With Author’s Compliments

The Central Limit Theorem for Piecewise
Linear Transformations

By

Hiroshi ISHITANI

Reprinted from
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR
MATHEMATICAL SCIENCES
Kvoto UNIVERSITY
Vol. 11, No. 2, 1976



Publ, RIMS, Kyoto Univ.
11 (1976), 281-296

- The Central Limit Theorem for Piecewise
Linear Transformations

By

Hiroshi ISHITANI*

~§0. Introduction

The purpose of the present paper is to.give central limit theorems
for piecewise linear transformations ([6]), which are generalizations of
p-transformations and which belong to a class of number-theoretical
transformations with “‘dependent digits” (cf. [4]). The central limit
theorems for ones with ‘“‘independent digits” are studied by many authors
([1, [7] etc.). However, the cases of ‘‘dependent digits” seem to be
not studied. These cases are more complicated than the cases of ‘‘in-
dependent digits™.

In [2] it is shown that the p-transformations have Ornstein’s weak
Bernoulli property. Then it is easy to see by an analogous way to [2]
that our transformations also satisfy the weak Bernoulli condition.
Therefore Ornstein and Friedman’s theorem implies that the natural
extensions of our transformations are isomorphic to the Bernoulli shifts.
But we never know how to construct their Bernoulli generators. Hence
the classical central limit theorems for the Bernoulli shifts imply no
concrete result for our transformations. ,

We modify the method, which is used in [2] to .prove the weak
Bernoulli property of p-transformations, to show that the natural genera-
tors of piecewise linear transformations satisfy Rosenblatt’s strong mixing
condition. Thus we obtain central limit theorems. By virtue of the good
properties of our 'generators, we obtain concrete results, namely if f
is of bounded variation or Hélder continuous, we get the central limit
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theorems for the process {f(T'x);i=0,1,2,..}. Our results include
the central limit theorems for fS-transformations as special cases.

The author would like to express his hearty thanks to Prof. Haruo
Totoki, and Mr. Shunji Ito, and Mr. Yoichird Takahashi for their en-
couragement and advices. -

§1. The Piecewise Linear Transformation and Its Symbolical Properties

First of all, we prepare several notations, definitions and properties
of piecewise linear transformations ([6]).

Let B=(Boy, Bis---» ﬁ,,) be a (p+1)- tuple of real numbers, satisfying
B>1 for 0<k=<p and Zﬁk1<1< Z Bit. We define a partition R
={r}i=o,1,.,p of the 1nterva1 [0 1) by

ro=[0, B5'),
=1 i !
ri=[ Z ﬂ;l’ Z ﬁ;l)a i=1,2,., p—la
k=0 k=0 - ) h
p—-1 1 :
rp=[ 2 ﬁ; ’ 1)’
k=0
and a mapping T: [0, 1)-[0, 1) by

=foX, XEF,,
ot
Tx=f(x— 3 Pz'), xer, i=1,2,.,p
k=0

Then T is called a piecewise linear transformation. If Bo=pg;=---=8,
this is a fS-transformation.

It is easy to see that the partition R is a generator in the strict
sense, 1i.e. :_(/’ T iR=¢g, where ¢ denotes the partition into individual
points. Thé transformation T can be represented by a subshift ¢ on
the one-sided infinite product space AN, where A={0, 1,..., p}. Define

a mapping =: [0, 1)> AN by
(nx)(z)—], iff T'xer;.

Let Y be the image =([0, 1)) and X its closure in the product space AN
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with the product topology. It is obvious that ¥ and X are invariant
under the shift 6. We also denote the restrictions of ¢ to Y or X by
the same notation o. ‘

We define the lexcographical order in AN. For convention, we set

Tr1=lim T"t,
tt1

w,=n(1)=max X,

where max X denotes the maximum element of X with respect to this
order. We define a mapping p from X onto the unit interval [0, 1] by

w(-1

p@)= £ B0, )" fit,

k=0

where

o (1) Po-1) ogl
B(wl0, i))= { /13 ©@Boy+-Buii-1) (1)

(i=0)

In this situation, we can show the following three lemmas. They
correspond to Proposition 3.2, Lemma 4.4 and Proposition 3.4 respec-
tively. They can be proved by the same methods as [2], so we omit
their proofs.

Lemma 1. We have the followings.

1) oom=nT on [0, 1).

2) =:[0,1]-X is an injection and is strictly order-preserving,
i.e. t<s implies that n(t)<n(s).

3) pom is identity on [0, 1].

4) poc=Tep on Y.

5) p: X—>[0,1] is a continuous surjection and is order-preserving,
i.e. o<’ implies that p(w)Zp(w").

6) The inverse image p~1(t) of tel[0, 1] consists either of one
point n(t) or two points n(t) and sup n(s). The latter case occurs only
when T"t=0 for some n>0. =

7) p(w) is one-to-one except a countable number of points weX.

By virtue of Lemma 1, we can get enough informations about
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([0, 1), T) . by 'studying properties. of (X, ). ~Let us analyze (X, o)
First the elements of X can be characterized by

Lemma 2. We have
X={weANjo"o=Zw, for all nz=0}.

We call (ay, ay,...,a,.,)eA” a word in X, if there is weX such
that ao=w(0),..., a,_;=w(n—1). The concatenation of two words a
=(ag;..» 4,-1) and b=(by,..., b,—,) is defined by

axb=(ag,...s Ay_1, bgyeevs bp—1).

For convention, we introduce the empty word ¢ and we define ¢*a
=a*¢p=a for any word a.
Let

W,={(@o»-., ay—lao=aX0),..., a,—, =w(n—1) for some we X},
_ Wo={(ae,..., a,,_l)l(ao,..., Qy-2 Gy1 +D)eW,},
and for ue W, k=0 |
W wy={ve Wluxwe W,.:},
Wou)={ve Wluroe W}
We understand Wy=WJ={¢}.

Lemma 3. For any k20 and any word ueW,, we have
W)= U W), [0, n—j) U {max W,w)},
= .

where

(@05(0),..., 0,(j=1) (21,

¢ (the empty word) (j=0),

and

W u)rw,[0, n—j)={v+w,[0, n—j)lve W(u)}.
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Now, we shall prove the following fundamental estimation, where
we use the notations

[u]={w e X|(w(0),..., w(n=1))=u}
for ueW,, and.

R(u)=the length of the interval p([u]).

Lemma 4. For an arbitrary a>0, there exists a constant C, such
that '

sup sup [( 2 B(0)7)— R@)BWM™|C, e

kzZ0 ueWy vEWo(u)

Jor all nz1, where B(V)=PBy0)Buc1y---Pon—1) and
(1.1) M= io B(w, [0, m)) 1 T1.

Proof. Let ueW, be fixed. If ve W2_;(u)*w,[0, j) for some 0=
<n—1, then we have , o

- Rluxv)= p(max {w € X|(w(0),..., o(n+k—1))=ux*v})

— p((uxv=(0, 0,...)))

1 op(jtm)—1

=pw)™ B)~*( Z ﬁ(wp[J,J+M))' Beh

k=0

=pw)™ By~ TI1.

Therefore if ue W{_,*w,[0, m), then using Lemma 3 we obtain

Rm)= Y R(uwv)

veW n(u)

(12) =SS Bt AR B, L0, )i TIL

J=0 wew3_ (u)
+ p(u)~p(w,[m, m+n))y~tTmn1,

Let us-consider a formal power series; -
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Eol(s = pw B0 A@L0 ) T

i=0 weW$_ (n)

This series clearly converges for |t|<1 and its value is equal to

jf.o 1 B(0,[0, )71 TI1 2’1 )RS VI () a

weW 9 (u)

Hence, we can deduce from (1.2) that

T 3 pot=B0RW g4

"1 ewoq) — ¢
where

9.(0= ¢(t) 2 "B [m, m+n))~IT ™1,
and
a3 0= X, 1,0, my " E g

But the series in (1.3) converges in a neighborhood of the unit disk and
1—-¢(t) has only one simple root at t=1 in a disk {teC| |f|<1+¢&}
for small ¢>0, because

1=060 _ v mp(w [0, n))-1T1.
11—t Y P
Noting ¢'(1)=M, we can see that

f)= Z i = ﬁ(v)“l) ~BWRWM-1]

veWo(u)

_ PR _ PR _
S P B (P P MR

Consequently, f(f) is analytic in {teClt#1, |t|]<1+¢} and the
singular point ¢=1 is removal. Since Su)R(u)<1 and

Plo,lm, n+m) ' T S Brin) ™ Prin=min {fo,..., B} >1,
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the a-th derivative f((f) of f,(?) is uniformly bounded; precisely speaking
we have

sup sup  sup If$(0)] < + 0.

k20 ueWy [t]=

Using the estimation

nn—1)..(n—a+DI( T )= BORW@WM™|

veW O (u)
2n R .
= |@mry (" peye 00| <1 sup 170
0 ~ s 1
for 0<r<1 and n=0, we obtain

sup sup sup nn—1D...n—a+D( ¥ By H—B@RUIM™ < + o,

k20 ueWy nz1 vsWo(u)

which proves the lemma.

§2. An Invariant Measure and the Strong Mixing Condition

We shall introduce an invariant measure of a piecewise linear trans-
formation defined in §1. First of all, notice that the Lebesgue measure
on [0, 1) is transformed to the measure dp on X by the correspondence
given by Lemma 1. Let us define an operator S by

Sé@=_ T Brid(are),

acA;akwe

where ¢(w) is a function on X. Then, we can easily get the following
lemma.

Lemma 5. We have
[ W(@Sp@po)={ Yoo)s(@)dp@)

for any ¢(w)e L1(dp)=L(X, dp) and Y(w)e L*(X, dp).

We omit the proof, because it can be shown in the same way as
the case of p-transformation (c.f. [2], Lemma 5.1). This lemma implies



288 HirosHI ISHITANI

that the measure wA)=\ hw)dp(w) is invariant under ¢ if and only if
Sh(w)=h(w) (a.e.). Furthermore, we can easily check that

h@)=M" $ B@,[0, 1) Lipro, z0n(@)

fulfils Sh(w)=h(w) andS hw)dp(w)=1 (c.f. [6]), where M is given by
X

(1.1) and I, w) denotes the indicator function of the set 4. Thus, we

get an invariant measure of ‘o ‘

u={ w)dp@).

Lemma 1 implies that pop~! is invariant under T. For simplicity, we
denote pop™! by u and Eu(f)=gfd,u.

In the sequel, F(w(0),..., w(n—1)) stands for the sub-o-field gener-
ated by w(0),..., o(n—1). Now we can prove the key lemma:

Lemma 6. For any 6>0 and any positive integer k, there exists
ys(k) such that

@0 _d_
£ 20T < oo,
k=
and

I5*¥"¢(w)~ E (@)l » = 75(K) | D]l -

for all non-negative integer n and all ¢(w)e F(w(0),..., o(n—1)).
Proof. Lemma 3 guarantees that

Sk+n¢(w) = wel?;k +”ﬁ(w)— ! ¢(w*w)l{w*weX}(w)

tol

=5 T B B,0, D) $ewer,[0, N s 30(@).-

=0 yew

S,

o
kK+n-j

Let us define

SHrmp@= £ T B0 B0, [0 D) 400,00, DM ey 20 @)
. T veW?, J ‘
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for m£k+n. Then, we have

8% () =S¥ (m)d(@)]

SIola 35 T BWA@,L0. )

)
VeV an=y

=19l 3T A0, )" T Aot

0 .
vEWk+n—j

Since ¥ B(v)"! is uniformly bounded because of Lemma 4, we have

0
”EWk+n—j

1 Sk+"¢(a)) —_ Sk+”(M)¢(w)ll o= Kl n ¢” w(Bmin "

where B;,=min {f, f;,..., f,}>1 and K, is an absolute constant.
We now assume m<k. Then, since the function ¢(w) depends only
upon the first n coordinates, we get

snmp)= 5 T ¢ T A0 Bwpl0 D) i, z@):

veW?_ (u)
Let
K (@)= 5 B(@,[0, D) Ligsoyz00(®)
Using Lemma 4, we have |
IS**(m)g(@)— E(Hh™(@)] .
S161a 3, @0 1) gt 20i@), 3 Bt

<I( T AW BuRGM-1|

» veWg_jgu)

<16l 3 A0 D) Titoyza(@ 3, B Colk=p®

SCk=m*19l 3 B@pd0, ) 3 fw,

where C, is given in Lemma 4, Combining Lemmas 3 and 4; we can
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easily prove that sup > pu) !ZK,<+ .
nz0 ueW,

Consequently,
[S¥+1(m)p(w) — E ()™ ()| o, < K, Cok—m) %[ @]l -
On the other hand, it is clear that

IE(@)h(@) = E (M@)o, < K3(Bmin) "¢l o

for some K;>0. Taking m=[k/2] and a>(2+08)/5, we get our asser-
tion.

We have prepared enough to show the strong mixing condition

(11, I5D-

Lemma 7. For any 6>0 and any positive integer k, there exists
oy (k) such that

121 oc,,(k)% <+
and
(A n T=**DB)— u(A)(B)| Sersk)

for all k21, iz1, Ae #(V T~iR) and all measurable set B.
j=0

Proof. It is enough to prove our assertion for sufficiently large i,
since u is invariant under T. For an arbitrary positive integer k, there
obviously exist a positive integer m, and a function hy(w) such that
h(w) depends only on (w(0),..., w(m,—1)) and

() ~ (@)l 1(apy S VoK) 5
where y,(k) is given in Lemma 6. Then we have

H(A n T-®+DB)— u(A)u(B)

= 1o-sa(@ 13 0)u@) = 1,1 s@)(@) 1, 50)dp(@)
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- SXI,, (@)@, - 15(c** 0)dp(e9)
+ SXI,, - ;A(co)(h(w) - hk(é))l p-16(0*  w)dp(w)
- SXI,, - 1A(a))hk(cu)dp(w)$x1 - 15(@)h (@)dp(e)
- SXI,, - 14(@)(h(@) — h(@))dp(w)u(B)
= Sx[swa,, -14(@)h(@)) — E (I ;-1 (@) (@) (@), -15()dp()
+ SXI,, -1 (@) [Mw)— hk(wj]l o- 1,,(0"‘»+"w)dp(m)

= 1o @)h@) - ) ldp@u(®).

If i=m,, then I,-: (0)h(w)e F(@(0),...,w(i—1)). So we can make use
of Lemma 6 and we get ’

lu(4 n T~¢*DB) — u(A)u(B)| < 375(K) | A(@)]l 5

which proves Lemma 7.

§3. Central Limit Theorems
Now we are in the position to state our results. Let
D,(2)= -ITSZ exp [——t—z—]dt
J2rd)-= 2d?
for d>0 and |

1 (z>0),
¢O(Z) = [ . . S
0 (z<0).

First, combining Lemma 7 in §2 and Theorem 18.6.2 in [1], we get
the following '

- Theorem 1. If
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(1) f(f)e L2*3(u)=L2+([0, 1), y)  for some >0,
@ FI-EG1Y T Bllogy< +eo,

2490

BT L then

where 0=

@.1)  d*=Ef-E.f)? +2§1 E[(fO=EYAT/)—E,f)]< + o,

and

1

NG

at every continuity point z of D,z).

(3.2 lim u{="S (AT~ E, )<z} =24(2),

Next we shall be concerned with the central limit theorem with
respect to Lebesgue measure A. The following relations between the
invariant measure u and Lebesgue measure A 'cank be easily shown, using
Lemmas 5 and 6, and noticing 1/c < h(w)=<c for some ¢>0.

Lemma 8. We habé
[(B)— AT*B)| £y,5(K)A(B),
Jor all measﬁrablé set B in [0, 1) and all positive integer k. Hence
]E,,(g-)—E;(g(T"t))lgy,,(k)ﬂvgllu(;_) :

for all geLI()=LX([0, 1), h=L*(@)=LX([0, 1), ) and all k20. Notice
that yy(k) is given in Lemma 6.

Let
zw=_L"5" [fffkt)-—E /1
b n=o T “
2= LS - s "

Lemma 9. For any fe LY(A)=L(u) and any real number 1, we have
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lim |E,[exp (ZV)] = E,[exp (i1Z)]| =0
And the convergence is uniform in the wide sense.
Proof of Lemma 9. We have
IEu[eXP(lTZ(l’)] E;[eXp(er(”)]l
<IE,[exp (iZ§1)] — E,[exp (ieZ{ )]

+|E [exp (itZ{V)]— E ;[exp (itZ{P)]|

sE|1—ew {5 5 Uaw-E ]
+EA|1—°XP{\/ 3 LATH) - Ef]}|
+| &, El)exp{ oo U@-EA]

vE|i—e (I S g1

n K=o

<

et Ur -

Jn

+E,1|1-exp{\/ z+ (B, f—E ST}

’u’M,

Using Lemma 8 and the ergodic theorem, and putting r=[logn], we
get the assertion of Lemma 9.
Thus we get the following

Theorem 2. Under the conditions (1) and (2) of Theorem 1,  (3.1)
holds and we have

n—>c0

(33) lim A{ il 5 - El(f(Tkz))]} 24(2)
at every continuity point z of @(z). |

Remark 1. If v is an absolutely continuous measure with respect
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to A and dv/dA is uniformly continuous, then we can prove an analogous
assertion to Lemma 8, i.e.

|K(B)— W(T*B)| < e(k)A(B)

for all measurable set B and all positive integer k, where &(k)—0 as
k—o0.

If Z 8(k)< +oo0, then we can get the central limit theorem with
respect to v in the same way as the proof of Theorem 2. Even if

kE g(k)=co, we can prove the central limit theorem

lim v{-j-; T AT~ B, f1<2}=04(2)

by a little changing of the method.

Finally we get the following concrete result.

Theorem 3. If either
(@) f(t) is a function of bounded variation,
or . :
(b) f(t) is Holder continuous,
then the conditions (1) and (2) of Theorem 1 are satisfied, and conse-
quently the conclusions of Theorems 1 and 2 hold.
2490

Proof. (a) Since 6= m<2 it is clear that |*[on=]" s

Therefore we calculate [[f—E,(f] V T7iR)|| 12 in the sequel.
Let Var(f; r) denote the total vanatlon of f(?) on the interval r,
and Varf=Var(f; [0, 1)). Putting R, = V T-iR, we have

1f = ELf 1R Lauy

(x| man[ 5 o -ren @)Y

reRy

> { wanrvar(s )"

rek

< (Varf)3( 2 u(r) Var (f; )3,
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where

H(r) ScAr) S (Bmin)~*

for every reR,, since 1/cSh(w)<c and the diameters of reR; are less
than (Buin)~*. Thus we get

1= Eu(f IR 2y S ¢ (Var ) Buw) 2

which proves our assertion.
(b) Instead of |[* [ ey, We shall estimate |- [lz=,). We have

If=E(fIRDN sy

=max ess.sup |»f(t) - %Srf(s)ﬂ(ds) I

reRx  ter )

<max ess.sup [-u%_r) S' /O —r(s)lp (ds)].

reRy ter
Since f(f) is Holder continuous, we have
| f()—f()|=K(diam r)* < K[(Buin)*]7*

for some >0, K>0 and for all ¢, ser.
Consequently, we get

I f=E(fIRDN L=(y S K[Bmin)*17*.
Clearly, this is enough to conclude Theorem 3.

Remark 2. If there exists a positive integer g such that Til=1,
then it is easy to see that (7, q\—/z T-*R) is a mixing Markov endomor-
phism. Hence, the natural gene’;;{)or satisfies the uniformly mixing condi-
tion (c.f. [1]), and so the central limit theorem holds for a wider class
of functions. For example, if

S: [f@O—fe+h)| Zdt=o(1og—z_., hi )

for some &>0, then the conclusions of Theorems 1 and 2 hold for f.
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