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Abstract

The behavior of semirigid frames has been extensively investigated, and several meth-
ods has been proposed for the evaluation of effective buckling length of framed columns,
which require rather tedious calculation in the case of the connection with highly nonlinear
characteristics. This paper proposes an approximate method to evaluate the effective length of
columns involved in a frame of which connections can be assumed to bebave linearly. The
proposed method first replaces a given frame with elastic linear springs at beam ends by an
equivalent rigid frame, and the effective column length of the former is approximated by that
of the latter, which may be obtained from a conventional alignment chart. Good accuracy has
been observed from the results of the numerical analysis of sample frames.
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1. Introduction
Recently, the behavior of frames with semirigid connections has been extensively investigated experimen-
tally and theoretically, and the frame analysis considering semirigidity is carried out in some cases of the real
~ design practice. Since the semirigid connection shows nonlinear behavior in the early stage of loading, nonlinear
analysis is required to evaluate effective buckling length of framed columns, eventhough the frame is within the
elastic range, which is rather tedious. Nethercot, et al. applied B-spline model to the moment-rotation relation of an
H-shaped beam-to-column connection using end-plates or angles, and showed the column curves for the columns
with semirigid end restraints{!). Chen, Kishi, Goto, et al. presented a method of buckling analysis of frames with
connection rigidities determined by beam-line method!?], and showed the results of tangent modulus analysis of
sway-prevented(®] and sway-permitted! 3] fish-bone type multi-story frames, of which connection rigidity was
given by a power modell®). These works investigated the applicability of alignment charts to semirigid frames, by
‘ comparing exact effective buckling lengths of framed columns with those obtained from the alignment charts.
Tsuji, Ohtani, et al. invesigated the effects of strength and rigidity of connections on the collapse types of portal
frames, i.e. mechanism-forming collapse or instability collapse, in which truss model and rotational spring model
were used to simulate shear deformation and local deformation of a connection panel, reSpectively[7]. Matsui,
Kawano, et al. investigated the effects of degree of fixity of the column base on the buckling strength of frames, by
modeling the column base by a rotational spring!®].
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In general, the beam-to-column connection consisting of H-shaped members with end-plates or angles shows
strong non-linearity, but a linearity is recognized in some types of connections, such as the connection at which an
H-shaped beam is welded to a pipe column without diaphragm, and a bare type column base with relaﬁvely-high
fixity. Therefore, the connection was sometimes treated as a linear element!® 101, If the behavior of a semirigid
connection can be assumed bi-linear, conventional allowable stress design or plastic design is applicable to semi-
rigid frames, and it is needed to evaluate the column effective length in the course of column design. Along this ’
context, this paper rpalaces a frame with semirigid connections by a frame with linear rotational springs at beam

_ ends, and proposes an approximate method to evaluate column effective length of the frame with beam end springs,
utilizing conventional alignment charts!!!). Accuracy of the approximate method is investigated with the exact
solution of several sample frames.

2. Elastic Buckling Analysis of Semirigid Rectangular Frames

2.1 Model for the Analysis

Figure 1(a) shows a model for the analysis, which is a rectangular frame with linear springs at each beam
end, subjected to vertical load P on each column. Column stiffness and stiffness of upper and lower beams are
denoted by K., Kj, and Kj; respectively, and rotational spring constants of springs at upper and lower beam ends are
denoted by Ky and K, respectively. Member stiffness X is defined by K = EI /1, where E, I and [ denote Young’s
modulus, moment of inertia and length of the member, respectively. Figure 1(b) shows the same frame in which kj,
kg, kps and kg denote the stiffness ratios to the column stiffness of the upper and lower beams, and the springs at the
upper and lower beam ends, respectively. The stiffness ratio of a spring is defined here as the rotational spring

~ constant divided by the column stiffness, for example, ky; = Ky / K.

2.2 Exact Analysis
The slope-deflection formulas for the member-end moments of a beam with springs at both ends in which
chord rotation does not occur, M be and M, of the beam BC in Fig. 1(b), for example, are expressed as follows(12];
My =ky K (kpp Op + K 8c)

Mo, =ky K (kyp®p+ky 8;) v
where
' 12 (ks kpgo+ 3 kpkpg)
kpp= 4 (kpsy+ 3kp) (kpgo+ 3kp ) —Kygy kpgo
. - 6 kps1 Kpso
bc 4 (kpsyt+3kp) (kpgp+ 3kp)-kps1kps2 @
. 12 (kpgy kpsp*3kpkpgo)

cc ™ 4 (Jygy + 3 k) (Rt 3 k) —kpgy Ko
- On the other hand, the slope-deflection P
formulas for the member-end moments *

and lateral forces of a column subjected B K Cafle B [——971 C +
to the axial force in which chord rotation Kps1 Kps2 kbs1 kps2
occurs, M, My, Vi, and Vi, of the col-
umn AB in Fig. 1(b), for example, are ex- K¢ K — 1 1 h
pressed as follows!12];

Mgy =K (08 + PO, — YR) 3 A K51 Kfs2 D A kfs1 kfs2 D

My, =K, (B8, +08,—YR) @ X n = /na

@ ®)

Fig. 1 Model for Analysis: Semirigid Rectangular Frame
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Vap =—=< (v6,+v0, - 8R)

K, @
Vea =-—% (v, +78, - 8R)

In the above equations, o, B, 7, and § are stability functions of the load parameter Z, and given by
_ ZsinZ- Z%cosZ
&= 21 = cosz)- ZsinZ
Bee 72— ZsinZ
2(1-cosZ)-Z sinZ
Z2(1-cos )Z - 5
2(1~cosZ)-Z sinZ , ©)
Z35inZ
2(1-cosZ)-Z sinZ

where

= /_P_
z=h [ 3 ©)

Figure 2(a) shows the deformations occurring when the frame shown in Fig. 1(b) buckles with sidesway. In
this case, equilibrium of bending moments acting around 4 panel points A, B, C, and D, and equilibrium of story
shear lead to 5 equations, and eliminating the chord rotation of the column R leads to a set of homogeneous simul-
taneous equations of size 4, with the unknowns 6, 8, 6, and 8. In the case of the buckling without sidesway
shown in Fig. 2(b), the equilibrium of story shear is not necessary, since the chord rotation does not appear, and a
" similar set of homogeneous simultaneous equations is obtained.

'Y=0H'B=

o= 27+Z2=

Details of derivation of the simultaneous equations which gives the buckling condition of a frame are shown
in Ref. [12]. Only the final buckling conditions are shown below.

]_3ckling with sidesway:
kfkaa+a——27% B-——;{% ~zl;' ke "-;% 0,
B--% kbkbb+a——g§— kbkbc—g—: -zl;- 0, (o)
_% o, -
’?kdd*'“‘z_yz 84
P P
B* 8p 6c *C
A z = —D
(b)

Fig. 2 Buckled Configurations
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Buckling without sidesway:
kkaa+ 0, B 0 Kk 1 e,
B kb kbb +0 kb kbc 0 Bb
' ={0}
0 kp kpc kp Kec + 0. B i (8)
kekgg 0 B kekgg +0 0

The loa.d parameter Z,, at which the frame buckles is obtained as the smallest value bf Z which satisfies the condi-
tion that the determinant of the coefficient matrix of the simultaneous equations given by Eqgs. (7) and (8) becomes
Z€r0.

2.3 Approximate Analysis
/ Approximate analysis proposed here replaces a given frame with beam springs shown in Fig. 3(a) by an
equivalent rigid frame shown in Fig. 3(b), and then calculates the buckling strength from the column effective
length determined from the conventional alignment charts. For simplicity, it is assumed that the spring constants of
two springs in the beam are identical, as shown in Fig. 3(a). They may be different in a real case, but the method
shown below is still applicable by assuming that the spring constant of the spring in the frame shown in Fig. 3(a) is
" given by the mean of two spring constants, i.e.,

1 1
kps=75 (kps1+Rp2) » g =5 Chpsy +hgo) ®

(i) Buckling with sidesway
Referring to Fig. 2(a), if the spring constants of two springs are identical in each of the beams BC and AD,
the frame becomes symmetrical, and the deformation of sway buckling becomes anti-symmetrical, i. e., 6 = 0,.
- Substituting 6, = 0, into Eq. (1) leads to

My =k K, (kyp+ Ky ) 8, ‘ (10)
where (kpp, + kp) is obtained from Eq. (2) in view of kps1 = kpsz = ks, as follows:
6k
bs
kyy, + kpyp = ———

On the other hand, beam-end moment M, of the equivalent rigid frame shown in Fig. 3(b) caused by the anti-
symmetrical buckling with sidesway is expressed as -

' M, =6 k, K. 6, (12)
Equating M;,. given by Egs. (10) and (12)
leads to the expression for the beam stiff-

P p P p
ness ratio k,’ of the equivalent rigid frame, * ¢ * * I *
as follows: ‘ B ’;c b . & ¢ B b c +
P o kp, kp bs bs
b =R+ 6k, a3)
~ Similarly, 1 1 —> 1 1 h
k= _I_{f_lz’_ ’ 14
T Ryt 6k A s s lD A D |
Setting up the equilibrium conditions of A ke 'y kf
bending moments at the panel points A and (a) (b)

B of the frame shown in Fig. 3(b) which Fig. 3 Equivalent Rigid Frame
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* buckles in anti-symmetrical configuration with sidesway, and eliminating the chord rotation from the equilibrium
condition of story shear, i. €., V, in Eq. (4) = 0, leads to a set of homogeneous simultaneous equations of size 2,
which controls the anti-symmetrical buckling of the rigid frame shown in Fig. 3(b), as follows:

2
6I§f'+a——y— p--L

d %a

={0
2 6K+ 2 0 (o} (15)
- +0--= b
P~ b 8
" Equating the determinant of the coefficient matrix of Eq. (15) to zero, the following equation is obtained:

2 2 2\2
o ogoe- )
6ky+0———||6kr+0-—|-|PB-—] =0
( b+ =g )\Sk +o-g 5 (16)
The equation to determine the buckling strength Z,., is obtained by substituting the expressions in Eq. (5) into Eq.
(16), as follows:
z2 _Gkyk  Zy
6(ky +ki) kp+ke  tanZ, an

(ii) Buckling without sidesway

In the case of the symmetrical buckling without sidesway of the frame shown in Fig. 3(b), the buckling
condition is obtained by a similar manipulation, noting that 6, = — 6.. Equations (18) through (24) below corre-
spond to Eqgs. (10) through (16), respectively. Equilibrium of story shear is not necessary in this case.

Mbc= kac (kpp—kpc) 8p (18)
2k
kpp~ kpe= ————kb T2k, | (19)
Mp.=2k, K8 (20)
i = Kb kps
b= T, a2k, @
Mk |
b= 2k ky + 2k @2
2ke+o B 0,
= { 0 } (23)
B 2k, + 0 0p
(2ky+0.)( 2kf +0)-B%= 0 (24)

Finally, the equation to determine the buckling strength Z, is obtained by substituting the expressions in Eq. (5)
~ into Eq. (24), as follows:

Zey
2} +( o ("b”ff) ey

4 ky, kj 2 k, kf zZ,
Note that Eqs. (17) and (25) are the basic equations from which conventional alignment charts to determine the
effective length of framed columns!11],

=1 (25)

2.4 Numerical Examples

In order to investigate the accuracy of the buckling strength determined by the approximate method pro-
posed above, 3 types of semirigid frames shown in Fig. 4 have been analyzed: (a) column tops are semirigidly
connected to the beams, and column bases are fixed, (b) column tops are rigidly connected to the beams, and
column bases are semirigidly connected to the beams, and (c) columns are semirigidly connected to the beams at
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TR S TP B N

6 e O S
Kyt kys kys1 ks
1 1 1 1 1 1
i ket ko k1 ki
7 7 A2 A"
f - i -

column top: semirigid

column top: semirigid ) column top: rigid
column base: semirigid

column base: fixed column base: semirigid

@ ©

Fig. 4 Numerical Examples of Semirigid Rectangular Frames

both ends. The stiffness ratios of the beams and the springs are set in the following manner: i) upper beam stiffness
ratio k=2 or 5, ii) lower beam stiffness ratio k¢ = 10 times Ky, iii) ratio of left and right spring constants Ky : kps2
and kg1 : ksz = 1:0.8 or 1: 0.5, iv) ratio of left spring constant to beam stiffness Kps1 : kps and kg 2 ks =1.50r 0.5,
and v) in addition, the case of kj, being changed from 2 to 5 with all other parameters being kept unchanged.

The buckling condition for the portal frame with the fixed column base cannot be deduced from the equa-
tions shown above, and thus they have been derived separately, and obtained as shown below:
i) Exact analysis
Buckling with sidesway:

¥ ' 72
(kbkbb +(x——s— kbkcc+a——8— - kbkbc+a—-§' =0 (26)
Buckling without sidesway:
(K ke +0) (K Koot @) = (R Ky )2 = 0 @7
il) Approximate analysis
Buckling with sidesway:
2

6k; +a- L =0 28)

Buckling without side-
sway:
2kp+a=0 29

Results of the numerical calculation of buckling strength are tabulated in Tables 1(a) through (c) corre-
sponding to the frames shown in Figs. 4(a) through (c), respectively. In each table, “Error” indicates a ratio of the
difference between the values of Z,, obtained by the exact and approximate analyses to the value of the exact
solution, and the negative value means that the approximate solution is higher than the exact solution. The maxi-
mum error in each group is underlined.

, In addition to the numerical examples described above, the frames shown in Fig. 4 with extremely large
spring constants, i. €., 100 or 1000 times the beam stiffness, are analyzed exactly, for the case of spring constants of
two springs in a beam being identical, i. €., kps1 = kps2 = ks and kgsy = kg = kg These examples are to see the value
of spring constants to treat the connection as rigid. Results are shown in Table 2, where “Error” indicates a ratio of
the difference between the values of Z,, obtained by the exact analysis treating the connection as rigid (ks and/or
kg = ©0) and treating it as semirigid to the solution obtained for the rigid connection. The buckling conditions for
the rigid frame are simply obtained from Eqgs. (17) and (25) for rectangular frames, and from Egs. (28) and (29) for
portal frames with the fixed column base, by replacing k,’ and k¢ by kj, and kg, respectively.
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Table 1 Buckling Strength of Semirigid Rectangular Frames
(a) column top: semirigid, column base: fixed

Sidesway permitted Sidesway prevented
“ | kot | kps2 Exact | A .| Emor | Exact |Approx.| Error
pprox 0 ac pProx.
2 3 |24 2326 | 2329 | -0.001 | 4.930 | 4.938 | -0.002
2 3 |15 2245 | 2267 | -0.010 | 4.836 | 4.899 | -0.013
5 175| 6 | 2.685 | 2.688 | -0.001 | 5321 | 5.332 | -0.002
5 |75 |375| 2.608 | 2.634 | -0.010 | 5.181 | 5.278 | -0.019
2 1 108} 1971 | 1972 | -0.001 | 4.710 | 4.722 | -0.002
2 1 |05 1914 | 1923 | -0.004 | 4642 | 4.692 | -0.011
S 125 2 | 2305 | 2.307 | -0.001 | 4964 | 4.985 | -0.004
S |25 |1.25] 2220 | 2.238 | -0.008 | 4.831 | 4.931 | -0.021
5 3 |24 | 2374 | 2377 | 0001 | 5.022 | 5.043 | -0.004
5 3 [ 1.5 2287 | 2307 | -0.009 | 4.880 | 4.985 | -0.022
5 1 {08 | 1984 | 1985 | 0.000 | 4728 | 4.746 | -0.004
5 1 105 1926 | 1.933 | -0.004 | 4649 | 4.711 | -0.013

Table 1 Buckling Strength of Semirigid Rectangular Frames (continued)
(b) column top: rigid, column base: semirigid

Sidesway permitted Sidesway prevented
ko | ks | ke | Kpo Exact | Approx.| Error | Exact |Approx.| Error
2 1203024 | 2.78 | 2.788 | 0.000 | 5.056 | 5.058 0.000
212 {30 15| 2758 | 2770 | -0.004 | 5.004 | 5.030 | -0.005
51507560 | 2988 | 2.988 0.000 | 5.628 | 5.629 0.000
5150 |75 |37.5] 2974 | 2980 | -0.002 | 5.601 | 5.615 | -0.002
2 120110| 8 | 2621 | 2623 | -0.001 | 4.813 | 4.818 | -0.001
2120 10| 5 | 255 | 2580 | -0.009 | 4705 { 4.761 | -0.012
5| 502520 | 2906 | 2907 0.000 | 5.486 | 5.490 | -0.001
5 |50 | 25 |125] 2.869 | 2.884 | -0.005 | 5405 | 5451 | -0.009
5 5030|241 2926 | 2927 | 0000 | 5.520 | 5.523 | -0.001
5150 ]3| 15| 2.894 | 2907 | -0.005 | 5451 | 5490 | -0.007
5150 |10 8 2.743 | 2.746 { -0.001 | 5.226 | 5.235 | -0.002
S {5010 5 2674 | 2699 | -0.009 | 5.079 | 5.168 | -0.017

Following characteristics are observed from the results shown in Table 1: i) Unsafe estimates are obtained
* from the approximate analysis in all cases calculated. ii) Error obtained for the buckling with sidesway is larger
than that for the buckling without sidesway, but the reason is not yet known. iii) Most of the examples with the ratio
of two spring constants equal to 1 : 0.8 show the error less than 1%, and the accuracy of the approximate solution is
very good. iv) The maximum error among the examples with the ratio of two spring constants equalto 1:0.5is
4.6%, which occurs in the frame with semirigid connections at both top and base of the column, shown in Fig. 4(c),
but it is sufficiently small. It is observed from Table 2 that the semirigid connection can be treated as rigid, if the
spring constant is larger than 100 times the beam stiffness. '

29



30

Yukari SAWAKI, Shousuke MORINO and Jun KAWAGUCHI

Table 1 Buckling Strength of Semirigid Rectangular Frames (continued)
(c) column top: semirigid, column base: semirigid

Sidesway permitted Sidesway prevented
kp | K | kps1| kps2| kg1 | Kps2 -
Exact |Approx.| Error | Exact |Approx.| Error

2 20| 3 [24]30 24| 2242 | 2245 | -0.001 | 4.672 | 4.685 | -0.003
2 |20 3 |15]30( 15| 2.147 | 2.174 | -0.012 | 4.509 | 4.622 | -0.025
515|175 6 |75 2643 | 2.646 | -0.001 | 5203 | 5217 | -0.003
5|50 175 )375] 75 |37.5] 2559 | 2.587 | -0.011 | 5.029 | 5.150 | -0.024
2 120 1]08] 10 1794 | 1.796 | -0.001 | 4.229 | 4.259 | -0.007
2 1201 1105} 10 1703 | 1.721 | -0.011 { 4.020 | 4.180 | -0.040
5150125} 2 |25]20 | 2218 | 2221 | -0.001 | 4.726 | 4.758 | -0.007
5 | 5025 |125| 25 |12.5] 2.117 | 2.140 | -0.011 | 4498 | 4.673 | -0.039
5150 3 (24|30 |24 | 2298 | 2301 | -0.001 | 4.813 | 4.842 | -0.006
51507 3 15|30 15] 2196 | 2221 | -0.011 | 4589 | 4.758 | -0.037
5150| 1 [o8|10]| 8| 1.813 | 1.815 | -0.001 | 4275 | 4321 | -0.011
5 (50| 1105|110 5] 1.720 | 1.737 | -0.010 | 4.045 | 4.232 | -0.046

Table 2 Buckling Strength of Semirigid Rectangular Frames
- Effect of Stiffness of Springs-
(a) column top: semirigid, column base: ﬁxed

’ Sidesway permitted Sidesway prevented
% %bs Zer Error Zer Error
2 10 2.684 0.076 '5.170 0.030
2 20 2.786 0.041 5.241 - 0.016
2 200 2.892 0.004 5.319 0.002
2 2000 2.903 0.000 5.328 0.000
2 oo 2.904 - 5.329 -

5 25 2.930 0.036 5.610 0.026
5 | 50 | 2984 0.019 5.680 0.014
5 500 3.035 0.002 5.750 0.001
5 5000 3.040 0.000 5.757 0.000
5 © 3.041 - 5.758 -
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Table 2 Buckling Strength of Semirigid Rectangular Frames
- Effect of Stiffness of Springs- (continued)
(b) column top: rigid, column base: semirigid

Sidesway permitted Sidesway prevented
kp ke kes
Zy Error Zy Error
2 20 100 2.856 0.009 5.168 0.008
2 20 200 2.869 0.005 5.190 0.004
2 20 2000 2.881 0.000 5.210 0.000
2 20 | 20000 2.882 0.000 5.212 0.000
2 20 . 2.882 - 5.212 -
5 50 250 3.019 0.004 5.684 0.004
5 50 500 3.025 0.002 5.695 0.002
5 50 5000 3.030 0.000 5.704 0.000
5 50 ] 50000 3.031 0.000 5.705 0.000
5 50 % 3.031 - 5.705 -

Table 2 Buckling Strength of Semirigid Rectangular Frames
- Effect of Stiffness of Springs- (continued)

(c) column top: semirigid, column base: semirigid

SidesWay permitted Sidesway prevented
kp '9‘ kos kfs
Zer Error Z, Error
2 20 10 100 2.856 0.009 5.014 0.038
2 20 20 200 2.869 0.005 5.105 0.021
2 20 200 | 2000 2.868 0.005 5.201 0.002
2 20 2000 | 20000 2.881 0.000 5.211 0.000
2 20 00 S 2.882 - 5.212 -
5 50 25 250 2910 0.040 5.539 0.029
5 50 50 500 2.969 0.020 5.618 0.015
5 50 500 | 5000 3.024 0.002 5.696 0.002
5 50 5000 | 50000 3.030 0.000 5.704 0.000
5 50 o S 3.031 - 5.705 -

3. Elastic Buckling Analysis of Semirigid Fish-Bone Frames

3.1 Model for the Analysis

Figure 5(a) shows a model for the analysis, which is a fish-bone frame with linear springs in each beam at
near end to the column, subjected to vertical load P on the column. Far end of each beam is simply supported.
Stiffness of two beams in the same floor is identical. Stiffness ratios of the column in i-th story, the beam and two
springs in i-th floor are denoted by k;, Kp;, ksqi and kgp;, respectively. Column height is identical for all columns.
This chapter is to investigate the applicability of conventional alignment charts to determine the buckling strength
" of a column in a semirigid multistory frame.
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3.2 Exact Analysis
The slope-deflection formulas for the member-end moments at i-th panel point of two beams, M;,; and

M_;p;, two columns, M,;.; 1 and M_;;.1, and the lateral force V,; ;. in i-th column are expressed as follows:

3ksai |

Mea=ksiKo T— 3 b

- 3kspi (30)
M=k Ko T+ 3k, 8;
Mee, =k 1 Ko(oy 18+ B, 18, 1-74R; )

31
M,  =k;iKo(0;0;+B;0,,, -%R;)
k .

Vcicm=——;—l Ko (1i8; +Yi8i+1- i R;) (32)

. where K denotes the stiffness of the reference member. Coefficients appearing in Eq. (30) are derived from kp in
Eq. (2) by substituting kps; = 0, i. €., the rotation is free at point B;. Stability functions appearing in Egs. (31) and
(32) are obtained by Eq. (5) with the load parameter given by

N;

Zi=h \ g1 (33)

where N; and I; denote the axial force and the moment of inertia of the column in i-th story.

Figure 6(a) shows the deformations occurring when the frame buckles with sidesway. In this case, equilib-
rium of bending moments acting around 4 panel points C; through Cy4, and equilibrium of story shear in 3 stories
lead to 7 equations, and eliminating the chord rotation R; leads to a set of homogeneous simultaneous equations of
size 4, with the unknowns 0, through 84, shown below. In the case of the buckling without sidesway shown in Fig.
6(b), the equilibrium of story shear is not necessary, since the chord rotation does not appear, and a similar set of
homogeneous simultaneous equations is obtained.

e A, ksas ksha B, Ay Cy4 By
kba Cqy ks = S ke kpy 2
< kC3 -~ kC3
1 A3 ksas ka3 B 3 e A3 C3 B3
s - |C3 ks 2 S ks Ky =
< kea < kep
B AZ ksa2 ksb2 B2 B Zg . C2 Bz
kp2 2 k. = kpo kpy, 2
< ke1 < ke
k k
L Al sal | Xsbl B ; A]_ C 1 B 1
Ty C’Sl & Sk k2
| | | | |
! = S
(a) Semirigid Fish-Bone Frame (b) Equivalent Rigid Fish-Bone Frame

Fig. 5 Model for Analysis: Semirigid Fish-Bone Frame
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Ay Ay A Ayl (6
Ayp Ay Ay A | 6y
A3; A3y Azz Azl 8 =0} (34
Ay A Ags Ay | \Bs

Derivation of each element in the coefficient matrix in Eq. (34) is omitted here, and only the final forms are
shown below.

Buckling with sidesway:

12 ksa1 kspy
All =kcl(a1—8—l>+3kbl( ksal +3kb1 + ksbl +3kbl
2 2
041 Yo ksa2 L
(“1“'3?)”“2(“2"5;)”"”2( ka2 +3hz  Kup + 3K
2 2
Yy 'y3 ksa3 ksb3
As3 =kcz(0t2‘ T{)+ k“(% "@% 3 ( Ko + 3553 Kop3 + 3 kg

2 k k
b4 sad sb4
Agq =ke3 a3--§)+3kb4( )

Agy =k

Kgat 3 kpa  kpa+ 3 Ky

(35)
172 2%
App=Ag =kc1(l31-'51—1> | Azg =A43=kc3(l33—8i3)
7,2 A =
Aj3=Ag= c2(B __87) A3 =Ag=Ap=Ay=Ay=Ay=
Buckling without sidesway:
Ksa1 ksb1
A=k 01 +3k .
11 7"a A bl( ksgy +3 kpy  Kgpy +3 Ky
ksa2 ksi2
A22_kcl a1+kc2a2+ 3ka( ksa2 +3kb2 kst"' 3kb2 36)
Ksa3 ksp3
Aqa=Kk.a0n+ka O3+ 3Kk
372727 A T3 b3(ksa3 +3ky3  kys +3kp3

Fig. 6 Buckled Configuration
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ksa4 Ksba
A= .
“ C3a3+3kb4(ksa4+3kb4 ksb4+3kb4)
App=Ay =k 1B Agg=Ag3=ke3p3 (36)

Apz=Azp=kooBy A3 =A31=Ap=Ag1=An=Aq =0
The load parameter Z,, at which the frame buckles is obtained as the smallest value of Z which satisfies the condi-
tion that the determinant of the coefficient matrix of the simultaneous equations given by Eq. (34) becomes zero.

3.3 Approximate Analysis

As done in Section 2.3, first consider a rigid fish-bone multistory frame shown in Fig. 5(b) which is equiva-
lent to the semirigid frame shown in Fig. 5(a). The expression of end moment of a beam whose far end is simply
supported is given as follows:

Mco=3kyKo 8,  Mcp,=3ky; Ko 6, (37
Equating M;,; and M_;3; given by Egs. (30) and (37) leads to the expression for the beam stiffness ratio k;’ and k5"
of the equivalent rigid frame, as follows:

3 ksai ' ' kpiksai
ks sai _3pt k= iKsai
b ksq; +3kp; bi bi ™ K sgi +3kp;
_Bksbi gy R = Kpi ksbi (38)
P ki 43k O " ThE T Kepi+ 3kpi

The effective length factor y; of each column in the rigid fish-bone frame is evaluated from the alignment
charts of Ref. [11], using following G-factor evaluated at the panel points Cy through Cy:

Buckling with sidesway:
G 2(kci-l '*'kci)
C.=———
’ k bit k bi (39)
Buckling without sidesway:
G = 2tkeit *kei)
G R (ki ky) (40)
Finally, the value of the load parameter Zcri when the column in i-th story buckles is given as follows:
2
T“ElL; / P.,; T
s = M Z > = h —-9_'1 E em— .
Feyi ( ’Yih )2 cri EI; T @1
3.4 Numerical Examples

In order to investigate the accuracy of the buckling strength determined by applying the alignment charts to
the semirigid frames, 3 semirigid fish-bone frames shown in Fig. 7 have been analyzed: The frame (a) simulates 3
stories at the top of the high-rise building frame, in which the column stiffness increases in the lower stories, while
the frame (b) simulates bottom 3 stories, in which the column stiffness is constantly distributed. In these two
_frames, the beam and spring stiffness are constantly distributed. The frame (c) corresponds to the frame (a), but the
~ beam and spring stiffness increase in the lower floor level. Axial forces in each column are distributed along the
height proportional to the distribution of the column stiffness, and therefore the value of the load parameter Z;
becomes identical in each story, according to Eq. (33).

Results of the numerical calculation of buckling strength are tabulated in Table 3, where (a) through (c)
correspond to the frames (a) through (c) shown in Fig. 7, respectively. Z,., indicates the critical value of Z obtained
from the exact analysis, while Z,; is the value determined from the alignment charts for the column in each story.
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Fig. 7 Numerical Examples of Semirigid Fish-Bone Frames
Table 3 Buckling Strength of Semirigid Fish-Bone Frames
@ ) ©
Sidesway | Sidesway | Sidesway | Sidesway | Sidesway | Sidesway
permitted | prevented | permitted | prevented | permitted | prevented
Zey 1.481 3.567 1.778 3.966 1.907 4.112
1.237 3.516 1.869 3.998 1972 4.154
Z
1 | (0164) | (0014) | (-0051) | (-0.008) | (-0.034) | (-0.010)
1.237 3.516 1.707 3.784 1.829 3.915
Z
“2 | (o0164) | (0.014) | (0040) | (0046) | (0.041) | (0.048)
1.758 3.903 1.869 3.998 1.947 4.081
Z
er3 (-0.187) (-0.094) | (-0.051) | (-0.008) (-0.021) | (0.008)

“Error” indicates a ratio of the difference between the values of Z,, and Z,; to the value of Z,,, and the negative
value means that the alignment chart solution is higher than the exact solution. The maximum error in each group
. is underlined.

Following characteristics are observed from the results shown in Table 3: i) Safe and unsafe estimates
obtained from the alignment charts are mixedly appear, and no tendency is found. ii) Error obtained for the buck-
ling with sidesway is larger than that for the buckling without sidesway except for a few cases, but the reason is not
yet known. iii) The maximum error for the frame (a) is 18.7% in the unsafe side, and the accuracy of the alignment
chart solution for the frame (a) is rather bad. On the other hand, the accuracy for the frames (b) and (c) is very good,
. with the maximum error is 5.1%. This is understandable, since the alignment chart is designed to apply to regular
multistory frames in which member stuffiness and axial forces in columns are distributed in a good balance.

4. Conclusions

i) Approximate method has been proposed for the analysis of the buckling strength of semirigid frames, which
replaces semirigid frames by equivalent rigid frames and utilizes the conventional alignment charts to evaluate the
column effective length.

ii) Numerical examples of semirigid rectangular frames has shown that the accuracy of the approximate solution is
very good, unless the difference in spring constants of two springs in a beam is too large.

iii) Numerical examples of semirigid rectangular frames has shown that the semirigid connection can be treated as
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rigid, if the spring constant is larger than 100 times the beam stiffness.

iv) Numerical examples of semirigid fish-bone frames has shown that the accuracy of the alignment chart solution
is very good for the frames in which member and spring stuffiness and axial forces in columns are distributed in a
good balance. Otherwise, it becomes bad, since the chart is not designed for the application to unbalanced and
irregular frames.

v) It must be noted that the approximate method has given unsafe estimate to the buckling strength in most of the
numerical examples. ‘
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