 < h < H), there exist no idle processors from the next of the
start time of Sp’s allocation (where if 541 = 0, from the start time) to the last time of this allocation,
we prove the optimality.

In the case of h = H, S}, = S, holds, so that |.S},| > %k If I, = 0, then obviously there exist no idle
processors. If I, # 0 and the allocation (a-1) is applied, then by Lemma 3.1 there exist no idle processors
from the start time of S}’s allocation to the last time. If the allocation (a-2) is applied, then no idle
processors by Lemma 3.6 .

In the case of h < H, we assume that there exist no idle processors at every time of the allocation
of Sy, SH-1,*,Sn+1 by the induction hypothesis. If S}, is defined, then by Lemma 3.5 |S}| > k holds.
Therefore by the same proof to that of the case of h = H, there exist no idle processors. If S} is not
defined, then S} ,; must be defined and the allocation (a-2) must be applied. Therefore, by Lemma 3.6
there exist no idle processors at every time of the allocation of Sj,. O

When the condition of [Theorem 3.1] is not satisfied, we show an example of a DAG impossible to
give a full scheduling (i.e., a scheduling without idle processor time units) in Fig. 5. In this example,
k =6,|Sh| =8 < 2 - 6 does not satisfy the condition.

Also, the example of Fig.2 in [5] is an example of the case of ¥ = 3 which has no full scheduling (in
this example [S,| =4 < § - 3).

4 Scheduling of DAG in which every node has at most 3 parents

4.1 Allocation algorithm

In the following allocation algorithm, let G}, be the subgraph of a given DAG whose vertices consist of
Sh USh_l(O <h< H)

Allocation algorithm A;

(0) Imitialization: lgy; :=0;t:=1

61

62

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

(1) Allocate the elements of Sp, in the order of h = H,H —1,...,0.

(1-1) e Caseof lp4q =0: SL := Sp; U :=0.

o Case of I511 # 0: Choose elements of S}, allocatable to k— lp+1 idle processors at time ¢ as
many as possible and allocate them at time ¢. Let U be the set of the allocated elements.
SpLi=8y - U;t:=t+1

(1-2) If S;, # 0, then allocate the elements of S}, on and/or after time ¢ as follows.
(a) Caseof h#0:1lp:= |S}| mod k;m:=2k—1.
If | Sp—1 | > m, then let Sp_ybe a subset of Sp_; satisfying the following condition: |5‘h_1| =
mA (Yu € Uds € Sp_1. u € oya({s})) A (1Sk] > m = |oya(Sk_1)| > m). (It is obvious that
we can choose such S’h_l.)
If | Sp—1 | < m, then Sph1 := Sp1 . Let G}, be the subgraph of G, whose vertex set is
S,’l U gh—l .

o Iflp =0or | S} |<k, then allocate all the elements of S} in an arbitrary order.

e 0 < Iy < 1k and |S},| > k, then allocate all the elements of S}, in the decreasing order of
the out-degrees in G),. Here, we do bucket-sorting them by regarding all the out-degrees
greater than 4 as 4.

o If I > }k and |S}| > k, then let = be an element of S} with the smallest out-degree in
G}. Sy =8}, — {z}. Choose I, — 1 elements from S! arbitrarily and let V be their set.
Th1 := {s € S,_1] at least one of the parents of s belongs to YUV }.

(a-1) Case of | Tp_y | > k: First, allocate the elements of V at time ¢. Next, for the
subgraph G}, of G}, whose vertex set is Th_y U {s € (S, — V) | s is a parent of some
element of T,_;}, allocate the parents of G using “local allocation method” (ref.
section 3.1). Finally, allocate all the unallocated elements of S} — V in any order (See
Fig. 6).

(a-2) Case of | Tp—1 | < k: First, allocate the elements of S — V. Next, allocate the
elements of V and z. t := ¢+ ||S}|/%].

(b) If A = 0, then allocate the elements of S} in any order. O

The time complexity of this algorithm is O(n). Here, n is the total number of the instructions, i.e.,
the number of the vertices in DAG. Note that as DAG satisfies the condition (1) in Section 2, the total
number of the edges is at most 3n.

4.2 Properties of allocation algorithm A,

For critical path length A if any of the following conditions @), @), @ hold, then we say that our allocation
algorithm enters a special allocation stage .
Qk=4,h=2 @k=3,5=2 @k=2,5=1

theorem 4.1 If{Sp | >2k—1 for all h(0 < h < H), and allocation algorithm A; never enter special
allocation stages during the allocation, then A; produces an optimal scheduling.

(Proof) We show the optimality by showing that Algorithm A4; does not make idle processors except
the last time of the Sy’s allocation. That is, we prove the following proposition by induction.

Proposition Algorithm A; allocates S, SH_1,---, S, without making idle processors except the last
time of the S},’s allocation for all A(0 < h < H). O

(Proof of Proposition)

1. Basis: the case of h = H. Obvious.

Code Scheduling for Multi-Processor Systems

] k | l k [
[| [|
Sh-1 Sh-1
time t-1 ITI time t-1 I—U—l
4 I Y - o ~
t v G, t S -V

h J l h y

e [é s+ Yrest | I ' e [v x\

A h elemf [local allocation method]),

1 h 1 b

Figure 6: The method of allocation in the case of I, > %k.
(Left fig. : | Th—1 | > k Right fig. : | Th1 | < k)

2. Induction step: By the induction hypothesis, we assume that for h(0 < h < H), A; can allocate
upto Sy without making idle processors. Consider the allocation of Sp_;.

e If I, =0, then the proof is obvious.

e If I # 0, then obviously |S},| > k. Let |S},| = nk + [for some n > 1. Let ¢ be the start time
of the allocation of S}, and ¢'(= ¢ +n) be the last time. We divide the proof into the following
three cases.

Case 1: I < 1k
Case 2: Iy > tkand |Th1| >k
Case3: lp > skand |Th1| <k

[Proof of Case 1]
As the number of parents of each instruction is at most 3,

out(Sp) <6k—3 - (%)

Here, out(Sy) is the total number of edges from S}, to Sp_1. If the number of instructions in S,_1, each
of which has at least one of the {; elements in S}, allocated at time ¢' as its parent, is less than or equal
to k+ I — 1, then at least | Sp_1| —(k+1; —1) = k — I, children of S;_; can be allocated at time #'.
Therefore, in this case, there exist no idle processors at time ¢'.

So, consider the other case: the number of the children of S'h_l dominated by the [, elements at time
t' is greater than or equal to k + I5. In this case, (k + I3)/lp > 3 holds by I < %k Therefore, every
element in Sj, allocated at time ¢,---,# — 1 has 4 children or more. Furthermore, the total number of
out-edges of the & — I,41 elements of Sy, allocated at time ¢ — 1 is at least k — lp41, so that

O’U.t(Sh) > (k - lh+1) + 4nk + (k + lh)
> k-1 —1lp+3nk+(k+1l) by (k—Ilpp)+nk> 2k—1)—1s)
> 6k—1 (byn>1)
This is a contradiction to (*). Thus, the number of the children dominated by the {; elements at time ¢/

cannot be greater than or equal to k + 1.
Therefore, we can allocate the elements of S,_; at time ¢’ without making idle processors.

[Proof of Case 2]

63

64

Yoshikazu MATSUBARA, Michio OYAMAGUCHTI and Yoshikatsu OHTA

Let oya(G}) and ko(GY) be the sets of the parents and the children in G, respectively. By the

construction of G}/ in Algorithm Ay, it is guaranteed for every element of ko(G}), that the number of the
parents in G} is at most 2. Hence, we can show this proposition by a similar proof to that of Lemma 2
in [5] p.972 (See Appendix 3.)
[Proof of Case 3] For z allocated at time #', out(z) < 3 holds. To the contrary, if we assume that
out(z) > 4, then, since z is an element with the least out-degree in S}, every one of the other k + I, — 1
or more elements in S}, has 4 or more edges. Therefore the total number of the out-edges of the elements
in Sy is

out(Sh) > out(S}) 2 4k +1) > 6k (byIn> 2H)

This is a contradiction to (*).

Furthermore, by |T_1| < k, the number of the elements in S;_; dominated by V (i.e., each of which
has some element of V' as one of its parents) is at most k — 1, so that the number of elements in Sj_;
dominated by V'U{z} is at most k—1+3 = k+2. That is, the number of the elementsin Sj_; allocatable
at time ¢’ is at most | Sp—1 | —(k+2) =k — 3, so that if k — 3 > k — lp, that is, if I > 3 holds, then
there exist no idle processors at time ¢'.

Thus, the remaining case is only that of I, = 2 or 1 . Note that this [Case 3] satisfies I;, > %k
Hence, only the following three cases remain.

Qk=4,1,=2 ,@k=3,L=2 ,0@k=2,l=1

Note that these three cases are called the special allocation stages and we have assumed that algorithm
A; never enter these stages. Hence, since these cases do not occur, we can allocate elements in S}_1 to
all the idle processors at time ¢'.

Therefore, for h — 1, this proposition holds. O

4.3 Scheduling for special allocation stages

In this subsection, we describe how to schedule in the special allocation stages and extend [Theorem 4.1].
Caseof @ k=4,1,=2

e Caseof | S}, |> 2k + Ip(=10) :
Choose any two elements in S,_1. Let W be the set of the elements. First, allocate all the parents
of W from time ¢ in any order, and then, allocate the remaining elements in S}, to time #'.

Because the total number of the parents of W is at most 6, the allocation of these elements is
completed by time ¢ — 1. Therefore, W can be allocated at time ¢, so that there exist no idle
Processors.

s Caseof | S} |<2k+1p:
In this case, | S} | =k +1, =6, so that |U | > (26— 1) — | S} | > 1. Choose one element in Sj_;
dominated by U arbitrarily and let this be z.

(i) I z has 1 or 0 parent in S}, then choose one element, say y, in Sp—; — {x} arbitrarily and let
W= {1' s y}

(i) Otherwise (i.e., if & has two parents in S}), if there exists y € Sy_1 — {z} such that y and
have at least one common parent in S, then let W = {z,y}. Otherwise, choose two elements
from S,_; — {z} arbitrarily and let this set be W.

In either case, note that the number of the parents of W belonging to S}, is at most 4, since |Sh] = 6.
Thus, allocate the parents of W at time ¢ and then the remaining elements of S}, to ¢’ = (¢t + 1).
Since W can be allocated at time ¢/, there exist no idle processors.

Caseof @ k=3, =2 Because the number of parents of each element is at most 3, we
can allocate all the parents of some element in S,_; at time ¢ — 1, so that the element of S;_; can be
allocated at time #'. Thus, there exist no idle processors.

Code Scheduling for Multi-Processor Systems

time scheduling 1 scheduling 2

N OXO
2) G)

RO/ O
7 N Vv N

N ONN

)
)

idle processor

Figure 7: Example of a DAG with non-allocated processor time units in any allocation (k = 2).

Caseof @ k=2,1, =1 In this case, there exists a DAG in which no elements in S;_; are
allocated at time t' (See Fig. 7), that is, there exists an idle processor at time t'.

However, if we change the condition |Sk| > 2k — 1 to |Sk| > 2k = 4, then obviously there exists
elements allocatable at time #'.

By the above arguments, we obtain the following corollary of Theorem 4.1.

Corollary 4.1 Let Ay be the algorithm augmenting the allocation algorithm A; by the above algorithm
in the case of @ and @. Ifk > 3 and for all h (0 < h < H) | Sy | > 2k — 1, then algorithm Ag gives an
optimal scheduling.

Note that if ¥ = 2, then we need to consider only the case of @) or I, = 0, so that if |Sy| > 2k, it is
obvious that there exists a linear time optimal scheduling algorithm.

5 Conclusion

In this paper, we have first assumed that the number of parents of each instruction in a DAG is at most
2, and proposed a heuristic algorithm of scheduling in linear time under this assumption and shown that
it produces an optimal scheduling if the number of vertices of S;, (the set of vertices with critical path
length h) satisfies some restricted conditions. Next, we have assumed that the number of parents of each
instruction in a DAG is at most 3, and proposed a heuristic algorithm of scheduling in linear time under
this assumption, which has a similar property to that of the former algorithm.

References

[1] H. Komatsu, T. Shinriki, A. Koseki and Y. Fukazawa, “A Register Allocation Technique for
Instruction-Level Parallel Architecture”, Trans. of IPSJ, Vol.36, No .12, pp. 2819-2830, Dec. 1995.

[2] J.D. Ullman, “NP-Complete Scheduling Problems”, J.Comput. Syst. Sci. 10, pp. 384-393, 1975.

[3] A.V. Aho, D. Ullman and R. Sethi, “Compilers Principles, Techniques, and Tools”, Addison-Wesley,
Reading, MA, 1986.

[4] M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-
Completeness”, Freeman, San Francisco, 1991.

[5] Y. Matsubara, T. Hattori, M. Oyamaguchi and Y. Ohta, “Code Scheduling for Instruction-Level
Parallel Processor”, Trans. of IEICE, Vol.J80-D-1, No.12, pp. 971-974, 1997.

65

66

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

[6] E.G. Coffman and R.L. Graham, “Optimal scheduling for two-processor systems”, Acta. Inf. 1,
pp. 200-213, 1972.

[7] M. Fyjii, T. Kasami and N. Ninomiya, “Optimal sequence of two equivalent processors”, SIAM J.
Appl. Math. 17, pp. 784-789, 1969.

A Proof of Lemmma 3.2

(Proof) By [S}| > k+1p > Ty, let A= S, — UL, B;, so |A| > 7l — 5lp = 21;. We first show that
out(B1) < lp—1. To the contrary, we assume that out(B;) > l;_1. Then,

out(By)/lp, > (lp_1/ls)
> (3k+1x)/ln (by Property 3.1(2))
>4 (by k& > 6l3)

Therefore, by out(B1) > 415, the out-degree of some element in B is 5 or more, so that out(4) > 5]A| >

5(k—4lp). The out-degree of each element in S, —(AUB;) is 1 or more, 5o we get the following inequality.
out(Sy) = out(A4) + out(B1) + out(S, — (AU By))

5A] +In—1 + [Sh] = (4] +14)

A+ lp1 = 1n + |Sh]

4Gk —4ln) +Iny I+ Sk (by [Shl 2 k)

\%

AV

B+ %)k +lh_1 — 171,

1
> 20k +lh-1—1p) + (k= lp1) +5(5k“3lh)
> 2|Sp—1| (by Property 3.1(1), k > lp—1,% > 6l)

This contradicts to the total number of the existing edges. Therefore, out(B;) < I_;. By the same
way, for every i(2 < i < 5), out(B;) < lp_1 holds.

Next, for some #(1 <4 < 5), we show that |ko(ko(B;))| < |Sh—2| —m. To the contrary, assuming that
for every i(1 < i < 5), |ko(ko(B;))| > |Sr—2| — m, we show a contradiction. Let B = U2_; B;. Then, the
following equality holds.

out(Sh) = out(Sp — B) + S0_, out(B;)

For each out-edge going out of (Sp, — B), the out-degree of the adjacent vertex in Sj,_; is 1 or more
and for all the out-edges going out of B;(1 < i < 5), the sum of the out-degrees of the adjacent vertices
in Sp_; is |ko(ko(B;))| or more for each i. Because the number of the parents of each vertex in S;_; is at
most 2, out(Sy — B) + Y o_, |ko(ko(B;))| is limited to the double of the total number of the edges from
Sh—1 to Sp_3. That is, the following inequality holds.

5
out(Sp ~ B) + Y [ko(ko(B;))| < 4|Sh-2] -+ - (x%)

=1

However,

v

the left hand side of (x*) (gk —5lp) + 5(|Sh—2| — m)

v

482 +3k =5y = 5m _(by [Shoal 2 oF)
4|Sh—2| — 2k + 5lp—1 — 5l (bym=k—1l_1)
4Sh_s| + -;-k (by Property 3.1(2))

v

This contradicts to (**). Therefore, this lemma holds. ' O

Code Scheduling for Multi-Processor Systems

B Proof of Lemma 3.3

Let L3 be the set of the first I, elements chosen from S}, — L' in the decreasing order of the out-degree.
We first show that out(L3) < I_;. To the contrary, assuming out(L3) > l;—1, we show a contradiction.

e Case of m > l;: In this case, k > 4} holds (by Property 3.1(3)).

out(L3) /1y

> Ip—1/ln
> (%k + 1)/l (by Property 3.1(2))
> 3(by k> 4ls)

Therefore, the out-degree of some element of L3 is greater than or equal to 4, But

out(Sh)

I v Vv

Il

2

out(L') + out(L3) + out(Sp, — L' — L3)

4(k — 2m) + lh_1 + (|1Sh] — (k — 2m) — Ip)
1

(44 Dk —6m+ b=l (by [Sh]> gk)

1
(4 -+ E)k - G(k — lh,_1) + lh—l - lh

Tlp—1 — gk -1

2Up_1 + 5(%1: +1n) - gk —1n (by Property 3.1(2))
21 +k+ 4l

(2lp—1 + 2k — 21p) + (6l — k)

2|Sh-1] (by 6l > k, Property 3.1(1))

Therefore, out(Sy) > 2|Sp—1|- This is a contradiction.

o Case of m < l: In this case, k > 4m (by Property 3.1(3)).

out(L3)/ln

> lha/ln
> % -k/l,+1 (by Property 3.1(2))
> 2 (by Property 3.1(3))

Therefore, the out-degree of some element of L3 is greater than or equal to 3, so

out(Sy)

> 3(k—2m)+lp-1+ (|Su| — (k—2m) —Ip)
1
> (3+—2-)k+lh..1—4m—lh
1
= (2+ §)k+2lh_1 —3m—Iplby k=m+1y_1)
1
= (2k+2lp—1 —2l) + (5’9 + I — 3m)
> 2|Sh—ll (by Iy > m,k > 4m)

This is a contradiction. Hence, we have out(L3) < l_;. By a similar argument, out(L3) < 5lp

holds®. Therefore, out(Ly) < out(L3) holds, so this lemma holds. a

5We do bucket-sort under the assumption that the out-degree greater than 5 is regarded as 5, so that in order to show
out(Ly) < out{L3) we need to guarantee that there exists at least one element in L3 whose out-degree is lesser than or

equal to 4 by this inequality.

67

68

Yoshikazu MATSUBARA, Michio OYAMAGUCHI and Yoshikatsu OHTA

C Proof of Theorem 4.1 [Case 2]

If all the elements of oya(G}) are allocated before or at time ¢’ — 1, then by | Th_1 |> k, we can obviously
allocate k — I, elements in Sy_; at time #. So, we assume that at least one elements in oya(Gy) is
allocated at time ¢'. Then, we can show this proposition by a similar proof to that of [5] using the
following lemma in [5].
Lemma B.1([5],Lemma 1) For DAG whose vertex set is D, UDj,_; and whose edge set is (C Dy X Dy_1),
we assume the number of the parents (€ D) of each child (€ Dj_;) is at most 2. Allocating the parents
by ‘local allocation method’, for any connected component C of DAG, if m(> 0) parents in C are allocated
at any time, at least m — 1 children in C can be allocated at the next time. &I

Let Cp, be the connected component of G}, whose parents are allocated at both times ¢’ — 1 and #'.
Let p, be the number of the parents in C, and g, be the number of the children. And, let pl, and -
P (= pn — p},) be the number of parents in C,, allocated at time #' — 1 and ¢', respectively.

1. Case of p, < qp:
By Lemma B.1, at least p), — 1 of the g, children are allocatable at time #'.

Since for any connected component C; allocated before C,,, p; < g; holds, the number of elements
in Sp—; allocatable at time ¢’ is at least (the number of the elements of oya(G}) allocated at time
V-1 -1=(k-Ilp+1)-1=k—1.

2. Case of p,, > ¢n:
By Lemma B.1, at least p;, — 1 of the g, children are allocatable at time #'. So, the number of the
children of C,, which cannot be allocated at time ¢’ is at most

qn—(p;—1)<pn—(p;—1)=pﬁ+1

That is, the number of the children of C,, which cannot be allocated at time ¢ is at most p’ (i.e.,
the number of the parents of C,, allocated at time #').

And for each connected components C; allocated after C,, was allocated, p; > ¢; holds, so that the
number of the children of C; which cannot be allocated at time #' is at most p;. Therefore, the
number of the elements of T_1, each of which has as its parents one of the {; elements of oya(GY)
allocated at t', is at most I, (i.e., the number of oya(G}) allocated at t'). Therefore, there exist at
least & — I, elements of S;_, which can be allocated at t'.

By (1) and (2), we can allocate k — I, elements of Sp_; to k& — I, processors at .
Hence, there exists no idle processor at #'. O

