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Abstract

Temperature and salinity observations across the Kuroshio in the Shikoku Basin have been made
seven times during the period from July 1992 to August 2001 by use of the training vessel Seisui-maru
of Mie University. Focus is placed on the temperature structure in the strong Kuroshio flow as a
western bounndary current and the salinity distribution in the salinity minimum layer with the North
Pacific Intermediate Water. All the observed temperature and salinity distribution across the
Kuroshio mean flow is presented in this paper. It is shown that the salinity minimum layer is unclear
under the mean flow of the Kuroshio and the less saline water is separated towords the coastal and
offshore sides of the Kuroshio main axis in the western region of the Izu Ridge. It is also shown that
sources of the salinity minimum water in the coastal and the offshore sides are Intermediate Oyashio
Water and North Pacific Intermediate Water, respectively. Opposite temperature gradients associated
with the mean flow of the Kuroshio are commonly observed to the south of the mean Kuroshio flow,
which implies the existence of counter currents forming anti-cyclonic circulation in the offshore region.
It is geophysically indicated that the formation of the anti-cyclonic circulations is associated with the

high nonlinearity of the Kuroshio south of Japan.
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1. Introduction

Some zooplanktons ordinarily living in the Oyashio water such as Copepoda calanus and Sagitta elegans
are found from the salinity minimum layer to the bottom layer of the Sagami Bay”?, which suggests that the
Intermediate Oyashio Water (IOW) intrudes southward to Sagami Bay. Sekine and Uchiyama® examined
the southward intrusion conditions of the IOW to the south of Boso Peninsula and concluded that southward
shift of the main axes of the Kuroshio and the Kuroshio Extension is a more favorable condition than the
intensity of the southward shift of the Oyashio Water (OW), which sometimes intrudes significantly
southward up to the offshore of a southern area of Ibaragi Prefecture®”, although its mean southward limit
is off Sendai Bay at the latitude of 38° —39°N.

In the eastern side of the Izu Ridge, there are two dominant salinity minima on both sides of the main flow

of the Kuroshio and the Kuroshio Extension”'”. Both of these salinity minimum waters have a potential
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density (0 5) of 26.7~26.9. Yasuda et al.”” pointed out that on the eastern side of the Izu Ridge, the North
Pacific Intermediate Water (NPIW) of salinity less than 34.1 psu is formed by mixing of the Kuroshio
Water (KW) and the OW to the east of 150° E and the NPIW spreads southwestward up to 25° N. They
also pointed out that less saline water on the northern side of the Kuroshio Extension west of 150° E is the
OW and some parts of NPIW flow into the confluent region of KW and OW. Sekine et al.”” indicated that
the southwestward flow of the NPIW is influenced by topographic effects of the Izu Ridge and a westward
shift of NPIW over the Izu Ridge into the Shikoku Basin is confined to the south of 30° N at a depth deeper
than 2000m.

In order to examine salinity distribution in the western side of the Izu Ridge in the Shikoku Basin, seven
observational cruises were carried out by use of the training vessel Seisui-maru of Mie University, during the
period from July 1992 to August 2001. In this paper, the temperature and salinity distribution across the
mean Kuroshio flow is presented. Main observational results of the Kuroshio by the training vessel

Seisui-maru before 1988 were reported by Sekine et al.® ',

2. Observations

CTD (Mark I System of Neil Brown Instrument Systems, Inc.) observations during the period from July
1992 to August 2001 were carried out by the training vessel Seisui-maru of Mie University. Al
observational stations of CTD are shown in Fig. 1, and observational lines and periods are listed in Table 1.

In comparison with standard salinity data, observed salinity data were checked at about 10 levels of three
observation stations for every cruise. Accuracy of the observed CTD data was found to be within 0.03 psu

even in the worst-case. The density (o) is calculated by use of international formula'®.

Table 1 Observations made by the Seisui-maru for the present study

Cruise name Obs. line Periods of Observation Figures.
92 JUL Line 1 7—9 Jul 1992 3a
92 JUL Line 2 10—13 Jul. 1992 3b
93 JUL Line 1 5— 7 Jul. 1993 4a
93 JUL Line 2 8 —11 Jul. 1993 4b
94 JUL ASUKA 7—9 Jul. 1994 6
94 JUL Line 1 14—16 Jul. 1994 5a
94 JUL Line 2 17—19 Jul. 1994 5b
95 JUL ASUKA 6 —12 Jul. 1995 7a
95 JUL Line 1 14—16 Jul. 1995 8a
95 JUL Line 2 17—19 Jul. 1995 8b
96 JUL ASUKA 6 —8 Jul. 1996 7b
96 JUL Line 1 13—14 Jul. 1996 9a
96 JUL Line 2 15—16 Jul. 1996 9b
98 AUG 19—22 Aug. 1998 10a

01 AUG 12—14 Aug. 2001 10b
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and the regions with a depth shallower
than 1000m are stippled.

The mean flow of the Kuroshio during seven observational periods are shown in Fig. 2. As the long-period
large meander path has not been formed after 1992, non-large meander path is observed during the
observational periods. Non-large meander path is classified into two types, nearshore non-large meander

path and offshore non-large meander path, on the basis of offshore distance of the Kuroshio main axis over
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the Izu Ridge'”. It is shown from 2 that offshore non-large meander paths are dominantly detected except
for in July 1994 (Fig. 2¢).
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Fig.2 Locations of the Kuroshio flow and direc-
tions of its velocity proposed by Hydro-
graphic Department during our observa-
tional periods of (a) 92 JUL, (b) 93 JUL,
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3. Distribution of temperature and salinity

Distribution of the observed temperature, salinity and density during 92 JUL is shown in Fig.3..
Temperature and density gradients are relatively small along Line 1, which suggests the baroclinic Kuroshio

flow is small. A less saline water (<(34. 2 psu) is confined to the south of the Kuroshio main axis located
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Fig. 3 Distributions of temperature (°C) (left), salinity (psu) (middle)
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at station 9 (Fig. 3a). Relatively large gradients of temperature and density are observed along Line 2 (Fig.
3b). The less saline water is located at the south of Station 10 in the Kuroshio main axis. Because the
domelike upwelling structures of the three panels are detected at depths of 100m—600m of the Stations 4 —
9, the existence of the cold water mass with the cyclonic circulation is expected in the coastal side of the
Kuroshio main axis. Upwelling of the lower layer water is perceived up to near the bottom. As the density
fields are significantly similar to those of temperature, density fields will not be shown in the following.

The distribution of temperature and salinity observed during 93 JUL is shown in Fig. 4. As for Line 1, the
temperature distribution is almost similar to that of Line 1 of 92 JUL (Fig. 32). However, a cold water
dome is under a depth of 1700 m as shown by by the upward shift of isotherms. Less saline water (<(34.2
psu) is observed at Stations 3 and 4 in the coastal side of the Kuroshio main axis.

In relation to this, it should be noticed that the less saline water (<34.2 psu) is observed at Stations 1 and
3 — 4 of Line 2 of 93 JUL (Fig. 4b). Since the less saline water at Station 1 is isolated from the other
southern stations, the less saline water flows out from Sagami Bay to the Shikoku Basin through a
southeastern channel off the Izu Peninsula. The latter less saline water at Stations 3 and 4 exists in south-east
to Miyake-jima, which is also separated from further southern less saline water south of the mean Kuroshio
flow. The less saline water at Stations 3 and 4 flows out into the Shikoku Basin through the gate area of the
main Kuroshio path over the Izu Ridge between the Miyake-jima and Hachijo-jima islands (for details of
the water characteristics of the less saline water, see Sekine and Uchiyama®). It is inferred that the IOW
to the south of the Boso Peninsula is separated into two branches, and one branch is to Sagami Bay and the

other branch is to the gate region over the Izu Ridge.
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Fig. 4 Distributions of temperature (°C) (left) and salinity (left) along (a) Line ! and (b) Line 2 of 93 JUL.
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Fig.5 Same as in Fig. 4, but for (a) Line 1 and (b) Line 2 of 94 JUL.

As for the temperature fields of Line 1 of
94 JUL (Fig. 5a), an downward shift of the
isotherms of which center is located around
Station 9 is found. Because the downward
shifts of temperature and salinity are the
characteristic distribution of the anti-
cyclonic circulation and because the com-
mon seasonal change in the upper layer
(<100m) that shows the long lifetime of
the eddy, it is inferred to be a part of anti-
cyclonic eddy off Shikoku, forming a
recirculation of the subtropical circulation.
In the eastern side of the Izu Ridge (Line 2
shown in Fig. 1), less saline water is sepa-
rated into the northern and the southern
sides of the Kuroshio main axis located
around Stations 3 and 4 (Fig.5b). Since
Line 2 is in the eastern side of the Izu
Ridge, the northern and southern less saline
waters are the IOW and NPIW)®9%,

respectively. The less saline water sepa-
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rated by the mean flow of the Kuroshio is observed in the eastern region of the Izu Ridge, Line 2 of 95 Jul
(Fig. 7b), 96 Jul (Fig. 8b) and 98 AUG (Fig. 9a).

In the western side of the Izu Ridge, it is commonly detected that the salinity decrease in the salinity
minimum layer is relatively unclear under the main axis of the Kuroshio and weakly less saline water is
found in the coastal side of the Kuroshio (Line 1 of 95 JUL (Fig.8), 96 JUL (Fig. 9a) and 01 AUG (Fig.
10b)). Source of these two salinity minimum water in the western side of the Izu Ridge will be discussed
in the next section.

The temperature gradients in the nearshore region off Shikoku are commonly observed along the ASUKA
line (94 JUL (Fig. 6), 95 JUL and 96 JUL (Fig. 7)), which means that the Kuroshio flow approaches to the
coast of Shikoku, as also shown by the mean Kuroshio flow during the observational periods (Fig.2).
Because of the wide continental slope off Shikoku, the Kuroshio flow has a tendency to flow along the
continental slope, as predicted by numerical models with the continental slope™ ',

It is commonly seen from Figs. 6, 7 and 8 that there are opposite gradients of the temperature to those in
the coastal area corresponding to the mean Kuroshio flow. The opposite gradients suggest a counter current
of the Kuroshio forming an anti-cyclonic circulation in the southern area of the mean Kuroshio flow. As
discussed in the next section, the formation of the recirculation implies the strong nonlinear characteristics

of the Kuroshio, a western boundary current in the North Pacific.

4. Discussion

In the western side of the Izu Ridge, a similar structure of the salinity minimum layer to the eastern side
of the Izu Ridge”'" is observed, and NPIW on the offshore side of the Kuroshio main axis can not go
northward under the mean flow of the Kuroshio. It is thus concluded that salinity minimum water on the
offshore southern side of the Kuroshio is NPIW. On the other hand, because less saline coastal water can

not go southward under the mean flow of the Kuroshio, and because an outflow of IOW from Sagami Bay
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Fig. 10 Same as in Fig. 4, but for (a) 98 AUG and (b) 01 AUG.

and from the gate area over the Izu Ridge (Fig. 4b) is observed in this study, the coastal northern less saline
water is IOW,

The opposite temperature gradient to that associated with the mean Kuroshio flow implies a westward
flow forming anti-cyclonic recirculation in the offshore side of the Kuroshio. It is shown by historical studies
on western boundary currents’ *” that the anti-cyclonic recirculation accompanied by the western boundary
current 1s enhanced, if nonlinear effect is large, while the recirculation is very weak in linear models such as
well-known Stommel and Munk models. Therefore, it is pointed out that the actual Kuroshio flow is
accompanied with anti-cyclonic recirculation and nonlinear effect is important for dynamics of the
Kuroshio. This gives some important information for the numerical modeling of the Kuroshio. The
existence of the anti-cyclonic circulation make estimation of the volume transport complex. If the counter
current is not accurately estimated to its southernmost latitude, the net volume transport of the Kuroshio is

not estimated.
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